1
|
Lee SS, Lee HS, Xu Z, Ushio M, Zhang X, Liu H. Community stability of free-living and particle-attached prokaryotes in coastal waters across four seasons: insights from 9.5 years of weekly sampling. MARINE POLLUTION BULLETIN 2025; 216:117990. [PMID: 40253970 DOI: 10.1016/j.marpolbul.2025.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Free-living (FL) and particle-attached (PA) prokaryotes, having distinct ecological niches, play significant roles in marine ecosystems. These communities respond rapidly to environmental changes and exhibit seasonal patterns. However, their temporal stability, crucial for maintaining microbial community structure and function, remains poorly understood. This study assessed community stability, particularly in terms of resistance to environmental perturbations, and inferred regulatory mechanisms using weekly collected samples over 9.5 years from FL and PA communities in coastal water. Short-read amplicon sequencing revealed habitat-specific microbial compositions, with Actinobacteria and Euryarchaeota dominating FL community, while Planctomycetes and Verrucomicrobia prevailed in PA community. Network analysis, constructed based on relative abundance, uncovered seasonal co-occurrence patterns and highlighted keystone taxa, such as Nitrosopumilus in FL and Synechococcus in PA community, as critical for maintaining stability within specific seasons and niches. Seasonal variations in community stability indices suggest that higher network complexity can enhance resistance; however, excessive interactions with greater complexity may also undermine it. Furthermore, it was found that FL community stability was primarily affected by abiotic factors, likely due to direct exposure to environmental changes, whereas PA community stability was more influenced by biotic factors, as their association with particles fosters localized interactions and biological processes. These findings reveal the intricate balance between network complexity and stability and the importance of niche-specific approaches in ecological research. Our results contribute to a deeper understanding of marine microbial niche partitioning and provide insights into ecosystem management and conservation strategies, particularly regarding keystone taxa.
Collapse
Affiliation(s)
- Sangwook Scott Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Han Seul Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Haide College, Ocean University of China, Qingdao, China
| | - Masayuki Ushio
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, China.
| |
Collapse
|
2
|
Fan F, Ren Y, Mao Z, Li B, Yu C, Gao J, Gu Y, Ding J, Li H, Wu QL. Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu. FEMS Microbiol Ecol 2025; 101:fiaf038. [PMID: 40205528 PMCID: PMC12005152 DOI: 10.1093/femsec/fiaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025] Open
Abstract
Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.
Collapse
Affiliation(s)
- Fangwei Fan
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yichen Ren
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, PR China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| | - Biao Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Chunyan Yu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jiawei Gao
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yu Gu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianing Ding
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huabing Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| | - Qinglong L Wu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| |
Collapse
|
3
|
Zhang D, Bao Y, Wang Y, Feng J, Li R, Du Y, Wang D, Chen F, Li S, Wen J, Chen Z. Coalescence characteristics of free-living and particle-attached bacteria in a cascade river-reservoir system: A case study of the Jinsha River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124088. [PMID: 39805160 DOI: 10.1016/j.jenvman.2025.124088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria. Minimal differences in microbial composition were observed across water layers (surface, middle, and bottom). Analyses of overlapping ASVs, Bray-Curtis dissimilarity, and the SourceTracker algorithm revealed a significant difference in the coalescence ability of FL and PA bacteria, particularly in the surface water of XJB (FL: 31.1% ± 2.0%, PA: 27.6% ± 2.5%, p < 0.05). The coalescence of FL bacteria was primarily influenced by the mixing of adjacent water layers, while PA bacteria exhibited significant geographical variations across water layers (p < 0.05), displaying lower coalescence compared to FL bacteria. Using a cohesion metric, 12 keystone species in PA bacteria were identified and 7 in FL bacteria. Proteobacteria and Bacteroidetes were the most abundant phyla at the keystone species in PA and FL bacteria, respectively. The abundance of keystone ASVs decreased with distance in PA bacteria, whereas FL bacteria showed the opposite trend. At the genus level, Brevundimonas and Chryseobacterium were identified as keystone species in both lifestyles. Moreover, the impact of community coalescence on the stability tends to exhibit differences downstream in cascade stations. This study provides novel insights into the dynamic variations of microbial communities with diverse lifestyles in stratified aquatic environments and assesses the impact of dam construction on microbial coalescence and the alteration of keystone species.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Yufei Bao
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Yuchun Wang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jingjie Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanliang Du
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Dianchang Wang
- Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Fei Chen
- Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Shanze Li
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Jie Wen
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhuo Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Cheung HLS, Simister RL, Not C, Crowe SA. Microbial community respiration kinetics and their dynamics in coastal seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176119. [PMID: 39307367 DOI: 10.1016/j.scitotenv.2024.176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
Oxygen (O2) concentrations in coastal seawater have been declining for decades and models predict continued deoxygenation into the future. As O2 declines, metabolic energy use is progressively channelled from higher trophic levels into microbial community respiration, which in turn influences coastal ecology and biogeochemistry. Despite its critical role in deoxygenation and ecosystem functioning, the kinetics of microbial respiration at low O2 concentrations in coastal seawater remain uncertain and are mostly modeled based on parameters derived from laboratory cultures and a limited number of environmental observations. To explore microbial responses to declining O2, we measured respiration kinetics in coastal microbial communities in Hong Kong over the course of an entire year. We found the mean maximum respiration rate (Vmax) ranged between 560 ± 280 and 5930 ± 800 nmol O2 L-1 h-1, with apparent half-saturation constants (Km) for O2 uptake of between 50 ± 40 and 310 ± 260 nmol O2 L-1. These kinetic parameters vary seasonally in association with shifts in microbial community composition that were linked to nutrient availability, temperature, and biological productivity. In general, coastal communities in Hong Kong exhibited low affinities for O2, yet communities in the dry season had higher affinities, which may play a key role in shaping the relationship between community size, biomass, and O2 consumption rates through respiration. Overall, parameters derived from these experiments can be employed in models to predict the expansion of deoxygenated waters and associated effects on coastal ecology and biogeochemistry.
