1
|
Tai HH, Shannon LM, Strömvik MV. Polyploidy in potatoes: challenges and possibilities for climate resilience. Trends Genet 2025:S0168-9525(25)00070-8. [PMID: 40268598 DOI: 10.1016/j.tig.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Solanum section Petota Dumort. consists of tuber-bearing species (i.e., the cultivated potatoes and their wild relatives) that have both asexual and sexual propagation, variation in ploidy, and reproductive isolation. These species have undergone adaptation to a diversity of climates, altitudes, photoperiods, and geographical range. The section defies characterization with the biological species concept due to interspecies hybridization, allo- and auto-polyploidy, and phenotypic plasticity. Genetic studies, and more recently genome sequencing and pangenome analyses, are fostering a greater understanding of genetic processes that shape genome evolution and speciation in the section, shedding light on the phylogeny and providing insights on utilization of potato crop wild relatives in breeding for climate-resilient potato varieties.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
2
|
Satomura K. Tribe Paniceae Cereals with Different Ploidy Levels: Setaria italica, Panicum miliaceum, and Echinochloa esculenta. Genes (Basel) 2025; 16:426. [PMID: 40282385 PMCID: PMC12026846 DOI: 10.3390/genes16040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Plants have repeatedly undergone whole-genome duplication during their evolutionary history. Even in modern plants, there is diversity in ploidy within and between species, providing a snapshot of the evolutionary turnover of ploidy. Here, I will review the diversity of ploidy and the evolution of the genome constitution, focusing on the millet species Setaria italica, Panicum miliaceum, and Echinochloa esculenta. These are all historically important cereal crops that have been domesticated in East Asia. They all display a basic chromosome set of nine, but they are diploid, tetraploid, and hexaploid, respectively. The timing of ploidy is different among the millet species, as is the extent of gene family expansion and gene loss. There also exists complex subgenomic evolution in the wild species within each genus. These three millet species and their related wild species are suitable models for elucidating the molecular evolution and diversity of genome duplication by comparative genomic analysis.
Collapse
Affiliation(s)
- Kazuhiro Satomura
- Department of BioScience, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| |
Collapse
|
3
|
Cisternas‐Fuentes A, Forehand C, Morris K, Busch JW, Koski MH. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. THE NEW PHYTOLOGIST 2025; 245:2268-2278. [PMID: 39716778 PMCID: PMC11798892 DOI: 10.1111/nph.20338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems. We tested this prediction by evaluating mate availability and S-allele number in populations of a tetraploid herb with gametophytic SI (GSI) spanning a range of effective population sizes. We performed controlled crosses in 13 populations of Argentina anserina to quantify mate availability and S-allele diversity, which were compared with simulations of tetraploid populations with GSI. We further evaluated mechanisms at the pollen-pistil interface contributing to outcross failure and leakiness in self-recognition. Mate availability declined in small populations, and closely fit tetraploid GSI population genetic models where maternal plants receive pollen with diverse S-alleles generated through tetrasomic inheritance. The failure to arrest self-pollen in the style was common in some populations. Specifically, leaky SI was more common in small populations with low mate availability, where it explained higher seed production in natural populations. The restriction of leaky self-recognition to the smallest populations is consistent with mate limitation as a pressure driving the breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Anita Cisternas‐Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónCasilla 160‐CConcepciónChile
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Cameron Forehand
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
- Department of BiologyUniversity of OklahomaNormanOK73019USA
| | - Kate Morris
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Jeremiah W. Busch
- School of Biological SciencesWashington State UniversityPullmanWA99164‐4236USA
| | - Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
4
|
Shafir A, Halabi K, Baumer E, Mayrose I. ChromEvol v.3: modeling rate heterogeneity in chromosome number evolution. THE NEW PHYTOLOGIST 2025; 245:1787-1800. [PMID: 39676573 DOI: 10.1111/nph.20339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Changes in chromosome numbers are a prominent driver of plant evolution, impacting ecological diversification, stress tolerance, and phenotypes. ChromEvol is a widely used software tool for deciphering patterns of chromosome-number change along a phylogeny of interest. It evaluates the fit of alternative models to the data, estimates transition rates of different types of events, and infers the expected number of events along each branch of the phylogeny. We introduce ChromEvol v.3, featuring multiple novel methodological advancements that capture variation in the transition rates along a phylogeny. This version better allows researchers to identify how dysploidy and polyploidy rates change based on the number of chromosomes in the genome, with respect to a discrete trait, or at certain subclades of the phylogeny. We demonstrate the applicability of the new models on the Solanaceae phylogeny. Our analyses identify four chromosome-number transition regimes that characterize distinct Solanaceae clades and demonstrate an association between self-compatibility and altered dynamics of chromosome-number evolution. ChromEvol v.3, available at https://github.com/anatshafir1/chromevol, offers researchers a more flexible, comprehensive, and accurate tool to investigate the evolution of chromosome numbers and the various processes affecting it.
Collapse
Affiliation(s)
- Anat Shafir
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Keren Halabi
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ella Baumer
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
5
|
Zell AN, Miranda CH, Grady EL, Grossenbacher DL, Igić B. Island colonization in flowering plants is determined by the interplay of breeding system, lifespan, floral symmetry, and arrival opportunity. THE NEW PHYTOLOGIST 2025; 245:420-432. [PMID: 39517112 PMCID: PMC11617658 DOI: 10.1111/nph.20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Among flowering plants, self-compatibility, longer lifespan, and generalized pollination syndrome are each thought to increase the lifetime odds of finding a mate, particularly in isolated locales. An accumulated body of evidence supports the role of breeding system in island colonization, but less is known about the impact of other traits and their interactions during establishment. We employ a global dataset of 3222 flowering plant species from 169 families to estimate the effects of traits on the probability of island occurrence. Our analyses additionally account for taxonomic group membership and assess the role of island arrival opportunity. Self-compatibility is strongly associated with island colonization. A longer lifespan and generalized pollination syndrome are also associated with increased island colonization, although this is influenced by their interaction with breeding system. The probability of island colonization is highly dependent on taxonomically conserved unmeasured traits and arrival opportunity. As expected, mate limitation appears to increase with dispersal distance, although many other factors are at play. We find that arrival opportunity and breeding system are the primary drivers of island colonization relative to other life-history traits we account for here, lending additional support for the positive role of uniparental reproduction in establishment following long-distance dispersal.
Collapse
Affiliation(s)
- Annie N. Zell
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Charlotte H. Miranda
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Erin L. Grady
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Dena L. Grossenbacher
- Department of BiologyCalifornia Polytechnic State UniversitySan Luis ObispoCA93407USA
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607USA
| |
Collapse
|
6
|
Hagen ER, Vasconcelos T, Boyko JD, Beaulieu JM. Investigating historical drivers of latitudinal gradients in polyploid plant biogeography: A multiclade perspective. AMERICAN JOURNAL OF BOTANY 2024; 111:e16356. [PMID: 38867412 DOI: 10.1002/ajb2.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
PREMISE The proportion of polyploid plants in a community increases with latitude, and different hypotheses have been proposed about which factors drive this pattern. Here, we aimed to understand the historical causes of the latitudinal polyploidy gradient using a combination of ancestral state reconstruction methods. Specifically, we assessed whether (1) polyploidization enables movement to higher latitudes (i.e., polyploidization precedes occurrences in higher latitudes) or (2) higher latitudes facilitate polyploidization (i.e., occurrence in higher latitudes precedes polyploidization). METHODS We reconstructed the ploidy states and ancestral niches of 1032 angiosperm species at four paleoclimatic time slices ranging from 3.3 million years ago to the present, comprising taxa from four well-represented clades: Onagraceae, Primulaceae, Solanum (Solanaceae), and Pooideae (Poaceae). We used ancestral niche reconstruction models alongside a customized discrete character evolution model to allow reconstruction of states at specific time slices. Patterns of latitudinal movement were reconstructed and compared in relation to inferred ploidy shifts. RESULTS No single hypothesis applied equally well across all analyzed clades. While significant differences in median latitudinal occurrence were detected in the largest clade, Poaceae, no significant differences were detected in latitudinal movement in any clade. CONCLUSIONS Our preliminary study is the first to attempt to connect ploidy changes to continuous latitudinal movement, but we cannot favor one hypothesis over another. Given that patterns seem to be clade-specific, more clades must be analyzed in future studies for generalities to be drawn.
