1
|
Messeder JVS, Carlo TA, Zhang G, Tovar JD, Arana C, Huang J, Huang CH, Ma H. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L. THE NEW PHYTOLOGIST 2024; 243:765-780. [PMID: 38798267 DOI: 10.1111/nph.19849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.
Collapse
Affiliation(s)
- João Vitor S Messeder
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tomás A Carlo
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guojin Zhang
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Juan David Tovar
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, 69060-001, Brazil
| | - César Arana
- Museo de Historia Natural and Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia University, Hohhot, 010000, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
2
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Kevei Z, Spindlow DJ, Chacko Kaitholil SR, Iheanyichi JU, Prasanna HC, Thompson AJ, Mohareb FR. A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1342739. [PMID: 38525148 PMCID: PMC10957597 DOI: 10.3389/fpls.2024.1342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Introduction Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Tomasz J. Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | | | - Zoltan Kevei
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Daniel J. Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Steffimol R. Chacko Kaitholil
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Justice U. Iheanyichi
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - H. C. Prasanna
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J. Thompson
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Fady R. Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| |
Collapse
|
4
|
Lupo Y, Moshelion M. The balance of survival: Comparative drought response in wild and domesticated tomatoes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111928. [PMID: 37992898 DOI: 10.1016/j.plantsci.2023.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Plants have the ability to undergo reversible behavioral, morphological, or physiological changes in response to environmental conditions. This plasticity enables plants to cope with uncertain environmental conditions, such as drought. A primary plastic trait is the rate of stomatal response to changes in ambient conditions, which determines the amount of water lost via transpiration, as well as levels of CO2 absorption, growth, and productivity. Here, we examined the differences between domesticated (S. lycopersicum cv. M82) and wild tomato (S. pennellii) species and their responses to drought stress. The plants were grown in pots in a functional phenotyping platform (FPP) in a semi-controlled environment greenhouse. We found that the domesticated tomato had a higher transpiration rate (E) and higher stomatal conductance (gs). The domesticated tomato also had greater biomass and greater leaf area under drought conditions, as compared to the wild tomato. Despite the domesticated tomato's higher E and higher gs, there was no difference between the photosynthetic rates (An) of the two lines. Moreover, the wild tomato had a higher maximum rate of rubisco activity (Vcmax), which might explain its greater leaf level and whole canopy water-use efficiency. The domesticated tomato's higher E and greater leaf area led to its earlier exposure to drought stress, as compared to the wild tomato, which maintained higher levels of soil water, enabling it to maintain steady rates of whole-canopy stomatal conductance (gsc) for extended periods. The wild tomato was also more sensitive to soil water availability and lowered its maximum transpiration rate (Emax) at a higher soil-water-content (SWC) level compared to the domesticated species. Our results suggest that the domestication of tomatoes favored morphological/anatomical performance traits over physiological efficiency.
Collapse
Affiliation(s)
- Yaniv Lupo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Nakayama H, Ichihashi Y, Kimura S. Diversity of tomato leaf form provides novel insights into breeding. BREEDING SCIENCE 2023; 73:76-85. [PMID: 37168814 PMCID: PMC10165341 DOI: 10.1270/jsbbs.22061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum L.) is cultivated widely globally. The crop exhibits tremendous morphological variations because of its long breeding history. Apart from the commercial tomato varieties, wild species and heirlooms are grown in certain regions of the world. Since the fruit constitutes the edible part, much of the agronomical research is focused on it. However, recent studies have indicated that leaf morphology influences fruit quality. As leaves are specialized photosynthetic organs and the vascular systems transport the photosynthetic products to sink organs, the architectural characteristics of the leaves have a strong influence on the final fruit quality. Therefore, comprehensive research focusing on both the fruit and leaf morphology is required for further tomato breeding. This review summarizes an overview of knowledge of the basic tomato leaf development, morphological diversification, and molecular mechanisms behind them and emphasizes its importance in breeding. Finally, we discuss how these findings and knowledge can be applied to future tomato breeding.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
- Corresponding author (e-mail: )
| | | | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
6
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Moreira JDR, Rosa BL, Lira BS, Lima JE, Correia LNF, Otoni WC, Figueira A, Freschi L, Sakamoto T, Peres LEP, Rossi M, Zsögön A. Auxin-driven ecophysiological diversification of leaves in domesticated tomato. PLANT PHYSIOLOGY 2022; 190:113-126. [PMID: 35639975 PMCID: PMC9434155 DOI: 10.1093/plphys/kiac251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 05/29/2023]
Abstract
Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.
Collapse
Affiliation(s)
- Juliene d R Moreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno L Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno S Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Joni E Lima
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila N F Correia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Wagner C Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Tetsu Sakamoto
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal Do Rio Grande Do Norte, 59078-400 Natal, Rio Grande do Norte, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura “Luiz de Queiroz,” Universidade de São Paulo, CP 09, 13418-900 Piracicaba, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | | |
Collapse
|
8
|
Ramírez-Ojeda G, Rodríguez-Pérez JE, Rodríguez-Guzmán E, Sahagún-Castellanos J, Chávez-Servia JL, Peralta IE, Barrera-Guzmán LÁ. Distribution and Climatic Adaptation of Wild Tomato (Solanum lycopersicum L.) Populations in Mexico. PLANTS 2022; 11:plants11152007. [PMID: 35956486 PMCID: PMC9370545 DOI: 10.3390/plants11152007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
Tomato (Solanum lycopersicum L.) is a vegetable with worldwide importance. Its wild or close related species are reservoirs of genes with potential use for the generation of varieties tolerant or resistant to specific biotic and abiotic factors. The objective was to determine the geographic distribution, ecological descriptors, and patterns of diversity and adaptation of 1296 accessions of native tomato from Mexico. An environmental information system was created with 21 climatic variables with a 1 km2 spatial resolution. Using multivariate techniques (Principal Component Analysis, PCA; Cluster Analysis, CA) and Geographic Information Systems (GIS), the most relevant variables for accession distribution were identified, as well as the groups formed according to the environmental similarity among these. PCA determined that with the first three PCs (Principal Components), it is possible to explain 84.1% of the total variation. The most relevant information corresponded to seasonal variables of temperature and precipitation. CA revealed five statistically significant clusters. Ecological descriptors were determined and described by classifying accessions in Physiographic Provinces. Temperate climates were the most frequent among tomato accessions. Finally, the potential distribution was determined with the Maxent model with 10 replicates by cross-validation, identifying areas with a high probability of tomato presence. These results constitute a reliable source of useful information for planning accession sites collection and identifying accessions that are vulnerable or susceptible to conservation programs.
