1
|
Williams B, Pintor L, Gray S. Multiple stressors lead to complex responses in reproductive behaviors in an African cichlid. Curr Zool 2024; 70:821-832. [PMID: 39678821 PMCID: PMC11634676 DOI: 10.1093/cz/zoae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/15/2024] [Indexed: 12/17/2024] Open
Abstract
Exposure to multiple environmental stressors is a common occurrence that can affect organisms in predictable or unpredictable ways. Hypoxia and turbidity in aquatic environments are 2 stressors that can affect reproductive behaviors by altering energy availability and the visual environment, respectively. Here we examine the relative effects of population and the rearing environment (oxygen concentration and turbidity) on reproductive behaviors. We reared cichlid fish (the Egyptian mouthbrooder, Pseudocrenilabrus multicolor) from 2 populations (a swamp and river) until sexual maturity, in a full factorial design (hypoxic/normoxic × clear/turbid) and then quantified male competitive and courtship behaviors and female preference under their respective rearing conditions. Overall, we found that the rearing environment was more important than population for determining behavior, indicating there were few heritable differences in reproductive behavior between the 2 populations. Unexpectedly, males in the hypoxic rearing treatment performed more competitive and courtship behaviors. Under turbid conditions, males performed fewer competitive and courtship behaviors. We predicted that females would prefer males from their own population. However, under the hypoxic and turbid combination females from both populations preferred males from the other population. Our results suggest that reproductive behaviors are affected by interactions among male traits, female preferences, and environmental conditions.
Collapse
Affiliation(s)
- Bethany Williams
- Department of Biology, University of Missouri - 1 University Blvd, St. Louis, St. Louis, MO 63121, USA
| | - Lauren Pintor
- Department of Biology, University of Missouri - 1 University Blvd, St. Louis, St. Louis, MO 63121, USA
| | - Suzanne Gray
- Department of Biology, University of Missouri - 1 University Blvd, St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
2
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
3
|
Rodriguez‐Silva R, Spikes M, Monsisbay MI, Schlupp I. Color polymorphism in the Cuban endemic livebearing fish Limia vittata (Teloestei, Poeciliidae): Potential roles of sexual and natural selection. Ecol Evol 2023; 13:e9768. [PMID: 36713487 PMCID: PMC9873589 DOI: 10.1002/ece3.9768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Color polymorphism can be maintained in natural populations by natural selection or sexual selection. In this study, we use two different approaches to test which of these evolutionary mechanisms may explain the presence of color polymorphism in the Cuban Limia (Limia vittata), an endemic livebearing fish from Cuba. First, we investigate the role of sexual selection using traditional binary choice tests looking at both female and male preferences relative to varying degrees of black spotting in stimulus mates. Second, we assess the role of natural selection by analyzing the frequency and geographic distribution of black-spotted and nonspotted morphs of L. vittata in natural populations from Cuba. The frequency of black-spotted morphs is significantly higher in brackish and saltwater environments compared with freshwater habitats, which could be related to higher predation pressure in coastal ecosystems compared with purely freshwater environments. Our results suggest that habitat variation is the most important factor in maintaining color polymorphism in L. vittata. Salinity levels could be indirectly responsible for maintaining different color morphs in this species, likely due to the regulatory effect of saline gradients on predation regimes.
Collapse
Affiliation(s)
| | - Montrai Spikes
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | | | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| |
Collapse
|
4
|
Riesch R, Araújo MS, Bumgarner S, Filla C, Pennafort L, Goins TR, Lucion D, Makowicz AM, Martin RA, Pirroni S, Langerhans RB. Resource competition explains rare cannibalism in the wild in livebearing fishes. Ecol Evol 2022; 12:e8872. [PMID: 35600676 PMCID: PMC9109233 DOI: 10.1002/ece3.8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rüdiger Riesch
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Márcio S. Araújo
- Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
| | - Stuart Bumgarner
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| | - Caitlynn Filla
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
- Department of Anthropology University of Florida Gainesville Florida USA
| | - Laura Pennafort
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Taylor R. Goins
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| | - Darlene Lucion
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Amber M. Makowicz
- Department of Biological Sciences Florida State University Tallahassee Florida USA
| | - Ryan A. Martin
- Department of Biology Case Western Reserve University Cleveland Ohio USA
| | - Sara Pirroni
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - R. Brian Langerhans
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
5
|
Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish. Heredity (Edinb) 2022; 128:45-55. [PMID: 34876658 PMCID: PMC8733020 DOI: 10.1038/s41437-021-00487-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
Many species show replicated ecophenotypy due to recurring patterns of natural selection. Based on the presence or absence of pursuit predators, at least 17 species of fish repeatedly differentiated in body shape in a manner that increases burst swimming speed and the likelihood of predator escape. The predator-associated burst speed (PABS) ecophenotype is characterized by a small head and trunk and enlarged caudal region. Mechanisms promoting replicated phenotype-environment association include selection (without evolution), a single instance of adaptive evolution followed by biased habitat occupation, repeated instances of local adaptation, or adaptive phenotypic plasticity. Common garden rearing of mosquitofish, Gambusia affinis, demonstrated a likely heritable basis for PABS phenotypy, but it is unknown whether populations are otherwise genetically distinct or whether replicated ecophenotypy represents a single or replicated instances of adaptation. To genetically characterize the populations and test hypotheses of single or multiple adaptations, we characterized variation in 12 polymorphic DNA microsatellites in the previously studied G. affinis populations. Populations were genetically distinct by multilocus analysis, exhibited high allelic diversity, and were heterozygote deficient, which effects were attributed to G. affinis's shoaling nature and habitat patchiness. Genetic and phenotypic distances among populations were correlated for non-PABS but not PABS morphology. Multilocus analysis demonstrated ecophenotype polyphyly and scattered multivariate genetic structure which support only the replicated-adaptation model. As all of the diverse tests performed demonstrated lack of congruence between patterns of molecular genetic and PABS differentiation, it is likely that divergent natural selection drove multiple instances of adaptive evolution.
