1
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
2
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Bemmels JB, Mikkelsen EK, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Demographic decline and lineage-specific adaptations characterize New Zealand kiwi. Proc Biol Sci 2021; 288:20212362. [PMID: 34905706 PMCID: PMC8670953 DOI: 10.1098/rspb.2021.2362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.
Collapse
Affiliation(s)
- Jordan B. Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Else K. Mikkelsen
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| | | | | | - Jason T. Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| |
Collapse
|
6
|
Ellis TJ, Postma FM, Oakley CG, Ågren J. Life-history trade-offs and the genetic basis of fitness in Arabidopsis thaliana. Mol Ecol 2021; 30:2846-2858. [PMID: 33938082 DOI: 10.1111/mec.15941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Resources allocated to survival cannot be used to increase fecundity, but the extent to which this trade-off constrains adaptation depends on overall resource status. Adaptation to local environmental conditions may therefore entail the evolution of traits that increase the amount of resources available to individuals (their resource status or 'condition'). We examined the relative contribution of trade-offs and increased condition to adaptive evolution in a recombinant inbred line population of Arabidopsis thaliana planted at the native sites of the parental ecotypes in Italy and Sweden in 2 years. We estimated genetic correlations among fitness components based on genotypic means and explored their causes with QTL mapping. The local ecotype produced more seeds per fruit than did the non-local ecotype, reflected in stronger adaptive differentiation than was previously shown based on survival and fruit number only. Genetic correlations between survival and overall fecundity, and between number of fruits and number of seeds per fruit, were positive, and there was little evidence of a trade-off between seed size and number. Quantitative trait loci for these traits tended to map to the same regions of the genome and showed positive pleiotropic effects. The results indicate that adaptive differentiation between the two focal populations largely reflects the evolution of increased ability to acquire resources in the local environment, rather than shifts in the relative allocation to different life-history traits. Differentiation both in phenology and in tolerance to cold is likely to contribute to the advantage of the local genotype at the two sites.
Collapse
Affiliation(s)
- Thomas James Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden.,Gregor Mendel Institute of Molecular Plant Sciences, Vienna, Austria
| | - Froukje M Postma
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Christopher G Oakley
- Department of Botany and Plant Pathology & the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Thompson KA, Urquhart-Cronish M, Whitney KD, Rieseberg LH, Schluter D. Patterns, Predictors, and Consequences of Dominance in Hybrids. Am Nat 2021; 197:E72-E88. [PMID: 33625966 DOI: 10.1086/712603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCompared to those of their parents, are the traits of first-generation (F1) hybrids typically intermediate, biased toward one parent, or mismatched for alternative parental phenotypes? To address this empirical gap, we compiled data from 233 crosses in which traits were measured in a common environment for two parent taxa and their F1 hybrids. We find that individual traits in F1s are halfway between the parental midpoint and one parental value. Considering pairs of traits together, a hybrid's bivariate phenotype tends to resemble one parent (parent bias) about 50% more than the other, while also exhibiting a similar magnitude of mismatch due to different traits having dominance in conflicting directions. Using data from an experimental field planting of recombinant hybrid sunflowers, we illustrate that parent bias improves fitness, whereas mismatch reduces fitness. Our study has three major conclusions. First, hybrids are not phenotypically intermediate but rather exhibit substantial mismatch. Second, dominance is likely determined by the idiosyncratic evolutionary trajectories of individual traits and populations. Finally, selection against hybrids likely results from selection against both intermediate and mismatched phenotypes.
Collapse
|
8
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
9
|
Genomics of Clinal Local Adaptation in Pinus sylvestris Under Continuous Environmental and Spatial Genetic Setting. G3-GENES GENOMES GENETICS 2020; 10:2683-2696. [PMID: 32546502 PMCID: PMC7407466 DOI: 10.1534/g3.120.401285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the consequences of local adaptation at the genomic diversity is a central goal in evolutionary genetics of natural populations. In species with large continuous geographical distributions the phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation study, population structure has been shown to be weak previously and in this study. However, little is known about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a targeted sequencing approach. By applying divergence-based and landscape genomics methods we identified several loci contributing to local adaptation, but only few with large allele frequency changes across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection, which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci contributing to local adaptation in the coding regions and thus point out the need for more attention toward multi-locus analysis of polygenic adaptation.