Collapse
Affiliation(s)
- Henry L S Cheung
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Rachel L Simister
- Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Sean A Crowe
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada.
| |
Collapse
|
5
|
Van Le V, Kang M, Ko SR, Park CY, Lee JJ, Choi IC, Oh HM, Ahn CY. Response of particle-attached and free-living bacterial communities to Microcystis blooms. Appl Microbiol Biotechnol 2024; 108:42. [PMID: 38183480 DOI: 10.1007/s00253-023-12828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Le VV, Ko SR, Shin Y, Kim K, Ahn CY. Succession of particle-attached and free-living bacterial communities in response to microalgal dynamics induced by the biological cyanocide paucibactin A. CHEMOSPHERE 2024; 358:142197. [PMID: 38692365 DOI: 10.1016/j.chemosphere.2024.142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Microalgae, including cyanobacteria and eukaryotic algae, are hotspots of primary production and play a critical role in global carbon cycling. However, these species often form blooms that poses a threat to aquatic ecosystems. Although the use of bacteria-derived cyanocides is regarded as an environmentally friendly method for controlling cyanobacterial blooms, only a few studies have examined their potential impact on ecosystems. This study is the first to explore the response of particle-attached (PA) and free-living (FL) bacteria to the dynamics of microalgal communities induced by the biological cyanocide paucibactin A. The microalgal community dynamics were divided into two distinct phases [phase I (days 0-2) and phase II (days 3-7)]. In phase I, paucibactin A caused a sudden decrease in the cyanobacterial concentration. Phase II was characterized by increased growth of eukaryotic microalgae (Scenedesmus, Pediastrum, Selenastrum, and Coelastrum). The stability of the bacterial community and the contribution of stochastic processes to community assembly were more pronounced in phase II than in phase I. The microalgal dynamics triggered by paucibactin A coincided with the succession of the PA and FL bacterial communities. The lysis of cyanobacteria in phase I favored the growth of microbial organic matter degraders in both the PA (e.g., Aeromonas and Rheinheimera) and FL (e.g., Vogesella) bacterial communities. In phase II, Lacibacter, Phycisphaeraceae, and Hydrogenophaga in the PA bacterial community and Lacibacter, Peredibacter, and Prosthecobacter in the FL bacterial community showed increased relative abundances. Overall, the FL bacterial community exhibited greater sensitivity to the two sequential processes compared with the PA bacterial community. These results highlight the need for studies evaluating the impact of biological cyanocides on aquatic ecosystems when used to control natural cyanobacterial blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yuna Shin
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Wang S, Zhuang Y, Gao L, Huang H, Zhang X, Jia S, Shi P, Zhang XX. Deciphering the dynamics and driving mechanisms of high-risk antibiotic resistome in size-fractionated bacterial community during drinking water chlorination via metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133572. [PMID: 38280321 DOI: 10.1016/j.jhazmat.2024.133572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
To reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.005 copies/cell (cpc), bacitracin and chloramphenicol resistance types were major contributors. Furthermore, chlorination significantly increased the relative abundance of mobile genetic elements (MGEs) in the free-living fraction, while decreasing it in the particle-associated fraction. During chlorination, size-fractionated bacterial communities varied considerably. Multiple statistical analyses highlighted the pivotal role of the bacterial community in altering high-risk ARGs in both the free-living and particle-associated fractions, while MGEs had a more pronounced impact on high-risk ARGs in the free-living fraction. Specifically, the enrichment of pathogenic hosts, such as Comamonas and Pseudomonas, led to an increase in the abundance of high-risk ARGs. Concurrently, MGEs exhibited significant correlations with high-risk ARGs, indicating the potential of horizontal transfer of high-risk ARGs. These findings provide novel insights for mitigating antibiotic resistance risk by considering different bacterial fractions and respective risk ranks in drinking water.
Collapse
Affiliation(s)
- Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongbin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xian WD, Ding J, Chen J, Qu W, Cao P, Tang C, Liu X, Zhang Y, Li JL, Wang P, Li WJ, Wang J. Distinct Assembly Processes Structure Planktonic Bacterial Communities Among Near- and Offshore Ecosystems in the Yangtze River Estuary. MICROBIAL ECOLOGY 2024; 87:42. [PMID: 38356037 PMCID: PMC11385042 DOI: 10.1007/s00248-024-02350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.
Collapse
Affiliation(s)
- Wen-Dong Xian
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Junjie Ding
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jinhui Chen
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Pinglin Cao
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Chunyu Tang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Yiying Zhang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China.
| |
Collapse
|
10
|
Jia S, Wang S, Zhuang Y, Gao L, Zhang X, Ye L, Zhang XX, Shi P. Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. WATER RESEARCH 2024; 249:120922. [PMID: 38043346 DOI: 10.1016/j.watres.2023.120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.
Collapse
Affiliation(s)
- Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
11
|
Xu X, Wang S, Li C, Li J, Gao F, Zheng L. Quorum sensing bacteria in microplastics epiphytic biofilms and their biological characteristics which potentially impact marine ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115444. [PMID: 37690175 DOI: 10.1016/j.ecoenv.2023.115444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Microplastics (MPs) have been shown to be a new type of pollutant in the oceans, with complex biofilms attached to their surfaces. Bacteria with quorum sensing (QS) systems are important participants in biofilms. Such bacteria can secrete and detect signal molecules. When a signal molecule reaches its threshold level, bacteria with QS systems can perform several biological functions, such as biofilm formation and antibiotic metabolite production. However, the ecological effects of QS bacteria in biofilm as MPs distribute globally with ocean currents are not to be elucidate yet. In this study, polypropylene and polyvinyl chloride were selected for on-site enrichment to acquire microplastics with biofilms. Eight culturable QS bacteria in the resulting biofilm were isolated by using biosensor assays, and their biodiversity was analyzed. The profiles of the N-acyl-homoserine lactones (AHLs) produced by these bacteria were analyzed by using thin-layer chromatography (TLC)-bioautography and gas chromatography and mass spectrometry (GC-MS). Biofilm-forming properties and several biological characteristics, such as bacteriostasis, algal inhibition, and dimethylsulfoniopropionate (DMSP) degradation, were explored along with QS quenching. Results showed that QS bacteria were mainly affiliated with class Alphaproteobacteria, particularly Rhodobacteraceae, followed by class Gammaproteobacteria. TLC-bioautography and GC-MS analyses revealed that seven AHLs, namely, C6-HSL, C8-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL, 3-oxo-C10-HSL, and two unidentified AHLs were produced. The QS system equipped bacteria with strong biofilm-forming capacity and may contribute to the keystone roles of Rhodobacteraceae. In addition, QS bacteria may exacerbate the adverse environmental effects of MPs, such as inducing the misfeeding of planktons on MPs. This study elucidated the diversity of QS bacteria in MP-associated biofilms and provided a new perspective of the effect of key membrane-forming bacteria on the marine ecological environment.