Collapse
|
6
|
Moffett ER, Fryxell DC, Lee F, Palkovacs EP, Simon KS. Consumer trait responses track change in resource supply along replicated thermal gradients. Proc Biol Sci 2021; 288:20212144. [PMID: 34847762 PMCID: PMC8634111 DOI: 10.1098/rspb.2021.2144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Rising temperatures may alter consumer diets through increased metabolic demand and altered resource availability. However, current theories assessing dietary shifts with warming do not account for a change in resource availability. It is unknown whether consumers will increase consumption rates or consume different resources to meet increased energy requirements and whether the dietary change will lead to associated variation in morphology and nutrient utilization. Here, we used populations of Gambusia affinis across parallel thermal gradients in New Zealand (NZ) and California (CA) to understand the influence of temperature on diets, morphology and stoichiometric phenotypes. Our results show that with increasing temperature in NZ, mosquitofish consumed more plant material, whereas in CA mosquitofish shifted towards increased consumption of invertebrate prey. In both regions, populations with plant-based diets had fuller guts, longer relative gut lengths, better-orientated mouths and reduced body elemental %C and N/P. Together, our results show multiple pathways by which consumers may alter their feeding patterns with rising temperatures, and they suggest that warming-induced changes to resource availability may be the principal determinant of which pathway is taken.
Collapse
Affiliation(s)
- E. R. Moffett
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - D. C. Fryxell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - F. Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - E. P. Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - K. S. Simon
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
7
|
Vinterstare J, Ekelund Ugge GMO, Hulthén K, Hegg A, Brönmark C, Nilsson PA, Zellmer UR, Lee M, Pärssinen V, Sha Y, Björnerås C, Zhang H, Gollnisch R, Herzog SD, Hansson LA, Škerlep M, Hu N, Johansson E, Langerhans RB. Predation risk and the evolution of a vertebrate stress response: Parallel evolution of stress reactivity and sexual dimorphism. J Evol Biol 2021; 34:1554-1567. [PMID: 34464014 DOI: 10.1111/jeb.13918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
Predation risk is often invoked to explain variation in stress responses. Yet, the answers to several key questions remain elusive, including the following: (1) how predation risk influences the evolution of stress phenotypes, (2) the relative importance of environmental versus genetic factors in stress reactivity and (3) sexual dimorphism in stress physiology. To address these questions, we explored variation in stress reactivity (ventilation frequency) in a post-Pleistocene radiation of live-bearing fish, where Bahamas mosquitofish (Gambusia hubbsi) inhabit isolated blue holes that differ in predation risk. Individuals of populations coexisting with predators exhibited similar, relatively low stress reactivity as compared to low-predation populations. We suggest that this dampened stress reactivity has evolved to reduce energy expenditure in environments with frequent and intense stressors, such as piscivorous fish. Importantly, the magnitude of stress responses exhibited by fish from high-predation sites in the wild changed very little after two generations of laboratory rearing in the absence of predators. By comparison, low-predation populations exhibited greater among-population variation and larger changes subsequent to laboratory rearing. These low-predation populations appear to have evolved more dampened stress responses in blue holes with lower food availability. Moreover, females showed a lower ventilation frequency, and this sexual dimorphism was stronger in high-predation populations. This may reflect a greater premium placed on energy efficiency in live-bearing females, especially under high-predation risk where females show higher fecundities. Altogether, by demonstrating parallel adaptive divergence in stress reactivity, we highlight how energetic trade-offs may mould the evolution of the vertebrate stress response under varying predation risk and resource availability.
Collapse
Affiliation(s)
- Jerker Vinterstare
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Gustaf M O Ekelund Ugge
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden.,School of Bioscience, University of Skövde, Skövde, Sweden
| | - Kaj Hulthén
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Alexander Hegg
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Christer Brönmark
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Per Anders Nilsson
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Ursula Ronja Zellmer
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Marcus Lee
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Varpu Pärssinen
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Yongcui Sha
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Caroline Björnerås
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Huan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Raphael Gollnisch
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Simon D Herzog
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Lars-Anders Hansson
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Martin Škerlep
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Nan Hu
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Emma Johansson
- Aquatic Ecology Unit, Ecology Building, Department of Biology, Lund University, Lund, Sweden
| | - Randall Brian Langerhans
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Predation shapes behavioral lateralization: insights from an adaptive radiation of livebearing fish. Behav Ecol 2021. [DOI: 10.1093/beheco/arab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hemispheric brain lateralization can drive the expression of behavioral asymmetry, or laterality, which varies notably both within and among species. To explain these left–right behavioral asymmetries in animals, predator-mediated selection is often invoked. Recent studies have revealed that a relatively high degree of lateralization correlates positively with traits known to confer survival benefits against predators, including escape performance, multitasking abilities, and group coordination. Yet, we still know comparatively little about 1) how consistently predators shape behavioral lateralization, 2) the importance of sex-specific variation, and 3) the degree to which behavioral lateralization is heritable. Here, we take advantage of the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) and measure behavioral lateralization in hundreds of wild fish originating from multiple blue holes that differ in natural predation pressure. Moreover, we estimated the heritability of this trait using laboratory-born fish from one focal population. We found that the degree of lateralization but not the particular direction of lateralization (left or right) differed significantly across high and low predation risk environments. Fish originating from high-predation environments were more strongly lateralized, especially females. We further confirmed a genetic basis to behavioral lateralization in this species, with significant additive genetic variation in the population examined. Our results reveal that predation risk represents one key ecological factor that has likely shaped the origin and maintenance of this widespread behavioral phenomenon, even potentially explaining some of the sex-specific patterns of laterality recently described in some animals.
Collapse
|
9
|
Hulthén K, Hill JS, Jenkins MR, Langerhans RB. Predation and Resource Availability Interact to Drive Life-History Evolution in an Adaptive Radiation of Livebearing Fish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predation risk and resource availability are two primary factors predicted by theory to drive the evolution of life histories. Yet, disentangling their roles in life-history evolution in the wild is challenging because (1) the two factors often co-vary across environments, and (2) environmental effects on phenotypes can mask patterns of genotypic evolution. Here, we use the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to provide a strong test of the roles of predation and resources in life-history evolution, as the two factors do not co-vary in this system and we attempted to minimize environmental effects by raising eight populations under common laboratory conditions. We tested a priori predictions of predation- and resource-driven evolution in five life-history traits. We found that life-history evolution in Bahamas mosquitofish largely reflected complex interactions in the effects of predation and resource availability. High predation risk has driven the evolution of higher fecundity, smaller offspring size, more frequent reproduction, and slower growth rate—but this predation-driven divergence primarily occurred in environments with relatively high resource availability, and the effects of resources on life-history evolution was generally greater within environments having high predation risk. This implies that resource-driven selection on life histories overrides selection from predators when resources are particularly scarce. While several results matched a priori predictions, with the added nuance of interdependence among selective agents, some did not. For instance, only resource levels, not predation risk, explained evolutionary change in male age at maturity, with more rapid sexual maturation in higher-resource environments. We also found faster (not slower) juvenile growth rates within low-resource and low-predation environments, probably caused by selection in these high-competition scenarios favoring greater growth efficiency. Our approach, using common-garden experiments with a natural system of low- and high-predation populations that span a continuum of resource availability, provides a powerful way to deepen our understanding of life-history evolution. Overall, it appears that life-history evolution in this adaptive radiation has resulted from a complex interplay between predation and resources, underscoring the need for increased attention on more sophisticated interactions among selective agents in driving phenotypic diversification.