Collapse
|
10
|
Radersma R, Noble DWA, Uller T. Plasticity leaves a phenotypic signature during local adaptation. Evol Lett 2020; 4:360-370. [PMID: 32774884 PMCID: PMC7403707 DOI: 10.1002/evl3.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Phenotypic responses to a novel or extreme environment are initially plastic, only later to be followed by genetic change. Whether or not environmentally induced phenotypes are sufficiently recurrent and fit to leave a signature in adaptive evolution is debated. Here, we analyze multivariate data from 34 plant reciprocal transplant studies to test: (1) if plasticity is an adaptive source of developmental bias that makes locally adapted populations resemble the environmentally induced phenotypes of ancestors; and (2) if plasticity, standing phenotypic variation and genetic divergence align during local adaptation. Phenotypic variation increased marginally in foreign environments but, as predicted, the direction of ancestral plasticity was generally well aligned with the phenotypic difference between locally adapted populations, making plasticity appear to "take the lead" in adaptive evolution. Plastic responses were sometimes more extreme than the phenotypes of locally adapted plants, which can give the impression that plasticity and evolutionary adaptation oppose each other; however, environmentally induced and locally adapted phenotypes were rarely misaligned. Adaptive fine‐tuning of phenotypes—genetic accommodation—did not fall along the main axis of standing phenotypic variation or the direction of plasticity, and local adaptation did not consistently modify the direction or magnitude of plasticity. These results suggest that plasticity is a persistent source of developmental bias that shapes how plant populations adapt to environmental change, even when plasticity does not constrain how populations respond to selection.
Collapse
Affiliation(s)
- Reinder Radersma
- Department of Biology Lund University Lund Sweden.,Biometris Wageningen University & Research Wageningen The Netherlands
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology The Australian National University Canberra ACT Australia
| | - Tobias Uller
- Department of Biology Lund University Lund Sweden
| |
Collapse
|
11
|
Armstrong JJ, Takebayashi N, Wolf DE. Cold tolerance in the genus Arabidopsis. AMERICAN JOURNAL OF BOTANY 2020; 107:489-497. [PMID: 32096224 PMCID: PMC7137905 DOI: 10.1002/ajb2.1442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
Collapse
Affiliation(s)
- Jessica J. Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- University of Alaska Fairbanks, eCampus, P. O. Box 756700,
Fairbanks, AK 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
| | - Diana E. Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- Author for correspondence
()
| |
Collapse
|
12
|
Kemi U, Leinonen PH, Savolainen O, Kuittinen H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. ANNALS OF BOTANY 2019; 124:91-102. [PMID: 31321402 PMCID: PMC6676387 DOI: 10.1093/aob/mcz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.
Collapse
Affiliation(s)
- Ulla Kemi
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg, Cologne, Germany
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
13
|
Leinonen PH, Helander M, Vázquez-de-Aldana BR, Zabalgogeazcoa I, Saikkonen K. Local adaptation in natural European host grass populations with asymmetric symbiosis. PLoS One 2019; 14:e0215510. [PMID: 30995278 PMCID: PMC6469795 DOI: 10.1371/journal.pone.0215510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
Recent work on microbiomes is revealing the wealth and importance of plant-microbe interactions. Microbial symbionts are proposed to have profound effects on fitness of their host plants and vice versa, especially when their fitness is tightly linked. Here we studied local adaptation of host plants and possible fitness contribution of such symbiosis in the context of abiotic environmental factors. We conducted a four-way multi-year reciprocal transplant experiment with natural populations of the perennial grass Festuca rubra s.l. from northern and southern Finland, Faroe Islands and Spain. We included F. rubra with and without transmitted symbiotic fungus Epichloë that is vertically transmitted via host seed. We found local adaptation across the European range, as evidenced by higher host fitness of the local geographic origin compared with nonlocals at three of the four studied sites, suggesting that selection pressures are driving evolution in different directions. Abiotic factors did not result in strong fitness effects related to Epichloë symbiosis, indicating that other factors such as herbivory are more likely to contribute to fitness differences between plants naturally occurring with or without Epichloë. Nevertheless, in the case of asymmetric symbiosis that is obligatory for the symbiont, abiotic conditions that affect performance of the host, may also cause selective pressure for the symbiont.
Collapse
Affiliation(s)
- Päivi H. Leinonen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
- * E-mail:
| | - Marjo Helander
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | | | | | - Kari Saikkonen
- Natural Resources Institute Finland (Luke), Turku, Finland
| |
Collapse
|
14
|
Langton‐Myers SS, Holwell GI, Buckley TR. Weak premating isolation betweenClitarchusstick insect species despite divergent male and female genital morphology. J Evol Biol 2019; 32:398-411. [DOI: 10.1111/jeb.13424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Shelley S. Langton‐Myers
- Manaaki Whenua – Landcare Research Auckland New Zealand
- School of Biological SciencesThe University of Auckland Auckland New Zealand
- EcoQuest Education Foundation ‐ Te Rarangahau Taiao Whakatiwai New Zealand
| | - Gregory I. Holwell
- School of Biological SciencesThe University of Auckland Auckland New Zealand
| | - Thomas R. Buckley
- Manaaki Whenua – Landcare Research Auckland New Zealand
- School of Biological SciencesThe University of Auckland Auckland New Zealand
| |
Collapse
|
15
|
Hämälä T, Mattila TM, Savolainen O. Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution 2018; 72:1373-1386. [PMID: 29741234 DOI: 10.1111/evo.13502] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole-genome-based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Ne m < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three-year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
16
|
de Villemereuil P. Quantitative genetic methods depending on the nature of the phenotypic trait. Ann N Y Acad Sci 2018; 1422:29-47. [PMID: 29363777 DOI: 10.1111/nyas.13571] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Abstract
A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression.