Collapse
Affiliation(s)
- Gabriela Ramírez-Ojeda
- Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán de Morelos 47600, Mexico;
| | - Juan Enrique Rodríguez-Pérez
- Departamento de Fitotecnia, Universidad Autónoma Chapingo (UACh), Chapingo 56230, Mexico;
- Correspondence: ; Tel.: +52-595-951-7210
| | - Eduardo Rodríguez-Guzmán
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara (UdG), Zapopan 45200, Mexico;
| | | | - José Luis Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional (IPN), Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico;
| | - Iris E. Peralta
- Facultad de Ciencias Agrarias, Universidad Nacional del Cuyo (UNCUYO), Mendoza M5502JMA, Argentina;
- Centro Científico Tecnológico CONICET, Instituto Argentino de Investigaciones de las Zonas Áridas, Mendoza C1425FQB, Argentina
| | - Luis Ángel Barrera-Guzmán
- Coordinación de Educación e Investigación, Universidad del Valle de Puebla (UVP), Puebla 72440, Mexico;
| |
Collapse
|
9
|
Farinon B, Picarella ME, Mazzucato A. Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:881. [PMID: 35406862 PMCID: PMC9002612 DOI: 10.3390/plants11070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Studies on the reproductive dynamics under heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been evaluated for their response to heat stress. Here, we addressed the study to a panel of selected landraces representing traditional genotypes that usually show high adaptation to local environments. In two experiments, spaced by 12 years, we set-up an identical experimental design with plants transplanted at two different dates to expose the second field to thermic stress with natural fluctuations. Such a strategy resulted in both a mild and severe stress in the two years. The landraces showed wide variation for both vegetative and reproductive traits; all traits were affected by heat, mostly with a significant Genotype*Environment interaction. A high broad-sense heritability was estimated for plant height, stigma position, pollen viability, and fruit weight. Low heritability estimates were found for the number of flowers, fruit set, and yield. Despite the interaction, traits recorded under control and heat conditions were positively correlated. Multivariate analysis located the genotypes in a topography that was stable under all conditions, except under the harshest temperatures. The study revealed that landraces present a wide variability for the response of reproductive traits to thermic challenges and that such a variation could be useful to dissect the traits with higher heritability and identify quantitative trait loci for breeding more resilient varieties.
Collapse
|
10
|
Huang X, Fortier AL, Coffman AJ, Struck TJ, Irby MN, James JE, León-Burguete JE, Ragsdale AP, Gutenkunst RN. Inferring genome-wide correlations of mutation fitness effects between populations. Mol Biol Evol 2021; 38:4588-4602. [PMID: 34043790 PMCID: PMC8476148 DOI: 10.1093/molbev/msab162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of a mutation on fitness may differ between populations depending on environmental and genetic context, but little is known about the factors that underlie such differences. To quantify genome-wide correlations in mutation fitness effects, we developed a novel concept called a joint distribution of fitness effects (DFE) between populations. We then proposed a new statistic w to measure the DFE correlation between populations. Using simulation, we showed that inferring the DFE correlation from the joint allele frequency spectrum is statistically precise and robust. Using population genomic data, we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In these species, we found that the overall correlation of the joint DFE was inversely related to genetic differentiation. In humans and D. melanogaster, deleterious mutations had a lower DFE correlation than tolerated mutations, indicating a complex joint DFE. Altogether, the DFE correlation can be reliably inferred, and it offers extensive insight into the genetics of population divergence.
Collapse
|
11
|
Raduski AR, Igić B. Biosystematic studies on the status of Solanum chilense. AMERICAN JOURNAL OF BOTANY 2021; 108:520-537. [PMID: 33783814 DOI: 10.1002/ajb2.1621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.
Collapse
Affiliation(s)
- Andrew R Raduski
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
- Dept. of Plant & Microbial Biology, University of Minnesota - Twin Cities, St. Paul, Minnesota, 55108, U.S.A
| | - Boris Igić
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
| |
Collapse
|
12
|
Takei H, Shirasawa K, Kuwabara K, Toyoda A, Matsuzawa Y, Iioka S, Ariizumi T. De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme, by long-read sequencing. DNA Res 2021; 28:6104860. [PMID: 33475141 PMCID: PMC7934570 DOI: 10.1093/dnares/dsaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The ancestral tomato species are known to possess genes that are valuable for improving traits in breeding. Here, we aimed to construct high-quality de novo genome assemblies of Solanum pimpinellifolium ‘LA1670’ and S. lycopersicum var. cerasiforme ‘LA1673’, originating from Peru. The Pacific Biosciences (PacBio) long-read sequences with 110× and 104× coverages were assembled and polished to generate 244 and 202 contigs spanning 808.8 Mbp for ‘LA1670’ and 804.5 Mbp for ‘LA1673’, respectively. After chromosome-level scaffolding with reference guiding, 14 scaffold sequences corresponding to 12 tomato chromosomes and 2 unassigned sequences were constructed. High-quality genome assemblies were confirmed using the Benchmarking Universal Single-Copy Orthologs and long terminal repeat assembly index. The protein-coding sequences were then predicted, and their transcriptomes were confirmed. The de novo assembled genomes of S. pimpinellifolium and S. lycopersicum var. cerasiforme were predicted to have 71,945 and 75,230 protein-coding genes, including 29,629 and 29,185 non-redundant genes, respectively, as supported by the transcriptome analysis results. The chromosome-level genome assemblies coupled with transcriptome data sets of the two accessions would be valuable for gaining insights into tomato domestication and understanding genome-scale breeding.
Collapse
Affiliation(s)
- Hitomi Takei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.,Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kosuke Kuwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Shinji Iioka
- TOKITA Seed Co. LTD, Otone, Saitama 349-1144, Japan
| | - Tohru Ariizumi
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
13
|
Kahlon PS, Seta SM, Zander G, Scheikl D, Hückelhoven R, Joosten MHAJ, Stam R. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc Biol Sci 2020; 287:20202723. [PMID: 33352079 DOI: 10.1098/rspb.2020.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Shallet Mindih Seta
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Gesche Zander
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Str. 2, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
14
|
Lin YP, Lu CY, Lee CR. The climatic association of population divergence and future extinction risk of Solanum pimpinellifolium. AOB PLANTS 2020; 12:plaa012. [PMID: 32257092 PMCID: PMC7107907 DOI: 10.1093/aobpla/plaa012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 06/01/2023]
Abstract
Under intraspecific differentiation driven by differential climatic adaptation, it may be expected that intraspecific genetic groups occur at distinct environments. Populations occupying different niches may therefore differ in their ability to cope with climate change. Here, we addressed this hypothesis with a wild tomato, Solanum pimpinellifolium. This species is distributed from the west side of Andes to the coastal region in Peru and Ecuador and occupies a wide environmental diversity. This environmental diversity is related to the genetic structure of the species providing an ideal material to investigate the isolation by environment hypothesis. While previous hypothesis stated that S. pimpinellifolium originated from northern Peru and migrated northwards and southwards, our results support that S. pimpinellifolium originated from Ecuador and expanded to northern and southern Peru, and during this process, the niche space of S. pimpinellifolium became more associated with cold and drought. We further predicted its fate under anthropogenic climate change. According to our predictions, the northern group will maintain its current extent or even expand to the entire western region of Ecuador. In contrast, we predicted low habitat suitability for the southern group which could potentially lead to the shrinkage of its distribution. In conclusion, we revealed the distinct fates among the differentiated populations driven by environment under global warming conditions.