Collapse
|
10
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
11
|
Langerhans RB, Goins TR, Stemp KM, Riesch R, Araújo MS, Layman CA. Consuming Costly Prey: Optimal Foraging and the Role of Compensatory Growth. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.603387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some prey are exceptionally difficult to digest, and yet even non-specialized animals may consume them—why? Durophagy, the consumption of hard-shelled prey, is thought to require special adaptations for crushing or digesting the hard shells to avoid the many potential costs of this prey type. But many animals lacking specializations nevertheless include hard-bodied prey in their diets. We describe several non-mutually exclusive adaptive mechanisms that could explain such a pattern, and point to optimal foraging and compensatory growth as potentially having widespread importance in explaining costly-prey consumption. We first conducted a literature survey to quantify the regularity with which non-specialized teleost fishes consume hard-shelled prey: stomach-content data from 325 teleost fish species spanning 82 families (57,233 stomach samples) demonstrated that non-specialized species comprise ~75% of the total species exhibiting durophagy, commonly consuming hard-shelled prey at low to moderate levels (~10–40% as much as specialists). We then performed a diet survey to assess the frequency of molluscivory across the native latitudinal range of a small livebearing fish, Gambusia holbrooki, lacking durophagy specializations. Molluscivory was regionally widespread, spanning their entire native latitudinal range (>14° latitude). Third, we tested for a higher frequency of molluscivory under conditions of higher intraspecific resource competition in Bahamian mosquitofish (Gambusia spp.). Examining over 5,300 individuals, we found that molluscivory was more common in populations with higher population density, suggesting that food limitation is important in eliciting molluscivory. Finally, we experimentally tested in G. holbrooki whether molluscivory reduces growth rate and whether compensatory growth follows a period of molluscivory. We found that consumption of hard-shelled gastropods results in significantly reduced growth rate, but compensatory growth following prior snail consumption can quickly mitigate growth costs. Our results suggest that the widespread phenomenon of costly-prey consumption may be partially explained by its relative benefits when few alternative prey options exist, combined with compensatory growth that alleviates temporary costs.
Collapse
|
12
|
Pärssinen V, Hulthén K, Brönmark C, Björnerås C, Ekelund Ugge G, Gollnisch R, Hansson L, Herzog SD, Hu N, Johansson E, Lee M, Rengefors K, Sha Y, Škerlep M, Vinterstare J, Zhang H, Langerhans RB, Nilsson PA. Variation in predation regime drives sex‐specific differences in mosquitofish foraging behaviour. OIKOS 2021. [DOI: 10.1111/oik.08335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Kaj Hulthén
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | | | - Gustaf Ekelund Ugge
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Univ. of Skövde, School of Bioscience Skövde Sweden
| | | | | | | | - Nan Hu
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Emma Johansson
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Marcus Lee
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | - Yongcui Sha
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Martin Škerlep
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | - Huan Zhang
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Chinese Academy of Sciences, Inst. of Hydrobiology Wuhan China
| | - R. Brian Langerhans
- North Carolina State Univ., Dept of Biological Sciences and W.M. Keck Center for Behavioral Biology Raleigh USA
| | - P. Anders Nilsson
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Karlstad Univ., River Ecology and Management Research Group RivEM, Dept of Environmental and Life Sciences Karlstad Sweden
| |
Collapse
|
13
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
14
|
Langerhans RB, Rosa-Molinar E. A Novel Body Plan Alters Diversification of Body Shape and Genitalia in Live-Bearing Fish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Major evolutionary innovations can greatly influence subsequent evolution. While many major transitions occurred in the deep past, male live-bearing fishes (family Poeciliidae) more recently evolved a novel body plan. This group possesses a three-region axial skeleton, with one region—the ano-urogenital region—representing a unique body region accommodating male genitalic structures (gonopodial complex). Here we evaluate several hypotheses for the evolution of diversity in this region and examine its role in the evolution of male body shape. Examining Gambusia fishes, we tested a priori predictions for (1) joint influence of gonopodial-complex traits on mating performance, (2) correlated evolution of gonopodial-complex traits at macro- and microevolutionary scales, and (3) predator-driven evolution of gonopodial-complex traits in a post-Pleistocene radiation of Bahamas mosquitofish. We found the length of the sperm-transfer organ (gonopodium) and its placement along the body (gonopodial anterior transposition) jointly influenced mating success, with correlational selection favoring particular trait combinations. Despite these two traits functionally interacting during mating, we found no evidence for their correlated evolution at macro- or microevolutionary scales. In contrast, we did uncover correlated evolution of modified vertebral hemal spines (part of the novel body region) and gonopodial anterior transposition at both evolutionary scales, matching predictions of developmental connections between these components. Developmental linkages in the ano-urogenital region apparently play key roles in evolutionary trajectories, but multiple selective agents likely act on gonopodium length and cause less predictable evolution. Within Bahamas mosquitofish, evolution of hemal-spine morphology, and gonopodial anterior transposition across predation regimes was quite predictable, with populations evolving under high predation risk showing more modified hemal spines with greater modifications and a more anteriorly positioned gonopodium. These changes in the ano-urogenital vertebral region have facilitated adaptive divergence in swimming abilities and body shape between predation regimes. Gonopodium surface area, but not length, evolved as predicted in Bahamas mosquitofish, consistent with a previously suggested tradeoff between natural and sexual selection on gonopodium size. These results provide insight into how restructured body plans offer novel evolutionary solutions. Here, a novel body region—originally evolved to aid sperm transfer—was apparently co-opted to alter whole-organism performance, facilitating phenotypic diversification.