Collapse
|
17
|
Mattila TM, Tyrmi J, Pyhäjärvi T, Savolainen O. Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata. Mol Biol Evol 2017; 34:2665-2677. [PMID: 28957505 DOI: 10.1093/molbev/msx193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The high climatic variability in the past hundred thousand years has affected the demographic and adaptive processes in many species, especially in boreal and temperate regions undergoing glacial cycles. This has also influenced the patterns of genome-wide nucleotide variation, but the details of these effects are largely unknown. Here we study the patterns of genome-wide variation to infer colonization history and patterns of selection of the perennial herb species Arabidopsis lyrata, in locally adapted populations from different parts of its distribution range (Germany, UK, Norway, Sweden, and USA) representing different environmental conditions. Using site frequency spectra based demographic modeling, we found strong reduction in the effective population size of the species in general within the past 100,000 years, with more pronounced effects in the colonizing populations. We further found that the northwestern European A. lyrata populations (UK and Scandinavian) are more closely related to each other than with the Central European populations, and coalescent based population split modeling suggests that western European and Scandinavian populations became isolated relatively recently after the glacial retreat. We also highlighted loci showing evidence for local selection associated with the Scandinavian colonization. The results presented here give new insights into postglacial Scandinavian colonization history and its genome-wide effects.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Jaakko Tyrmi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Davila Olivas NH, Frago E, Thoen MPM, Kloth KJ, Becker FFM, van Loon JJA, Gort G, Keurentjes JJB, van Heerwaarden J, Dicke M. Natural variation in life history strategy of Arabidopsis thaliana determines stress responses to drought and insects of different feeding guilds. Mol Ecol 2017; 26:2959-2977. [PMID: 28295823 PMCID: PMC5485070 DOI: 10.1111/mec.14100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Plants are sessile organisms and, consequently, are exposed to a plethora of stresses in their local habitat. As a result, different populations of a species are subject to different selection pressures leading to adaptation to local conditions and intraspecific divergence. The annual brassicaceous plant Arabidopsis thaliana is an attractive model for ecologists and evolutionary biologists due to the availability of a large collection of resequenced natural accessions. Accessions of A. thaliana display one of two different life cycle strategies: summer and winter annuals. We exposed a collection of 308 European Arabidopsis accessions, that have been genotyped for 250K SNPs, to a range of stresses: one abiotic stress (drought), four biotic stresses (Pieris rapae caterpillars, Plutella xylostella caterpillars, Frankliniella occidentalis thrips and Myzus persicae aphids) and two combined stresses (drought plus P. rapae and Botrytis cinerea fungus plus P. rapae). We identified heritable genetic variation for responses to the different stresses, estimated by narrow-sense heritability. We found that accessions displaying different life cycle strategies differ in their response to stresses. Winter annuals are more resistant to drought, aphids and thrips and summer annuals are more resistant to P. rapae and P. xylostella caterpillars. Summer annuals are also more resistant to the combined stresses of drought plus P. rapae and infection by the fungus Botryris cinerea plus herbivory by P. rapae. Adaptation to drought displayed a longitudinal gradient. Finally, trade-offs were recorded between the response to drought and responses to herbivory by caterpillars of the specialist herbivore P. rapae.
Collapse
Affiliation(s)
| | - Enric Frago
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Manus P. M. Thoen
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Karen J. Kloth
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
| | | | | | - Gerrit Gort
- BiometrisWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
19
|
Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol Ecol 2017; 26:3484-3496. [PMID: 28393414 DOI: 10.1111/mec.14135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
Abstract
Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F1 and F2 progenies suggests that Bateson-Dobzhansky-Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
20
|
Favre A, Widmer A, Karrenberg S. Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. THE NEW PHYTOLOGIST 2017; 213:1487-1499. [PMID: 27775172 DOI: 10.1111/nph.14202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.
Collapse
Affiliation(s)
- Adrien Favre
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Alex Widmer
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sophie Karrenberg
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| |
Collapse
|
21
|
Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis. Heredity (Edinb) 2016; 118:413-423. [PMID: 27901510 DOI: 10.1038/hdy.2016.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/30/2016] [Accepted: 10/11/2016] [Indexed: 11/08/2022] Open
Abstract
Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.
Collapse
|
22
|
Bupp G, Ricono A, Peterson CL, Pruett CL. Conservation implications of small population size and habitat fragmentation in an endangered lupine. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0883-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc Natl Acad Sci U S A 2016; 113:3687-92. [PMID: 26979961 DOI: 10.1073/pnas.1520687113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.