Collapse
Affiliation(s)
- Ya-Ping Lin
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yueh Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Hamlin JAP, Hibbins MS, Moyle LC. Assessing biological factors affecting postspeciation introgression. Evol Lett 2020; 4:137-154. [PMID: 32313689 PMCID: PMC7156103 DOI: 10.1002/evl3.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/26/2019] [Accepted: 01/12/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of phylogenomic studies have documented a clear “footprint” of postspeciation introgression among closely related species. Nonetheless, systematic genome‐wide studies of factors that determine the likelihood of introgression remain rare. Here, we propose an a priori hypothesis‐testing framework that uses introgression statistics—including a new metric of estimated introgression, Dp—to evaluate general patterns of introgression prevalence and direction across multiple closely related species. We demonstrate this approach using whole genome sequences from 32 lineages in 11 wild tomato species to assess the effect of three factors on introgression—genetic relatedness, geographical proximity, and mating system differences—based on multiple trios within the “ABBA–BABA” test. Our analyses suggest each factor affects the prevalence of introgression, although our power to detect these is limited by the number of comparisons currently available. We find that of 14 species pairs with geographically “proximate” versus “distant” population comparisons, 13 showed evidence of introgression; in 10 of these cases, this was more prevalent between geographically closer populations. We also find modest evidence that introgression declines with increasing genetic divergence between lineages, is more prevalent between lineages that share the same mating system, and—when it does occur between mating systems—tends to involve gene flow from more inbreeding to more outbreeding lineages. Although our analysis indicates that recent postspeciation introgression is frequent in this group—detected in 15 of 17 tested trios—estimated levels of genetic exchange are modest (0.2–2.5% of the genome), so the relative importance of hybridization in shaping the evolutionary trajectories of these species could be limited. Regardless, similar clade‐wide analyses of genomic introgression would be valuable for disentangling the major ecological, reproductive, and historical determinants of postspeciation gene flow, and for assessing the relative contribution of introgression as a source of genetic variation.
Collapse
Affiliation(s)
| | - Mark S Hibbins
- Department of Biology Indiana University Bloomington Indiana 47405
| | - Leonie C Moyle
- Department of Biology Indiana University Bloomington Indiana 47405
| |
Collapse
|
16
|
Avila CA, Marconi TG, Viloria Z, Kurpis J, Del Rio SY. Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum. Sci Rep 2019; 9:14031. [PMID: 31575887 PMCID: PMC6773686 DOI: 10.1038/s41598-019-50379-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
The tomato-potato psyllid (TPP), Bactericera cockerelli, is a vector for the phloem-limited bacterium Candidatus Liberibacter solanacearum (Lso), the causative agent of economically important diseases including tomato vein-greening and potato zebra chip. Here, we screened 11 wild tomato relatives for TPP resistance as potential resources for tomato (Solanum lycopersicum) cultivar development. Six accessions with strong TPP resistance (survival <10%) were identified within S. habrochaites, S. pennelli, S. huaylasense, S. chmielewskii, S. corneliomulleri, and S. galapagense. Two S. pennelli and S. corneliomulleri accessions also showed resistance to Lso. We evaluated recombinant inbred lines (RILs) carrying resistance from S. habrochaites accession LA1777 in the S. lycopersicum background and identified major quantitative trait loci (QTLs) responsible for adult TPP mortality and fecundity in several RILs carrying insertions in different chromosomes, indicating the polygenic nature of these traits. Analysis of a major resistance QTL in RIL LA3952 on chromosome 8 revealed that the presence of Lso is required to increase adult TPP mortality. By contrast, the reduced TPP oviposition trait in LA3952 is independent of Lso. Therefore, resistance traits are available in wild-tomato species, although their complex inheritance and modes of action require further characterisation to optimise their utilisation for tomato improvement.
Collapse
Affiliation(s)
- Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA. .,Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Thiago G Marconi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA
| | - Zenaida Viloria
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA.,University of Kentucky Research and Education Center, Department of Entomology, 1205 Hopkinsville St., Princeton, KY, 42445, USA
| | - Julianna Kurpis
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA.,University of Texas- Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Sonia Y Del Rio
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA
| |
Collapse
|
17
|
Komakhin RA, Milyukova NA, Strelnikova SR, Krinitsina AA, Komakhina VV, Zhuchenko AA. Inheritance of Marker Genes among Progeny of Interspecific Tomato Hybrids Expressing the recA Escherichia coli Gene. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Assessment of Genetic Differentiation and Linkage Disequilibrium in Solanum pimpinellifolium Using Genome-Wide High-Density SNP Markers. G3-GENES GENOMES GENETICS 2019; 9:1497-1505. [PMID: 30858236 PMCID: PMC6505160 DOI: 10.1534/g3.118.200862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To mine new favorable alleles for tomato breeding, we investigated the feasibility of utilizing Solanum pimpinellifolium as a diverse panel of genome-wide association study through the restriction site-associated DNA sequencing technique. Previous attempts to conduct genome-wide association studies using S. pimpinellifolium were impeded by an inability to correct for population stratification and by lack of high-density markers to address the issue of rapid linkage disequilibrium decay. In the current study, a set of 24,330 SNPs was identified using 99 S. pimpinellifolium accessions from the Tomato Genetic Resource Center. Approximately 84% of PstI site-associated DNA sequencing regions were located in the euchromatic regions, resulting in the tagging of most SNPs on or near genes. Our genotypic data suggested that S. pimpinellifolium were divided into three single-ancestry subpopulations and four mixed-ancestry subpopulations. Additionally, our SNP genotypic data consistently confirmed the genetic differentiation, achieving a relatively reliable correction of population stratification. Previous studies utilized the 8K tomato SNP array, SolCAP, to investigate the genetic variation of S. pimpinellifolium and we performed a meta-analysis of these genotypes. The result suggested SolCAP array was less appropriate to profile the genetic differentiation of S. pimpinellifolium when more accessions were involved because the samples belonging to the same accession demonstrated different genome patterns. Moreover, as expected, rapid linkage disequilibrium decay was observed in S. pimpinellifolium, especially in euchromatic regions. Approximately two-thirds of the flanking SNP markers did not display linkage disequilibrium based on r2 = 0.1. However, the 18-Kb linkage disequilibrium decay indeed reveals the potential of single-gene resolution in GWAS when markers are saturated.