Collapse
Affiliation(s)
- Xiyuan Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shuai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengxuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenglei Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
12
|
Xie X, Yuan K, Chen X, Zhao Z, Huang Y, Hu L, Liu H, Luan T, Chen B. Characterization of metal resistance genes carried by waterborne free-living and particle-attached bacteria in the Pearl River Estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121547. [PMID: 37028791 DOI: 10.1016/j.envpol.2023.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Toxic metals can substantially change the bacterial community and functions thereof in aquatic environments. Herein, metal resistance genes (MRGs) are the core genetic foundation for microbial responses to the threats of toxic metals. In this study, waterborne bacteria collected from the Pearl River Estuary (PRE) were separated into the free-living bacteria (FLB) and particle-attached bacteria (PAB), and analyzed using metagenomic approaches. MRGs were ubiquitous in the PRE water and mainly related to Cu, Cr, Zn, Cd and Hg. The levels of PAB MRGs in the PRE water ranged from 8.11 × 109 to 9.93 × 1012 copies/kg, which were significantly higher than those of the FLB (p < 0.01). It could be attributed to a large bacterial population attached on the suspended particulate matters (SPMs), which was evidenced by a significant correlation between the PAB MRGs and 16S rRNA gene levels in the PRE water (p < 0.05). Moreover, the total levels of PAB MRGs were also significantly correlated with those of FLB MRGs in the PRE water. The spatial pattern of MRGs of both FLB and PAB exhibited a declining trend from the low reaches of the PR to the PRE and on to the coastal areas, which was closely related to metal pollution degree. MRGs likely carried by plasmids were also enriched on the SPMs with a range from to 3.85 × 108 to 3.08 × 1012 copies/kg. MRG profiles and taxonomic composition of the predicted MRG hosts were significantly different between the FLB and PAB in the PRE water. Our results suggested that FLB and PAB could behave differential response to heavy metals in the aquatic environments from the perspective of MRGs.
Collapse
Affiliation(s)
- Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Xin Chen
- South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou, 510300, China
| | - Zongshan Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongtao Liu
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510300, China
| | - Tiangang Luan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
13
|
Puigcorbé V, Ruiz-González C, Masqué P, Gasol JM. Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas. Front Microbiol 2023; 14:1078469. [PMID: 36910225 PMCID: PMC9995690 DOI: 10.3389/fmicb.2023.1078469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters.
Collapse
Affiliation(s)
- Viena Puigcorbé
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| | - Pere Masqué
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.,International Atomic Energy Agency, City of Monaco, Monaco
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| |
Collapse
|
14
|
Liu Y, Feng Y, Jiang X, Xu S, Zhu L, Sang G. Temporal and spatial characteristics of flocculated suspended solids in a deep reservoir: an in situ observation in the Biliuhe Reservoir. ENVIRONMENTAL TECHNOLOGY 2023; 44:466-479. [PMID: 34463201 DOI: 10.1080/09593330.2021.1974951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The amount of total suspended solids (TSS) is the most visible indicator for evaluating water quality in reservoirs. Previous investigations paid more attention to TSS of the surface layer in reservoirs, while suspended particles are prone to settle, resuspend, and aggregate at the bottom of reservoir. There may be different patterns of the TSS in different depths. This study is to assess the TSS concentration by weight analysis, find the evidence of the existence of flocculated suspended particles by in situ underwater imaging analysis, and discuss the impact of the flocculation process of suspended solids on water quality in deep reservoirs. Although the TSS concentration is lower than other reservoirs with the same trophic level, many flocs were found at the bottom of the deep-water area (> 15 m) in the Biliuhe Reservoir according to the recordings of the in situ underwater camera. The further comprehensive analysis demonstrates that the fine particle in flood season and resuspension is the main source of suspended flocs at the bottom of the reservoir. While the slow settling velocity results in the flocculation of fine suspended particles and long-term residence in the bottom layer of the reservoir. TSS has a significant correlation with iron and total phosphorus. Resuspension, flocculation, and settling impact on the transport of suspended sediment and associated contaminants. The evidence from this study suggests that the impact of flocs on water quality should be further discussed to ensure water supply safety.
