1
|
Gulyás K, Balogová M, Pipová N, Papežík P, Uhrovič D, Mikulíček P, Brázová T, Benovics M. Insights into the genetic diversity and species distribution of Oswaldocruzia nematodes (Trichostrongylida: Molineidae) in Europe: apparent absence of geographic and population structuring in amphibians. Parasite 2025; 32:27. [PMID: 40273322 DOI: 10.1051/parasite/2025020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2025] Open
Abstract
The genus Oswaldocruzia represents a taxonomically diverse group of nematodes with global distribution. Although Oswaldocruzia species are widespread and exhibit a remarkably wide host range in some species, their genetic diversity and biogeographic patterns remain poorly understood. This study investigated the genetic variability and distribution of Oswaldocruzia spp. in nine anuran species from the genera Bufo, Bufotes, Pelophylax, and Rana across Central Europe and the Balkans. Two species were identified: Oswaldocruzia filiformis and O. ukrainae, each exhibiting a different range of host associations. Phylogenetic analyses based on mitochondrial COI sequences revealed significant haplotype diversity in the generalist O. filiformis, with low geographic and host-associated genetic structuring. In contrast, O. ukrainae, which is closely associated with Bufotes viridis, exhibited only one genetic variant across all samples, highlighting its restricted genetic diversity. The findings emphasize contrasting genetic diversities among nematode parasites exhibiting different levels of host-specificity and expand the known distribution of O. filiformis into new regions of the Balkans. In addition, they highlight the need for additional studies on the ecological and evolutionary factors that influence the genetic diversity of parasites in amphibians.
Collapse
Affiliation(s)
- Kristián Gulyás
- Department of Zoology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 040 01 Košice, Slovakia
| | - Monika Balogová
- Department of Zoology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 040 01 Košice, Slovakia
| | - Natália Pipová
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 040 01 Košice, Slovakia
| | - Petr Papežík
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Dalibor Uhrovič
- Department of Zoology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 040 01 Košice, Slovakia
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Tímea Brázová
- Institute of Parasitology, Slovak Academy of Sciences, 04001 Košice, Slovakia
| | - Michal Benovics
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia - Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia - Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
2
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 PMCID: PMC11528109 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
3
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Salamon M, Astorg L, Paccard A, Chain F, Hendry A, Derry A, Barrett R. Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator. Evol Appl 2024; 17:e70004. [PMID: 39439433 PMCID: PMC11493756 DOI: 10.1111/eva.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0 A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
Collapse
Affiliation(s)
| | - Louis Astorg
- Université du Québec à MontréalMontrealQuebecCanada
| | | | - Frederic Chain
- University of Massachusetts LowellLowellMassachusettsUSA
| | | | | | | |
Collapse
|
5
|
Liu Y, Dietrich CH, Wei C. The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Mol Phylogenet Evol 2024; 199:108146. [PMID: 38986756 DOI: 10.1016/j.ympev.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at ∼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Portnoy DS, O'Leary SJ, Fields AT, Hollenbeck CM, Grubbs RD, Peterson CT, Gardiner JM, Adams DH, Falterman B, Drymon JM, Higgs JM, Pulster EL, Wiley TR, Murawski SA. Complex patterns of genetic population structure in the mouthbrooding marine catfish, Bagre marinus, in the Gulf of Mexico and U.S. Atlantic. Ecol Evol 2024; 14:e11514. [PMID: 38859886 PMCID: PMC11163162 DOI: 10.1002/ece3.11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Patterns of genetic variation reflect interactions among microevolutionary forces that vary in strength with changing demography. Here, patterns of variation within and among samples of the mouthbrooding gafftopsail catfish (Bagre marinus, Family Ariidae) captured in the U.S. Atlantic and throughout the Gulf of Mexico were analyzed using genomics to generate neutral and non-neutral SNP data sets. Because genomic resources are lacking for ariids, linkage disequilibrium network analysis was used to examine patterns of putatively adaptive variation. Finally, historical demographic parameters were estimated from site frequency spectra. The results show four differentiated groups, corresponding to the (1) U.S. Atlantic, and the (2) northeastern, (3) northwestern, and (4) southern Gulf of Mexico. The non-neutral data presented two contrasting signals of structure, one due to increases in diversity moving west to east and north to south, and another to increased heterozygosity in the Atlantic. Demographic analysis suggested that recently reduced long-term effective population size in the Atlantic is likely an important driver of patterns of genetic variation and is consistent with a known reduction in population size potentially due to an epizootic. Overall, patterns of genetic variation resemble that of other fishes that use the same estuarine habitats as nurseries, regardless of the presence/absence of a larval phase, supporting the idea that adult/juvenile behavior and habitat are important predictors of contemporary patterns of genetic structure.
Collapse
Affiliation(s)
- David S. Portnoy
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Shannon J. O'Leary
- Department of Biological SciencesSaint Anselm CollegeManchesterNew HampshireUSA
| | - Andrew T. Fields
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Christopher M. Hollenbeck
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - R. Dean Grubbs
- Florida State University Coastal and Marine LaboratorySt. TeresaFloridaUSA
| | | | | | - Douglas H. Adams
- Florida Fish and Wildlife Conservation CommissionFish and Wildlife Research Institute, Indian River Field LabMelbourneFloridaUSA
| | | | - J. Marcus Drymon
- Mississippi State University Coastal Research and Extension CenterBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Jeremy M. Higgs
- Center for Fisheries Research and DevelopmentThe University of Southern MississippiOcean SpringsMississippiUSA
| | - Erin L. Pulster
- U.S. Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| | | | - Steven A. Murawski
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| |
Collapse
|
7
|
Judson BJ, Kristjánsson BK, Leblanc CA, Ferguson MM. The role of neutral and adaptive evolutionary processes on patterns of genetic diversity across small cave-dwelling populations of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2024; 14:e11363. [PMID: 38770124 PMCID: PMC11103641 DOI: 10.1002/ece3.11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.
Collapse
Affiliation(s)
- Braden J. Judson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
8
|
Springer AL, Gompert Z. Considerable genetic diversity and structure despite narrow endemism and limited ecological specialization in the Hayden's ringlet, Coenonympha haydenii. Mol Ecol 2024; 33:e17310. [PMID: 38441401 DOI: 10.1111/mec.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
9
|
Nosil P, Gompert Z, Funk DJ. Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species. Nat Commun 2024; 15:2273. [PMID: 38480699 PMCID: PMC10937975 DOI: 10.1038/s41467-024-46294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Speciation is often viewed as a continuum along which populations diverge until they become reproductively-isolated species. However, such divergence may be heterogeneous, proceeding in fits and bursts, rather than being uniform and gradual. We show in Timema stick insects that one component of reproductive isolation evolves non-uniformly across this continuum, whereas another does not. Specifically, we use thousands of host-preference and mating trials to study habitat and sexual isolation among 42 pairs of taxa spanning a range of genomic differentiation and divergence time. We find that habitat isolation is uncoupled from genomic differentiation within species, but accumulates linearly with it between species. In contrast, sexual isolation accumulates linearly across the speciation continuum, and thus exhibits similar dynamics to morphological traits not implicated in reproductive isolation. The results show different evolutionary dynamics for different components of reproductive isolation and highlight a special relevance for species status in the process of speciation.