Collapse
|
15
|
Northfield TD, Ripa J, Nell LA, Ives AR. Coevolution, diversification and alternative states in two-trophic communities. Ecol Lett 2020; 24:269-278. [PMID: 33201560 DOI: 10.1111/ele.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Single-trait eco-evolutionary models of arms races between consumers and their resource species often show inhibition rather than promotion of community diversification. In contrast, modelling arms races involving multiple traits, we found that arms races can promote diversification when trade-off costs among traits make simultaneous investment in multiple traits either more beneficial or more costly. Coevolution between resource and consumer species generates an adaptive landscape for each, with the configuration giving predictable suites of consumer and resource species. Nonetheless, the adaptive landscape contains multiple alternative stable states, and which stable community is reached depends on small stochastic differences occurring along evolutionary pathways. Our results may solve a puzzling conflict between eco-evolutionary theory that predicts community diversification via consumer-resource interactions will be rare, and empirical research that has uncovered real cases. Furthermore, our results suggest that these real cases might be just a subset of alternative stable communities.
Collapse
Affiliation(s)
- Tobin D Northfield
- Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, 98801, USA.,Centre for Tropical Environmental and Sustainability Studies, College of Science and Engineering, James Cook University, Cairns, QLD, 4870, Australia
| | - Jörgen Ripa
- Theoretical Population Ecology and Evolution Group (ThePEG), Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Lucas A Nell
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
16
|
Albert JS, Tagliacollo VA, Dagosta F. Diversification of Neotropical Freshwater Fishes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011620-031032] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neotropical freshwater fishes (NFFs) constitute the most diverse continental vertebrate fauna on Earth, with more than 6,200 named species compressed into an aquatic footprint <0.5% of the total regional land-surface area and representing the greatest phenotypic disparity and functional diversity of any continental ichthyofauna. Data from the fossil record and time-calibrated molecular phylogenies indicate that most higher taxa (e.g., genera, families) diversified relatively continuously through the Cenozoic, across broad geographic ranges of the South American platform. Biodiversity data for most NFF clades support a model of continental radiation rather than adaptive radiation, in which speciation occurs mainly in allopatry, and speciation and adaptation are largely decoupled. These radiations occurred under the perennial influence of river capture and sea-level oscillations, which episodically fragmented and merged portions of adjacent river networks. The future of the NFF fauna into the Anthropocene is uncertain, facing numerous threats at local, regional, and continental scales.
Collapse
Affiliation(s)
- James S. Albert
- Department of Biology, University of Louisiana at Lafayette, Louisiana 70504, USA
| | | | - Fernando Dagosta
- Faculty of Biological and Environmental Sciences, Universidade Federal da Grande Dourados, Brazil 79825-070
| |
Collapse
|
17
|
Abstract
Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild.
Collapse
|
18
|
Cyriac VP, Kodandaramaiah U. Warning signals promote morphological diversification in fossorial uropeltid snakes (Squamata: Uropeltidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Many species possess warning colourations that signal unprofitability to predators. Warning colourations are also thought to provide prey with a ‘predator-free space’ and promote niche expansion. However, how such strategies release a species from environmental constraints and facilitate niche expansion is not clearly understood. Fossoriality in reptiles imposes several morphological limits on head and body size to facilitate burrowing underground, but many fossorial snakes live close to the surface and occasionally move above ground, exposing them to predators. In such cases, evolving antipredator defences that reduce predation on the surface could potentially relax the morphological constraints associated with fossoriality and promote morphological diversification. Fossorial uropeltid snakes possess varying degrees of conspicuous warning colourations that reduce avian predation when active above ground. We predicted that species with more conspicuous colourations will exhibit more robust body forms and show faster rates of morphological evolution because constraints imposed by fossoriality are relaxed. Using a comparative phylogenetic approach on the genus Uropeltis, we show that more conspicuous species tend to have more robust morphologies and have faster rates of head-shape evolution. Overall, we find that the evolution of warning colourations in Uropeltis can facilitate niche expansion by influencing rates of morphological diversification.
Collapse
Affiliation(s)
- Vivek Philip Cyriac
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE) and School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE) and School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, India
| |
Collapse
|
19
|
Rojo JH, Fernández DA, Figueroa DE, Boy CC. Phenotypic and genetic differentiation between diadromous and landlocked puyen Galaxias maculatus. JOURNAL OF FISH BIOLOGY 2020; 96:956-967. [PMID: 32048294 DOI: 10.1111/jfb.14285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
This study reports the phenotypic and genetic differences between individuals of puyen Galaxias maculatus from two sites in the same river basin in Tierra del Fuego National Park, southern South America. Individuals from the two sampling sites presented morphometric and genetic differences. The morphometric differences indicated that individuals from Laguna Negra (LN) were short and more robust and had large eyes, whereas those from Arroyo Negro (AN) were thin and elongated and had small eyes. Genetic differences showed that AN individuals had a greater genetic structuration and an older demographic history than LN individuals. The results of this study affirmed that the individuals from the two sampling sites belong to different populations with a high degree of isolation. The demographic history could indicate that the individuals of G. maculatus which migrated to northern areas during the last glaciation settled in the Beagle Channel after its formation. The LN population could have originated after the retreat of the glaciers, migrating from AN.
Collapse
Affiliation(s)
- Javier Hernán Rojo
- Centro Austral de Investigaciones Científicas (CADIC) - CONICET, Ushuaia, Argentina
| | - Daniel Alfredo Fernández
- Centro Austral de Investigaciones Científicas (CADIC) - CONICET, Ushuaia, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales de la Universidad Nacional de Tierra del Fuego (ICPA-UNTDF), Ushuaia, Argentina
| | - Daniel Enrique Figueroa
- Instituto de Investigaciones Marinas y Costeras (IIMyC) - CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | |
Collapse
|
20
|
Effects of predation risk on egg steroid profiles across multiple populations of threespine stickleback. Sci Rep 2020; 10:5239. [PMID: 32251316 PMCID: PMC7090078 DOI: 10.1038/s41598-020-61412-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Predation often has consistent effects on prey behavior and morphology, but whether the physiological mechanisms underlying these effects show similarly consistent patterns across different populations remains an open question. In vertebrates, predation risk activates the hypothalamic-pituitary-adrenal (HPA) axis, and there is growing evidence that activation of the maternal HPA axis can have intergenerational consequences via, for example, maternally-derived steroids in eggs. Here, we investigated how predation risk affects a suite of maternally-derived steroids in threespine stickleback eggs across nine Alaskan lakes that vary in whether predatory trout are absent, native, or have been stocked within the last 25 years. Using liquid chromatography coupled with mass spectroscopy (LC-MS/MS), we detected 20 steroids within unfertilized eggs. Factor analysis suggests that steroids covary within and across steroid classes (i.e. glucocorticoids, progestogens, sex steroids), emphasizing the modularity and interconnectedness of the endocrine response. Surprisingly, egg steroid profiles were not significantly associated with predator regime, although they were more variable when predators were absent compared to when predators were present, with either native or stocked trout. Despite being the most abundant steroid, cortisol was not consistently associated with predation regime. Thus, while predators can affect steroids in adults, including mothers, the link between maternal stress and embryonic development is more complex than a simple one-to-one relationship between the population-level predation risk experienced by mothers and the steroids mothers transfer to their eggs.