Collapse
Affiliation(s)
- Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - James D Boyko
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
| |
Collapse
|
7
|
Soares LS, Freitas LB. The phylogeographic journey of a plant species from lowland to highlands during the Pleistocene. Sci Rep 2024; 14:3825. [PMID: 38360894 PMCID: PMC10869790 DOI: 10.1038/s41598-024-53414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Phylogeographic history refers to how species evolve and diversify in response to historical, ecological, and demographic factors. The climate fluctuation during the Pleistocene period marked a crucial time in shaping many species' distribution and genetic structure, particularly those from southern South American grasslands. This work investigated the phylogeographic history of a highland grassland, Petunia altiplana T. Ando & Hashim. (Solanaceae), its diversity, and geographic distribution using a population genomic approach based on RAD-seq data. Our results indicated that, during the Pleistocene, when the grasslands expanded to highlands, the lowland populations of P. altiplana reached the higher open fields, enlarging their geographic distribution. We found that the P. altiplana genetic diversity followed the geographic division into eastern (E) and western (WE) population groups, with a subtle division in the E group regarding the Pelotas River headwater. The results also showed that isolation by distance was the main divergence pattern, with elevation playing a pivotal role in shaping WE and E groups. Our findings indicated that lowland-adapted populations quickly colonized highlands during the late Pleistocene.
Collapse
Affiliation(s)
- Luana Sousa Soares
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
8
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Dou S, Zhang T, Wang L, Yang C, Quan C, Liang X, Ma C, Dai C. The self-compatibility is acquired after polyploidization: a case study of Brassica napus self-incompatible trilinear hybrid breeding system. THE NEW PHYTOLOGIST 2024; 241:1690-1707. [PMID: 38037276 DOI: 10.1111/nph.19451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.
Collapse
Affiliation(s)
- Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lulin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chuang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
10
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
11
|
Simon L, Soares LS, Freitas LB. Disentangling the causes of high polymorphism sharing in sympatric Petunia species from subtropical highland grasslands: insights from nuclear diversity. Genet Mol Biol 2023; 46:e20230159. [PMID: 37931074 PMCID: PMC10619130 DOI: 10.1590/1678-4685-gmb-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
Genetic polymorphism sharing between closely related and sympatric plant species could result from common ancestry, ancient or recent hybridization. Here we analyzed four Petunia species from the subtropical highland grasslands in southern South America based on nuclear diversity to disentangle the causes of high polymorphism sharing between them. We genotyped microsatellite loci, employed population genetic methods to estimate variability, species limits, and ancient and recent gene flow, and assigned individuals to genetic and taxonomic groups. Finally, we modeled evolutionary processes to determine the impact of Quaternary climate changes on species phylogenetic relationships. Our results indicated that genetic diversity was strongly influenced by expansion and habitat fragmentation during the Quaternary cycles. The extensive polymorphism sharing is mainly due to species' common ancestry, and we did not discard ancient hybridization. Nowadays, niche differentiation is the primary driver for maintaining genetic and morphological limits between the four analysed Petunia species and there is no recent gene flow between them.
Collapse
Affiliation(s)
- Luize Simon
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Luana S Soares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
13
|
Mráz P, Španiel S, Skokanová K, Šingliarová B. Temporal stability of spatial cytotype structure in mixed-ploidy populations of Centaurea stoebe. AOB PLANTS 2022; 14:plac052. [PMID: 36439406 PMCID: PMC9683110 DOI: 10.1093/aobpla/plac052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Spatial segregation of cytotypes reduces the negative effect of frequency-dependent mating on the fitness of minority cytotype(s) and thus allows its establishment and coexistence with the majority cytotype in mixed-ploidy populations. Despite its evolutionary importance, the stability of spatial segregation is largely unknown. Furthermore, closely related sympatric cytotypes that differ in their life histories might exhibit contrasting spatial dynamics over time. We studied the temporal stability of spatial structure at a secondary contact zone of co-occurring monocarpic diploids and polycarpic tetraploids of Centaurea stoebe, whose tetraploid cytotype has undergone a rapid range expansion in Europe and became invasive in North America. Eleven years after the initial screening, we re-assessed the microspatial distribution of diploids and tetraploids and their affinities to varying vegetation-cover density in three mixed-ploidy populations in Central Europe. We found that overall, spatial patterns and frequencies of both cytotypes in all sites were very similar over time, with one exception. At one site, in one previously purely 2x patch, diploids completely disappeared due to intensive succession by shrubby vegetation. The remaining spatial patterns, however, showed the same cytotype clumping and higher frequency of 2x despite subtle changes in vegetation-cover densities. In contrast to the expected expansion of polycarpic tetraploids having higher colonization ability when compared to diploids, the tetraploids remained confined to their former microsites and showed no spatial expansion. Spatial patterns of coexisting diploids and tetraploids, which exhibit contrasting life histories, did not change over more than a decade. Such temporal stability is likely caused by relatively stable habitat conditions and very limited seed dispersal. Our results thus imply that in the absence of a disturbance regime connected with frequent human- or animal-mediated seed dispersal, spatial patterns may be very stable over time, thus contributing to the long-term coexistence of cytotypes.
Collapse
Affiliation(s)
- Patrik Mráz
- Herbarium Collections & Department of Botany, Faculty of Sciences, Charles University, Benátská 2, CZ-128 01 Prague, Czechia
| | | | - Katarína Skokanová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
| | - Barbora Šingliarová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
| |
Collapse
|
14
|
Akagi T, Jung K, Masuda K, Shimizu KK. Polyploidy before and after domestication of crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102255. [PMID: 35870416 DOI: 10.1016/j.pbi.2022.102255] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the genomics of polyploid species answer some of the long-standing questions about the role of polyploidy in crop species. Here, we summarize the current literature to reexamine scenarios in which polyploidy played a role both before and after domestication. The prevalence of polyploidy can help to explain environmental robustness in agroecosystems. This review also clarifies the molecular basis of some agriculturally advantageous traits of polyploid crops, including yield increments in polyploid cotton via subfunctionalization, modification of a separated sexuality to selfing in polyploid persimmon via neofunctionalization, and transition to a selfing system via nonfunctionalization combined with epistatic interaction between duplicated S-loci. The rapid progress in genomics and genetics is discussed along with how this will facilitate functional studies of understudied polyploid crop species.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Katharina Jung
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
15
|
Zhang Y, Zhang L, Xiao Q, Wu C, Zhang J, Xu Q, Yu Z, Bao S, Wang J, Li Y, Wang L, Wang J. Two independent allohexaploidizations and genomic fractionation in Solanales. FRONTIERS IN PLANT SCIENCE 2022; 13:1001402. [PMID: 36212355 PMCID: PMC9538396 DOI: 10.3389/fpls.2022.1001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Solanales, an order of flowering plants, contains the most economically important vegetables among all plant orders. To date, many Solanales genomes have been sequenced. However, the evolutionary processes of polyploidization events in Solanales and the impact of polyploidy on species diversity remain poorly understood. We compared two representative Solanales genomes (Solanum lycopersicum L. and Ipomoea triloba L.) and the Vitis vinifera L. genome and confirmed two independent polyploidization events. Solanaceae common hexaploidization (SCH) and Convolvulaceae common hexaploidization (CCH) occurred ∼43-49 and ∼40-46 million years ago (Mya), respectively. Moreover, we identified homologous genes related to polyploidization and speciation and constructed multiple genomic alignments with V. vinifera genome, providing a genomic homology framework for future Solanales research. Notably, the three polyploidization-produced subgenomes in both S. lycopersicum and I. triloba showed significant genomic fractionation bias, suggesting the allohexaploid nature of the SCH and CCH events. However, we found that the higher genomic fractionation bias of polyploidization-produced subgenomes in Solanaceae was likely responsible for their more abundant species diversity than that in Convolvulaceae. Furthermore, through genomic fractionation and chromosomal structural variation comparisons, we revealed the allohexaploid natures of SCH and CCH, both of which were formed by two-step duplications. In addition, we found that the second step of two paleohexaploidization events promoted the expansion and diversity of β-amylase (BMY) genes in Solanales. These current efforts provide a solid foundation for future genomic and functional exploration of Solanales.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunyang Wu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jiaqi Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiang Xu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zijian Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Clo J. Polyploidization: Consequences of genome doubling on the evolutionary potential of populations. AMERICAN JOURNAL OF BOTANY 2022; 109:1213-1220. [PMID: 35862788 DOI: 10.1002/ajb2.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome duplication is common in plants and is considered to have a broad range of effects on individuals' phenotypes and genomes and to be an important driver of plant adaptation and speciation. Despite their increased capacity to cope with challenging environments, polyploid lineages are generally as prone to extinction, and sometimes more prone, than their diploid progenitors. Although several explanations have been proposed to explain the short- and long-term disadvantages of polyploidy on the survival probability of populations, the consequences of whole-genome doubling on the heritable variance remain poorly studied. Whole-genome doubling can have major effects not only on the genetics, but also on the ecology and life history of the populations. Modifications of other properties of populations can reverse the effects of polyploidization per se on heritable variance. In this synthesis, I summarize the empirical and theoretical knowledge about the multifarious consequences of genome doubling on the heritable variance of quantitative traits and on the evolutionary potential of polyploid populations compared to their diploid progenitors. I propose several ways to decipher the consequences of whole-genome doubling on survival probability and to study the further consequences of shifting the ecological niche and life-history traits of a population. I also highlight some practical considerations for comparing the heritable variance of a trait among different cytotypes. Such investigations appear to be timely and necessary to understand more about the paradoxical aspects of polyploidization and to understand the evolutionary potential of polyploid lineages in a global warming context.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