Collapse
Affiliation(s)
- Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Daniel J Funk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Pyron RA, Kakkera A, Beamer DA, O'Connell KA. Discerning structure versus speciation in phylogeographic analysis of Seepage Salamanders (Desmognathus aeneus) using demography, environment, geography, and phenotype. Mol Ecol 2024; 33:e17219. [PMID: 38015012 DOI: 10.1111/mec.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Anvith Kakkera
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, Greenville, North Carolina, USA
| | - Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Deloitte Consulting LLP, Health and Data AI, Arlington, Virginia, USA
| |
Collapse
|
12
|
Franzoni J, Astuti G, Peruzzi L. Weak Genetic Isolation and Putative Phenotypic Selection in the Wild Carnation Dianthus virgineus (Caryophyllaceae). BIOLOGY 2023; 12:1355. [PMID: 37887065 PMCID: PMC10604185 DOI: 10.3390/biology12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.
Collapse
Affiliation(s)
- Jacopo Franzoni
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
13
|
Spaulding F, McLaughlin JF, Cheek RG, McCracken KG, Glenn TC, Winker K. Population genomics indicate three different modes of divergence and speciation with gene flow in the green-winged teal duck complex. Mol Phylogenet Evol 2023; 182:107733. [PMID: 36801373 PMCID: PMC10092703 DOI: 10.1016/j.ympev.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M ∼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.
Collapse
Affiliation(s)
- Fern Spaulding
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Jessica F McLaughlin
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Rebecca G Cheek
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Kevin G McCracken
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
14
|
Life on a beach leads to phenotypic divergence despite gene flow for an island lizard. Commun Biol 2023; 6:141. [PMID: 36732444 PMCID: PMC9895042 DOI: 10.1038/s42003-023-04494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Limited spatial separation within small islands suggests that observed population divergence may occur due to habitat differences without interruption to gene flow but strong evidence of this is scarce. The wall lizard Teira dugesii lives in starkly contrasting shingle beach and inland habitats on the island of Madeira. We used a matched pairs sampling design to examine morphological and genomic divergence between four beach and adjacent (<1 km) inland areas. Beach populations are significantly darker than corresponding inland populations. Geometric morphometric analyses reveal divergence in head morphology: beach lizards have generally wider snouts. Genotyping-by-sequencing allows the rejection of the hypothesis that beach populations form a distinct lineage. Bayesian analyses provide strong support for models that incorporate gene flow, relative to those that do not, replicated at all pairs of matched sites. Madeiran lizards show morphological divergence between habitats in the face of gene flow, revealing how divergence may originate within small islands.
Collapse
|
15
|
Sefbom J, Kremp A, Hansen PJ, Johannesson K, Godhe A, Rengefors K. Local adaptation through countergradient selection in northern populations of Skeletonema marinoi. Evol Appl 2023; 16:311-320. [PMID: 36793694 PMCID: PMC9923485 DOI: 10.1111/eva.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Marine microorganisms have the potential to disperse widely with few obvious barriers to gene flow. However, among microalgae, several studies have demonstrated that species can be highly genetically structured with limited gene flow among populations, despite hydrographic connectivity. Ecological differentiation and local adaptation have been suggested as drivers of such population structure. Here we tested whether multiple strains from two genetically distinct Baltic Sea populations of the diatom Skeletonema marinoi showed evidence of local adaptation to their local environments: the estuarine Bothnian Sea and the marine Kattegat Sea. We performed reciprocal transplants of multiple strains between culture media based on water from the respective environments, and we also allowed competition between strains of estuarine and marine origin in both salinities. When grown alone, both marine and estuarine strains performed best in the high-salinity environment, and estuarine strains always grew faster than marine strains. This result suggests local adaptation through countergradient selection, that is, genetic effects counteract environmental effects. However, the higher growth rate of the estuarine strains appears to have a cost in the marine environment and when strains were allowed to compete, marine strains performed better than estuarine strains in the marine environment. Thus, other traits are likely to also affect fitness. We provide evidence that tolerance to pH could be involved and that estuarine strains that are adapted to a more fluctuating pH continue growing at higher pH than marine strains.
Collapse
Affiliation(s)
- Josefin Sefbom
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Anke Kremp
- Marine Research CentreFinnish Environment Institute (SYKE)HelsinkiFinland
- Biological OceanographyLeibniz Institute for Baltic Sea Research WarnemündeRostockGermany
| | - Per Juel Hansen
- Marine Biological SectionUniversity of CopenhagenHelsingørDenmark
| | - Kerstin Johannesson
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Anna Godhe
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Karin Rengefors
- Aquatic Ecology, Department of BiologyLund UniversityLundSweden
| |
Collapse
|
16
|
Yang YZ, Luo MX, Pang LD, Gao RH, Chang JT, Liao PC. Parallel adaptation prompted core-periphery divergence of Ammopiptanthus mongolicus. FRONTIERS IN PLANT SCIENCE 2022; 13:956374. [PMID: 36092420 PMCID: PMC9449729 DOI: 10.3389/fpls.2022.956374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.
Collapse
Affiliation(s)
- Yong-Zhi Yang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Min-Xin Luo
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Dong Pang
- College Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Huhhot, China
| | - Run-Hong Gao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Jui-Tse Chang
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
17
|
Götz J, Rajora OP, Gailing O. Genetic Structure of Natural Northern Range-Margin Mainland, Peninsular, and Island Populations of Northern Red Oak (Quercus rubra L.). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant populations at the leading edge of the species’ native range often exhibit genetic structure as a result of genetic drift and adaptation to harsh environmental conditions. Hence, they are likely to harbour rare genetic adaptations to local environmental conditions and therefore are of particular interest to understand climate adaptation. We examined genetic structure of nine northern marginal mainland, peninsular and isolated island natural populations of northern red oak (Quercus rubraL.), a valuable long-lived North American hardwood tree species, covering a wide climatic range, using 17 nuclear microsatellites. We found pronounced genetic differentiation of a disjunct isolated island population from all mainland and peninsular populations. Furthermore, we observed remarkably strong fine-scale spatial genetic structure (SGS) in all investigated populations. Such high SGS values are uncommon and were previously solely observed in extreme range-edge marginal oak populations in one other study. We found a significant correlation between major climate parameters and SGS formation in northern range-edge red oak populations, with more pronounced SGS in colder and drier regions. Most likely, the harsh environment in leading edge populations influences the density of reproducing trees within the populations and therefore leads to restricted overlapping of seed shadows when compared to more central populations. Accordingly, SGS was negatively correlated with effective population size and increased with latitude of the population locations. The significant positive association between genetic distances and precipitation differences between populations may be indicative of isolation by adaptation in the observed range-edge populations. However, this association was not confirmed by a multiple regression analysis including geographic distances and precipitation distances, simultaneously. Our study provides new insights in the genetic structure of long-lived tree species at their leading distribution edge.