Collapse
Affiliation(s)
- Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Yuqing Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xin Jiang
- Water Supply and Drainage Technology Center, Water Resources Research Institute of Shandong Province, Jinan, People's Republic of China
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Shiguo Xu
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Lin Zhu
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, People's Republic of China
| | - Guoqing Sang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
15
|
Duan L, Li JL, Yin LZ, Luo XQ, Ahmad M, Fang BZ, Li SH, Deng QQ, Wang P, Li WJ. Habitat-dependent prokaryotic microbial community, potential keystone species, and network complexity in a subtropical estuary. ENVIRONMENTAL RESEARCH 2022; 212:113376. [PMID: 35561827 DOI: 10.1016/j.envres.2022.113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Microbes (e.g., bacteria and archaea) are indispensable components for the key biological processes of estuarine ecosystems and three main habitats (sediment, particle, and water) are harboring diverse estuarine microbes. However, we still know little about how the microbial community structures, potential keystone species, and network properties change among these three habitats in estuarine ecosystems. In this study, we collected size-fractioned water and sediment samples from the Pearl River Estuary to reveal their microbial diversity, community structures, network properties, and potential keystone taxa. We found that the sediment microbial community was remarkably more diverse than particle-attached (PA) and free-living (FL) communities, whereas its ecological network was less complex in terms of node distance and connectivity. TOC was determined as the main driver of sediment community, while the PA and FL communities were predominantly shaped by NO2-, non-ionic ammonia (NH) and pH. Among the bulk water, there were no significant differences between PA and FL communities in diversity, community structure, and network complexity. However, the PA community was more susceptible to metal elements, suggesting their higher level of involvement in physiological metabolism. Potential keystone taxa among community networks were taxonomically divergent in three habitats. Specifically, Synechococcales (Cyanobacteria) and Actinomarinales (Actinobacteria) exclusively served as the module-hubs in FL network, while members from phylum Proteobacteria and Bacteroidetes were the module-hubs and connectors in PA network. Potential keystone taxa in sediment network were more diverse and covered 9 phyla, including the only archaeal lineage Bathyarchaeia (Crenarchaeota). Overall, our study provided more detailed information about estuarine microbial communities in three habitats, especially the potential keystone species, which provided new perspectives on evaluating further effects of anthropogenic disturbances on estuarine microbes and facilitated the environment monitoring based on microbial community.
Collapse
Affiliation(s)
- Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China; School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
16
|
Diverse Genomic Traits Differentiate Sinking-Particle-Associated versus Free-Living Microbes throughout the Oligotrophic Open Ocean Water Column. mBio 2022; 13:e0156922. [PMID: 35862780 PMCID: PMC9426571 DOI: 10.1128/mbio.01569-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and archaea are central to the production, consumption, and remineralization of dissolved and particulate organic matter and contribute critically to carbon delivery, nutrient availability, and energy transformations in the deep ocean. To explore environmentally relevant genomic traits of sinking-particle-associated versus free-living microbes, we compared habitat-specific metagenome-assembled genomes recovered throughout the water column in the North Pacific Subtropical Gyre. The genomic traits of sinking-particle-associated versus free-living prokaryotes were compositionally, functionally, and phylogenetically distinct. Substrate-specific transporters and extracellular peptidases and carbohydrate-active enzymes were more enriched and diverse in particle-associated microbes at all depths than in free-living counterparts. These data indicate specific roles for particle-attached microbes in particle substrate hydrolysis, uptake, and remineralization. Shallow-water particle-associated microbes had elevated genomic GC content and proteome nitrogen content and reduced proteome carbon content in comparison to abyssal particle-associated microbes. An inverse trend was observed for their sympatric free-living counterparts. These different properties of attached microbes are postulated to arise in part due to elevated organic and inorganic nitrogen availability inside sinking particles. Particle-attached microbes also were enriched in genes for environmental sensing via two-component regulatory systems, and cell-cell interactions via extracellular secretion systems, reflecting their surface-adapted lifestyles. Finally, particle-attached bacteria had greater predicted maximal growth efficiencies than free-living bacterioplankton at all depths. All of these particle-associated specific genomic and proteomic features appear to be driven by microhabitat-specific elevated nutrient and energy availability as well as surface-associated competitive and synergistic ecological interactions. Although some of these characteristics have been previously postulated or observed individually, we report them together here in aggregate via direct comparisons of cooccurring free-living and sinking-particle-attached microbial genomes from the open ocean.
Collapse
|
17
|
Basili M, Techtmann SM, Zaggia L, Luna GM, Quero GM. Partitioning and sources of microbial pollution in the Venice Lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151755. [PMID: 34848267 DOI: 10.1016/j.scitotenv.2021.151755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microbial pollutants are a serious threat to human and environmental health in coastal areas. Based on the hypothesis that pollution from multiple sources may produce a distinct microbial signature and that microbial pollutants seem to distribute between a free-living and a particle-attached fraction, we investigated the occurrence, partitioning and sources of microbial pollutants in water samples collected in the Venice Lagoon (Italy). The area was taken as a case study of an environment characterized by a long history of industrial pollution and by growing human pressure. We found a variety of pollutants from several sources, with sewage-associated and faecal bacteria accounting for up to 5.98% of microbial communities. Sewage-associated pollutants were most abundant close to the city centre. Faecal pollution was highest in the area of the industrial port and was dominated by human inputs, whereas contamination from animal faeces was mainly detected at the interface with the mainland. Microbial pollutants were almost exclusively associated with the particle-attached fraction. The samples also contained other potential pathogens. Our findings stress the need for monitoring and managing microbial pollution in highly urbanized lagoon and semi-enclosed systems and suggest that management plans to reduce microbial inputs to the waterways should include measures to reduce particulate matter inputs to the lagoon. Finally, High-Throughput Sequencing combined with computational approaches proved critical to assess water quality and appears to be a valuable tool to support the monitoring of waterborne diseases.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131 Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy.
| |
Collapse
|
18
|
Zhao D, Gao P, Xu L, Qu L, Han Y, Zheng L, Gong X. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148097. [PMID: 34412405 DOI: 10.1016/j.scitotenv.2021.148097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The Bohai Sea has recently suffered several seasonal oxygen-deficiency, even hypoxia events during the summer. To better understand effects of dissolved oxygen (DO) concentration on the bacterial composition in particle attached (PA) and free living (FL) fractions during the transition from oxic water to low oxygen conditions, the bacterial communities under three different oxygen levels, i.e., high oxygen (HO, close to 100% O2 saturation), medium oxygen (MO, close to 75% O2 saturation), and low oxygen (LO, close to 50% O2 saturation) in the Bohai Sea were investigated using 16S rRNA amplicon sequencing. Fourteen water samples from 5 stations were collected during a cruise from August to September in 2018. The results showed that the sequences of Proteobacteria and Actinobacteriota jointly accounted for up to 74% across all 14 samples. The Shannon index in HO samples were significantly higher than in LO samples (P < 0.05), especially in PA communities. The composition of bacterial communities varied by oxygen concentration in all samples, and the effect was more pronounced in the PA fraction, which indicates that the PA fraction was more sensitive to the change in oxygen concentration, possibly due to the tighter interactions in this community than in the FL fraction. This study provides novel insights into the distribution of bacterial communities, and clues for understanding the responses of bacterial communities in the Bohai Sea during the transition from the oxic to oxygen-deficient zones.