17
|
Van Drunen WE, Johnson MTJ. Polyploidy in urban environments. Trends Ecol Evol 2022; 37:507-516. [PMID: 35246321 DOI: 10.1016/j.tree.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Polyploidy is a major driver of evolutionary change in plants, but many aspects of polyploidy in natural systems remain enigmatic. We argue that urban landscapes present an unprecedented opportunity to observe polyploidy in action. Integrating polyploid biology and urban evolutionary ecology, we discuss multiple factors expected to promote polyploid formation, establishment, and persistence in urban systems. We develop a predictive framework for the contemporary ecology and evolution of polyploid plants in cities, and through this novel perspective propose that studying polyploidy in an urban context could lead to breakthroughs in understanding fundamental processes in polyploid evolution. We conclude by highlighting the potential consequences of polyploidy in urban environments, and outline a roadmap for research into this currently unexplored field.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
18
|
Orsucci M, Yang X, Vanikiotis T, Guerrina M, Duan T, Lascoux M, Glémin S. Competitive ability depends on mating system and ploidy level across Capsella species. ANNALS OF BOTANY 2022; 129:697-708. [PMID: 35325927 PMCID: PMC9113120 DOI: 10.1093/aob/mcac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/14/2021] [Accepted: 03/23/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Self-fertilization is often associated with ecological traits corresponding to the ruderal strategy, and selfers are expected to be less competitive than outcrossers, either because of a colonization/competition trade-off or because of the deleterious genetic effects of selfing. Range expansion could reduce further competitive ability while polyploidy could mitigate the effects of selfing. If pollinators are not limited, individual fitness is thus expected to be higher in outcrossers than in selfers and, within selfers, in polyploids than in diploids. Although often proposed in the botanical literature and also suggested by meta-analyses, these predictions have not been directly tested yet. METHODS In order to compare fitness and the competitive ability of four Capsella species with a different mating system and ploidy level, we combined two complementary experiments. First, we carried out an experiment outdoors in north-west Greece, i.e. within the range of the obligate outcrossing species, C. grandiflora, where several life history traits were measured under two different disturbance treatments, weeded plots vs. unweeded plots. To better control competition and to remove potential effects of local adaptation of the outcrosser, we also performed a similar competition experiment but under growth chamber conditions. KEY RESULTS In the outdoor experiment, disturbance of the environment did not affect the phenotype in any of the four species. For most traits, the obligate outcrossing species performed better than all selfing species. In contrast, polyploids did not survive or reproduce better than diploids. Under controlled conditions, as in the field experiment, the outcrosser had a higher fitness than selfing species and was less affected by competition. Finally, contrary to the outdoor experiment where the two behaved identically, polyploid selfers were less affected by competition than diploid selfes. CONCLUSIONS In the Capsella genus, selfing induces lower fitness than outcrossing and can also reduce competitive ability. The effect of polyploidy is, however, unclear. These results highlight the possible roles of ecological context in the evolution of selfing species.
Collapse
Affiliation(s)
- Marion Orsucci
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Xuyue Yang
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Theofilos Vanikiotis
- Department of Biological Applications & Technology, University of Ioannina, Leof. S. Niarchou GR-451 10, Ioannina, Greece
| | - Maria Guerrina
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
- UMR CNRS 6553 ECOBIO, Campus Beaulieu, bât 14a, CS 74205, 35042 Rennes, France
| |
Collapse
|
19
|
Lucek K, Augustijnen H, Escudero M. A holocentric twist to chromosomal speciation? Trends Ecol Evol 2022; 37:655-662. [PMID: 35484024 DOI: 10.1016/j.tree.2022.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal rearrangements trigger speciation by acting as barriers to gene flow. However, the underlying theory was developed with monocentric chromosomes in mind. Holocentric chromosomes, lacking a centromeric region, have repeatedly evolved and account for a significant fraction of extant biodiversity. Because chromosomal rearrangements may be more likely retained in holocentric species, holocentricity could provide a twist to chromosomal speciation. Here, we discuss how the abundance of chromosome-scale genomes, combined with novel analytical tools, offer the opportunity to assess the impacts of chromosomal rearrangements on rates of speciation by outlining a phylogenetic framework that aligns with the two major lines of chromosomal speciation theory. We further highlight how holocentric species could help to test for causal roles of chromosomal rearrangements in speciation.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes, ES-41012 Seville, Spain
| |
Collapse
|
20
|
Guzmán S, Giudicelli GC, Turchetto C, Bombarely A, Freitas LB. Neutral and outlier single nucleotide polymorphisms disentangle the evolutionary history of a coastal Solanaceae species. Mol Ecol 2022; 31:2847-2864. [PMID: 35332594 DOI: 10.1111/mec.16441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Speciation begins with the isolation of some individuals or subpopulations due to drivers promoting a diverging genetic distribution. Such isolation may occur, followed by different processes and pressures. Isolation-by-distance (IBD), isolation-by-adaptation (IBA), and isolation-by-colonization (IBC) have been recognized as the main divergence patterns. Still, it is not easy to distinguish which one is the main pattern as each one may act at different points in time or even simultaneously. Using an extensive genome coverage from a Petunia species complex with coastal and inland distribution and multiple analytical approaches on population genomics and phylogeography, we showed a complex interplay between neutral and selective forces acting on the divergence process. We found 18,887 SNPs potentially neutral and 924 potentially under selection (outlier) loci. All analyses pointed that each subspecies displays its own genetic component and evolutionary history. We suggested plausible ecologic drivers for such divergence in a southernmost South Atlantic coastal plain in Brazil and Uruguay and identified a connection between adaptation and environment heterogeneity.
Collapse
Affiliation(s)
- Sebastián Guzmán
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovanna C Giudicelli
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Turchetto
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Botany, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
21
|
Fumia N, Rubinoff D, Zenil-Ferguson R, Khoury CK, Pironon S, Gore MA, Kantar MB. Interactions between breeding system and ploidy affect niche breadth in Solanum. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211862. [PMID: 35116168 PMCID: PMC8767206 DOI: 10.1098/rsos.211862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.
Collapse
Affiliation(s)
- Nathan Fumia
- Department of Tropical Plant and Soil Science, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel Rubinoff
- Department of Plant and Environmental Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Colin K. Khoury
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- San Diego Botanic Garden, Encinitas, CA, USA
| | | | - Michael A. Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Science, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
22
|
Broz AK, Miller CM, Baek YS, Tovar-Méndez A, Acosta-Quezada PG, Riofrío-Cuenca TE, Rusch DB, Bedinger PA. S-RNase Alleles Associated With Self-Compatibility in the Tomato Clade: Structure, Origins, and Expression Plasticity. Front Genet 2021; 12:780793. [PMID: 34938321 PMCID: PMC8685505 DOI: 10.3389/fgene.2021.780793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Christopher M Miller
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
23
|
Tateyama H, Chimura K, Tsuchimatsu T. Evolution of seed mass associated with mating systems in multiple plant families. J Evol Biol 2021; 34:1981-1987. [PMID: 34662478 PMCID: PMC9298147 DOI: 10.1111/jeb.13949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
In flowering plants, the evolution of self‐fertilization (selfing) from obligate outcrossing is regarded as one of the most prevalent evolutionary transitions. The evolution of selfing is often accompanied by various changes in genomic, physiological and morphological properties. In particular, a set of reproductive traits observed typically in selfing species is called the “selfing syndrome”. A mathematical model based on the kinship theory of genetic imprinting predicted that seed mass should become smaller in selfing species compared with outcrossing congeners, as a consequence of the reduced conflict between maternally and paternally derived alleles in selfing plants. Here, we test this prediction by examining the association between mating system and seed mass across a wide range of taxa (642 species), considering potential confounding factors: phylogenetic relationships and growth form. We focused on three plant families—Solanaceae, Brassicaceae and Asteraceae—where information on mating systems is abundant, and the analysis was performed for each family separately. When phylogenetic relationships were controlled, we consistently observed that selfers (represented by self‐compatible species) tended to have a smaller seed mass compared with outcrossers (represented by self‐incompatible species) in these families. In summary, our analysis suggests that small seeds should also be considered a hallmark of the selfing syndrome, although we note that mating systems have relatively small effects on seed mass variation.