Collapse
|
24
|
Volis S, Ormanbekova D, Yermekbayev K, Abugalieva S, Turuspekov Y, Shulgina I. Genetic architecture of adaptation to novel environmental conditions in a predominantly selfing allopolyploid plant. Heredity (Edinb) 2016; 116:485-90. [PMID: 26837272 DOI: 10.1038/hdy.2016.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/09/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Genetic architecture of adaptation is traditionally studied in the context of local adaptation, viz. spatially varying conditions experienced by the species. However, anthropogenic changes in the natural environment pose a new context to this issue, that is, adaptation to an environment that is new for the species. In this study, we used crossbreeding to analyze genetic architecture of adaptation to conditions not currently experienced by the species but with high probability of encounter in the near future due to global climate change. We performed targeted interpopulation crossing using genotypes from two core and two peripheral Triticum dicoccoides populations and raised the parents and three generations of hybrids in a greenhouse under simulated desert conditions to analyze the genetic architecture of adaptation to these conditions and an effect of gene flow from plants having different origin. The hybrid (F1) fitness did not differ from that of the parents in crosses where both plants originated from the species core, but in crosses involving one parent from the species core and another one from the species periphery the fitness of F1 was consistently higher than that of the periphery-originated parent. Plant fitness in the next two generations (F2 and F3) did not differ from the F1, suggesting that effects of epistatic interactions between recombining and segregating alleles of genes contributing to fitness were minor or absent. The observed low importance of epistatic gene interactions in allopolyploid T. dicoccoides and low probability of hybrid breakdown appear to be the result of permanent fixation of heterozygosity and lack of intergenomic recombination in this species. At the same time, predominant but not complete selfing combined with an advantage of bivalent pairing of homologous chromosomes appears to maintain high genetic variability in T. dicoccoides, greatly enhancing its adaptive ability.
Collapse
Affiliation(s)
- S Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - D Ormanbekova
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - K Yermekbayev
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Y Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - I Shulgina
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Mattila TM, Aalto EA, Toivainen T, Niittyvuopio A, Piltonen S, Kuittinen H, Savolainen O. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization. Mol Ecol 2016; 25:581-97. [PMID: 26600237 DOI: 10.1111/mec.13489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Esa A Aalto
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Tuomas Toivainen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, 90014, Oulu, Finland
| | - Anne Niittyvuopio
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Susanna Piltonen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Helmi Kuittinen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Outi Savolainen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, 90014, Oulu, Finland
| |
Collapse
|
26
|
Zhang JJ, Montgomery BR, Huang SQ. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species. AOB PLANTS 2016; 8:plw032. [PMID: 27178066 PMCID: PMC4940505 DOI: 10.1093/aobpla/plw032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/27/2016] [Indexed: 05/14/2023]
Abstract
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids.
Collapse
Affiliation(s)
- Jin-Ju Zhang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Benjamin R Montgomery
- Division of Natural Sciences & Engineering, University of South Carolina Upstate, Spartanburg, SC 29303, USA
| | - Shuang-Quan Huang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
27
|
Videvall E, Sletvold N, Hagenblad J, Ågren J, Hansson B. Strong Maternal Effects on Gene Expression inArabidopsis lyrataHybrids. Mol Biol Evol 2015; 33:984-94. [DOI: 10.1093/molbev/msv342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Remington DL, Figueroa J, Rane M. Timing of shoot development transitions affects degree of perenniality in Arabidopsis lyrata (Brassicaceae). BMC PLANT BIOLOGY 2015; 15:226. [PMID: 26381240 PMCID: PMC4573309 DOI: 10.1186/s12870-015-0606-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/06/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Perenniality is best understood in quantitative terms, involving the relationship between production vs. turnover of meristems, biomass, or energy reserves. Previous quantitative trait locus (QTL) studies using divergent populations of the perennial rock cress Arabidopsis lyrata have shown that trade-offs in vegetative growth vs. reproduction are due to cascading effects of differences in early vegetative development, which contribute to local adaptation. However, details of the developmental differences and how they affect perenniality remained unclear. In this study, we investigated in detail the developmental differences in perenniality between populations. A. lyrata from Norway and North Carolina populations, representing contrasting environments and degrees of perenniality, were grown under controlled conditions, and data were collected on plant phenology and shoot-level development. We tested hypotheses that differences in perenniality involve strict allocation of lateral meristems to vegetative vs. reproductive fates, or alternatively quantitative effects of pre-reproductive vegetative development. RESULTS The two populations showed large differences in the degree of vegetative development on individual shoots prior to reproductive transitions. The number of leaves produced on shoots prior to bolting, and not strict meristem allocation or variation in apical dominance, was able to explain variation in the number of inflorescences on individual plants. These results suggested that allocation of time to shoot vegetative vs. reproductive development could be a major factor in resource allocation differences between the populations. CONCLUSIONS Based on these results and those of previous QTL studies, we propose a model in which the degree of shoot vegetative development shapes the developmental context for reproduction and subsequent vegetative growth in different environments. Climate-specific effects of shoot development patterns on reproductive output and survival may result in divergent evolutionary trajectories along a perenniality continuum, which may have broader relevance for plant life history evolution.