Collapse
|
21
|
Local adaptation fuels cryptic speciation in terrestrial annelids. Mol Phylogenet Evol 2020; 146:106767. [PMID: 32081763 DOI: 10.1016/j.ympev.2020.106767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 11/23/2022]
Abstract
Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna.
Collapse
|
22
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
24
|
Simmonds SE, Fritts‐Penniman AL, Cheng SH, Mahardika GN, Barber PH. Genomic signatures of host-associated divergence and adaptation in a coral-eating snail, Coralliophila violacea (Kiener, 1836). Ecol Evol 2020; 10:1817-1837. [PMID: 32128119 PMCID: PMC7042750 DOI: 10.1002/ece3.5977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail, Coralliophila violacea (Kiener 1836), that specializes on Porites corals in the Indo-Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails' adaptation to their coral hosts. Genome-wide single nucleotide polymorphism (SNP) data from type II restriction site-associated DNA (2b-RAD) sequencing revealed two differentiated clusters of C. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host-associated lineages of C. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.
Collapse
Affiliation(s)
- Sara E. Simmonds
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Samantha H. Cheng
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
- Center for Biodiversity and ConservationAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gusti Ngurah Mahardika
- Animal Biomedical and Molecular Biology LaboratoryFaculty of Veterinary MedicineUdayana University BaliDenpasarIndonesia
| | - Paul H. Barber
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
25
|
Price SA, Friedman ST, Corn KA, Martinez CM, Larouche O, Wainwright PC. Building a Body Shape Morphospace of Teleostean Fishes. Integr Comp Biol 2020; 59:716-730. [PMID: 31241147 DOI: 10.1093/icb/icz115] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We present a dataset that quantifies body shape in three dimensions across the teleost phylogeny. Built by a team of researchers measuring easy-to-identify, functionally relevant traits on specimens at the Smithsonian National Museum of Natural History it contains data on 16,609 specimens from 6144 species across 394 families. Using phylogenetic comparative methods to analyze the dataset we describe the teleostean body shape morphospace and identify families with extraordinary rates of morphological evolution. Using log shape ratios, our preferred method of body-size correction, revealed that fish width is the primary axis of morphological evolution across teleosts, describing a continuum from narrow-bodied laterally compressed flatfishes to wide-bodied dorsoventrally flattened anglerfishes. Elongation is the secondary axis of morphological variation and occurs within the more narrow-bodied forms. This result highlights the importance of collecting shape on three dimensions when working across teleosts. Our analyses also uncovered the fastest rates of shape evolution within a clade formed by notothenioids and scorpaeniforms, which primarily thrive in cold waters and/or have benthic habits, along with freshwater elephantfishes, which as their name suggests, have a novel head and body shape. This unprecedented dataset of teleostean body shapes will enable the investigation of the factors that regulate shape diversification. Biomechanical principles, which relate body shape to performance and ecology, are one promising avenue for future research.
Collapse
Affiliation(s)
- S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - S T Friedman
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - K A Corn
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - C M Martinez
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - O Larouche
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - P C Wainwright
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
26
|
Riesch R, Martin RA, Langerhans RB. Multiple traits and multifarious environments: integrated divergence of morphology and life history. OIKOS 2019. [DOI: 10.1111/oik.06344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway, Univ. of London Egham Surrey TW20 0EX UK
| | - Ryan A. Martin
- Dept of Biology, DeGrace Hall, Case Western Reserve Univ. Cleveland OH USA
| | - R. Brian Langerhans
- Dept of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State Univ. Raleigh NC USA
| |
Collapse
|
27
|
Phylogeographic evidence that the distribution of cryptic euryhaline species in the Gambusia punctata species group in Cuba was shaped by the archipelago geological history. Mol Phylogenet Evol 2019; 144:106712. [PMID: 31862460 DOI: 10.1016/j.ympev.2019.106712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
The main drivers of diversification of freshwater fishes in Cuba are not yet well understood. For example, salt tolerance was thought as the main factor involved in the diversification of Gambusia punctata species group in this archipelago. However, evidence from a recent DNA barcoding survey suggested the presence of cryptic species and no correlation between species delimitation and level of salinity. In this study, we analyzed the cryptic diversification of G. punctata species group in Cuba, based on a comprehensive sampling of its distribution and including habitats with different salinity levels. We evaluated the patterns of molecular divergence of the samples by sequencing a set of mitochondrial DNA (mtDNA) regions and genotyping nine nuclear microsatellite loci. We also used cytochrome b gene (cytb) partial sequences and these microsatellite loci to analyze population structure inside putative species. Five mtDNA well-differentiated haplogroups were found, four of them also identified by the analysis of the microsatellite polymorphism which corresponds to two already recognized species, G. punctata, and G. rhizophorae, and three putative new species. The extent of hybrid zones between these groups is also described. In each group, populations inhabiting environments with contrasting salinity levels were identified, indicating a generalized trait not specific to G. rhizophorae. The geographic distribution of the groups suggested a strong association with major relict territories of the Cuban Archipelago that was periodically joined or split-up by changes in seawater levels and land uplifts. Salinity tolerance might have facilitated sporadic and long-distance oversea dispersal but did not prevent speciation in the Cuban archipelago.