Collapse
Affiliation(s)
- Hirofumi Tateyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Bachmann JA, Tedder A, Fracassetti M, Steige KA, Lafon-Placette C, Köhler C, Slotte T. On the origin of the widespread self-compatible allotetraploid Capsella bursa-pastoris (Brassicaceae). Heredity (Edinb) 2021; 127:124-134. [PMID: 33875831 PMCID: PMC8249383 DOI: 10.1038/s41437-021-00434-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023] Open
Abstract
Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.
Collapse
Affiliation(s)
- Jörg A. Bachmann
- grid.10548.380000 0004 1936 9377Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Andrew Tedder
- grid.10548.380000 0004 1936 9377Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden ,grid.6268.a0000 0004 0379 5283Present Address: School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Marco Fracassetti
- grid.10548.380000 0004 1936 9377Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Kim A. Steige
- grid.10548.380000 0004 1936 9377Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden ,grid.6190.e0000 0000 8580 3777Present Address: Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - Clément Lafon-Placette
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala, Sweden ,grid.4491.80000 0004 1937 116XPresent Address: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claudia Köhler
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tanja Slotte
- grid.10548.380000 0004 1936 9377Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Meudt HM, Albach DC, Tanentzap AJ, Igea J, Newmarch SC, Brandt AJ, Lee WG, Tate JA. Polyploidy on Islands: Its Emergence and Importance for Diversification. FRONTIERS IN PLANT SCIENCE 2021; 12:637214. [PMID: 33763097 PMCID: PMC7982887 DOI: 10.3389/fpls.2021.637214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 05/31/2023]
Abstract
Whole genome duplication or polyploidy is widespread among floras globally, but traditionally has been thought to have played a minor role in the evolution of island biodiversity, based on the low proportion of polyploid taxa present. We investigate five island systems (Juan Fernández, Galápagos, Canary Islands, Hawaiian Islands, and New Zealand) to test whether polyploidy (i) enhances or hinders diversification on islands and (ii) is an intrinsic feature of a lineage or an attribute that emerges in island environments. These island systems are diverse in their origins, geographic and latitudinal distributions, levels of plant species endemism (37% in the Galapagos to 88% in the Hawaiian Islands), and ploidy levels, and taken together are representative of islands more generally. We compiled data for vascular plants and summarized information for each genus on each island system, including the total number of species (native and endemic), generic endemicity, chromosome numbers, genome size, and ploidy levels. Dated phylogenies were used to infer lineage age, number of colonization events, and change in ploidy level relative to the non-island sister lineage. Using phylogenetic path analysis, we then tested how the diversification of endemic lineages varied with the direct and indirect effects of polyploidy (presence of polyploidy, time on island, polyploidization near colonization, colonizer pool size) and other lineage traits not associated with polyploidy (time on island, colonizer pool size, repeat colonization). Diploid and tetraploid were the most common ploidy levels across all islands, with the highest ploidy levels (>8x) recorded for the Canary Islands (12x) and New Zealand (20x). Overall, we found that endemic diversification of our focal island floras was shaped by polyploidy in many cases and certainly others still to be detected considering the lack of data in many lineages. Polyploid speciation on the islands was enhanced by a larger source of potential congeneric colonists and a change in ploidy level compared to overseas sister taxa.
Collapse
Affiliation(s)
- Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Dirk C Albach
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Javier Igea
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sophie C Newmarch
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - William G Lee
- Manaaki Whenua - Landcare Research, Dunedin, New Zealand
| | - Jennifer A Tate
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
26
|
Spoelhof JP, Soltis DE, Soltis PS. Habitat Shape Affects Polyploid Establishment in a Spatial, Stochastic Model. FRONTIERS IN PLANT SCIENCE 2020; 11:592356. [PMID: 33304370 PMCID: PMC7701104 DOI: 10.3389/fpls.2020.592356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Polyploidy contributes massively to the taxonomic and genomic diversity of angiosperms, but certain aspects of polyploid evolution are still enigmatic. The establishment of a new polyploid lineage following whole-genome duplication (WGD) is a critical step for all polyploid species, but this process is difficult to identify and observe in nature. Mathematical models offer an opportunity to study this process by varying parameters related to the populations, habitats, and organisms involved in the polyploid establishment process. While several models of polyploid establishment have been published previously, very few incorporate spatial factors, including spatial relationships between organisms, habitat shape, or population density. This study presents a stochastic, spatial model of polyploid establishment that shows how factors such as habitat shape and dispersal type can influence the fixation and persistence of nascent polyploids and modulate the effects of other factors. This model predicts that narrow, constrained habitats such as roadsides and coastlines may enhance polyploid establishment, particularly in combination with frequent clonal reproduction, limited dispersal, and high population density. The similarity between this scenario and the growth of many invasive or colonizing species along disturbed, narrow habitats such as roadsides may offer a partial explanation of the prevalence of polyploidy among invasive species.
Collapse
Affiliation(s)
- Jonathan P. Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Porturas LD, Segraves KA. Whole genome duplication does not promote common modes of reproductive isolation in Trifolium pratense. AMERICAN JOURNAL OF BOTANY 2020; 107:833-841. [PMID: 32329070 DOI: 10.1002/ajb2.1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Although polyploidy has been studied since the early 1900s, fundamental aspects of polyploid ecology and evolution remain unexplored. In particular, surprisingly little is known about how newly formed polyploids (neopolyploids) become demographically established. Models predict that most polyploids should go extinct within the first few generations as a result of reproductive disadvantages associated with being the minority in a primarily diploid population (i.e., the minority cytotype principle), yet polyploidy is extremely common. Therefore, a key goal in the study of polyploidy is to determine the mechanisms that promote polyploid establishment in nature. Because premating isolation is critical in order for neopolylpoids to avoid minority cytotype exclusion and thus facilitate establishment, we examined floral morphology and three common premating barriers to determine their importance in generating reproductive isolation of neopolyploids from diploids. METHODS We induced neopolyploidy in Trifolium pratense and compared their floral traits to the diploid progenitors. In addition to shifts in floral morphology, we examined three premating barriers: isolation by self-fertilization, flowering-time asynchrony, and pollinator-mediated isolation. RESULTS We found significant differences in the morphology of diploid and neopolyploid flowers, but these changes did not facilitate premating barriers that would generate reproductive isolation of neopolyploids from diploids. There was no difference in flowering phenology, pollinator visitation, or selfing between the cytotypes. CONCLUSIONS Our results indicate that barriers other than the ones tested in this study-such as geographic isolation, vegetative reproduction, and pistil-stigma incompatibilities-may be more important in facilitating isolation and establishment of neopolyploid T. pratense.