Collapse
Affiliation(s)
- David L Remington
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| | - Jennifer Figueroa
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| | - Mitali Rane
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| |
Collapse
|
29
|
Stelkens RB, Schmid C, Seehausen O. Hybrid breakdown in cichlid fish. PLoS One 2015; 10:e0127207. [PMID: 25996870 PMCID: PMC4440740 DOI: 10.1371/journal.pone.0127207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Studies from a wide diversity of taxa have shown a negative relationship between genetic compatibility and the divergence time of hybridizing genomes. Theory predicts the main breakdown of fitness to happen after the F1 hybrid generation, when heterosis subsides and recessive allelic (Dobzhansky-Muller) incompatibilities are increasingly unmasked. We measured the fitness of F2 hybrids of African haplochromine cichlid fish bred from species pairs spanning several thousand to several million years divergence time. F2 hybrids consistently showed the lowest viability compared to F1 hybrids and non-hybrid crosses (crosses within the grandparental species), in agreement with hybrid breakdown. Especially the short- and long-term survival (2 weeks to 6 months) of F2 hybrids was significantly reduced. Overall, F2 hybrids showed a fitness reduction of 21% compared to F1 hybrids, and a reduction of 43% compared to the grandparental, non-hybrid crosses. We further observed a decrease of F2 hybrid viability with the genetic distance between grandparental lineages, suggesting an important role for negative epistatic interactions in cichlid fish postzygotic isolation. The estimated time window for successful production of F2 hybrids resulting from our data is consistent with the estimated divergence time between the multiple ancestral lineages that presumably hybridized in three major adaptive radiations of African cichlids.
Collapse
Affiliation(s)
| | - Corinne Schmid
- Department of Aquatic Ecology and Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Ole Seehausen
- Department of Aquatic Ecology and Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
30
|
Genetic and fitness consequences of interpopulation mating in Dianthus guliae Janka: conservation implications for severely depleted and isolated plant populations. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Toräng P, Wunder J, Obeso JR, Herzog M, Coupland G, Ågren J. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina. THE NEW PHYTOLOGIST 2015; 206:459-470. [PMID: 25422098 DOI: 10.1111/nph.13176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Information about the incidence and magnitude of local adaptation can help to predict the response of natural populations to a changing environment, and should be of particular interest in arctic and alpine environments where the effects of climate change are expected to be severe. To quantify adaptive differentiation in the arctic-alpine perennial herb Arabis alpina, we conducted reciprocal transplant experiments for 3 yr between Spanish and Scandinavian populations. At the sites of one Spanish and one Scandinavian population, we planted seedlings representing two Spanish and four Scandinavian populations, and recorded survival, flowering propensity and fecundity. The experiment was replicated in two subsequent years. The results demonstrate strong adaptive differentiation between A. alpina populations from the two regions. At the field site in Spain, survival and fruit production of Spanish populations were higher than those of Scandinavian populations, while the opposite was true at the site in Scandinavia, and these differences were consistent across years. By comparison, fitness varied little among populations from the same region. The results suggest that the magnitude and geographical scale of local adaptation need to be considered in predictions of the effects of global change on the dynamics of arctic and alpine plant populations.
Collapse
Affiliation(s)
- Per Toräng
- Department of Plant Ecology and Evolution, EBC, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Jörg Wunder
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - José Ramón Obeso
- Research Unit of Biodivesity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600, Mieres, Spain
| | - Michel Herzog
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - Jon Ågren
- Department of Plant Ecology and Evolution, EBC, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
32
|
Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol 2014; 23:5649-62. [DOI: 10.1111/mec.12938] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/07/2014] [Accepted: 09/21/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Ian J. Wang
- Department of Environmental Science, Policy, and Management; University of California; 130 Mulford Hall #3114 Berkeley CA 94705 USA
| | - Gideon S. Bradburd
- Center for Population Biology; Department of Evolution and Ecology; University of California; 2320 Storer Hall 1 Shields Ave Davis CA 95616 USA
| |
Collapse
|
33
|
Bock DG, Andrew RL, Rieseberg LH. On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 2014; 23:4899-911. [PMID: 25223488 DOI: 10.1111/mec.12920] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 01/30/2023]
Abstract
Is DNA variation maintained in organelle genomes selectively neutral? The answer to this question has important implications for many aspects of ecology and evolution. While traditionally the answer has been 'yes', recent studies in animals have shown that, on the contrary, mitochondrial DNA polymorphism is frequently adaptive. In plants, however, the neutrality assumption has not been strongly challenged. Here, we begin with a critical evaluation of arguments in favour of this long-held view. We then discuss the latest empirical evidence for the opposing prediction that sequence variation in plant cytoplasmic genomes is frequently adaptive. While outstanding research progress is being made towards understanding this fundamental topic, we highlight the need for studies that combine information ranging from field experiments to physiology to molecular evolutionary biology. Such an interdisciplinary approach provides a means for determining the frequency, drivers and evolutionary significance of adaptive organelle DNA variation.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany, Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd., Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
34
|
Falahati-Anbaran M, Lundemo S, Ansell SW, Stenøien HK. Contrasting patterns of genetic structuring in natural populations of Arabidopsis lyrata Subsp. petraea across different regions in northern Europe. PLoS One 2014; 9:e107479. [PMID: 25226024 PMCID: PMC4166467 DOI: 10.1371/journal.pone.0107479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/11/2014] [Indexed: 01/08/2023] Open
Abstract
Level and partitioning of genetic diversity is expected to vary between contrasting habitats, reflecting differences in strength of ecological and evolutionary processes. Therefore, it is necessary to consider processes acting on different time scales when trying to explain diversity patterns in different parts of species' distributions. To explore how historical and contemporary factors jointly may influence patterns of genetic diversity and population differentiation, we compared genetic composition in the perennial herb Arabidopsis lyrata ssp. petraea from the northernmost parts of its distribution range on Iceland to that previously documented in Scandinavia. Leaf tissue and soil were sampled from ten Icelandic populations of A. lyrata. Seedlings were grown from soil samples, and tissue from above-ground and seed bank individuals were genotyped with 21 microsatellite markers. Seed bank density in Icelandic populations was low but not significantly different from that observed in Norwegian populations. While within-population genetic diversity was relatively high on Iceland (H(E) = 0.35), among-population differentiation was low (F(ST) = 0.10) compared to Norwegian and Swedish populations. Population differentiation was positively associated with geographical distance in both Iceland and Scandinavia, but the strength of this relationship varied between regions. Although topography and a larger distribution range may explain the higher differentiation between mountainous Norwegian relative to lowland populations in Sweden, these factors cannot explain the lower differentiation in Icelandic compared to Swedish populations. We propose that low genetic differentiation among Icelandic populations is not caused by differences in connectivity, but is rather due to large historical effective population sizes. Thus, rather than contemporary processes, historical factors such as survival of Icelandic lineages in northern refugia during the last glacial period may have contributed to the observed pattern.