Collapse
|
18
|
Weiss M, Weigand H, Leese F. Individual small in‐stream barriers contribute little to strong local population genetic structure five strictly aquatic macroinvertebrate taxa. Ecol Evol 2022; 12:e8807. [PMID: 35432929 PMCID: PMC9006233 DOI: 10.1002/ece3.8807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Water flow in river networks is frequently regulated by man‐made in‐stream barriers. These obstacles can hinder dispersal of aquatic organisms and isolate populations leading to the loss of genetic diversity. Although millions of small in‐stream barriers exist worldwide, their impact on dispersal of macroinvertebrates remains unclear. Therefore, we, therefore, assessed the effects of such barriers on the population structure and effective dispersal of five macroinvertebrate species with strictly aquatic life cycles: the amphipod crustacean Gammarus fossarum (clade 11), three snail species of the Ancylus fluviatilis species complex and the flatworm Dugesia gonocephala. We studied populations at nine weirs and eight culverts (3 pipes, 5 tunnels), built 33–109 years ago, mainly in the heavily fragmented catchment of the river Ruhr (Sauerland, Germany). To assess fragmentation and barrier effects, we generated genome‐wide SNP data using ddRAD sequencing and evaluated clustering, differentiation between populations up‐ and downstream of each barrier and effective migration rates among sites and across barriers. Additionally, we applied population genomic simulations to assess expected differentiation patterns under different gene flow scenarios. Our data show that populations of all species are highly isolated at regional and local scales within few kilometers. While the regional population structure likely results from historical processes, the strong local differentiation suggests that contemporary dispersal barriers exist. However, we identified significant barrier effects only for pipes (for A. fluviatilis II and III) and few larger weirs (>1.3 m; for D. gonocephala). Therefore, our data suggest that most small in‐stream barriers can probably be overcome by all studied taxa frequently enough to prevent fragmentation. However, it remains to be tested if the strong local differentiation is a result of a cumulative effect of small barriers, or if larger in‐stream barriers, land use, chemical pollution, urbanization, or a combination of these factors impede gene flow.
Collapse
Affiliation(s)
- Martina Weiss
- Aquatic Ecosystem Research University of Duisburg‐Essen Essen Germany
- Centre for Water and Environmental Research (ZWU) University of Duisburg‐Essen Essen Germany
| | - Hannah Weigand
- Aquatic Ecosystem Research University of Duisburg‐Essen Essen Germany
- Musée National d'Histoire Naturelle Luxembourg City Luxembourg
| | - Florian Leese
- Aquatic Ecosystem Research University of Duisburg‐Essen Essen Germany
- Centre for Water and Environmental Research (ZWU) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
19
|
Gao W, Yu CX, Zhou WW, Zhang BL, Chambers EA, Dahn HA, Jin JQ, Murphy RW, Zhang YP, Che J. Species persistence with hybridization in toad-headed lizards driven by divergent selection and low recombination. Mol Biol Evol 2022; 39:6561330. [PMID: 35356979 PMCID: PMC9007161 DOI: 10.1093/molbev/msac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Speciation plays a central role in evolutionary studies, and particularly how reproductive isolation (RI) evolves. The origins and persistence of RI are distinct processes that require separate evaluations. Treating them separately clarifies the drivers of speciation and then it is possible to link the processes to understand large-scale patterns of diversity. Recent genomic studies have focused predominantly on how species or RI originate. However, we know little about how species persist in face of gene flow. Here, we evaluate a contact zone of two closely related toad-headed lizards (Phrynocephalus) using a chromosome-level genome assembly and population genomics. To some extent, recent asymmetric introgression from Phrynocephalus putjatai to P. vlangalii reduces their genomic differences. However, their highly divergent regions (HDRs) have heterogeneous distributions across the genomes. Functional gene annotation indicates that many genes within HDRs are involved in reproduction and RI. Compared with allopatric populations, contact areas exhibit recent divergent selection on the HDRs and a lower population recombination rate. Taken together, this implies that divergent selection and low genetic recombination help maintain RI. This study provides insights into the genomic mechanisms that drive RI and two species persistence in the face of gene flow during the late stage of speciation.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuan-Xin Yu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - E Anne Chambers
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, USA.,Department of Environmental Science, Policy, and Management, Univerity of California, Berkeley, USA
| | - Hollis A Dahn
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
21
|
Muniz AC, Pimenta RJG, Cruz MV, Rodrigues JG, Buzatti RSDO, Heuertz M, Lemos‐Filho JP, Lovato MB. Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecol Evol 2022; 12:e8540. [PMID: 35127043 PMCID: PMC8803295 DOI: 10.1002/ece3.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The Cerrado, the largest Neotropical savanna, and the Brazilian Atlantic Forest form large ecotonal areas where savanna and forest habitats occupy adjacent patches with closely related species occurring side by side, providing opportunities for hybridization. Here, we investigated the evolutionary divergence between the savanna and forest ecotypes of the widely distributed tree Plathymenia reticulata (n = 233 individuals). Genetic structure analysis of P. reticulata was congruent with the recognition of two ecotypes, whose divergence captured the largest proportion of genetic variance in the data (F CT = 0.222 and F ST = 0.307). The ecotonal areas between the Cerrado and the Atlantic Forest constitute a hybrid zone in which a diversity of hybrid classes was observed, most of them corresponding to second-generation hybrids (F2) or backcrosses. Gene flow occurred mainly toward the forest ecotype. The genetic structure was congruent with isolation by environment, and environmental correlates of divergence were identified. The observed pattern of high genetic divergence between ecotypes may reflect an incipient speciation process in P. reticulata. The low genetic diversity of the P. reticulata forest ecotype indicate that it is threatened in areas with high habitat loss on Atlantic Forest. In addition, the high divergence from the savanna ecotype suggests it should be treated as a different unit of management. The high genetic diversity found in the ecotonal hybrid zone supports the view of ecotones as important areas for the origin and conservation of biodiversity in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mariana Vargas Cruz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | | | - José P. Lemos‐Filho
- Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
22
|
Sunde J, Yıldırım Y, Tibblin P, Bekkevold D, Skov C, Nordahl O, Larsson P, Forsman A. Drivers of neutral and adaptive differentiation in pike (Esox lucius) populations from contrasting environments. Mol Ecol 2021; 31:1093-1110. [PMID: 34874594 DOI: 10.1111/mec.16315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/28/2023]
Abstract
Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.