Collapse
|
19
|
Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu AT, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. PLANT, CELL & ENVIRONMENT 2019; 42:1205-1221. [PMID: 30203844 DOI: 10.1111/pce.13444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/24/2023]
Abstract
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT-induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaolin Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yanqiu Yan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Abstract
Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis suggest a role for PURPLE ACID PHOSPHATASE 27 and CELL DIVISION CYCLE 73 in determining root angle.
Collapse
|
21
|
Galdon‐Armero J, Fullana‐Pericas M, Mulet PA, Conesa MA, Martin C, Galmes J. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:607-619. [PMID: 30066411 PMCID: PMC6321981 DOI: 10.1111/tpj.14055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 05/20/2023]
Abstract
Trichomes are specialised structures that originate from the aerial epidermis of plants, and play key roles in the interaction between the plant and the environment. In this study we investigated the trichome phenotypes of four lines selected from the Solanum lycopersicum × Solanum pennellii introgression line (IL) population for differences in trichome density, and their impact on plant performance under water-deficit conditions. We performed comparative analyses at morphological and photosynthetic levels of plants grown under well-watered (WW) and also under water-deficit (WD) conditions in the field. Under WD conditions, we observed higher trichome density in ILs 11-3 and 4-1, and lower stomatal size in IL 4-1 compared with plants grown under WW conditions. The intrinsic water use efficiency (WUEi ) was higher under WD conditions in IL 11-3, and the plant-level water use efficiency (WUEb ) was also higher in IL 11-3 and in M82 for WD plants. The ratio of trichomes to stomata (T/S) was positively correlated with WUEi and WUEb , indicating an important role for both trichomes and stomata in drought tolerance in tomato, and offering a promising way to select for improved water use efficiency of major crops.
Collapse
Affiliation(s)
| | - Mateu Fullana‐Pericas
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Pere A. Mulet
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Miquel A. Conesa
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| | - Cathie Martin
- Department of Metabolic BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| | - Jeroni Galmes
- Research Group on Plant Biology under Mediterranean Conditions – INAGEAUniversitat de les Illes BalearsCarretera de Valldemossa km 7.507122PalmaSpain
| |
Collapse
|
22
|
Tranchida-Lombardo V, Aiese Cigliano R, Anzar I, Landi S, Palombieri S, Colantuono C, Bostan H, Termolino P, Aversano R, Batelli G, Cammareri M, Carputo D, Chiusano ML, Conicella C, Consiglio F, D'Agostino N, De Palma M, Di Matteo A, Grandillo S, Sanseverino W, Tucci M, Grillo S. Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Res 2018; 25:149-160. [PMID: 29149280 PMCID: PMC5909465 DOI: 10.1093/dnares/dsx045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.
Collapse
Affiliation(s)
- Valentina Tranchida-Lombardo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Irantzu Anzar
- Sequentia Biotech Calle Comte D'Urgel 240, 08036 Barcelona, Spain
| | - Simone Landi
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Samuela Palombieri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Pasquale Termolino
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Maria Cammareri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Clara Conicella
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Federica Consiglio
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Nunzio D'Agostino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Di Ricerca Orticultura e Florovivaismo (CREA-OF), Via Cavalleggeri, 25, 84098 Pontecagnano Faiano SA, Italy
| | - Monica De Palma
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Silvana Grandillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Marina Tucci
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| |
Collapse
|
23
|
Al Shaye N, Migdadi H, Charbaji A, Alsayegh S, Daoud S, Al-Anazi W, Alghamdi S. Genetic variation among Saudi tomato ( Solanum lycopersicum L.) landraces studied using SDS-PAGE and SRAP markers. Saudi J Biol Sci 2018; 25:1007-1015. [PMID: 30174495 PMCID: PMC6117249 DOI: 10.1016/j.sjbs.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 11/25/2022] Open
Abstract
Genetic diversity among seven Saudi tomato landraces collected from different regions of the country was assessed using SDS-PAGE and molecular (sequence-related amplified polymorphism- SRAP) markers. A total of 19 alternative protein bands with different mobility rates were identified within a molecular weight range of 9.584–225 KDa, with 53% polymorphism. Specific protein bands were observed in the “Hail 548” and “Qatif 565” landraces. Genetic similarity based on Jaccard’s coefficient ranged from 0.53 to 1.00, with an average of 0.72. For molecular evaluation, 143 amplicons (fragments) were generated using 27 SRAP primer pair combinations, of which 88 were polymorphic across all the landraces. The PIC values ranged from 0.46 to 0.90, with an average of 0.76. All landraces showed an average of 0.66 similarity coefficient value. The UPGMA dendrogram supported by principal coordinate analysis (PCoA) revealed clusters of the landraces that almost corresponded to their geographical origin. Thus, seed storage protein profiling based on SDS-PAGE and SRAP markers can efficiently be used to assess genetic variability among tomato germplasms. The information obtained in the analysis will be of great interest in the management of ex situ collections for utilization in breeding programs or for direct use in quality markets.
Collapse
Affiliation(s)
- Najla Al Shaye
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Hussein Migdadi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia.,National Center for Agricultural Research and Extension, P.O Box: 639, Baq'a 19381, Jordan
| | - Asma Charbaji
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Shatha Alsayegh
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Shaza Daoud
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Wala Al-Anazi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Salem Alghamdi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Yan Z, Pérez-de-Castro A, Díez MJ, Hutton SF, Visser RGF, Wolters AMA, Bai Y, Li J. Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. FRONTIERS IN PLANT SCIENCE 2018; 9:1198. [PMID: 30177938 PMCID: PMC6110163 DOI: 10.3389/fpls.2018.01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a virus species causing epidemics in tomato (Solanum lycopersicum) worldwide. Many efforts have been focused on identification of resistance sources by screening wild tomato species. In many cases, the accession numbers were either not provided in publications or not provided in a consistent manner, which led to redundant screenings. In the current study, we summarized efforts on the screenings of wild tomato species for TYLCV resistance from various publications. In addition, we screened 708 accessions from 13 wild tomato species using different inoculation assays (i.e., whitefly natural infection and Agrobacterium-mediated inoculation) from which 138 accessions exhibited no tomato yellow leaf curl disease (TYLCD) symptoms. These symptomless accessions include 14 accessions from S. arcanum, 43 from S. chilense, 1 from S. chmielewskii, 28 from S. corneliomulleri, 5 from S. habrochaites, 4 from S. huaylasense, 2 from S. neorickii, 1 from S. pennellii, 39 from S. peruvianum, and 1 from S. pimpinellifolium. Most of the screened S. chilense accessions remained symptomless. Many symptomless accessions were also identified in S. arcanum, S. corneliomulleri, and S. peruvianum. A large number of S. pimpinellifolium accessions were screened. However, almost all of the tested accessions showed TYLCD symptoms. Further, we studied allelic variation of the Ty-1/Ty-3 gene in few S. chilense accessions by applying virus-induced gene silencing and allele mining, leading to identification of a number of allele-specific polymorphisms. Taken together, we present a comprehensive overview on TYLCV resistance and susceptibility in wild tomato germplasm, and demonstrate how to study allelic variants of the cloned Ty-genes in TYLCV-resistant accessions.