Collapse
Affiliation(s)
- Mohsen Falahati-Anbaran
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; School of Biology and Center of Excellence in Phylogeny of Living Organisms, University of Tehran, Tehran, Iran
| | - Sverre Lundemo
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Stephen W Ansell
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Hans K Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
35
|
Dobler R, Rogell B, Budar F, Dowling DK. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol 2014; 27:2021-34. [DOI: 10.1111/jeb.12468] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Affiliation(s)
- R. Dobler
- Institute of Evolution and Ecology; University of Tübingen; Tübingen Germany
| | - B. Rogell
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - F. Budar
- UMR 1318; Institut Jean-Pierre Bourgin; INRA; Versailles France
- UMR 1318; Institut Jean-Pierre Bourgin; AgroParisTech; Versailles France
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
36
|
Weinig C, Ewers BE, Welch SM. Ecological genomics and process modeling of local adaptation to climate. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:66-72. [PMID: 24631846 DOI: 10.1016/j.pbi.2014.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Locally adapted genotypes have higher fitness in their native site in comparison to foreign genotypes. Recent studies have demonstrated both local adaptation to and genomic associations with a range of climate variables. For climate adaptation, the most common genomic pattern is conditional neutrality, as proven by weak across-environment correlations, frequent SNP×environment interactions, and the topology of some developmental and physiological pathways potentially involved in local adaptation. Genomic association approaches readily translate to non-model systems, and genetically explicit climate envelope models will predict future species' distributions under changing climates. Here, we review recent evidence for local adaptation to climate, focusing primarily on the model system, Arabidopsis thaliana, and on studies incorporating genomic tools into field studies or climate analyses.
Collapse
Affiliation(s)
- Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA; Program in Ecology, University of Wyoming, Laramie, WY 82071, USA; Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA; Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
37
|
Remington DL, Leinonen PH, Leppälä J, Savolainen O. Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations. Genetics 2013; 195:1087-102. [PMID: 23979581 PMCID: PMC3813839 DOI: 10.1534/genetics.113.151803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.
Collapse
Affiliation(s)
- David L Remington
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | | | | | | |
Collapse
|
38
|
Fischer I, Steige KA, Stephan W, Mboup M. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 2013; 8:e78182. [PMID: 24205149 PMCID: PMC3799731 DOI: 10.1371/journal.pone.0078182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
- * E-mail:
| | - Kim A. Steige
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
39
|
Cytoplasmic male sterility contributes to hybrid incompatibility between subspecies of Arabidopsis lyrata. G3-GENES GENOMES GENETICS 2013; 3:1727-40. [PMID: 23935000 PMCID: PMC3789797 DOI: 10.1534/g3.113.007815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In crosses between evolutionarily diverged populations, genomic incompatibilities may result in sterile hybrids, indicating evolution of reproductive isolation. In several plant families, crosses within a population can also lead to male sterile progeny because of conflict between the maternally and biparentally inherited genomes. We examined hybrid fertility between subspecies of the perennial outcrossing self-incompatible Lyrate rockcress (Arabidopsis lyrata) in large reciprocal F2 progenies and three generations of backcrosses. In one of the reciprocal F2 progenies, almost one-fourth of the plants were male-sterile. Correspondingly, almost one-half of the plants in one of the four reciprocal backcross progenies expressed male sterility. In an additional four independent F2 and backcross families, three segregated male sterility. The observed asymmetrical hybrid incompatibility is attributable to male sterility factors in one cytoplasm, for which the other population lacks effective fertility restorers. Genotyping of 96 molecular markers and quantitative trait locus mapping revealed that only 60% of the plants having the male sterile cytoplasm and lacking the corresponding restorers were phenotypically male-sterile. Genotyping data showed that there is only one restorer locus, which mapped to a 600-kb interval at the top of chromosome 2 in a region containing a cluster of pentatricopeptide repeat genes. Male fertility showed no trade-off with seed production. We discuss the role of cytoplasm and genomic conflict in incipient speciation and conclude that cytoplasmic male sterility–lowering hybrid fitness is a transient effect with limited potential to form permanent reproductive barriers between diverged populations of hermaphrodite self-incompatible species.