Collapse
Affiliation(s)
- Laura D Porturas
- Penn State University, Frost Entomological Museum, 501 ASI, University Park, Pennsylvania, 16802, USA
- Syracuse University, Biology, 107 College Place, Syracuse, New York, 13244, USA
| | - Kari A Segraves
- Syracuse University, Biology, 107 College Place, Syracuse, New York, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, Florida, 33960, USA
| |
Collapse
|
28
|
Siopa C, Dias MC, Castro M, Loureiro J, Castro S. Is selfing a reproductive assurance promoting polyploid establishment? Reduced fitness, leaky self-incompatibility and lower inbreeding depression in neotetraploids. AMERICAN JOURNAL OF BOTANY 2020; 107:526-538. [PMID: 32144761 DOI: 10.1002/ajb2.1441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
PREMISE Newly formed polyploids face significant obstacles to persistence and population establishment because of fitness costs of intercytotype mating. Selfing provides the opportunity to escape mate limitation, enabling production of new individuals and increasing the likelihood of fixation of new polyploid lineages. Still, association between self-compatibility and polyploidy is not always clear. We compared self-incompatibility and inbreeding depression in neotetraploids and their diploid progenitor to explore the direct effects of whole genome duplications on self-incompatibility and the implications of ploidy-driven changes for polyploid establishment. METHODS Outcross and self-pollinations were performed in diploids and synthetic neotetraploids of Jasione maritima var. maritima, and reproductive success was measured through fruit and seed production and seed germination. Self- and outcross offspring were grown under controlled conditions, and plant performance was measured through several fitness parameters. RESULTS Neotetraploids showed an overall lower performance than diploids. Reproductive success was negatively affected by selfing in both cytotypes. However, greater variation in the expression of self-incompatibility was observed in neotetraploids; additionally, developmental and physiological parameters were not affected by selfing on neotetraploids, with an overall similar fitness of outcrossed and selfed individuals, resulting in lower inbreeding depression indexes. CONCLUSIONS Neotetraploids might have benefited from selfing at initial stages after their formation. Genome duplications resulted in leaky self-incompatibility, enabling the production of offspring under minority cytotype disadvantage with similar fitness as outcrossed offspring. Our results support theoretical assumptions that selfing might be important for neopolyploid establishment, although changes in self-incompatibility might not be abrupt.
Collapse
Affiliation(s)
- Catarina Siopa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Maria C Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
29
|
Breeding Systems in Diploid and Polyploid Hawthorns (Crataegus): Evidence from Experimental Pollinations of C. monogyna, C. subsphaerica, and Natural Hybrids. FORESTS 2019. [DOI: 10.3390/f10121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Objectives: Polyploidisation and frequent hybridisation play an important role in speciation processes and evolutionary history and have a large impact on reproductive systems in the genus Crataegus. Reproductive modes in selected diploid and polyploid taxa in eastern Slovakia were investigated and analysed for the first time. Materials and Methods: Diploid, triploid, and tetraploid hawthorns were tested for self-pollination, self-compatibility, and self-fertilisation. Pollination experiments were performed within and between diploid and triploid species to determine the possibilities and directions of pollen transfer under natural conditions. Seeds from crossing experiments and open pollinations were analysed using the flow cytometric seed screen method. Results: These experiments demonstrated that sexual reproduction, cross-pollination, and self-incompatibility are typical of the diploid species Crataegus monogyna and C. kyrtostyla. Seeds produced by self-fertile tetraploid C. subsphaerica were derived from both meiotically reduced and unreduced megagametophytes. Conclusions: Experimental results concerning triploid C. subsphaerica and C. laevigata × C. subsphaerica are ambiguous but suggest that seeds are almost exclusively created through apomixis, although a few sexually generated seeds were observed. In the genus Crataegus, pseudogamy is a common feature of polyploid taxa, as in all cases pollination is essential for regular seed development. Research Highlights: We suggest that all studied Crataegus taxa produce reduced pollen irrespective of ploidy level. Moreover, we emphasise that triploids produce apparently aneuploid pollen grains as a result of irregular meiosis. They are also capable of utilising pollen from 2x, 3x, or 4x donors for pseudogamous formation of endosperm.
Collapse
|
30
|
Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, Goldberg EE. Interaction among ploidy, breeding system and lineage diversification. THE NEW PHYTOLOGIST 2019; 224:1252-1265. [PMID: 31617595 DOI: 10.1111/nph.16184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/14/2019] [Indexed: 05/28/2023]
Abstract
If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.
Collapse
Affiliation(s)
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - William A Freyman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
31
|
Guo H, Halitschke R, Wielsch N, Gase K, Baldwin IT. Mate Selection in Self-Compatible Wild Tobacco Results from Coordinated Variation in Homologous Self-Incompatibility Genes. Curr Biol 2019; 29:2020-2030.e5. [PMID: 31178322 DOI: 10.1016/j.cub.2019.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
In flowering plants, intraspecific mate preference is frequently related to mating systems: the rejection of self pollen in self-incompatible (SI) plants that prevents inbreeding is one of the best described examples. However, in other mating systems, more nuanced patterns of pollen rejection occur. In the self-compatible (SC) Nicotiana attenuata, in which SI is not found and all crosses are compatible, certain pollen genotypes are consistently selected in mixed pollinations. However, the molecular mechanisms of this polyandrous mate selection remain unknown. Style-expressed NaS-like-RNases and pollen-expressed NaSLF-like genes, homologous to SI factors in Solanaceae, were identified and examined for a role in N. attenuata's mate selection. A comparison of two NaS-like-RNases and six NaSLF-like genes among 26 natural accessions revealed specific combinations of co-expression and direct protein-protein interactions. To evaluate their role in mate selection, we silenced the expression of specific NaS-like-RNases and NaSLF-like proteins and conducted diagnostic binary mixed pollinations and mixed pollinations with 14 different non-self pollen donors. Styles expressing particular combinations of NaS-like-RNases selected mates from plants with corresponding NaS-like-RNase expression patterns, while styles lacking NaS-like-RNase expression were non-selective in their fertilizations, which reflected the genotype ratios of pollen mixtures deposited on the stigmas. DNA methylation could account for some of the observed variation in stylar NaS-like-RNase patterns. We conclude that the S-RNase-SLF recognition mechanism plays a central role in polyandrous mate selection in this self-compatible species. These results suggest that after the SI-SC transition, natural variation of SI homologous genes was repurposed to mediate intraspecific mate selection.
Collapse
Affiliation(s)
- Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany.
| |
Collapse
|
32
|
Wang Y, Zhang M, Qin Q, Peng Y, Huang X, Wang C, Cao L, Li W, Tao M, Zhang C, Liu S. Transcriptome Profile Analysis on Ovarian Tissues of Autotetraploid Fish and Diploid Red Crucian Carp. Front Genet 2019; 10:208. [PMID: 30941161 PMCID: PMC6434244 DOI: 10.3389/fgene.2019.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Polyploidization can significantly alter the size of animal gametes. Autotetraploid fish (RRRR, 4nRR = 200) (4nRR) possessing four sets of chromosomes were derived from whole-genome duplication in red crucian carp (RR, 2n = 100) (RCC). The diploid eggs of the 4nRR fish were significantly larger than the eggs of RCC. To explore the differences between the ovaries of these two ploidies of fishes at the molecular level, we compared the ovary transcriptome profiles of 4nRR fish and RCC and identified differentially expressed genes (DEGs). A total of 19,015 unigenes were differentially expressed between 4nRR fish and RCC, including 12,591 upregulated and 6,424 downregulated unigenes in 4nRR fish. Functional analyses revealed that eight genes (CDKL1, AHCY, ARHGEF3, TGFβ, WNT11, CYP27A, GDF7, and CKB) were involved in the regulation of cell proliferation, cell division, gene transcription, ovary development and energy metabolism, suggesting that these eight genes were related to egg size in 4nRR fish and RCC. We validated the expression levels of these eight DEGs in 4nRR fish and RCC using quantitative PCR. The study results provided insights into the regulatory mechanisms underlying the differences in crucian carp egg sizes.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
Alonso‐Marcos H, Nardi FD, Scheffknecht S, Tribsch A, Hülber K, Dobeš C. Difference in reproductive mode rather than ploidy explains niche differentiation in sympatric sexual and apomictic populations of Potentilla puberula. Ecol Evol 2019; 9:3588-3598. [PMID: 30988899 PMCID: PMC6434561 DOI: 10.1002/ece3.4992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 01/02/2023] Open
Abstract
Apomicts tend to have larger geographical distributional ranges and to occur in ecologically more extreme environments than their sexual progenitors. However, the expression of apomixis is typically linked to polyploidy. Thus, it is a priori not clear whether intrinsic effects related to the change in the reproductive mode or rather in the ploidy drive ecological differentiation. We used sympatric sexual and apomictic populations of Potentilla puberula to test for ecological differentiation. To distinguish the effects of reproductive mode and ploidy on the ecology of cytotypes, we compared the niches (a) of sexuals (tetraploids) and autopolyploid apomicts (penta-, hepta-, and octoploids) and (b) of the three apomictic cytotypes. We based comparisons on a ploidy screen of 238 populations along a latitudinal transect through the Eastern European Alps and associated bioclimatic, and soil and topographic data. Sexual tetraploids preferred primary habitats at drier, steeper, more south-oriented slopes, while apomicts mostly occurred in human-made habitats with higher water availability. Contrariwise, we found no or only marginal ecological differentiation among the apomictic higher ploids. Based on the pronounced ecological differences found between sexuals and apomicts, in addition to the lack of niche differentiation among cytotypes of the same reproductive mode, we conclude that reproductive mode rather than ploidy is the main driver of the observed differences. Moreover, we compared our system with others from the literature, to stress the importance of identifying alternative confounding effects (such as hybrid origin). Finally, we underline the relevance of studying ecological parthenogenesis in sympatry, to minimize the effects of differential migration abilities.