Collapse
Affiliation(s)
- Zhe Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ana Pérez-de-Castro
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Maria J. Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Richard G. F. Visser
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Anne-Marie A. Wolters
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Junming Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Exogenous Melatonin Improves Fruit Quality Features, Health Promoting Antioxidant Compounds and Yield Traits in Tomato Fruits under Acid Rain Stress. Molecules 2018; 23:molecules23081868. [PMID: 30050019 PMCID: PMC6222724 DOI: 10.3390/molecules23081868] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/29/2022] Open
Abstract
Acid rain is a serious worldwide environmental problem which reduces the growth and yield of crops. Melatonin, as a pleiotropic molecule has been known to improve stress tolerance by limiting the oxidative damage of plants exposed to adverse environments. However, the role of exogenous melatonin particularly on the yield and antioxidant compounds in tomato fruits under abiotic stress condition remains inexpressible. This observation aims to identify the influence of melatonin treatment under simulated acid rain (SAR) condition on fruit qualities, phenolics, flavonoids, and carotenoids concentration in fruits, and yield of tomatoes. Our study results showed that the fruits of SAR-stressed plants had higher quality traits and antioxidant bioactive compounds by increasing antioxidant activities against SAR-induced oxidative stress compared with fruits of control plants. Nonetheless, these improvements to antioxidant activities in fruits under SAR-condition remained unable to prevent the reduction of the yield. However, SAR-stressed plants treated by melatonin exhibited upgradation on the fruit quality traits, antioxidant compounds and yield attributes through accelerating oxidant-scavenging antioxidant actions in fruits compared with fruits of SAR-stressed plants. Meanwhile, our results suggest that exogenous melatonin plays an important role in improvement of bioactive compounds and yield traits in tomato fruits through regulating antioxidant system.
Collapse
|
26
|
de Vries S, Kukuk A, von Dahlen JK, Schnake A, Kloesges T, Rose LE. Expression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for Phytophthora resistance. Proc Biol Sci 2018; 285:20172560. [PMID: 29491170 PMCID: PMC5832704 DOI: 10.1098/rspb.2017.2560] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Plants possess a battery of specific pathogen resistance (R-)genes. Precise R-gene regulation is important in the presence and absence of a pathogen. Recently, a microRNA family, miR482/2118, was shown to regulate the expression of a major class of R-genes, nucleotide-binding site leucine-rich repeats (NBS-LRRs). Furthermore, RNA silencing suppressor proteins, secreted by pathogens, prevent the accumulation of miR482/2118, leading to an upregulation of R-genes. Despite this transcriptional release of R-genes, RNA silencing suppressors positively contribute to the virulence of some pathogens. To investigate this paradox, we analysed how the regulation of NBS-LRRs by miR482/2118 has been shaped by the coevolution between Phytophthora infestans and cultivated and wild tomatoes. We used degradome analyses and qRT-PCR to evaluate and quantify the co-expression of miR482/2118 and their NBS-LRR targets. Our data show that miR482/2118-mediated targeting contributes to the regulation of NBS-LRRs in Solanum lycopersicum. Based on miR482/2118 expression profiling in two additional tomato species-with different coevolutionary histories with P. infestans-we hypothesize that pathogen-mediated RNA silencing suppression is most effective in the interaction between S. lycopersicum and P. infestans Furthermore, an upregulation of miR482/2118 early in the infection may increase susceptibility to P. infestans.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas Kukuk
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anika Schnake
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
27
|
Roth M, Florez-Rueda AM, Griesser S, Paris M, Städler T. Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. ANNALS OF BOTANY 2018; 121:107-118. [PMID: 29280998 PMCID: PMC5786209 DOI: 10.1093/aob/mcx133] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Defective hybrid seed development in angiosperms might mediate the rapid establishment of intrinsic post-zygotic isolation between closely related species. Extensive crosses within and among three lineages of wild tomatoes (Solanum section Lycopersicon) were performed to address the incidence, developmental timing and histological manifestations of hybrid seed failure. These lineages encompass different, yet fairly recent, divergence times and both allopatric and partially sympatric pairs. METHODS Mature seeds were scored visually 2 months after hand pollinations, and viable-looking seeds were assessed for germination success. Using histological sections from early-developing seeds from a sub-set of crosses, the growth of three major seed compartments (endosperm, embryo and seed coat) was measured at critical developmental stages up to 21 d after pollination, with a focus on the timing and histological manifestations of endosperm misdevelopment in abortive hybrid seeds. KEY RESULTS For two of three interspecific combinations including the most closely related pair that was also studied histologically, almost all mature seeds appeared 'flat' and proved inviable; histological analyses revealed impaired endosperm proliferation at early globular embryo stages, concomitant with embryo arrest and seed abortion in both cross directions. The third interspecific combination yielded a mixture of flat, inviable and plump, viable seeds; many of the latter germinated and exhibited near-normal juvenile phenotypes or, in some instances, hybrid necrosis and impaired growth. CONCLUSIONS The overall results suggest that near-complete hybrid seed failure can evolve fairly rapidly and without apparent divergence in reproductive phenology/biology. While the evidence accrued here is largely circumstantial, early-acting disruptions of normal endosperm development are most probably the common cause of seed failure regardless of the type of endosperm (nuclear or cellular).
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Stephan Griesser
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
- For correspondence. Email
| |
Collapse
|
28
|
Böndel KB, Nosenko T, Stephan W. Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171198. [PMID: 29410831 PMCID: PMC5792908 DOI: 10.1098/rsos.171198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/04/2017] [Indexed: 06/01/2023]
Abstract
Environmental conditions are strong selective forces, which may influence adaptation and speciation. The wild tomato species Solanum chilense, native to South America, is exposed to a range of abiotic stress factors. To identify signatures of natural selection and local adaptation, we analysed 16 genes involved in the abiotic stress response and compared the results to a set of reference genes in 23 populations across the entire species range. The abiotic stress-responsive genes are characterized by elevated nonsynonymous nucleotide diversity and divergence. We detected signatures of positive selection in several abiotic stress-responsive genes on both the population and species levels. Local adaptation to abiotic stresses is particularly apparent at the boundary of the species distribution in populations from coastal low-altitude and mountainous high-altitude regions.