Collapse
Affiliation(s)
- Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ping Gao
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyun Qu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yajing Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
19
|
Xu Y, Wang Q, Wu H. Evaluating the contingency treatment performance of advanced electro-catalysis oxidation processes for marine bacteria in ballast water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1885-1895. [PMID: 34695017 DOI: 10.2166/wst.2021.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effects of ballast water treatment by advanced electro-catalysis oxidation processes (AEOP) on abundance, activity, and diversity of marine bacteria were examined in a full-scale ballast water management system (BWMS) at Yangshan Port, Shanghai, China. Water samples were collected immediately after treatment and at discharge to evaluate the contingency treatment performance of the BWMS for bacteria. After treatment, the total viable count reduced to 0.7 × 104 CFU·mL-1, and both Escherichia coli and enterococci decreased to 10 CFU·100 mL-1, which satisfied the D-2 Standard of the International Maritime Organization. AEOP can be as an effective contingency reception facility. Sequencing of 16S rRNA gene amplicons demonstrated the declining trend in bacterial diversity, and while the treatment did not completely eliminate the risk of bacterial dispersal, potentially pathogenic bacteria survived in treated and discharged samples. Bacterial diversity is of greater concern when evaluating effects of ballast water treatment on microorganisms because the bacteria which can develop adaptive mechanisms to environmental change will have a greater potential for invasion in the new environment.
Collapse
Affiliation(s)
- Yulin Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China E-mail: ; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Qiong Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China E-mail: ; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China E-mail: ; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
20
|
Huang S, Sherman A, Chen C, Jaffé PR. Tropical cyclone effects on water and sediment chemistry and the microbial community in estuarine ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117228. [PMID: 33991740 DOI: 10.1016/j.envpol.2021.117228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Frequent and intense storm disturbances can have widespread and strong effects on the nitrogen and iron cycles and their associated microbial communities in estuary systems. A three-year investigation was conducted in the Pearl River and Zhanjiang estuaries in Guangdong Province, China through repeated sampling at three timepoints, defined as pre-storm (<1 month before storm), post-storm (<1 month after storm), and non-storm (6-8 months after storm). Increased nutrient concentrations (total organic carbon, nitrate, nitrite, ammonium, and sulfate) in both the sediment and water column were observed immediately after storm. The microbial community experienced extensive and immediate changes determined by an observed composition shift in the nitrogen and iron-cycling microbiomes. Analysis of sediment samples displayed a shift from nitrogen-to sulfur-cycling microorganisms and an increase in microbial interactions that were not observed in the water column. The chemical profile and microbial community components both returned to baseline conditions 6-8 months following storm disturbance. Finally, significant correlations were found between chemical and microbial data, suggesting that niche-sharing microbes may respond similarly to stimuli that impact their ecosystem. Increases in nutrient availability can favor the abundance of specific taxa, as demonstrated by an increase in Acidimicrobium that affect both nitrogen and iron cycling.
Collapse
Affiliation(s)
- Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Arianna Sherman
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
21
|
Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the ocean's twilight zone by metaproteomics. Appl Environ Microbiol 2021; 87:e0098621. [PMID: 34319792 DOI: 10.1128/aem.00986-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twilight zone (from the base of the euphotic zone to the depth of 1000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POCs collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach. The particle-attached bacteria from Alteromonadales, Rhodobacterales, and Enterobacteriales were the primary POC remineralizers. Hydrolytic enzymes, including proteases and hydrolases, that degrade proteinaceous components and polysaccharides, the main constituents of POC, were abundant and taxonomically associated with these bacterial groups. Furthermore, identification of diverse species-specific transporters and metabolic enzymes implied niche specialization for nutrient acquisition among these bacterial groups. Temperature was the main environmental factor driven the active bacterial groups and metabolic processes, and Enterobacteriales replaced Alteromonadales as the predominant group under low temperature. This study provides insight into the key bacteria and metabolic processes involved in POC remineralization, and niche complementarity and species substitution among bacterial groups are critical for efficient POC remineralization in the twilight zone. IMPORTANCE The Ocean's twilight zone is a critical zone where more than 70% of the sinking particulate organic carbon (POC) are remineralized. Therefore, the twilight zone determines the size of biological carbon storage in the ocean, and regulates the global climate. Prokaryotes are major players that govern remineralization of POC in this region. However, knowledge of microbial community structure and metabolic activity is still lacking. This study unveiled microbial communities and metabolic activities of POCs collected from the twilight zone of three contrasting environments in the Northwest Pacific Ocean using a metaproteomic approach. Alteromonadales, Rhodobacterales and Enterobacteriales were the major remineralizers of POC. They excreted diverse species-specific hydrolytic enzymes to split POC to solubilized POC or dissolved organic carbon. Temperature played a crucial role in regulating the community composition and metabolism. Furthermore, niche complementarity or species substitution among bacterial groups guaranteed the efficient remineralization of POC in the twilight zone.