Collapse
Affiliation(s)
- Henar Alonso‐Marcos
- Department of Forest GeneticsAustrian Research Centre for ForestsViennaAustria
- Department of Conservation Biology, Vegetation Ecology and Landscape EcologyUniversity of ViennaViennaAustria
| | - Flavia Domizia Nardi
- Department of Forest GeneticsAustrian Research Centre for ForestsViennaAustria
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Susanne Scheffknecht
- Institute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Andreas Tribsch
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Karl Hülber
- Department of Conservation Biology, Vegetation Ecology and Landscape EcologyUniversity of ViennaViennaAustria
| | - Christoph Dobeš
- Department of Forest GeneticsAustrian Research Centre for ForestsViennaAustria
| |
Collapse
|
34
|
Kryvokhyzha D, Salcedo A, Eriksson MC, Duan T, Tawari N, Chen J, Guerrina M, Kreiner JM, Kent TV, Lagercrantz U, Stinchcombe JR, Glémin S, Wright SI, Lascoux M. Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genet 2019; 15:e1007949. [PMID: 30768594 PMCID: PMC6395008 DOI: 10.1371/journal.pgen.1007949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adriana Salcedo
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Mimmi C. Eriksson
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nilesh Tawari
- Computational and Systems Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore
| | - Jun Chen
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Guerrina
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia M. Kreiner
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Tyler V. Kent
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Université de Rennes 1, ECOBIO (Ecosystémes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Stephen I. Wright
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Huang HR, Liu JJ, Xu Y, Lascoux M, Ge XJ, Wright SI. Homeologue-specific expression divergence in the recently formed tetraploid Capsella bursa-pastoris (Brassicaceae). THE NEW PHYTOLOGIST 2018; 220:624-635. [PMID: 30028022 DOI: 10.1111/nph.15299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Following allopolyploid formation, extensive genome evolution occurs, with the eventual loss of many homeologous gene copies. Although this process of diploidization has occurred many times independently, the evolutionary forces determining the probability and rate of gene loss remain poorly understood. Here, we conduct genome and transcriptome sequencing in a broad sample of Chinese accessions of Capsella bursa-pastoris, a recently formed allotetraploid. Our whole genome data reveal three groups of these accessions: an Eastern group from low-altitude regions, a Western group from high-altitude regions, and a much more differentiated Northwestern group. Population differentiation in total expression was limited among closely related populations; by contrast, the relative expression of the two homeologous copies closely mirrors the genome-wide SNP divergence. Consistent with this, we observe a negative correlation between expression changes in the two homeologues. However, genes showing population genomic evidence for adaptive evolution do not show an enrichment for expression divergence between homeologues, providing no clear evidence for adaptive shifts in relative gene expression. Overall, these patterns suggest that neutral drift may contribute to the population differentiation in the expression of the homeologues, and drive eventual gene loss over longer periods of time.
Collapse
Affiliation(s)
- Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jia-Jia Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, ON, Canada
| |
Collapse
|
36
|
Layman NC, Busch JW. Bottlenecks and inbreeding depression in autotetraploids. Evolution 2018; 72:2025-2037. [PMID: 30136722 DOI: 10.1111/evo.13587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Inbreeding depression is dependent on the ploidy of populations and can inhibit the evolution of selfing. While polyploids should generally harbor less inbreeding depression than diploids at equilibrium, it has been unclear whether this pattern holds in non-equilibrium conditions following bottlenecks. We use stochastic individual-based simulations to determine the effects of population bottlenecks on inbreeding depression in diploids and autotetraploids, in addition to cases where neo-autotetraploids form from the union of unreduced gametes. With a ploidy-independent dominance function based on enzyme kinetics, inbreeding depression is generally lower in autotetraploids for fully and partially recessive mutations. Due to the sampling of more chromosomes during reproduction, bottlenecks generally reduce inbreeding depression to a lesser extent in autotetraploids. All else being equal, population bottlenecks may have ploidy-dependent effects for another reason-in some cases matings between close relatives temporarily increase inbreeding depression in autotetraploids by increasing the frequency of the heterozygous genotype harboring the most harmful mutations. When neo-autotetraploids are formed by few individuals, inbreeding depression is dramatically reduced, given extensive masking of harmful mutations following whole genome duplication. This effect persists as nascent tetraploids reach mutation-selection-drift balance, providing a transient period of permissive conditions favoring the evolution of selfing.
Collapse
Affiliation(s)
- Nathan C Layman
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
37
|
Van Drunen WE, Husband BC. Immediate vs. evolutionary consequences of polyploidy on clonal reproduction in an autopolyploid plant. ANNALS OF BOTANY 2018; 122:195-205. [PMID: 29726889 PMCID: PMC6025202 DOI: 10.1093/aob/mcy071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/19/2018] [Indexed: 05/23/2023]
Abstract
Background and Aims Clonal reproduction in polyploids is expected to exceed that in diploids, due to either the immediate direct effects of whole-genome duplication (WGD) or selection during establishment. The timing of polyploidy effects on clonality are largely unknown despite its hypothesized influence on polyploid success. This study tests the direction and timing of divergence in clonal traits in diploid and polyploid Chamerion angustifolium. Methods Root bud production and biomass allocation patterns were compared between diploids and synthesized tetraploids (neotetraploids), and between neotetraploids and naturally occurring tetraploids grown in a common environment. Key Results Neotetraploids produced more root buds and fewer sexual structures than diploids and natural tetraploids; diploids and natural tetraploids had similar root bud numbers and sexual investment. The root bud:inflorescence biomass ratio was 71 % higher in neotetraploids than in natural tetraploids. Root bud location suggests that ramet density in neotetraploid genets could be higher than in diploid genets. Conclusions WGD immediately increases investment in asexual vs. sexual reproduction in C. angustifolium, potentially promoting within-cytotype mating and establishment for neopolyploids. However, evolutionary change after the polyploidization event negates the direct effects of WGD. Natural polyploids and diploids have similar root bud production and biomass allocation patterns, probably resulting from habitat- and ploidy-mediated selection on polyploids to become more like diploids. These results highlight the value of studying the effects of polyploidization in young vs. established polyploids.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Petrone Mendoza S, Lascoux M, Glémin S. Competitive ability of Capsella species with different mating systems and ploidy levels. ANNALS OF BOTANY 2018; 121:1257-1264. [PMID: 29471370 PMCID: PMC5946883 DOI: 10.1093/aob/mcy014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/19/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Capsella is a model genus for studying the transition from outcrossing to selfing, with or without change in ploidy levels. The genomic consequences and changes in reproductive traits (selfing syndrome) associated with these shifts have been studied in depth. However, potential ecological divergence among species of the genus has not been determined. Among ecological traits, competitive ability could be relevant for selfing evolution, as selfing has been shown to be statistically associated with reduced competitiveness in a recent meta-analysis. METHODS We assessed the effect of competition on three Capsella species differing in their mating system and ploidy level. We used an experimental design where fitness related traits were measured in focal individuals with and without competitors. KEY RESULTS The diploid selfer (C. rubella) was most sensitive to competition, whereas the tetraploid selfer (C. bursa-pastoris) performed the best, with the diploid outcrosser (C. grandiflora) being intermediate. CONCLUSIONS These results add to the detailed characterization of Capsella species and highlight the possible roles of ecological context and ploidy in the evolutionary trajectories of selfing species.