Collapse
Affiliation(s)
- Johanna Sunde
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
23
|
Llanos‐Garrido A, Pérez‐Tris J, Díaz JA. Low genome-wide divergence between two lizard populations with high adaptive phenotypic differentiation. Ecol Evol 2021; 11:18055-18065. [PMID: 35003657 PMCID: PMC8717303 DOI: 10.1002/ece3.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Usually, adaptive phenotypic differentiation is paralleled by genetic divergence between locally adapted populations. However, adaptation can also happen in a scenario of nonsignificant genetic divergence due to intense gene flow and/or recent differentiation. While this phenomenon is rarely published, findings on incipient ecologically driven divergence or isolation by adaptation are relatively common, which could confound our understanding about the frequency at which they actually occur in nature. Here, we explore genome-wide traces of divergence between two populations of the lacertid lizard Psammodromus algirus separated by a 600 m elevational gradient. These populations seem to be differentially adapted to their environments despite showing low levels of genetic differentiation (according to previously studies of mtDNA and microsatellite data). We performed a search for outliers (i.e., loci subject to selection) trying to identify specific loci with FST statistics significantly higher than those expected on the basis of overall, genome-wide estimates of genetic divergence. We find that local phenotypic adaptation (in terms of a wide diversity of characters) was not accompanied by genome-wide differentiation, even when we maximized the chances of unveiling such differentiation at particular loci with FST-based outlier detection tests. Instead, our analyses confirmed the lack of genome-wide differentiation on the basis of more than 70,000 SNPs, which is concordant with a scenario of local adaptation without isolation by environment. Our results add evidence to previous studies in which local adaptation does not lead to any kind of isolation (or early stages of ecological speciation), but maintains phenotypic divergence despite the lack of a differentiated genomic background.
Collapse
Affiliation(s)
- Alejandro Llanos‐Garrido
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Department of Biodiversity, Ecology and EvolutionUCMMadridSpain
| | | | - José A. Díaz
- Department of Biodiversity, Ecology and EvolutionUCMMadridSpain
| |
Collapse
|
24
|
Ma Y, Wariss HM, Liao R, Zhang R, Yun Q, Olmstead RG, Chau JH, Milne RI, Van de Peer Y, Sun W. Genome-wide analysis of butterfly bush (Buddleja alternifolia) in three uplands provides insights into biogeography, demography and speciation. THE NEW PHYTOLOGIST 2021; 232:1463-1476. [PMID: 34292587 PMCID: PMC9291457 DOI: 10.1111/nph.17637] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Understanding processes that generate and maintain large disjunctions within plant species can provide valuable insights into plant diversity and speciation. The butterfly bush Buddleja alternifolia has an unusual disjunct distribution, occurring in the Himalaya, Hengduan Mountains (HDM) and the Loess Plateau (LP) in China. We generated a high-quality, chromosome-level genome assembly of B. alternifolia, the first within the family Scrophulariaceae. Whole-genome re-sequencing data from 48 populations plus morphological and petal colour reflectance data covering its full distribution range were collected. Three distinct genetic lineages of B. alternifolia were uncovered, corresponding to Himalayan, HDM and LP populations, with the last also differentiated morphologically and phenologically, indicating occurrence of allopatric speciation likely to be facilitated by geographic isolation and divergent adaptation to distinct ecological niches. Moreover, speciation with gene flow between populations from either side of a mountain barrier could be under way within LP. The current disjunctions within B. alternifolia might result from vicariance of a once widespread distribution, followed by several past contraction and expansion events, possibly linked to climate fluctuations promoted by the Kunlun-Yellow river tectonic movement. Several adaptive genes are likely to be either uniformly or diversely selected among regions, providing a footprint of local adaptations. These findings provide new insights into plant biogeography, adaptation and different processes of allopatric speciation.
Collapse
Affiliation(s)
- Yong‐Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Hafiz Muhammad Wariss
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Rong‐Li Liao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Fuzhou Botanical GardenFuzhou350012China
| | - Ren‐Gang Zhang
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Quan‐Zheng Yun
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Richard G. Olmstead
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWA98195USA
| | - John H. Chau
- Centre for Ecological Genomics and Wildlife ConservationDepartment of ZoologyUniversity of JohannesburgPO Box 524Auckland Park2006South Africa
| | - Richard I. Milne
- Institute of Molecular Plant SciencesUniversity of EdinburghEdinburghEH9 3JHUK
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentB‐9052Belgium
- VIB Center for Plant Systems BiologyGhentB‐9052Belgium
- College of HorticultureNanjing Agricultural UniversityNanjing210095China
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaArcadia0007South Africa
| | - Wei‐Bang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
25
|
Turbek SP, Semenov GA, Enbody ED, Campagna L, Taylor SA. Variable Signatures of Selection Despite Conserved Recombination Landscapes Early in Speciation. J Hered 2021; 112:485-496. [PMID: 34499149 DOI: 10.1093/jhered/esab054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
26
|
D'Aloia CC, Bogdanowicz SM, Andrés JA, Buston PM. Population assignment tests uncover rare long-distance marine larval dispersal events. Ecology 2021; 103:e03559. [PMID: 34653260 DOI: 10.1002/ecy.3559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Long-distance dispersal (LDD) is consequential to metapopulation ecology and evolution. In systems where dispersal is undertaken by small propagules, such as larvae in the ocean, documenting LDD is especially challenging. Genetic parentage analysis has gained traction as a method for measuring larval dispersal, but such studies are generally spatially limited, leaving LDD understudied in marine species. We addressed this knowledge gap by uncovering LDD with population assignment tests in the coral reef fish Elacatinus lori, a species whose short-distance dispersal has been well-characterized by parentage analysis. When adults (n = 931) collected throughout the species' range were categorized into three source populations, assignment accuracy exceeded 99%, demonstrating low rates of gene flow between populations in the adult generation. After establishing high assignment confidence, we assigned settlers (n = 3,828) to source populations. Within the settler cohort, <0.1% of individuals were identified as long-distance dispersers from other populations. These results demonstrate an exceptionally low level of connectivity between E. lori populations, despite the potential for ocean currents to facilitate LDD. More broadly, these findings illustrate the value of combining genetic parentage analysis and population assignment tests to uncover short- and long-distance dispersal, respectively.
Collapse
Affiliation(s)
- C C D'Aloia
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - S M Bogdanowicz
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - J A Andrés
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - P M Buston
- Department of Biology & Marine Program, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
27
|
Mehner T, Palm S, Delling B, Karjalainen J, Kiełpińska J, Vogt A, Freyhof J. Genetic relationships between sympatric and allopatric Coregonus ciscoes in North and Central Europe. BMC Ecol Evol 2021; 21:186. [PMID: 34615463 PMCID: PMC8496053 DOI: 10.1186/s12862-021-01920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sympatric speciation along ecological gradients has been studied repeatedly, in particular in freshwater fishes. Rapid post-glacial ecological divergence has resulted in numerous endemic species or ecologically distinct populations in lakes of the temperate zones. Here, we focus on the Baltic cisco (Coregonus albula) complex, to study the genetic similarity among two pairs of sympatric autumn- and spring-spawning populations from post-glacial German Lakes Stechlin and Breiter Luzin. For comparison, we included a similar pair of sympatric populations from the Swedish Lake Fegen. We wanted to explore potential genetic similarities between the three sympatric cisco population pairs in the three lakes, to evaluate whether the pairs may have emerged independently in the three lakes, or whether two different species may have colonized all three lakes independently. Furthermore, we considered allopatric C. albula populations from three Polish, three Finnish, and four Swedish locations, added one Siberian population of the sister species C. sardinella and a Swedish C. maraena (whitefish) population. By genotyping nine microsatellite markers in 655 individuals from these 18 populations, we wanted to elucidate how strongly the cisco populations differ across a larger geographical area within Europe. Finally, we compared the genetic differences between the spring- and autumn-spawning populations of ciscoes in the two German lakes to infer the potentially deteriorating effect of strong anthropogenic pressure on the lakes. RESULTS Dendrogram, Principal Coordinate Analysis and admixture analysis all indicated strong correspondence between population differentiation and geographical location for most cisco populations in Europe, including the Siberian population of C. sardinella. However, populations from some Swedish lakes deviated from this general pattern, by showing a distinct genetic structure. We found evidence for independent evolution of the three sympatric population pairs, because the populations co-occurring in the same lake were always most closely related. However, genetic differentiation was weak in the two German population pairs, but strong in the Swedish Lake Fegen, indicating that the weak differentiation in the German pairs reported earlier has eroded further. CONCLUSIONS Our results suggest that the genetic differentiation at neutral genetic markers among populations of the Baltic cisco complex has evolved (and is maintained) by random genetic drift in isolated populations. However, earlier studies on the Swedish populations combining mitochondrial DNA and microsatellite data indicate that also post-glacial immigration from separate glacial refugia has shaped the present genetic population structure. The low neutral differentiation of the German sympatric pairs in contrast to the Swedish pair suggests that recent anthropogenic effects on the lakes in Germany may put the endemic spring-spawners at risk to extinction.