Collapse
|
29
|
Beddows I, Reddy A, Kloesges T, Rose LE. Population Genomics in Wild Tomatoes-The Interplay of Divergence and Admixture. Genome Biol Evol 2017; 9:3023-3038. [PMID: 29077853 PMCID: PMC5714242 DOI: 10.1093/gbe/evx224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
Hybridization between closely related plant species is widespread, but the outcomes of hybridization are not fully understood. This study investigates phylogenetic relationships and the history of hybridization in the wild tomato clade (Solanum sect. Lycopersicon). We sequenced RNA from individuals of 38 different populations and, by combining this with published data, build a comprehensive genomic data set for the entire clade. The data indicate that many taxa are not monophyletic and many individuals are admixed due to repeated hybridization. The most polymorphic species, Solanum peruvianum, has two genetic and geographical subpopulations, while its sister species, Solanum chilense, has distinct coastal populations and reduced heterozygosity indicating a recent expansion south following speciation from S. peruvianum circa 1.25 Ma. Discontinuous populations west of 72° are currently described as S. chilense, but are genetically intermediate between S. chilense and S. peruvianum. Based upon molecular, morphological, and crossing data, we test the hypothesis that these discontinuous "S. chilense" populations are an example of recombinational speciation. Recombinational speciation is rarely reported, and we discuss the difficulties in identifying it and differentiating between alternative demographic scenarios. This discovery presents a new opportunity to understand the genomic outcomes of hybridization in plants.
Collapse
Affiliation(s)
- Ian Beddows
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
| | - Aparna Reddy
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, Germany
| |
Collapse
|
30
|
Two Loci Contribute Epistastically to Heterospecific Pollen Rejection, a Postmating Isolating Barrier Between Species. G3-GENES GENOMES GENETICS 2017; 7:2151-2159. [PMID: 28512086 PMCID: PMC5499124 DOI: 10.1534/g3.117.041673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.
Collapse
|
31
|
Muir CD, Conesa MÀ, Roldán EJ, Molins A, Galmés J. Weak coordination between leaf structure and function among closely related tomato species. THE NEW PHYTOLOGIST 2017; 213:1642-1653. [PMID: 28164333 DOI: 10.1111/nph.14285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/16/2016] [Indexed: 05/13/2023]
Abstract
Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa.
Collapse
Affiliation(s)
- Christopher D Muir
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Biodiversity Research Centre and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Emilio J Roldán
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Arántzazu Molins
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| |
Collapse
|
32
|
Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots. PLANTS 2017; 6:plants6010006. [PMID: 28106834 PMCID: PMC5371765 DOI: 10.3390/plants6010006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 11/16/2022]
Abstract
Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C/20 °C (day/night) and then transferred some plants for six days to 35 °C /30 °C (moderate heat) or 42 °C/37 °C (severe heat) (maximum root temperature = 32 °C or 39 °C, respectively); plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night). Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay). In general, (1) roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2) negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C-42 °C). Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations.
Collapse
|
33
|
Liu J, Legarrea S, Kant MR. Tomato Reproductive Success Is Equally Affected by Herbivores That Induce or That Suppress Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:2128. [PMID: 29326739 PMCID: PMC5733352 DOI: 10.3389/fpls.2017.02128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 05/08/2023]
Abstract
Herbivory induces plant defenses. These responses are often costly, yet enable plants under attack to reach a higher fitness than they would have reached without these defenses. Spider mites (Tetranychus ssp.) are polyphagous plant-pests. While most strains of the species Tetranychus urticae induce defenses at the expense of their performance, the species Tetranychus evansi suppresses plant defenses and thereby maintains a high performance. Most data indicate that suppression is a mite-adaptive trait. Suppression is characterized by a massive down-regulation of plant gene-expression compared to plants infested with defense-inducing mites as well as compared to control plants, albeit to a lesser extent. Therefore, we hypothesized that suppression may also benefit a plant since the resources saved during down-regulation could be used to increase reproduction. To test this hypothesis, we compared fruit and viable seed production of uninfested tomato plants with that of plants infested with defense-inducing or defense-suppressing mites. Mite-infested plants produced fruits faster than control plants albeit in lower total amounts. The T. evansi-infested plants produced the lowest number of fruits. However, the number of viable seeds was equal across treatments at the end of the experiment. Nonetheless, at this stage control plants were still alive and productive and therefore reach a higher lifetime fitness than mite-infested plants. Our results indicate that plants have plastic control over reproduction and can speed up fruit- and seed production when conditions are unfavorable. Moreover, we showed that although suppressed plants are less productive in terms of fruit production than induced plants, their lifetime fitness was equal under laboratory conditions. However, under natural conditions the fitness of plants such as tomato will also depend on the efficiency of seed dispersal by animals. Hence, we argue that the fitness of induced plants in the field may be promoted more by their higher fruit production relative to that of their suppressed counterparts.
Collapse
|
34
|
Broz AK, Randle AM, Sianta SA, Tovar-Méndez A, McClure B, Bedinger PA. Mating system transitions in Solanum habrochaites impact interactions between populations and species. THE NEW PHYTOLOGIST 2017; 213:440-454. [PMID: 27516156 DOI: 10.1111/nph.14130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 05/23/2023]
Abstract
In plants, transitions in mating system from outcrossing to self-fertilization are common; however, the impact of these transitions on interspecific and interpopulation reproductive barriers is not fully understood. We examined the consequences of mating system transition for reproductive barriers in 19 populations of the wild tomato species Solanum habrochaites. We identified S. habrochaites populations with self-incompatible (SI), self-compatible (SC) and mixed population (MP) mating systems, and characterized pollen-pistil interactions among S. habrochaites populations and between S. habrochaites and other tomato species. We examined the relationship between mating system, floral morphology, interspecific and interpopulation compatibility and pistil SI factors. We documented five distinct phenotypic groups by combining reproductive behavior with molecular data. Transitions from SI to MP were not associated with weakened interspecific reproductive barriers or loss of known pistil SI factors. However, transitions to SC at the northern range margin were accompanied by loss of S-RNase, smaller flowers, and weakened (or absent) interspecific pollen-pistil barriers. Finally, we identified a subset of SC populations that exhibited a partial interpopulation reproductive barrier with central SI populations. Our results support the hypothesis that shifts in mating system, followed by additional loss-of-function mutations, impact reproductive barriers within and between species.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - April M Randle
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA, 94117, USA
| | - Shelley A Sianta
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
35
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
36
|
Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3 (BETHESDA, MD.) 2016; 6:3169-3184. [PMID: 27510891 PMCID: PMC5068939 DOI: 10.1534/g3.116.030536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.