Collapse
Affiliation(s)
- Sandra Petrone Mendoza
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Institut des Sciences de l’Evolution (ISEM - UMR 5554 Université de Montpellier-CNRS-IRD-EPHE), France
| |
Collapse
|
39
|
Vamosi JC, Magallón S, Mayrose I, Otto SP, Sauquet H. Macroevolutionary Patterns of Flowering Plant Speciation and Extinction. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:685-706. [PMID: 29489399 DOI: 10.1146/annurev-arplant-042817-040348] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Species diversity is remarkably unevenly distributed among flowering plant lineages. Despite a growing toolbox of research methods, the reasons underlying this patchy pattern have continued to perplex plant biologists for the past two decades. In this review, we examine the present understanding of transitions in flowering plant evolution that have been proposed to influence speciation and extinction. In particular, ploidy changes, transitions between tropical and nontropical biomes, and shifts in floral form have received attention and have offered some surprises in terms of which factors influence speciation and extinction rates. Mating systems and dispersal characteristics once predominated as determining factors, yet recent evidence suggests that these changes are not as influential as previously thought or are important only when paired with range shifts. Although range extent is an important correlate of speciation, it also influences extinction and brings an applied focus to diversification research. Recent studies that find that past diversification can predict present-day extinction risk open an exciting avenue for future research to help guide conservation prioritization.
Collapse
Affiliation(s)
- Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah P Otto
- Department of Zoology and the Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
| |
Collapse
|
40
|
Escudero M, Balao F, Martín-Bravo S, Valente L, Valcárcel V. Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:166-175. [PMID: 28295874 DOI: 10.1111/plb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The Mediterranean Basin region, home to 25,000 plant species, is included in the worldwide list of hotspots of biodiversity. Despite the indisputably important role of chromosome transitions in plant evolution and diversification, no reference study to date has dealt with the possible relationship between chromosome evolution and lineage diversification in the Mediterranean Basin. Here we study patterns of diversification, patterns of chromosome number transition (either polyploidy or dysploidy) and the relationship between the two for 14 Mediterranean Basin angiosperm lineages using previously published phylogenies. We found a mixed pattern, with half of the lineages displaying a change in chromosome transition rates after the onset of the Mediterranean climate (six increases, one decrease) and the other half (six) experiencing constant rates of chromosome transitions through time. We have also found a heterogeneous pattern regarding diversification rates, with lineages exhibiting moderate (five phylogenies) or low (six) initial diversification rates that either increased (six) or declined (five) through time. Our results reveal no clear link between diversification rates and chromosome number transition rates. By promoting the formation of new habitats and driving the extinction of many species, the Mediterranean onset and the posterior Quaternary climatic oscillations could have been key for the establishment of new chromosomal variants in some plant phylogenies but not in others. While the biodiversity of the Mediterranean Basin may be partly influenced by the chromosomal diversity of its lineages, this study concludes that lineage diversification in the region is largely decoupled from karyotypic evolution.
Collapse
Affiliation(s)
- M Escudero
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - F Balao
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - S Martín-Bravo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - L Valente
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - V Valcárcel
- Department of Biology (Botany), Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS(P. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. ANNALS OF BOTANY 2017; 120:183-194. [PMID: 28854567 PMCID: PMC5737848 DOI: 10.1093/aob/mcx079] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Polyploidy or whole-genome duplication is now recognized as being present in almost all lineages of higher plants, with multiple rounds of polyploidy occurring in most extant species. The ancient evolutionary events have been identified through genome sequence analysis, while recent hybridization events are found in about half of the world's crops and wild species. Building from this new paradigm for understanding plant evolution, the papers in this Special Issue address questions about polyploidy in ecology, adaptation, reproduction and speciation of wild and cultivated plants from diverse ecosystems. Other papers, including this review, consider genomic aspects of polyploidy. APPROACHES Discovery of the evolutionary consequences of new, evolutionarily recent and ancient polyploidy requires a range of approaches. Large-scale studies of both single species and whole ecosystems, with hundreds to tens of thousands of individuals, sometimes involving 'garden' or transplant experiments, are important for studying adaptation. Molecular studies of genomes are needed to measure diversity in genotypes, showing ancestors, the nature and number of polyploidy and backcross events that have occurred, and allowing analysis of gene expression and transposable element activation. Speciation events and the impact of reticulate evolution require comprehensive phylogenetic analyses and can be assisted by resynthesis of hybrids. In this Special Issue, we include studies ranging in scope from experimental and genomic, through ecological to more theoretical. CONCLUSIONS The success of polyploidy, displacing the diploid ancestors of almost all plants, is well illustrated by the huge angiosperm diversity that is assumed to originate from recurrent polyploidization events. Strikingly, polyploidization often occurred prior to or simultaneously with major evolutionary transitions and adaptive radiation of species, supporting the concept that polyploidy plays a predominant role in bursts of adaptive speciation. Polyploidy results in immediate genetic redundancy and represents, with the emergence of new gene functions, an important source of novelty. Along with recombination, gene mutation, transposon activity and chromosomal rearrangement, polyploidy and whole-genome duplication act as drivers of evolution and divergence in plant behaviour and gene function, enabling diversification, speciation and hence plant evolution.
Collapse
Affiliation(s)
- Karine Alix
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- For correspondence. E-mail
| | - Pierre R. Gérard
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
42
|
Herben T, Suda J, Klimešová J. Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. ANNALS OF BOTANY 2017; 120:341-349. [PMID: 28334206 PMCID: PMC5737615 DOI: 10.1093/aob/mcx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
Background and Aims Polyploidy is arguably the single most important genetic mechanism in plant speciation and diversification. It has been repeatedly suggested that polyploids show higher vegetative reproduction than diploids (to by-pass low fertility after the polyploidization), but there are no rigorous tests of it. Methods Data were analysed by phylogenetic regressions of clonal growth parameters, and vegetative reproduction in culture on the ploidy status of a large set of species (approx. 900) from the Central European Angiosperm flora. Further, correlated evolution of ploidy and clonal traits was examined to determine whether or not polyploidy precedes vegetative reproduction. Key Results The analyses showed that polyploidy is strongly associated with vegetative reproduction, whereas diploids rely more on seed reproduction. The rate of polyploid speciation is strongly enhanced by the existence of vegetative reproduction (namely extensive lateral spread), whereas the converse is not true. Conclusions These findings confirm the old hypothesis that polyploids can rely on vegetative reproduction which thus may save many incipient polyploids from extinction. A closer analysis also shows that the sequence of events begins with development of vegetative reproduction, which is then followed by polyploidy. Vegetative reproduction is thus likely to play an important role in polyploid speciation.
Collapse
Affiliation(s)
- Tomáš Herben
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 00 Praha 2, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
| | - Jan Suda
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 00 Praha 2, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
| | - Jitka Klimešová
- Institute of Botany, Academy of Science of the Czech Republic, CZ-379 82 Třeboň, Czech Republic
| |
Collapse
|
43
|
Iftikhar H, Naveed N, Virk N, Bhatti MF, Song F. In silico analysis reveals widespread presence of three gene families, MAPK, MAPKK and MAPKKK, of the MAPK cascade from crop plants of Solanaceae in comparison to the distantly-related syntenic species from Rubiaceae, coffee. PeerJ 2017; 5:e3255. [PMID: 28603666 PMCID: PMC5463992 DOI: 10.7717/peerj.3255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/31/2017] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are an important family of genes which play roles in vital plant processes, and they also help in coping against various kinds of environmental stresses including abiotic as well as biotic factors. The advancement of genomics calls for the annotation, identification, and detailed processing of the essential gene families in plants in order to provide insights into the importance of their central roles as well as for providing the basis for making their growth vigorous even under stressed conditions and, ultimately, to benefit from them by foreseeing the potential threats to their growth. In the current study, MAPK, MAPKK, and MAPKKK families of the MAPK cascade were identified and reported from five different agriculturally and economically important crop species of the Solanaceae and Rubiaceae families based on conserved signature motifs aligned throughout the members of the families under this gene superfamily. Genes reported from the species after strict filtering were: 89, tomato; 108, potato; 63, eggplant; 79, pepper; 64, coffee. These MAPKs were found to be randomly distributed throughout the genome on the chromosomes of the respective species. Various characteristics of the identified genes were studied including gene structure, gene and coding sequence length, protein length, isoelectric point, molecular weight, and subcellular localization. Moreover, maximum likelihood test of phylogeny was conducted on the retrieved sequences for the three MAPK cascade families to determine their homologous relationships which were also analyzed quantitatively by heat plots.