Collapse
Affiliation(s)
- Thomas Mehner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Stefan Palm
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Juha Karjalainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jolanta Kiełpińska
- Department of Aquatic Bioengineering and Aquaculture, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Asja Vogt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Jörg Freyhof
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
28
|
López-Barrera G, Ochoa-Zavala M, Quesada M, Harvey N, Núñez-Farfán J, González-Rodríguez A, Rocha-Ramírez V, Oyama K. Genetic imprints of Brosimum alicastrum Sw. in Mexico. AMERICAN JOURNAL OF BOTANY 2021; 108:1793-1807. [PMID: 34519027 DOI: 10.1002/ajb2.1725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico. METHODS Using nuclear DNA microsatellite data, we tested whether the genetic structure of B. alicastrum was associated with the roles of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec as geographical barriers to gene flow and to infer the role of past events in the genetic diversity patterns. We further used a maximum-likelihood population-effects mixed model (MLPE) to identify the main factor affecting population differentiation in B. alicastrum. RESULTS Our results suggested that Mexican B. alicastrum is well differentiated into three main lineages. Patterns of the genetic structure at a finer scale did not fully correspond to the current geographical barriers to gene flow. According to the MLPE mixed model, isolation by distance is the best model for explaining the genetic differentiation of B. alicastrum in Mexico. CONCLUSIONS We propose that the differentiation patterns might reflect (1) an ancient differentiation that occurred in Central and South America, (2) the effects of past climatic changes, and (3) the functions of some physical barriers to gene flow. This study provides insights into the possible mechanisms underlying the geographic genetic variation of B. alicastrum along a moisture gradient in tropical lowland forests.
Collapse
Affiliation(s)
- Gabriela López-Barrera
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Maried Ochoa-Zavala
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Mauricio Quesada
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Nick Harvey
- Genetic Marker Services, 7 Windlesham Road, Brighton BN1 3AG, England
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, UNAM, Av. Universidad 3000, Coyoacán, Cd. de México 04510, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Víctor Rocha-Ramírez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro no. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| |
Collapse
|
29
|
Govaert L, De Meester L, Rousseaux S, Declerck SAJ, Pantel JH. Measuring the contribution of evolution to community trait structure in freshwater zooplankton. OIKOS 2021. [DOI: 10.1111/oik.07885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lynn Govaert
- Leibniz Inst. für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
- Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Dübendorf Switzerland
- URPP Global Change and Biodiversity, Univ. of Zurich Zurich Switzerland
| | - Luc De Meester
- Leibniz Inst. für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Inst. of Biology, Freie Univ. Berlin Berlin Germany
| | - Sarah Rousseaux
- Leibniz Inst. für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Natuurinvest, Maatschappelijke zetel Brussel, Herman Teirlinckgebouw Brussel Belgium
| | - Steven A. J. Declerck
- Leibniz Inst. für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Jelena H. Pantel
- Leibniz Inst. für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Dept of Computer Science, Mathematics and Environmental Science, The American Univ. of Paris Paris France
| |
Collapse
|
30
|
Gehri RR, Gruenthal K, Larson WA. It's complicated: Heterogeneous patterns of genetic structure in five fish species from a fragmented river suggest multiple processes can drive differentiation. Evol Appl 2021; 14:2079-2097. [PMID: 34429750 PMCID: PMC8372089 DOI: 10.1111/eva.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Fragmentation of river systems by dams can have substantial genetic impacts on fish populations. However, genetic structure can exist naturally at small scales through processes other than isolation by physical barriers. We sampled individuals from five native fish species with varying life histories above and below a dam in the lower Boardman River, Michigan, USA, and used RADseq to investigate processes influencing genetic structure in this system. Species assessed were white sucker Catostomus commersonii, yellow perch Perca flavescens, walleye Sander vitreus, smallmouth bass Micropterus dolomieu, and rock bass Ambloplites rupestris. We detected significant differentiation within each species, but patterns of population structure varied substantially. Interestingly, genetic structure did not appear to be solely the result of fragmentation by the dam. While genetic structure in yellow perch and walleye generally coincided with "above dam" and "below dam" sampling locations, samples from our other three species did not. Specifically, samples from rock bass, smallmouth bass, and, to a much lesser extent, white sucker, aligned with a putative Great Lakes (GL) group that contained mostly individuals sampled below the dam and a putative Boardman River (BR) group that contained individuals sampled both above and below the dam, with some evidence of admixture among groups. We hypothesize that the GL and BR groups formed prior to dam construction and our samples largely represent a mixed stock that was sampled sympatrically outside of the spawning season. Support for this hypothesis is especially strong in smallmouth bass, where GL fish were 151 mm smaller than BR fish on average, suggesting a potential ontogenetic habitat shift of young GL fish into the lower river for feeding and/or refuge. Our study illuminates the complex dynamics shaping genetic structure in fragmented river systems and indicates that conclusions drawn for a single species cannot be generalized.
Collapse
Affiliation(s)
- Rebecca R. Gehri
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Kristen Gruenthal
- Office of Applied ScienceWisconsin Department of Natural ResourcesCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Alaska Department of Fish and GameGene Conservation LaboratoryJuneauAKUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAKUSA
| |
Collapse
|
31
|
Schwob G, Segovia NI, González-Wevar C, Cabrol L, Orlando J, Poulin E. Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean. Front Microbiol 2021; 12:703792. [PMID: 34335536 PMCID: PMC8317501 DOI: 10.3389/fmicb.2021.703792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.
Collapse
Affiliation(s)
- Guillaume Schwob
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio González-Wevar
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Facultad de Ciencias, Centro Fondap IDEAL, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Léa Cabrol
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Julieta Orlando
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
32
|
Westram AM, Faria R, Johannesson K, Butlin R. Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Mol Ecol 2021; 30:3797-3814. [PMID: 33638231 DOI: 10.1111/mec.15861] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder-rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.