Collapse
|
22
|
Hongxia M, Jingfeng F, Jiwen L, Zhiyi W, Yantao W, Dongwei L, Mengfei L, Tingting S, Yuan J, Huiling H, Jixue S. Full-length 16S rRNA gene sequencing reveals spatiotemporal dynamics of bacterial community in a heavily polluted estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116567. [PMID: 33578312 DOI: 10.1016/j.envpol.2021.116567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Understanding the bacterial community structure of the river estuary could provide insights into the resident microorganisms in response to environmental pollution. In this study, the bacterial community structure of Liaohe Estuary was investigated using single-molecule real-time sequencing (SMRT). A total of 57 samples were collected and grouped according to habitat, space, season, and lifestyle. In seawater, regardless of whether it is particle-attached (PA) or free-living (FL) bacteria, the area with higher alpha diversity is the nearshore area in the dry season, while it is the midstream area in the wet season. The bacterial communities in sediment and seawater samples were different at the genus level in the nearshore area, and habitat type was the main factor. A marked difference in the bacterial community was observed in the dry season between different lifestyles but not in the wet season, which resulted from lifestyle transitions of bacterioplankton. Bacterial community varied spatially but not seasonally in sediment samples. In seawater, both FL and PA bacterial communities varied spatially during the wet season. Seasonal differences were only observed in FL bacterial community. Zn and sand were the principal determining factors of the bacterial community in the sediment, Cu and salinity were the main environmental factors for FL bacteria, and Cu, salinity, Zn and temperature were the main environmental factors for PA bacteria. Besides, the tide and nutrients were also the main drivers of the bacterial community in seawater. The indicative taxa, related to Cyanobium_PCC-6307, Pseudomonas and Vibrio, further evidenced the presence of possible bloom, crude oil and pathogen contamination. Overall, our results can contribute to the knowledge of the bacterial community and anthropogenic impacts on the Liaohe Estuary.
Collapse
Affiliation(s)
- Ming Hongxia
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fan Jingfeng
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Liu Jiwen
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wan Zhiyi
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wang Yantao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Li Dongwei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Maritime University, Dalian, 116026, China
| | - Li Mengfei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Shi Tingting
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jin Yuan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Huang Huiling
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Song Jixue
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
23
|
Kong LF, Yan KQ, Xie ZX, He YB, Lin L, Xu HK, Liu SQ, Wang DZ. Metaproteomics Reveals Similar Vertical Distribution of Microbial Transport Proteins in Particulate Organic Matter Throughout the Water Column in the Northwest Pacific Ocean. Front Microbiol 2021; 12:629802. [PMID: 33841356 PMCID: PMC8034268 DOI: 10.3389/fmicb.2021.629802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Solubilized particulate organic matter (POM) rather than dissolved organic matter (DOM) has been speculated to be the major carbon and energy sources for heterotrophic prokaryotes in the ocean. However, the direct evidence is still lack. Here we characterized microbial transport proteins of POM collected from both euphotic (75 m, deep chlorophyll maximum DCM, and 100 m) and upper-twilight (200 m and 500 m) zones in three contrasting environments in the northwest Pacific Ocean using a metaproteomic approach. The proportion of transport proteins was relatively high at the bottom of the euphotic zone (200 m), indicating that this layer was the most active area of microbe-driven POM remineralization in the water column. In the upper-twilight zone, the predicted substrates of the identified transporters indicated that amino acids, carbohydrates, taurine, inorganic nutrients, urea, biopolymers, and cobalamin were essential substrates for the microbial community. SAR11, Rhodobacterales, Alteromonadales, and Enterobacteriales were the key contributors with the highest expression of transporters. Interestingly, both the taxonomy and function of the microbial communities varied among water layers and sites with different environments; however, the distribution of transporter types and their relevant organic substrates were similar among samples, suggesting that microbial communities took up similar compounds and were functionally redundant in organic matter utilization throughout the water column. The similar vertical distribution of transport proteins from the euphotic zone to the upper twilight zone among the contrasting environments indicated that solubilized POM rather than DOM was the preferable carbon and energy sources for the microbial communities.
Collapse
Affiliation(s)
- Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
24
|
Xie G, Tang X, Gong Y, Shao K, Gao G. How do Planktonic Particle Collection Methods Affect Bacterial Diversity Estimates and Community Composition in Oligo-, Meso- and Eutrophic Lakes? Front Microbiol 2020; 11:593589. [PMID: 33343534 PMCID: PMC7746777 DOI: 10.3389/fmicb.2020.593589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Particles are hotspots of bacterial growth and nutrient recycling in aquatic ecosystems. In the study of particle-attached (PA) and/or free-living (FL) microbial assemblages, the first step is to separate particles from their surrounding water columns. Widely used collection techniques are filtration using different pore size filters, and centrifugation; however, it is unclear how the bacterial diversity, bacterial community structure (BCS) and taxonomic composition of PA assemblages are affected by different particle collection methods. To address this knowledge gap, we collected planktonic particles from eutrophic Lake Taihu, mesotrophic Lake Tianmu, and oligotrophic Lake Fuxian in China, using filtration with five pore size of filters (20, 10, 8.0, 5.0, and 3.0 μm), and centrifugation. Bacterial communities were then analyzed using Illumina MiSeq sequencing of the 16S rRNA gene. We found that PA collection method affected BCS significantly in all lakes. Centrifugation yielded the highest species diversity and lowest mean percentage of photoautotrophic Cyanobacteria in Lake Taihu, but not in the other two lakes, thus highlighting the potential compatibility of this method in the study of PA assemblage in eutrophic lakes. The high bacterial diversity and low relative percentage of Cyanobacteria was in samples retained on 5.0 μm filters in all lakes. These results suggest that collecting PA samples in lakes using filters with 5.0 μm pore size is the preferred protocol, if species diversity and heterotrophic bacteria are the top research priorities, when comparing bacterial communities in different trophic lakes at the same time. The present study offers the possibility of collecting PA samples using unified methods in oligotrophic to eutrophic lakes.