Collapse
Affiliation(s)
- Hira Iftikhar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nayab Naveed
- University Institute of Information Technology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Barringer BC, Galloway LF. The Reproductive Ecology of Diploid and Tetraploid Galax urceolata. AMERICAN MIDLAND NATURALIST 2017. [DOI: 10.1674/0003-0031-177.2.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Brian C. Barringer
- Department of Biology, University of Wisconsin—Stevens Point, 800 Reserve Street, Stevens Point 54481
| | | |
Collapse
|
45
|
Casazza G, Boucher FC, Minuto L, Randin CF, Conti E. Do floral and niche shifts favour the establishment and persistence of newly arisen polyploids? A case study in an Alpine primrose. ANNALS OF BOTANY 2017; 119:81-93. [PMID: 28025287 PMCID: PMC5218380 DOI: 10.1093/aob/mcw221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/29/2016] [Accepted: 09/10/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Polyploidization plays a key role in plant evolution. Despite the generally accepted 'minority-cytotype exclusion' theory, the specific mechanisms leading to successful establishment and persistence of new polyploids remain controversial. The majority of newly formed polyploids do not become established, because they are less common, have fewer potential mates or may not be able to compete successfully with co-occurring progenitors at lower ploidy levels. Changes in floral traits and ecological niches have been proposed as important mechanisms to overcome this initial frequency-dependent disadvantage. The aim of this study was to determine whether dodecaploids of the heterostylous P. marginata differ from their hexaploid progenitors in P. marginata and P. allionii for selected floral traits and ecological preferences that might be involved in establishment and persistence, providing a possible explanation for the origin of polyploidized populations. METHODS Floral morphological traits and ecological niche preferences among dodecaploids and their hexaploid progenitors in P. marginata and P. allionii ,: all restricted to the south-western Alps, were quantified and compared KEY RESULTS: Differences in floral traits were detected between dodecaploids and their closest relatives, but such differences might be too weak to counter the strength of minority cytotype disadvantage and are unlikely to enable the coexistence of different cytotypes. Furthermore, the results suggest the preservation of full distyly and no transition to selfing in dodecaploids. Finally, dodecaploids occur almost exclusively in environments that are predicted to be suitable also for their closest hexaploid relatives. CONCLUSIONS In light of the results, P. marginata dodecaploids have probably been able to establish and persist by occupying geographical areas not yet filled by their closest relatives without significant evolution in their climatic and pollination niches. Dispersal limitation and minority-cytotype exclusion probably maintain their current range disjunct from those of its close relatives.
Collapse
Affiliation(s)
- Gabriele Casazza
- DISTAV, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy
| | - Florian C Boucher
- Department of Systematic and Evolutionary Botany and Botanic Garden, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Luigi Minuto
- DISTAV, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy
| | - Christophe F Randin
- Department of Ecology & Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanic Garden, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| |
Collapse
|
46
|
Melen MK, Herman JA, Lucas J, O'Malley RE, Parker IM, Thom AM, Whittall JB. Reproductive success through high pollinator visitation rates despite self incompatibility in an endangered wallflower. AMERICAN JOURNAL OF BOTANY 2016; 103:1979-1989. [PMID: 27864264 DOI: 10.3732/ajb.1600193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. METHODS We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. KEY RESULTS Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. CONCLUSIONS The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community.
Collapse
Affiliation(s)
- Miranda K Melen
- Department of Environmental Studies, San Jose State University, One Washington Square, San Jose, California 95192 USA
| | - Julie A Herman
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| | - Jessica Lucas
- Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62902 USA
| | - Rachel E O'Malley
- Department of Environmental Studies, San Jose State University, One Washington Square, San Jose, California 95192 USA
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - Aaron M Thom
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| | - Justen B Whittall
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053 USA
| |
Collapse
|
47
|
Ågren JA, Huang HR, Wright SI. Transposable element evolution in the allotetraploid Capsella bursa-pastoris. AMERICAN JOURNAL OF BOTANY 2016; 103:1197-1202. [PMID: 27440791 DOI: 10.3732/ajb.1600103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear. METHODS We used high-coverage whole-genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis. KEY RESULTS We found no evidence that C. bursa-pastoris has experienced a large genomewide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we found evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms compared with C. grandiflora and C. orientalis. CONCLUSIONS The lack of a genomewide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions, suggests that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, China
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Glick L, Sabath N, Ashman TL, Goldberg E, Mayrose I. Polyploidy and sexual system in angiosperms: Is there an association? AMERICAN JOURNAL OF BOTANY 2016; 103:1223-1235. [PMID: 27352832 DOI: 10.3732/ajb.1500424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Flowering plants display a variety of sexual systems, ranging from complete cosexuality (hermaphroditism) to separate-sexed individuals (dioecy). While dioecy is relatively rare, it has evolved many times and is present in many plant families. Transitions in sexual systems are hypothesized to be affected by large genomic events such as whole-genome duplication, or polyploidy, and several models have been proposed to explain the observed patterns of association. METHODS In this study, we assessed the association between ploidy and sexual system (separate or combined sexes). To this end, we assembled a database of ploidy levels and sexual systems for ∼1000 species, spanning 18 genera and 15 families. We applied several phylogenetic comparative approaches, including Pagel's coevolutionary framework and sister clade analyses, for detecting correlations between ploidy level and sexual system. KEY RESULTS Our results indicate a broad association between polyploidy and sexual system dimorphism, with low evolutionary stability of the diploid-dioecious condition observed in several clades. A detailed examination of the clades exhibiting this correlation reveals that it is underlain by various patterns of transition rate asymmetry. CONCLUSIONS We conclude that the long-hypothesized connection between ploidy and sexual system holds in some clades, although it may well be affected by factors that differ from clade to clade. Our results further demonstrate that to better understand the evolutionary processes involved, more sophisticated methods and extensive and detailed data sets are required for both broad and focused inquiry.
Collapse
Affiliation(s)
- Lior Glick
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Niv Sabath
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Tia-Lynn Ashman
- Department of Biological Sciences University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
| | - Emma Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108-6097 USA
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Lohaus R, Van de Peer Y. Of dups and dinos: evolution at the K/Pg boundary. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:62-9. [PMID: 26894611 DOI: 10.1016/j.pbi.2016.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 05/21/2023]
Abstract
Fifteen years into sequencing entire plant genomes, more than 30 paleopolyploidy events could be mapped on the tree of flowering plants (and many more when also transcriptome data sets are considered). While some genome duplications are very old and have occurred early in the evolution of dicots and monocots, or even before, others are more recent and seem to have occurred independently in many different plant lineages. Strikingly, a majority of these duplications date somewhere between 55 and 75 million years ago (mya), and thus likely correlate with the K/Pg boundary. If true, this would suggest that plants that had their genome duplicated at that time, had an increased chance to survive the most recent mass extinction event, at 66mya, which wiped out a majority of plant and animal life, including all non-avian dinosaurs. Here, we review several processes, both neutral and adaptive, that might explain the establishment of polyploid plants, following the K/Pg mass extinction.
Collapse
Affiliation(s)
- Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Genomics Research Institute, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
50
|
Grossenbacher D, Briscoe Runquist RD, Goldberg EE, Brandvain Y. No association between plant mating system and geographic range overlap. AMERICAN JOURNAL OF BOTANY 2016; 103:110-117. [PMID: 26643886 DOI: 10.3732/ajb.1500078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/15/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Automatic self-fertilization may influence the geography of speciation, promote reproductive isolation between incipient species, and lead to ecological differentiation. As such, selfing taxa are predicted to co-occur more often with their closest relatives than are outcrossing taxa. Despite suggestions that this pattern may be general, the extent to which mating system influences range overlap in close relatives has not been tested formally across a diverse group of plant species pairs. METHODS We tested for a difference in range overlap between species pairs for which zero, one, or both species are selfers, using data from 98 sister species pairs in 20 genera across 15 flowering plant families. We also used divergence time estimates from time-calibrated phylogenies to ask how range overlap changes with divergence time and whether this effect depends on mating system. KEY RESULTS We found no evidence that automatic self-fertilization influenced range overlap of closely related plant species. Sister pairs with more recent divergence times had modestly greater range overlap, but this effect did not depend on mating system. CONCLUSIONS The absence of a strong influence of mating system on range overlap suggests that mating system plays a minor or inconsistent role compared with many other mechanisms potentially influencing the co-occurrence of close relatives.
Collapse
Affiliation(s)
- Dena Grossenbacher
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 USA
| | | | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108 USA
| | - Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 USA
| |
Collapse
|