Collapse
|
28
|
Raffini F, Schneider RF, Franchini P, Kautt AF, Meyer A. Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally‐adapted sympatric cichlid fishes. Mol Ecol 2019; 29:1219-1234. [DOI: 10.1111/mec.15304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Raffini
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
- Max Planck Institute for Ornithology Radolfzell Germany
| | - Ralf F. Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
| | - Andreas F. Kautt
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
| |
Collapse
|
29
|
Walsh J, Clucas GV, MacManes MD, Thomas WK, Kovach AI. Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. Ecol Evol 2019; 9:13477-13494. [PMID: 31871659 PMCID: PMC6912898 DOI: 10.1002/ece3.5804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Gemma V. Clucas
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Present address:
Cornell Lab of OrnithologyIthacaNYUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - W. Kelley Thomas
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
30
|
Predation risk induces age- and sex-specific morphological plastic responses in the fathead minnow Pimephales promelas. Sci Rep 2019; 9:15378. [PMID: 31653876 PMCID: PMC6814781 DOI: 10.1038/s41598-019-51591-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Although comprehending the significance of phenotypic plasticity for evolution is of major interest in biology, the pre-requirement for that, the understanding of variance in plasticity, is still in its infancy. Most researchers assess plastic traits at single developmental stages and pool results between sexes. Here, we study variation among sexes and developmental stages in inducible morphological defences, a well-known instance of plasticity. We raised fathead minnows, Pimephales promelas, under different levels of background predation risk (conspecific alarm cues or distilled water) in a split-clutch design and studied morphology in both juveniles and adults. In accordance with the theory that plasticity varies across ontogeny and sexes, geometric morphometry analyses revealed significant shape differences between treatments that varied across developmental stages and sexes. Alarm cue-exposed juveniles and adult males developed deeper heads, deeper bodies, longer dorsal fin bases, shorter caudal peduncles and shorter caudal fins. Adult alarm cue-exposed males additionally developed a larger relative eye size. These responses represent putative adaptive plasticity as they are linked to reduced predation risk. Perhaps most surprisingly, we found no evidence for inducible morphological defences in females. Understanding whether similar variation occurs in other taxa and their environments is crucial for modelling evolution.
Collapse
|
31
|
Van Huynh A, Rice AM. Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol Evol 2019; 9:9671-9683. [PMID: 31534684 PMCID: PMC6745874 DOI: 10.1002/ece3.5497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black-capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography-mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y-maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation.
Collapse
Affiliation(s)
- Alex Van Huynh
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| |
Collapse
|
32
|
Sbragaglia V, Gliese C, Bierbach D, Honsey AE, Uusi-Heikkilä S, Arlinghaus R. Size-selective harvesting fosters adaptations in mating behaviour and reproductive allocation, affecting sexual selection in fish. J Anim Ecol 2019; 88:1343-1354. [PMID: 31131886 DOI: 10.1111/1365-2656.13032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The role of sexual selection in the context of harvest-induced evolution is poorly understood. However, elevated and trait-selective harvesting of wild populations may change sexually selected traits, which in turn can affect mate choice and reproduction. We experimentally evaluated the potential for fisheries-induced evolution of mating behaviour and reproductive allocation in fish. We used an experimental system of zebrafish (Danio rerio) lines exposed to large, small or random (i.e. control) size-selective mortality. The large-harvested line represented a treatment simulating the typical case in fisheries where the largest individuals are preferentially harvested. We used a full factorial design of spawning trials with size-matched individuals to control for the systematic impact of body size during reproduction, thereby singling out possible changes in mating behaviour and reproductive allocation. Both small size-selective mortality and large size-selective mortality left a legacy on male mating behaviour by elevating intersexual aggression. However, there was no evidence for line-assortative reproductive allocation. Females of all lines preferentially allocated eggs to the generally less aggressive males of the random-harvested control line. Females of the large-harvested line showed enhanced reproductive performance, and males of the large-harvested line had the highest egg fertilization rate among all males. These findings can be explained as an evolutionary adaptation by which individuals of the large-harvested line display an enhanced reproductive performance early in life to offset the increased probability of adult mortality due to harvest. Our results suggest that the large-harvested line evolved behaviourally mediated reproductive adaptations that could increase the rate of recovery when populations adapted to high fishing pressure come into secondary contact with other populations.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Catalina Gliese
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew E Honsey
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, Saint Paul, Minnesota
| | - Silva Uusi-Heikkilä
- Department of Biology, University of Turku, Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Liotta MN, Abbott JK, Rios-Cardenas O, Morris MR. Tactical dimorphism: the interplay between body shape and mating behaviour in the swordtail Xiphophorus multilineatus (Cyprinodontiformes: Poeciliidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Melissa N Liotta
- Department of Biological Sciences, The Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, USA
| | | | - Oscar Rios-Cardenas
- Instituto de Ecología A.C., Red de Biología Evolutiva, Xalapa, Veracruz, México
| | - Molly R Morris
- Department of Biological Sciences, The Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, USA
| |
Collapse
|
34
|
Marceniuk AP, Burlamaqui TCT, Oliveira C, Carneiro J, Soares BE, Sales JBDL. Incipient speciation, driven by distinct environmental conditions, in the marine catfishes of the genus Aspistor (Siluriformes, Ariidae), from the Atlantic coast of South America. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandre Pires Marceniuk
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista (UNESP) Botucatu Brazil
| | | | - Claudio Oliveira
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista (UNESP) Botucatu Brazil
| | | | | | | |
Collapse
|
35
|
Dargent F, Chen L, Fussmann GF, Ghalambor CK, Hendry AP. Female preference for novel males constrains the contemporary evolution of assortative mating in guppies. Behav Ecol 2019. [DOI: 10.1093/beheco/ary202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Felipe Dargent
- Department of Biology, McGill University, Montreal, Canada
| | - Lisa Chen
- Department of Biology, McGill University, Montreal, Canada
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University at Fort Collins, Fort Collins, USA
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Canada
- Redpath Museum, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Bhattacharjee S, MacPherson B, Gras R. A comparison of sexual selection versus random selection with respect to extinction and speciation rates using individual based modeling and machine learning. ECOLOGICAL COMPLEXITY 2018. [DOI: 10.1016/j.ecocom.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Díez-Del-Molino D, García-Berthou E, Araguas RM, Alcaraz C, Vidal O, Sanz N, García-Marín JL. Effects of water pollution and river fragmentation on population genetic structure of invasive mosquitofish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1372-1382. [PMID: 29801230 DOI: 10.1016/j.scitotenv.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
We analyzed variation at the GPI-2 locus and eleven microsatellite loci of eastern mosquitofish Gambusia holbrooki populations introduced to the Ebro River (Spain), sampling above and below a dam (Flix Reservoir) where severe chronic pollution has been well documented. Allele frequency changes at the GPI-2 locus in the sites nearest to the polluted sediments agree with previous results from studies in mercury-exposed populations of this highly invasive fish. Genetic distinction of the mosquitofish collected close to the polluted sediments was detected at the GPI locus but also at the presumptive neutral microsatellite loci. Recent migration rates estimated from microsatellites indicated that around 30% of fish collected in a specific location were immigrants from upstream and downstream sources. Such high migration rates probably contribute to the mosquitofish's invasive success and suggest that the consequences on the mosquitofish regional genetic structured of high levels of water toxicants could be mediated by immigration from other sites, but the effect of pollutants on local diversity might be higher than observed here.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Laboratori d'Ictiologia Genètica (LIG), University of Girona, Edifici AC-LEAR, Carrer M. Aurèlia Capmany, 40, 17003 Girona, Spain; Dept. of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden.