Collapse
Affiliation(s)
- Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Aalismail NA, Díaz-Rúa R, Ngugi DK, Cusack M, Duarte CM. Aeolian Prokaryotic Communities of the Global Dust Belt Over the Red Sea. Front Microbiol 2020; 11:538476. [PMID: 33262740 PMCID: PMC7688470 DOI: 10.3389/fmicb.2020.538476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023] Open
Abstract
Aeolian prokaryotic communities (APC) are important components of bioaerosols that are transported freely or attached to dust particles suspended in the atmosphere. Terrestrial and marine ecosystems are known to release and receive significant prokaryote loads into and from the surrounded atmospheric air. However, compared to terrestrial systems, there is a lack of microbial characterization of atmospheric dust over marine systems, such as the Red Sea, which receives significant terrestrial dust loads and is centrally located within the Global Dust Belt. Prokaryotic communities are likely to be particularly important in the Global Dust Belt, the area between the west coast of North Africa and Central Asia that supports the highest dust fluxes on the planet. Here we characterize the diversity and richness of the APC over the Red Sea ecosystem, the only sea fully contained within the Global Dust Belt. MiSeq sequencing was used to target 16S ribosomal DNA of two hundred and forty aeolian dust samples. These samples were collected at ∼7.5 m high above the sea level at coastal and offshore sampling sites over a 2-year period (2015–2017). The sequencing outcomes revealed that the APC in the atmospheric dust is dominated by Proteobacteria (42.69%), Firmicutes (41.11%), Actinobacteria, (7.69%), and Bacteroidetes (3.49%). The dust-associated prokaryotes were transported from different geographical sources and found to be more diverse than prokaryotic communities of the Red Sea surface water. Marine and soil originated prokaryotes were detected in APC. Hence, depending on the season, these groups may have traveled from other distant sources during storm events in the Red Sea region, where the APC structure is influenced by the origin and the concentration of aeolian dust particles. Accordingly, further studies of the impact of atmospheric organic aerosols on the recipient environments are required.
Collapse
Affiliation(s)
- Nojood A Aalismail
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David K Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Michael Cusack
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Nascimento JR, Easson CG, Jurelevicius DDA, Lopez JV, Bidone ED, Sabadini-Santos E. Microbial community shift under exposure of dredged sediments from a eutrophic bay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:539. [PMID: 32705349 DOI: 10.1007/s10661-020-08507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities occur in almost every habitat. To evaluate the homeostasis disruption of in situ microbiomes, dredged sediments from Guanabara Bay-Brazil (GB) were mixed with sediments from outside of the bay (D) in three different proportions (25%, 50%, and 75%) which we called GBD25, GBD50, and GBD75. Grain size, TOC, and metals-as indicators of complex contamination-dehydrogenase (DHA) and esterase enzymes (EST)-as indicators of microbial community availability-were determined. Microbial community composition was addressed by amplifying the 16S rRNA gene for DGGE analysis and sequencing using MiSeq platform (Illumina).We applied the quality ratio index (QR) to the GB, D, and every GBD mixture to integrate geochemical parameters with our microbiome data. QR indicated high environmental risk for GB and every GBD mixture, and low risk for D. The community shifted from aerobic to anaerobic profile, consistent with the characteristics of GB. Sample D was dominated by JTB255 marine benthic group, related to low impacted areas. Milano-WF1B-44 was the most representative of GB, often found in anaerobic and sulfur enriched environments. In GBD, the denitrifying sulfur-oxidizing bacteria, Sulfurovum, was the most representative, typically found in suboxic or anoxic niches. The canonical correspondence analysis was able to explain 60% of the community composition variation and exhibit the decrease of environmental quality as the contamination increases. Physiological and taxonomic shifts of the microbial assemblage in sediments were inferred by QR, which was suitable to determine sediment risk. The study produced sufficient information to improve the dredging plan and management.
Collapse
Affiliation(s)
- Juliana R Nascimento
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil.
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Diogo de A Jurelevicius
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21944-570, Brazil
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Edison D Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| |
Collapse
|
27
|
Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir. Sci Rep 2020; 10:11288. [PMID: 32647153 PMCID: PMC7347578 DOI: 10.1038/s41598-020-67774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Spatial heterogeneity along river networks is interrupted by dams, affecting the transport, processing, and storage of organic matter, as well as the distribution of biota. We here investigated the structure of planktonic (free-living, FL), particle-attached (PA) and sediment-associated (SD) bacterial and archaeal communities within a small reservoir. We combined targeted-amplicon sequencing of bacterial and archaeal 16S rRNA genes in the DNA and RNA community fractions from FL, PA and SD, followed by imputed functional metagenomics, in order to unveil differences in their potential metabolic capabilities within the reservoir (tail, mid, and dam sections) and lifestyles (FL, PA, SD). Both bacterial and archaeal communities were structured according to their life-style preferences rather than to their location in the reservoir. Bacterial communities were richer and more diverse when attached to particles or inhabiting the sediment, while Archaea showed an opposing trend. Differences between PA and FL bacterial communities were consistent at functional level, the PA community showing higher potential capacity to degrade complex carbohydrates, aromatic compounds, and proteinaceous materials. Our results stressed that particle-attached prokaryotes were phylogenetically and metabolically distinct from their free-living counterparts, and that performed as hotspots for organic matter processing within the small reservoir.
Collapse
|
28
|
Zhang Y, Jing H, Peng X. Vertical shifts of particle-attached and free-living prokaryotes in the water column above the cold seeps of the South China Sea. MARINE POLLUTION BULLETIN 2020; 156:111230. [PMID: 32510376 DOI: 10.1016/j.marpolbul.2020.111230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Marine particle-attached (PA) and free-living (FL) microbes play important roles in the biogeochemical cycling of organic matter along the water column. Deep-sea cold seeps are highly productive and chemosynthetic ecosystems, their continuous emission of CH4, CO2, and H2S can reach up to 100 m in the above water, therefore would influence the distribution and potential metabolic functions of deep-sea prokaryotes. In this study, the vertical distribution profiles of both PA and FL microbes in the water column above two cold seeps of the South China Sea were investigated using Illumina sequencing and quantitative PCR (qPCR) based on 16S rRNA gene. Photosynthetic and heterotrophic prokaryotes were predominant in respective surface and deep layers below the photic zone. The typical cold seep chemosynthetic microbes, such as methanotrophs and sulfate-reducing bacteria were observed with low proportions in the two cold seeps as well. Distinct PA and FL microbial fractions were found in terms of abundance and diversity. FL fraction exposed to the bulk water was significantly affected by temperature and inorganic nutrients, whereas PA fraction relied more on the organic matter of the particles and less susceptible to the environmental variability. Our study highlights the importance of vertical geochemical gradients on the distribution and potential metabolic choice of marine microbes and extends our current knowledge of depth-associated microbial distribution patterns.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhuHai), China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhuHai), China.