Collapse
Affiliation(s)
- Anja M Westram
- IST Austria, Klosterneuburg, Austria.,Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Kerstin Johannesson
- Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Roger Butlin
- Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
33
|
Van Cauwenberghe J, Santamaría RI, Bustos P, Juárez S, Ducci MA, Figueroa Fleming T, Etcheverry AV, González V. Spatial patterns in phage-Rhizobium coevolutionary interactions across regions of common bean domestication. THE ISME JOURNAL 2021; 15:2092-2106. [PMID: 33558688 PMCID: PMC8245606 DOI: 10.1038/s41396-021-00907-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Bacteriophages play significant roles in the composition, diversity, and evolution of bacterial communities. Despite their importance, it remains unclear how phage diversity and phage-host interactions are spatially structured. Local adaptation may play a key role. Nitrogen-fixing symbiotic bacteria, known as rhizobia, have been shown to locally adapt to domesticated common bean at its Mesoamerican and Andean sites of origin. This may affect phage-rhizobium interactions. However, knowledge about the diversity and coevolution of phages with their respective Rhizobium populations is lacking. Here, through the study of four phage-Rhizobium communities in Mexico and Argentina, we show that both phage and host diversity is spatially structured. Cross-infection experiments demonstrated that phage infection rates were higher overall in sympatric rhizobia than in allopatric rhizobia except for one Argentinean community, indicating phage local adaptation and host maladaptation. Phage-host interactions were shaped by the genetic identity and geographic origin of both the phage and the host. The phages ranged from specialists to generalists, revealing a nested network of interactions. Our results suggest a key role of local adaptation to resident host bacterial communities in shaping the phage genetic and phenotypic composition, following a similar spatial pattern of diversity and coevolution to that in the host.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Maria Antonella Ducci
- Instituto Nacional de Tecnología Agropecuaria, Universidad Nacional de Salta, Salta, Argentina
| | | | | | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
| |
Collapse
|
34
|
Velo-Antón G, Lourenço A, Galán P, Nicieza A, Tarroso P. Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander. Sci Rep 2021; 11:9259. [PMID: 33927228 PMCID: PMC8085075 DOI: 10.1038/s41598-021-88349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Explicitly accounting for phenotypic differentiation together with environmental heterogeneity is crucial to understand the evolutionary dynamics in hybrid zones. Species showing intra-specific variation in phenotypic traits that meet across environmentally heterogeneous regions constitute excellent natural settings to study the role of phenotypic differentiation and environmental factors in shaping the spatial extent and patterns of admixture in hybrid zones. We studied three environmentally distinct contact zones where morphologically and reproductively divergent subspecies of Salamandra salamandra co-occur: the pueriparous S. s. bernardezi that is mostly parapatric to its three larviparous subspecies neighbours. We used a landscape genetics framework to: (i) characterise the spatial location and extent of each contact zone; (ii) assess patterns of introgression and hybridization between subspecies pairs; and (iii) examine the role of environmental heterogeneity in the evolutionary dynamics of hybrid zones. We found high levels of introgression between parity modes, and between distinct phenotypes, thus demonstrating the evolution to pueriparity alone or morphological differentiation do not lead to reproductive isolation between these highly divergent S. salamandra morphotypes. However, we detected substantial variation in patterns of hybridization across contact zones, being lower in the contact zone located on a topographically complex area. We highlight the importance of accounting for spatial environmental heterogeneity when studying evolutionary dynamics of hybrid zones.
Collapse
Affiliation(s)
- Guillermo Velo-Antón
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.6312.60000 0001 2097 6738Universidade de Vigo, Grupo de Ecoloxía Animal, Departamento de Ecoloxía e Bioloxía Animal, Torre Cacti (Lab 97), 36310 Vigo, Spain
| | - André Lourenço
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia da Faculdade de Ciências, Universidade do Porto. Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro Galán
- grid.8073.c0000 0001 2176 8535Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n, 15071 A Coruña, Spain
| | - Alfredo Nicieza
- grid.10863.3c0000 0001 2164 6351Departamento de Biologıa de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain ,grid.10863.3c0000 0001 2164 6351Unidad Mixta de Investigacion en Biodiversidad (UMIB), CSIC-Universidad de Oviedo-Principado de Asturias, Mieres, Spain
| | - Pedro Tarroso
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal
| |
Collapse
|
35
|
Gompert Z. A population-genomic approach for estimating selection on polygenic traits in heterogeneous environments. Mol Ecol Resour 2021; 21:1529-1546. [PMID: 33682340 DOI: 10.1111/1755-0998.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form, direction and intensity of selection can limit net evolutionary change over longer time periods. Fluctuating selection could affect molecular diversity levels and the evolution of plasticity and ecological specialization. Nonetheless, this phenomenon remains understudied, in part because of analytical limitations and the general difficulty of detecting selection that does not occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate Bayesian computation (ABC) method to detect and quantify fluctuating selection on polygenic traits from population genomic time-series data. I propose a model for environment-dependent phenotypic selection. The evolutionary genetic consequences of selection are then modelled based on a genotype-phenotype map. Using simulations, I show that the proposed method generates accurate and precise estimates of selection when the generative model for the data is similar to the model assumed by the method. The performance of the method when applied to an evolve-and-resequence study of host adaptation in the cowpea seed beetle (Callosobruchus maculatus) was more idiosyncratic and depended on specific analytical choices. Despite some limitations, these results suggest the proposed method provides a powerful approach to connect the causes of (variable) selection to traits and genome-wide patterns of evolution. Documentation and open-source computer software (fsabc) implementing this method are available from github (https://github.com/zgompert/fsabc.git).
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, USA.,Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
36
|
Andriamihaja CF, Ramarosandratana AV, Grisoni M, Jeannoda VH, Besse P. Drivers of population divergence and species differentiation in a recent group of indigenous orchids ( Vanilla spp.) in Madagascar. Ecol Evol 2021; 11:2681-2700. [PMID: 33767829 PMCID: PMC7981232 DOI: 10.1002/ece3.7224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
With over 25,000 species, orchids are among families with remarkable high rate of diversification. Since Darwin's time, major advances attributed the exceptional diversity of orchids to plant-pollinator interactions. However, unraveling the processes and factors that determine the phenotypic and genotypic variation of natural orchid populations remains a challenge. Here, we assessed genetic population structure and floral differentiation in recently diverged leafless Vanilla species in a world biodiversity hotspot, Madagascar, using seven microsatellite loci and 26 morphometric variables. Additionally, analyses were performed to test for the occurrence of any patterns of isolation by distance, isolation by environment, and isolation by adaptation and to detect possible physical barriers that might have caused genetic discontinuities between populations. Positive inbreeding coefficients detected in 22 populations were probably due to the presence of null alleles, geitonogamy and/or some admixture (sympatric species). In contrast, the only high-altitude population showed an important rate of clonality leading to heterozygote excess. Genetic diversity was maximum in western populations, suggesting a postglacial colonization to the north and south. Clustering analyses identified seven genetic groups characterized by specific floral traits that matched five botanical descriptions in the literature. A contribution of montane refugia and river barriers on population differentiation was detected. We also detected combined effects of IBD/IBE and IBE/IBA on genetic differentiation and suggested this pattern is more likely determined by ecological isolation, although pollinator-mediated divergent selection could not be ruled out for some of the species. Overall, this study provides further insights on speciation in orchids, a group for which Madagascar shows one of the world's highest level of endemism and confirms the importance of the peculiar biogeography of the island in shaping species differentiation.