Collapse
Affiliation(s)
- Daniel Fulop
- Department of Plant Biology, University of California at Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California at Davis, California 95616
| | - Itai Ofner
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael F Covington
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, California 95616
| | - Donelly West
- Department of Plant Biology, University of California at Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California at Davis, California 95616
| | - Lauren Headland
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel Zamir
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julin N Maloof
- Department of Plant Biology, University of California at Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, California 95616
| |
Collapse
|
37
|
Pease JB, Guerrero RF, Sherman NA, Hahn MW, Moyle LC. Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Mol Ecol 2016; 25:2592-608. [DOI: 10.1111/mec.13679] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- James B. Pease
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Rafael F. Guerrero
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Natasha A. Sherman
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Matthew W. Hahn
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
- School of Informatics and Computing Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Leonie C. Moyle
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| |
Collapse
|
38
|
Nosenko T, Böndel KB, Kumpfmüller G, Stephan W. Adaptation to low temperatures in the wild tomato species Solanum chilense. Mol Ecol 2016; 25:2853-69. [PMID: 27037798 DOI: 10.1111/mec.13637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
Molecular adaptation to abiotic stresses in plants is a complex process based mainly on the modifications of gene transcriptional activity and the alteration of protein-protein interactions. We used a combination of population genetic, comparative transcriptomic and plant physiology approaches to investigate the mechanisms of adaptation to low temperatures in Solanum chilense populations distributed along Andean altitudinal gradients. We found that plants from all populations have high chilling tolerance, which does not correlate with temperatures in their native habitats. In contrast, tolerance to freezing shows a significant association with altitude and temperature variables. We also observed the differences in expression patterns of cold-response genes between plants from high- and low-altitude populations. These results suggest that genetic adaptations to low temperatures evolved in high-altitude populations of S. chilense. At the transcriptional level, these adaptations may include high levels of constitutive expression of the genes encoding ICE1, the key transcription factor of the cold signalling pathway, and chloroplast ω-3 fatty acid desaturase FAD7. At the sequence level, a signature of selection associated with the adaptation to high altitudes was detected at the C-terminal part of ICE1 encoding the ACT regulatory domain.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Katharina B Böndel
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9, 3FL, UK
| | - Gabriele Kumpfmüller
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Museum für Naturkunde Berlin, Invalidenstr. 4, Berlin, 10115, Germany
| |
Collapse
|
39
|
Gao L, Zhao W, Qu H, Wang Q, Zhao L. The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INSENSITIVE2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:717-728. [PMID: 26743523 DOI: 10.1007/s00122-015-2660-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 05/16/2023]
Abstract
The isolated yft1 allele controls the formation of fruit color in n3122 via the regulation of response to ethylene, carotenoid accumulation and chromoplast development. Fruit color is one of the most important quality traits of tomato (Solanum lycopersicum) and is closely associated with both nutritional and market value. In this study, we characterized a tomato fruit color mutant n3122, named as yellow-fruited tomato 1 (yft1), which produces yellow colored mature fruit. Fruit color segregation of the progeny from an intra-specific cross (M82 × n3122) and an inter-specific cross (n3122 × LA1585) revealed that a single recessive nuclear gene determined the yellow fruit phenotype. Through map-based cloning, the yft1 locus was assigned to an 88.2 kb region at the top of chromosome 9 that was annotated as containing 12 genes. Sequencing revealed that one gene, Solyc09g007870, which encodes ETHYLENE INSENSITIVE2 (EIN2), contained two mutations in yft1: a 13 bp deletion and a 573 bp insertion at position -318 bp upstream of the translation initiation site. We detected that EIN2 expression was substantially lower in yft1 than in the red-fruited M82 wild type and that, in addition, carotenoid accumulation was decreased, ethylene synthesis and perception were impaired and chromoplast development was delayed. The results implied that the reduced expression of EIN2 in yft1 leads to suppressed ethylene signaling which results in abnormal carotenoid production.
Collapse
Affiliation(s)
- Lei Gao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weihua Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiou Qu
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qishan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingxia Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Boureau L, How-Kit A, Teyssier E, Drevensek S, Rainieri M, Joubès J, Stammitti L, Pribat A, Bowler C, Hong Y, Gallusci P. A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants. PLANT MOLECULAR BIOLOGY 2016; 90:485-501. [PMID: 26846417 DOI: 10.1007/s11103-016-0436-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/08/2016] [Indexed: 05/21/2023]
Abstract
The Enhancer of Zeste Polycomb group proteins, which are encoded by a small gene family in Arabidopsis thaliana, participate to the control of plant development. In the tomato (Solanum lycopersicum), these proteins are encoded by three genes (SlEZ1, SlEZ2 and SlEZ3) that display specific expression profiles. Using a gene specific RNAi strategy, we demonstrate that repression of SlEZ2 correlates with a general reduction of H3K27me3 levels, indicating that SlEZ2 is part of an active PRC2 complex. Reduction of SlEZ2 gene expression impacts the vegetative development of tomato plants, consistent with SlEZ2 having retained at least some of the functions of the Arabidopsis CURLY LEAF (CLF) protein. Notwithstanding, we observed significant differences between transgenic SlEZ2 RNAi tomato plants and Arabidopsis clf mutants. First, we found that reduced SlEZ2 expression has dramatic effects on tomato fruit development and ripening, functions not described in Arabidopsis for the CLF protein. In addition, repression of SlEZ2 has no significant effect on the flowering time or the control of flower organ identity, in contrast to the Arabidopsis clf mutation. Taken together, our results are consistent with a diversification of the function of CLF orthologues in plants, and indicate that although partly conserved amongst plants, the function of EZ proteins need to be newly investigated for non-model plants because they might have been recruited to specific developmental processes.