Collapse
|
40
|
Avia K, Pilet-Nayel ML, Bahrman N, Baranger A, Delbreil B, Fontaine V, Hamon C, Hanocq E, Niarquin M, Sellier H, Vuylsteker C, Prosperi JM, Lejeune-Hénaut I. Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2353-66. [PMID: 23778689 DOI: 10.1007/s00122-013-2140-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/01/2013] [Indexed: 05/10/2023]
Abstract
Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R (2) ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants' capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3-6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.
Collapse
Affiliation(s)
- Komlan Avia
- Institut National de la Recherche Agronomique, UMR 1281 SADV, Estrées-Mons, Péronne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion. Genetics 2013; 194:697-708. [PMID: 23666938 DOI: 10.1534/genetics.113.152561] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson-Dobzhansky-Muller (BDM) incompatibilities. We can detect these from marker transmission ratio distortion (TRD) in hybrid progenies of crosses between species or populations, where TRD is expected to result from selection against heterospecific allele combinations in hybrids. TRD may also manifest itself because of intragenomic conflicts or competition between gametes or zygotes. We studied early stage speciation in Arabidopsis lyrata by investigating patterns of TRD across the genome in F2 progenies of three reciprocal crosses between four natural populations. We found that the degree of TRD increases with genetic distance between crossed populations, but also that reciprocal progenies may differ substantially in their degree of TRD. Chromosomes AL6 and especially AL1 appear to be involved in many single- and two-locus distortions, but the location and source of TRD vary between crosses and between reciprocal progenies. We also found that the majority of single- and two-locus TRD appears to have a gametic, as opposed to zygotic, origin. Thus, while theory on BDM incompatibilities is typically illustrated with derived nuclear alleles proving incompatible in hybrid zygotes, our results suggest a prominent role for distortions emerging before zygote formation.
Collapse
|
42
|
Vergeer P, Kunin WE. Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. THE NEW PHYTOLOGIST 2013; 197:989-1001. [PMID: 23278159 DOI: 10.1111/nph.12060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/20/2012] [Indexed: 06/01/2023]
Abstract
Widely distributed species, such as the perennial plant Arabidopsis lyrata, face a range of environmental conditions across space, creating selective pressures for local evolutionary adaptation. The species' fragmented distribution may reduce gene flow, which could either reduce or increase adaptive potential. The substantial variation in phenotypic traits observed across this species' northwestern European range may reflect a combination of plastic responses to environmental conditions, evolutionary adaptation and nonadaptive genetic differentiation. We conducted multi-site common garden experiments to study differences in plant performance in core and marginal areas. Plants from eight source populations representing the species' full geographic and altitudinal range in northwestern Europe were planted out in Iceland, Sweden, Scotland and Wales. We found evidence of both strong plastic responses and apparently adaptive differentiation in performance. Most evidence for local adaptation was found at range margins, with the strongest effects on reproductive output. Both biotic and abiotic factors affected performance, especially at range margins. Performance of most plants was best in the Scottish and Swedish common garden sites, in the core of the species' distribution. Despite adaptations at range margins, the performance of the species declines at distributional limits, with extreme southern populations looking particularly vulnerable.
Collapse
Affiliation(s)
- Philippine Vergeer
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - William E Kunin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
43
|
Greiner S, Bock R. Tuning a ménage à trois: Co-evolution and co-adaptation of nuclear and organellar genomes in plants. Bioessays 2013; 35:354-65. [DOI: 10.1002/bies.201200137] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Ching J, Musheyev SA, Chowdhury D, Kim JA, Choi Y, Dennehy JJ. MIGRATION ENHANCES ADAPTATION IN BACTERIOPHAGE POPULATIONS EVOLVING IN ECOLOGICAL SINKS. Evolution 2012; 67:10-7. [DOI: 10.1111/j.1558-5646.2012.01742.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Pyhäjärvi T, Aalto E, Savolainen O. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:1314-1322. [PMID: 22822172 DOI: 10.3732/ajb.1100580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation. METHODS We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence. KEY RESULTS Estimated divergence times varied from 130,000 generations between North American and European subspecies to 39,000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhumäki population. Local adaptation among Northern and central European populations has emerged during the last 39,000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ∼70,000 generations but still have shared nucleotide polymorphism. CONCLUSIONS In A. lyrata, reproductively isolated populations started to diverge ∼70,000 generations ago and more closely related, locally adapted populations have been separate lineages for ∼39,000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.