| | | | - Rosa-Maria Araguas
- Laboratori d'Ictiologia Genètica (LIG), University of Girona, Edifici AC-LEAR, Carrer M. Aurèlia Capmany, 40, 17003 Girona, Spain.
| | - Carles Alcaraz
- IRTA Marine and Continental Waters, Carretera Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Oriol Vidal
- Laboratori d'Ictiologia Genètica (LIG), University of Girona, Edifici AC-LEAR, Carrer M. Aurèlia Capmany, 40, 17003 Girona, Spain.
| | - Nuria Sanz
- Laboratori d'Ictiologia Genètica (LIG), University of Girona, Edifici AC-LEAR, Carrer M. Aurèlia Capmany, 40, 17003 Girona, Spain.
| | - Jose-Luis García-Marín
- Laboratori d'Ictiologia Genètica (LIG), University of Girona, Edifici AC-LEAR, Carrer M. Aurèlia Capmany, 40, 17003 Girona, Spain.
| |
Collapse
|
38
|
Fu C, Cao ZD, Fu SJ. Predation experience underlies the relationship between locomotion capability and survival. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:32-38. [PMID: 30236912 DOI: 10.1016/j.cbpa.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The positive relationship between locomotion performance and survival under predation has long been suggested yet seldom demonstrated with direct evidence. We investigate the effects of predator exposure on locomotion capacity (both fast-start escape and critical swimming performance), survival under predation and the relationships between these factors in juvenile Chinese bream (Parabramis pekinensis). This study aims to test whether there is a positive relationship between the above factors and whether such relationships are context dependent (i.e., with or without 20 d of predator exposure). We found that predator-exposed Chinese bream showed higher rates of survival under predation and improved fast-start swimming performance compared with individuals not exposed to predation. At individual level, no relationship was found between survival and any locomotion performance component in the no-predator group, but mean fast-start swimming speed, maneuverability and responsiveness were all positively related to survival in the predator group after 20 d of exposure. This finding indicates that the recognition of and vigilance for predators achieved through predation experience can be crucial preconditions for prey to employ the fast-start escape response, especially to escape ambush predators. Furthermore, a tradeoff was observed between the critical and fast-start swimming performances in the predator group, but not in the no-predator group, which may have been due to the intensified competition throughout the entire locomotion-support system (e.g., energy, proportions of slow- and fast-twitch muscle fibers) between critical and fast-start swimming because the increased demand for fast-start escape capacity constrains (or compromises) critical swimming performance under the threat of predation.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
39
|
Moffett ER, Fryxell DC, Palkovacs EP, Kinnison MT, Simon KS. Local adaptation reduces the metabolic cost of environmental warming. Ecology 2018; 99:2318-2326. [PMID: 30030930 DOI: 10.1002/ecy.2463] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 11/07/2022]
Abstract
Metabolism shapes the ecosystem role of organisms by dictating their energy demand and nutrient recycling potential. Metabolic theory (MTE) predicts consumer metabolic and recycling rates will rise with warming, especially if body size declines, but it ignores potential for adaptation. We measured metabolic and nutrient excretion rates of individuals from populations of a globally invasive fish that colonized sites spanning a wide temperature range (19-37°C) on two continents within the last 100 yr. Fish body size declined across our temperature gradient and MTE predicted large rises in population energy demand and nutrient recycling. However, we found that the allometry and temperature dependency of metabolism varied in a countergradient pattern with local temperature in a way that offset predictions of MTE. Scaling of nutrient excretion was more variable and did not track temperature. Our results suggest that adaptation can reduce the metabolic cost of warming, increasing the prospects for population persistence under extreme warming scenarios.
Collapse
Affiliation(s)
- Emma R Moffett
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David C Fryxell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95060, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95060, USA
| | - Michael T Kinnison
- School of Biology and Ecology, The University of Maine, Orono, Maine, 04469, USA
| | - Kevin S Simon
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
40
|
Rosser N, Freitas AVL, Huertas B, Joron M, Lamas G, Mérot C, Simpson F, Willmott KR, Mallet J, Dasmahapatra KK. Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Neil Rosser
- Department of Biology, University of York, Wentworth Way, Heslington, UK
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - André V L Freitas
- Departamento de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Blanca Huertas
- Life Sciences Department, Natural History Museum, London, UK
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Fraser Simpson
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
41
|
Riesch R, Martin RA, Diamond SE, Jourdan J, Plath M, Brian Langerhans R. Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - R Brian Langerhans
- Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
42
|
Chiarello-Sosa JM, Battini MÁ, Barriga JP. Latitudinal phenotypic variation in the southernmost trichomycterid, the catfish Hatcheria macraei: an amalgam of population divergence and environmental factors. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Body shape and meristic characters are highly variable phenotypic aspects in fish, and in most cases are related to phylogeography, environmental factors and life history patterns. Our main goals here were to evaluate morphological and meristic characters in five populations of the catfish Hatcheria macraei living at different latitudes across Patagonia, and to assess the importance of environmental and phylogenetic variables in determining body shape. The present study reveals great morphological variation among populations distributed along the latitudinal gradient. We found that the highest levels of variation in external morphological features were in peduncle height, dorsal fin length and anus position. This variation in body shape, quantified by geometric morphometrics, was mostly explained by the phylogenetic relationship between populations, stream gradient and spawning temperature. In contrast, the meristic characters, such as vertebral and fin ray numbers, except for dorsal fin ray number, were negatively related to latitude and positively to spawning temperature.