Collapse
Affiliation(s)
- Cathucia F. Andriamihaja
- Université de la RéunionUMR PVBMTSt PierreFrance
- Department of Plant Biology and EcologyUniversity of AntananarivoAntananarivoMadagascar
| | | | | | | | | |
Collapse
|
37
|
Do We Need to Identify Adaptive Genetic Variation When Prioritizing Populations for Conservation? CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01327-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Cuevas A, Ravinet M, Saetre GP, Eroukhmanoff F. Intraspecific genomic variation and local adaptation in a young hybrid species. Mol Ecol 2021; 30:791-809. [PMID: 33259111 DOI: 10.1111/mec.15760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022]
Abstract
Hybridization increases genetic variation, hence hybrid species may have greater evolutionary potential once their admixed genomes have stabilized and incompatibilities have been purged. Yet, little is known about how such hybrid lineages evolve at the genomic level following their formation, in particular their adaptive potential. Here we investigate how the Italian sparrow (Passer italiae), a homoploid hybrid species, has evolved and locally adapted to its variable environment. Using restriction site-associated DNA sequencing (RAD-seq) on several populations across the Italian peninsula, we evaluate how genomic constraints and novel genetic variation have influenced population divergence and adaptation. We show that population divergence within this hybrid species has evolved in response to climatic variation, suggesting ongoing local adaptation. As found previously in other nonhybrid species, climatic differences appear to increase population differentiation. We also report strong population divergence in a gene known to affect beak morphology. Most of the strongly divergent loci among Italian sparrow populations do not seem to be differentiated between its parent species, the house and Spanish sparrows. Unlike in the hybrid, population divergence within each of the parental taxa has occurred mostly at loci with high allele frequency difference between the parental species, suggesting that novel combinations of parental alleles in the hybrid have not necessarily enhanced its evolutionary potential. Rather, our study suggests that constraints linked to incompatibilities may have restricted the evolution of this admixed genome, both during and after hybrid species formation.
Collapse
Affiliation(s)
- Angélica Cuevas
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Dufresnes C, Rodrigues N, Savary R. Slow and steady wins the race: contrasted phylogeographic signatures in two Alpine amphibians. Integr Zool 2021; 17:181-190. [PMID: 33433936 DOI: 10.1111/1749-4877.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A deeper phylogeographic structure is expected for slow-dispersing habitat specialists compared to widespread adaptable species, especially in topographically complex regions. We tested this classic assumption by comparing the genomic (RAD-sequencing) phylogeographies of two amphibians inhabiting the Swiss Alps: the mobile, cosmopolitan common frog (Rana temporaria) against the stationary, mountain endemic Alpine salamander (Salamandra atra). Our results ran opposite of predictions: the frog displayed significantly higher genetic divergences and lower within-population variation compared to the salamander. This implies a prominent role for their distinctive glacial histories in shaping intraspecific diversity and structure: diversification and recolonization from several circum-Alpine micro-refugia for the frog versus a single refugium for the salamander, potentially combined with better population connectivity and stability. These striking differences emphasize the great variability of phylogeographic responses to the Quaternary glaciations, hence the complexity to predict general patterns of genetic diversity at the regional scale, and the forces that underlie them.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Savary
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Yamamoto N, Sota T. Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle. Proc Biol Sci 2020; 287:20202315. [PMID: 33323087 PMCID: PMC7779511 DOI: 10.1098/rspb.2020.2315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/20/2020] [Indexed: 11/12/2022] Open
Abstract
Background-matching camouflage is a widespread adaptation in animals; however, few studies have thoroughly examined its evolutionary process and consequences. The tiger beetle Chaetodera laetescripta exhibits pronounced variation in elytral colour pattern among sandy habitats of different colour in the Japanese Archipelago. In this study, we performed digital image analysis with avian vision modelling to demonstrate that elytral luminance, which is attributed to proportions of elytral colour components, is fine-tuned to match local backgrounds. Field predation experiments with model beetles showed that better luminance matching resulted in a lower attack rate and corresponding lower mortality. Using restriction site-associated DNA (RAD) sequence data, we analysed the dispersal and evolution of colour pattern across geographical locations. We found that sand colour matching occurred irrespective of genetic and geographical distances between populations, suggesting that locally adapted colour patterns evolved after the colonization of these habitats. Given that beetle elytral colour patterns presumably have a quantitative genetic basis, our findings demonstrate that fine-tuning of background-matching camouflage to local habitat conditions can be attained through selection by visual predators, as predicted by the earliest proponent of natural selection.
Collapse
Affiliation(s)
- Nayuta Yamamoto
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
41
|
Knotek A, Konečná V, Wos G, Požárová D, Šrámková G, Bohutínská M, Zeisek V, Marhold K, Kolář F. Parallel Alpine Differentiation in Arabidopsis arenosa. FRONTIERS IN PLANT SCIENCE 2020; 11:561526. [PMID: 33363550 PMCID: PMC7753741 DOI: 10.3389/fpls.2020.561526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/16/2020] [Indexed: 05/14/2023]
Abstract
Parallel evolution provides powerful natural experiments for studying repeatability of evolution and genomic basis of adaptation. Well-documented examples from plants are, however, still rare, as are inquiries of mechanisms driving convergence in some traits while divergence in others. Arabidopsis arenosa, a predominantly foothill species with scattered morphologically distinct alpine occurrences is a promising candidate. Yet, the hypothesis of parallelism remained untested. We sampled foothill and alpine populations in all regions known to harbor the alpine ecotype and used SNP genotyping to test for repeated alpine colonization. Then, we combined field surveys and a common garden experiment to quantify phenotypic parallelism. Genetic clustering by region but not elevation and coalescent simulations demonstrated parallel origin of alpine ecotype in four mountain regions. Alpine populations exhibited parallelism in height and floral traits which persisted after two generations in cultivation. In contrast, leaf traits were distinctive only in certain region(s), reflecting a mixture of plasticity and genetically determined non-parallelism. We demonstrate varying degrees and causes of parallelism and non-parallelism across populations and traits within a plant species. Parallel divergence along a sharp elevation gradient makes A. arenosa a promising candidate for studying genomic basis of adaptation.