Collapse
|
46
|
Leinonen PH, Remington DL, Leppälä J, Savolainen O. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata. Mol Ecol 2012; 22:709-23. [PMID: 22724431 DOI: 10.1111/j.1365-294x.2012.05678.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding how genetic variation at individual loci contributes to adaptation of populations to different local environments is an important topic in modern evolutionary biology. To date, most evidence has pointed to conditionally neutral quantitative trait loci (QTL) showing fitness effects only in some environments, while there has been less evidence for single-locus fitness trade-offs. At QTL underlying local adaptation, alleles from the local population are expected to show a fitness advantage. Cytoplasmic genomes also can have a role in local adaptation, but the role of cytonuclear interactions in adaptive differentiation has remained largely unknown. We mapped genomic regions underlying adaptive differentiation in multiple fitness components and flowering time in diverged populations of a perennial plant Arabidopsis lyrata. Experimental hybrids for this purpose were grown in natural field conditions of the parental populations in Norway and North Carolina (NC), USA, and in the greenhouse. We found QTL where high fitness and early flowering were associated with local alleles, indicating a role of different selection pressures in phenotypic differentiation. At two QTL regions, a fitness component showing local adaptation between the parental populations also showed signs of putative fitness trade-offs. Beneficial dominance effects of conditionally neutral QTL for different fitness components resulted in hybrid vigour at the Norwegian site in the F(2) hybrids. We also found that cytoplasmic genomes contributed to local adaptation and hybrid vigour by interacting with nuclear QTL, but these interactions did not show evidence for cytonuclear coadaptation (high fitness of local alleles combined with the local cytoplasm).
Collapse
|
47
|
Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol Ecol 2012; 22:699-708. [PMID: 22420446 DOI: 10.1111/j.1365-294x.2012.05522.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Divergent natural selection promotes local adaptation and can lead to reproductive isolation of populations in contrasting environments; however, the genetic basis of local adaptation remains largely unresolved in natural populations. Local adaptation might result from antagonistic pleiotropy, where alternate alleles are favoured in distinct habitats, and polymorphism is maintained by selection. Alternatively, under conditional neutrality some alleles may be favoured in one environment but neutral at other locations. Antagonistic pleiotropy maintains genetic variation across the landscape; however, there is a systematic bias against discovery of antagonistic pleiotropy because the fitness benefits of local alleles need to be significant in at least two environments. Here, we develop a generally applicable method to investigate polygenic local adaptation and identify loci that are the targets of selection. This approach evaluates allele frequency changes after selection at loci across the genome to distinguish antagonistic pleiotropy from conditional neutrality and deleterious variation. We investigate local adaptation at the qualitative trait loci (QTL) level in field experiments, in which we expose 177 F(6) recombinant inbred lines and parental lines of Boechera stricta (Brassicaceae) to their parental environments over two seasons. We demonstrate polygenic selection for native alleles in both environments, with 2.8% of the genome exhibiting antagonistic pleiotropy and 8% displaying conditional neutrality. Our study strongly supports antagonistic pleiotropy at one large-effect flowering phenology QTL (nFT): native homozygotes had significantly greater probabilities of flowering than foreign homozygotes in both parental environments. Such large-scale field studies are essential to elucidate the genetic basis of adaptation in natural populations.
Collapse
Affiliation(s)
- Jill T Anderson
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
48
|
Weigel D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. PLANT PHYSIOLOGY 2012; 158:2-22. [PMID: 22147517 PMCID: PMC3252104 DOI: 10.1104/pp.111.189845] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/05/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- Outi Savolainen
- Department of Biology, FIN-90014, University of Oulu, Finland.
| |
Collapse
|
50
|
Effects of causal networks on the structure and stability of resource allocation trait correlations. J Theor Biol 2011; 293:1-14. [PMID: 22004994 DOI: 10.1016/j.jtbi.2011.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 11/23/2022]
Abstract
Discovering the mechanisms by which genetic variation influences phenotypes is integral to understanding life-history evolution. Models describing causal relationships among traits in a developmental hierarchy provide a functional basis for understanding the correlations often observed among life-history traits. In this paper, we evaluate a developmental network model of life-history traits based on the perennial herb Arabidopsis lyrata, evaluate phenotypic, genetic, and environmental covariance matrices obtained under different scenarios of quantitative trait locus (QTL) effects in simulated crosses, test the efficacy of structural equation modeling to identify the correct basis for multiple-trait QTL effects, and compare model predictions with field data. We found that the trait network constrained the phenotypic covariance patterns to varying degrees, depending on which traits were directly affected by QTLs. Genetic and environmental covariance matrices were strongly correlated only when direct QTL effects were spread over many traits. Structural equation models that included all simulated traits correctly identified traits directly affected by QTLs, but heuristic search algorithms found several network structures other than the correct one that also fit the data closely. Estimated correlations among a subset of traits in F(2) data from field studies corresponded closely to model predictions when simulated QTLs affected traits known to differ between the parental populations. Our results show that causal trait network models can unify several aspects of quantitative genetic theory with empirical observations on genetic and phenotypic covariance patterns, and that incorporating trait networks into genetic analysis offers promise for elucidating mechanisms of life history evolution.
Collapse
|