Collapse
Affiliation(s)
- Juan Mauro Chiarello-Sosa
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche, Río Negro, Argentina
| | - Miguel Ángel Battini
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche, Río Negro, Argentina
| | - Juan Pablo Barriga
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
43
|
Schlupp I. Male mate choice in livebearing fishes: an overview. Curr Zool 2018; 64:393-403. [PMID: 30402080 PMCID: PMC6007348 DOI: 10.1093/cz/zoy028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
Although the majority of studies on mate choice focus on female mate choice, there is growing recognition of the role of male mate choice too. Male mate choice is tightly linked to 2 other phenomena: female competition for males and ornamentation in females. In the current article, I review the existing literature on this in a group of fishes, Poeciliidae. In this group, male mate choice appears to be based on differences in female quality, especially female size, which is a proxy for fecundity. Some males also have to choose between heterospecific and conspecific females in the unusual mating system of the Amazon molly. In this case, they typically show a preference for conspecific females. Whereas male mate choice is relatively well documented for this family, female ornamentation and female competition are not.
Collapse
Affiliation(s)
- Ingo Schlupp
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | | |
Collapse
|
44
|
Heath JJ, Abbot P, Stireman JO. Adaptive Divergence in a Defense Symbiosis Driven from the Top Down. Am Nat 2018; 192:E21-E36. [PMID: 29897808 DOI: 10.1086/697446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most studies of adaptive radiation in animals focus on resource competition as the primary driver of trait divergence. The roles of other ecological interactions in shaping divergent phenotypes during such radiations have received less attention. We evaluate natural enemies as primary agents of diversifying selection on the phenotypes of an actively diverging lineage of gall midges on tall goldenrod. In this system, the gall of the midge consists of a biotrophic fungal symbiont that develops on host-plant leaves and forms distinctly variable protective carapaces over midge larvae. Through field studies, we show that fungal gall morphology, which is induced by midges (i.e., it is an extended phenotype), is under directional and diversifying selection by parasitoid enemies. Overall, natural enemies disruptively select for either small or large galls, mainly along the axis of gall thickness. These results imply that predators are driving the evolution of phenotypic diversity in symbiotic defense traits in this system and that divergence in defensive morphology may provide ecological opportunities that help to fuel the adaptive radiation of this genus of midges on goldenrods. This enemy-driven phenotypic divergence in a diversifying lineage illustrates the potential importance of consumer-resource and symbiotic species interactions in adaptive radiation.
Collapse
|
45
|
Meuthen D, Baldauf SA, Bakker TCM, Thünken T. Neglected Patterns of Variation in Phenotypic Plasticity: Age- and Sex-Specific Antipredator Plasticity in a Cichlid Fish. Am Nat 2018; 191:475-490. [DOI: 10.1086/696264] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Whitney JL, Bowen BW, Karl SA. Flickers of speciation: Sympatric colour morphs of the arc-eye hawkfish, Paracirrhites arcatus, reveal key elements of divergence with gene flow. Mol Ecol 2018; 27:1479-1493. [PMID: 29420860 DOI: 10.1111/mec.14527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc-eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc-eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.
Collapse
Affiliation(s)
- Jonathan L Whitney
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Stephen A Karl
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
47
|
Moody EK, Lozano-Vilano ML. Predation drives morphological convergence in the Gambusia panuco species group among lotic and lentic habitats. J Evol Biol 2017; 31:491-501. [PMID: 29266513 DOI: 10.1111/jeb.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
Abstract
Fish morphology is often constrained by a trade-off between optimizing steady vs. unsteady swimming performance due to opposing effects of caudal peduncle size. Lotic environments tend to select for steady swimming performance, leading to smaller caudal peduncles, whereas predators tend to select for unsteady swimming performance, leading to larger caudal peduncles. However, it is unclear which aspect of performance should be optimized across heterogeneous flow and predation environments and how this heterogeneity may affect parallel phenotypic evolution. We investigated this question among four Gambusia species in north-eastern Mexico, specifically the riverine G. panuco, the spring endemics G. alvarezi and G. hurtadoi, and a fourth species, G. marshi, found in a variety of habitats with varying predation pressure in the Cuatro Ciénegas Basin and Río Salado de Nadadores. We employed a geometric morphometric analysis to examine how body shapes of both male and female fish differ among species and habitats and with piscivore presence. We found that high-predation and low-predation species diverged morphologically, with G. marshi exhibiting a variable, intermediate body shape. Within G. marshi, body morphology converged in high-predation environments regardless of flow velocity, and fish from high-predation sites had larger relative caudal peduncle areas. However, we found that G. marshi from low-predation environments diverged in morphology between sub-basins of Cuatro Ciénegas, indicating other differences among these basins that merit further study. Our results suggest that a morphological trade-off promotes parallel evolution of body shape in fishes colonizing high-predation environments and that changing predation pressure can strongly impact morphological evolution in these species.
Collapse
Affiliation(s)
- E K Moody
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - M L Lozano-Vilano
- Laboratorio de Ictiología, Universidad Autόnoma de Nuevo Leόn, San Nicolás de los Garza, N.L., Mexico
| |
Collapse
|
48
|
Higham TE, Rogers SM, Langerhans RB, Jamniczky HA, Lauder GV, Stewart WJ, Martin CH, Reznick DN. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proc Biol Sci 2017; 283:rspb.2016.1294. [PMID: 27629033 DOI: 10.1098/rspb.2016.1294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Biology, University of California, Riverside, CA, USA
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | - David N Reznick
- Department of Biology, University of California, Riverside, CA, USA
| |
Collapse
|
49
|
Bierbach D, Arias-Rodriguez L, Plath M. Intrasexual competition enhances reproductive isolation between locally adapted populations. Curr Zool 2017; 64:125-133. [PMID: 29492045 PMCID: PMC5809038 DOI: 10.1093/cz/zox071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, México
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
50
|
Lively CM. Habitat Heterogeneity, Host Population Structure, and Parasite Local Adaptation. J Hered 2017; 109:29-37. [DOI: 10.1093/jhered/esx100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
|