Collapse
Affiliation(s)
- Adam Knotek
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Veronika Konečná
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Guillaume Wos
- Department of Botany, Charles University, Prague, Czechia
| | | | | | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Vojtěch Zeisek
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Karol Marhold
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Filip Kolář
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d'Alençon E. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol Biol 2020; 20:152. [PMID: 33187468 PMCID: PMC7663868 DOI: 10.1186/s12862-020-01715-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The process of speciation involves differentiation of whole genome sequences between a pair of diverging taxa. In the absence of a geographic barrier and in the presence of gene flow, genomic differentiation may occur when the homogenizing effect of recombination is overcome across the whole genome. The fall armyworm is observed as two sympatric strains with different host-plant preferences across the entire habitat. These two strains exhibit a very low level of genetic differentiation across the whole genome, suggesting that genomic differentiation occurred at an early stage of speciation. In this study, we aim at identifying critical evolutionary forces responsible for genomic differentiation in the fall armyworm. RESULTS These two strains exhibit a low level of genomic differentiation (FST = 0.0174), while 99.2% of 200 kb windows have genetically differentiated sequences (FST > 0). We found that the combined effect of mild positive selection and genetic linkage to selectively targeted loci are responsible for the genomic differentiation. However, a single event of very strong positive selection appears not to be responsible for genomic differentiation. The contribution of chromosomal inversions or tight genetic linkage among positively selected loci causing reproductive barriers is not supported by our data. Phylogenetic analysis shows that the genomic differentiation occurred by sub-setting of genetic variants in one strain from the other. CONCLUSIONS From these results, we concluded that genomic differentiation may occur at the early stage of a speciation process in the fall armyworm and that mild positive selection targeting many loci alone is sufficient evolutionary force for generating the pattern of genomic differentiation. This genomic differentiation may provide a condition for accelerated genomic differentiation by synergistic effects among linkage disequilibrium generated by following events of positive selection. Our study highlights genomic differentiation as a key evolutionary factor connecting positive selection to divergent selection.
Collapse
Affiliation(s)
- Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Stéphanie Robin
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Anthony Bretaudeau
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
43
|
Chapuis M, Raynal L, Plantamp C, Meynard CN, Blondin L, Marin J, Estoup A. A young age of subspecific divergence in the desert locust inferred by ABC random forest. Mol Ecol 2020; 29:4542-4558. [DOI: 10.1111/mec.15663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Marie‐Pierre Chapuis
- CBGP CIRAD Montpellier France
- CBGP CIRAD INRAE IRD Montpellier SupAgro University of Montpellier Montpellier France
| | - Louis Raynal
- IMAG CNRS University of Montpellier Montpellier France
| | | | - Christine N. Meynard
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| | | | | | - Arnaud Estoup
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| |
Collapse
|
44
|
Liu T, Zhang K, Dai W, Jin L, Sun K, Feng J. Evolutionary insights into
Rhinolophus episcopus
(Chiroptera, Rhinolophidae) in China: Isolation by distance, environment, or sensory system? J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
45
|
Li B, Yaegashi S, Carvajal TM, Gamboa M, Chiu M, Ren Z, Watanabe K. Machine-learning-based detection of adaptive divergence of the stream mayfly Ephemera strigata populations. Ecol Evol 2020; 10:6677-6687. [PMID: 32724541 PMCID: PMC7381564 DOI: 10.1002/ece3.6398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/07/2022] Open
Abstract
Adaptive divergence is a key mechanism shaping the genetic variation of natural populations. A central question linking ecology with evolutionary biology is how spatial environmental heterogeneity can lead to adaptive divergence among local populations within a species. In this study, using a genome scan approach to detect candidate loci under selection, we examined adaptive divergence of the stream mayfly Ephemera strigata in the Natori River Basin in northeastern Japan. We applied a new machine-learning method (i.e., random forest) besides traditional distance-based redundancy analysis (dbRDA) to examine relationships between environmental factors and adaptive divergence at non-neutral loci. Spatial autocorrelation analysis based on neutral loci was employed to examine the dispersal ability of this species. We conclude the following: (a) E. strigata show altitudinal adaptive divergence among the populations in the Natori River Basin; (b) random forest showed higher resolution for detecting adaptive divergence than traditional statistical analysis; and (c) separating all markers into neutral and non-neutral loci could provide full insight into parameters such as genetic diversity, local adaptation, and dispersal ability.
Collapse
Affiliation(s)
- Bin Li
- Insititute of Environmental and EcologyShandong Normal UniversityJinanChina
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Sakiko Yaegashi
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
- Department of Civil and Environmental EngineeringUniversity of YamanashiYamanashiJapan
| | | | - Maribet Gamboa
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Ming‐Chih Chiu
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Zongming Ren
- Insititute of Environmental and EcologyShandong Normal UniversityJinanChina
| | - Kozo Watanabe
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| |
Collapse
|
46
|
Binelli G, Montaigne W, Sabatier D, Scotti‐Saintagne C, Scotti I. Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus. Ecol Evol 2020; 10:4726-4738. [PMID: 32551056 PMCID: PMC7297752 DOI: 10.1002/ece3.6227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the "true" picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology-although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and V. kwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence.
Collapse
Affiliation(s)
| | - William Montaigne
- UMR EcoFoGUniversité des Antilles et de la GuyaneKourouFrench Guiana
| | - Daniel Sabatier
- AMAPIRDCIRADCNRSINRAEUniversité de MontpellierMontpellierFrance
| | | | | |
Collapse
|
47
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
48
|
Rivera D, Prates I, Rodrigues MT, Carnaval AC. Effects of climate and geography on spatial patterns of genetic structure in tropical skinks. Mol Phylogenet Evol 2020; 143:106661. [DOI: 10.1016/j.ympev.2019.106661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
|
49
|
Finlay R, Poole R, Coughlan J, Phillips KP, Prodöhl P, Cotter D, McGinnity P, Reed TE. Telemetry and genetics reveal asymmetric dispersal of a lake-feeding salmonid between inflow and outflow spawning streams at a microgeographic scale. Ecol Evol 2020; 10:1762-1783. [PMID: 32128115 PMCID: PMC7042748 DOI: 10.1002/ece3.5937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.
Collapse
Affiliation(s)
- Ross Finlay
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | | | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastIreland
| | | | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| |
Collapse
|
50
|
DeSilva R, Dodd RS. Fragmented and isolated: limited gene flow coupled with weak isolation by environment in the paleoendemic giant sequoia (Sequoiadendron giganteum). AMERICAN JOURNAL OF BOTANY 2020; 107:45-55. [PMID: 31883111 DOI: 10.1002/ajb2.1406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Patterns of genetic structure across a species' range reflect the long-term interplay between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing the loss of diversity through genetic drift among spatially isolated populations, understanding the dynamics of gene flow and the factors that influence connectivity across a species' range is a major goal for conservation of genetic diversity. Here we present a detailed look at gene flow dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face numerous threats due to climate change. METHODS We used microsatellite markers to examine nineteen populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to elucidate landscape factors that shape genetic differentiation among populations. RESULTS We found minimal gene flow between adjacent groves in the northern disjunct range. In most of the southern portion of the range, groves showed a signal of connectivity which degrades to isolation in the extreme south. Geographic distance was the most important predictor of genetic dissimilarity across the range, with environmental conditions related to precipitation and temperature explaining a small, but significant, portion of the genetic variance. CONCLUSIONS Due to their isolation and unique genetic composition, northern populations of S. giganteum should be considered a high conservation priority. In this region, we suggest germplasm conservation as well as restoration planting to enhance genetic diversity.
Collapse
Affiliation(s)
- Rainbow DeSilva
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| | - Richard S Dodd
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|