Collapse
Affiliation(s)
- L Boureau
- UMR BFP, University of Bordeaux, 71 Avenue E Bourlaux, 33882, Villenave d'Ornon, France
- Laboratory of Hematology, Centre Hospitalier Universitaire de Bordeaux - Hopital Haut Leveque, 5 Avenue Magellan, 33600, Pessac, France
| | - A How-Kit
- Laboratory for Functional Genomics, Foundation Jean Dausset - CEPH, 75010, Paris, France
| | - E Teyssier
- UMR BFP, University of Bordeaux, 71 Avenue E Bourlaux, 33882, Villenave d'Ornon, France
- Grape Ecophysiology and Functional Biology Laboratory, ISVV, University of Bordeaux, 210 Chemin de Leysotte, CS50008, 33882, Villenave d'Ornon Cédex, France
| | - S Drevensek
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure CNRS UMR 8197INSERM U1024, 46 rue d'Ulm, 75005, Paris, France
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, Université, Paris-Sud, Université d'Evry, Université Paris-Diderot, Bâtiment 630, 91405, Orsay, France
| | - M Rainieri
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure CNRS UMR 8197INSERM U1024, 46 rue d'Ulm, 75005, Paris, France
| | - J Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, Bâtiment A3, INRA, 71 Avenue Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Bâtiment A3, INRA, 71 Avenue Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - L Stammitti
- UMR BFP, University of Bordeaux, 71 Avenue E Bourlaux, 33882, Villenave d'Ornon, France
- Grape Ecophysiology and Functional Biology Laboratory, ISVV, University of Bordeaux, 210 Chemin de Leysotte, CS50008, 33882, Villenave d'Ornon Cédex, France
| | - A Pribat
- UMR BFP, University of Bordeaux, 71 Avenue E Bourlaux, 33882, Villenave d'Ornon, France
| | - C Bowler
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure CNRS UMR 8197INSERM U1024, 46 rue d'Ulm, 75005, Paris, France
| | - Y Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK.
| | - P Gallusci
- UMR BFP, University of Bordeaux, 71 Avenue E Bourlaux, 33882, Villenave d'Ornon, France.
- Grape Ecophysiology and Functional Biology Laboratory, ISVV, University of Bordeaux, 210 Chemin de Leysotte, CS50008, 33882, Villenave d'Ornon Cédex, France.
| |
Collapse
|
41
|
Pease JB, Haak DC, Hahn MW, Moyle LC. Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation. PLoS Biol 2016; 14:e1002379. [PMID: 26871574 PMCID: PMC4752443 DOI: 10.1371/journal.pbio.1002379] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon), we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a "PhyloGWAS" approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations.
Collapse
Affiliation(s)
- James B. Pease
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David C. Haak
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Muir CD, Thomas-Huebner M. Constraint around Quarter-Power Allometric Scaling in Wild Tomatoes (Solanum sect. Lycopersicon; Solanaceae). Am Nat 2015; 186:421-33. [PMID: 26655358 DOI: 10.1086/682409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The West-Brown-Enquist (WBE) metabolic scaling theory posits that many organismal features scale predictably with body size because of selection to minimize transport costs in resource distribution networks. Many scaling exponents are quarter-powers, as predicted by WBE, but there are also biologically significant deviations that could reflect adaptation to different environments. A central but untested prediction of the WBE model is that wide deviation from optimal scaling is penalized, leading to a pattern of constraint on scaling exponents. Here, we demonstrate, using phylogenetic comparative methods, that variation in allometric scaling between mass and leaf area across 17 wild tomato taxa is constrained around a value indistinguishable from that predicted by WBE but significantly greater than 2/3 (geometric-similarity model). The allometric-scaling exponent was highly correlated with fecundity, water use, and drought response, suggesting that it is functionally significant and therefore could be under selective constraints. However, scaling was not strictly log-log linear but rather declined during ontogeny in all species, as has been observed in many plant species. We caution that although our results supported one prediction of the WBE model, it did not strongly test the model in other important respects. Nevertheless, phylogenetic comparative methods such as those used here are powerful but underutilized tools for metabolic ecology that complement existing methods to adjudicate between models.
Collapse
|
44
|
Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RCHJ, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:136-48. [PMID: 25039268 DOI: 10.1111/tpj.12616] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 05/20/2023]
Abstract
We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.
Collapse
|
45
|
Muir CD, Hangarter RP, Moyle LC, Davis PA. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). PLANT, CELL & ENVIRONMENT 2014; 37:1415-1426. [PMID: 24279358 DOI: 10.1111/pce.12245] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
Natural selection on photosynthetic performance is a primary factor determining leaf phenotypes. The complex CO2 diffusion path from substomatal cavities to the chloroplasts - the mesophyll conductance (g(m)) - limits photosynthetic rate in many species and hence shapes variation in leaf morphology and anatomy. Among sclerophyllous and succulent taxa, structural investment in leaves, measured as the leaf dry mass per area (LMA), has been implicated in decreased gm . However, in herbaceous taxa with high g(m), it is less certain how LMA impacts CO2 diffusion and whether it significantly affects photosynthetic performance. We addressed these questions in the context of understanding the ecophysiological significance of leaf trait variation in wild tomatoes, a closely related group of herbaceous perennials. Although g(m) was high in wild tomatoes, variation in g(m) significantly affected photosynthesis. Even in these tender-leaved herbaceous species, greater LMA led to reduced g(m). This relationship between g(m) and LMA is partially mediated by cell packing and leaf thickness, although amphistomy (equal distribution of stomata on both sides of the leaf) mitigates the effect of leaf thickness. Understanding the costs of increased LMA will inform future work on the adaptive significance of leaf trait variation across ecological gradients in wild tomatoes and other systems.
Collapse
|
46
|
Haak DC, Ballenger BA, Moyle LC. No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology 2014; 95:1633-41. [DOI: 10.1890/13-1145.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Ichihashi Y, Sinha NR. From genome to phenome and back in tomato. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:9-15. [PMID: 24440917 DOI: 10.1016/j.pbi.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/03/2013] [Accepted: 12/20/2013] [Indexed: 05/05/2023]
Abstract
The tomato is an ideal plant species for genomic and evolutionary studies. Thanks to recent technical advances, a plethora of information relating to tomato genomics has been generated. In addition, various phenotypes related to morphology, physiology and yield have been investigated in tomato and its wild relatives. In this review, we summarize recent key findings in tomato genomics that used both developmental and evolutionary approaches to link the genome to phenome. Combined, these perspectives allow us to look at the trends in tomato evolution in addition to providing insight into the future direction of research that can utilize this unique model species.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA; Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:273-98. [DOI: 10.1007/978-94-007-7347-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Lall R, Thomas G, Singh S, Singh A, Wadhwa G. Comparative genome analysis of Solanum lycopersicum and Solanum tuberosum. Bioinformation 2013; 9:923-8. [PMID: 24307771 PMCID: PMC3842579 DOI: 10.6026/97320630009923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato.
Collapse
Affiliation(s)
- Rohit Lall
- Department of Molecular and Cellular Engineering, SHIATS, Allahabad-211007
| | - George Thomas
- Department of Molecular and Cellular Engineering, SHIATS, Allahabad-211007
| | - Satendra Singh
- Department of Computational Biology & Bioinformatics, SHIATS, Allahabad-211007
| | - Archana Singh
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi-110012
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science and Technology, New Delhi – 110003
| |
Collapse
|
50
|
Fischer I, Steige KA, Stephan W, Mboup M. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 2013; 8:e78182. [PMID: 24205149 PMCID: PMC3799731 DOI: 10.1371/journal.pone.0078182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
- * E-mail:
| | - Kim A. Steige
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|