| | - Xiaotong Peng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhuHai), China.
| |
Collapse
|
29
|
Hu Y, Xie G, Jiang X, Shao K, Tang X, Gao G. The Relationships Between the Free-Living and Particle-Attached Bacterial Communities in Response to Elevated Eutrophication. Front Microbiol 2020; 11:423. [PMID: 32269552 PMCID: PMC7109266 DOI: 10.3389/fmicb.2020.00423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Exploring the relationships between free-living (FL) and particle-attached (PA) bacterial communities can provide insight into their connectivity and the partitioning of biogeochemical processes, which is crucial to understanding the elemental cycles and metabolic pathways in aquatic ecosystems. However, there is still intense debate about that whether FL and PA fractions have the same assemblage. To address this issue, we investigated the extent of similarity between FL and PA bacterial communities along the environmental gradients in Lake Wuli, China. Our results revealed that the west Lake Wuli was slightly eutrophic and the east lake was moderately and highly eutrophic. The alpha-diversity of the FL bacterial communities was significantly lower than that of the PA fraction in the west lake, whereas the alpha-diversity of the two fractions was comparable in the east lake. The beta-diversity of both communities significantly differed in the west lake, whereas it resembled that in the east lake. Moreover, functional prediction analysis highlighted the significantly larger differences of metabolic functions between the FL and PA fractions in the west lake than in the east lake. Suspended particles and carbon resource promote the similarity between the FL and PA fractions. Collectively, our result reveals a convergent succession of aquatic communities along the eutrophic gradient, highlighting that the connectivity between FL and PA bacterial communities is nutrient related.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guijuan Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
30
|
Xu X, Wang S, Gao F, Li J, Zheng L, Sun C, He C, Wang Z, Qu L. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters. MARINE POLLUTION BULLETIN 2019; 145:278-286. [PMID: 31590788 DOI: 10.1016/j.marpolbul.2019.05.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Microplastics have emerged as new pollutants in oceans. Nevertheless, information of the long-term variations in the composition of plastic-associated microbial communities in coastal waters remains limited. This study applied high-throughput sequencing to investigate the successional stages of microbial communities attached to polypropylene and polyvinyl chloride microplastics exposed for one year in the coastal seawater of China. The composition of plastisphere microbial communities varied remarkably across geographical locations and exposure times. The dominant bacteria in the plastisphere were affiliated with the Alphaproteobacteria class, particularly Rhodobacteraceae, followed by the Gammaproteobacteria class. Scanning electron microscopy analysis revealed that the microplastics showed signs of degradation. Microbial communities showed adaptations to plastisphere including more diverse microbial community and greater "xenobiotics biodegradation and metabolism" in metabolic pathway analysis. The findings elucidate the long-term changes in the community composition of microorganisms that colonize microplastics and expand the understanding of plastisphere microbial communities present in the marine environment.
Collapse
Affiliation(s)
- Xiyuan Xu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shuai Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenglei Gao
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chengjun Sun
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfei He
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zongxing Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lingyun Qu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
31
|
Pearman JK, Afandi F, Hong P, Carvalho S. Plankton community assessment in anthropogenic-impacted oligotrophic coastal regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31017-31030. [PMID: 30182317 DOI: 10.1007/s11356-018-3072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions under the influence of anthropogenic impacts (a port and sewage outflow) and a coastal region with no direct anthropogenic disturbances in the central Red Sea. Overall, bacterial and eukaryotic components responded in a similar way to the environmental conditions. Community composition and structure were more sensitive than alpha diversity measures to environmental impacts. With the exception of eukaryotes, for which the number of OTU differed significantly between sampling periods in all the regions, environmental changes associated with anthropogenic pressures seem to be better reflected by variations in the relative dominance of microbial groups. For example, elevated proportional abundances of nitrifying and sewage-/faecal-related bacteria at the impacted sites were observed compared with the coastal region. The recently developed microgAMBI also appeared to correlate well with the level of anthropogenic impact the regions experienced, showing the potential to be applied in oligotrophic waters.
Collapse
Affiliation(s)
- John K Pearman
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Fidan Afandi
- Bioecology Department, Ecology and Soil Science, Baku State University, Academic Zahid Xalilov Street, 23, 1148, Baku, Absheron Economic Region AZ, Azerbaijan
| | - Peiying Hong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Ghosh A, Bhadury P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. Microbiologyopen 2018; 8:e00741. [PMID: 30303297 PMCID: PMC6528645 DOI: 10.1002/mbo3.741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Estuaries provide an ideal niche to study structure and function of bacterioplankton communities owing to the presence of a multitude of environmental stressors. Bacterioplankton community structures from nine global estuaries were compared to understand their broad‐scale biogeographic patterns. Bacterioplankton community structure from four estuaries of Sundarbans, namely Mooriganga, Thakuran, Matla, and Harinbhanga, was elucidated using Illumina sequencing. Bacterioplankton communities from these estuaries were compared against available bacterioplankton sequence data from Columbia, Delaware, Jiulong, Pearl, and Hangzhou estuaries. All nine estuaries were dominated by Proteobacteria. Other abundant phyla included Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Verrucomicrobia. The abundant bacterial phyla showed a ubiquitous presence across the estuaries. At class level, the overwhelming abundance of Gammaproteobacteria in the estuaries of Sundarbans and Columbia estuary clearly stood out amidst high abundance of Alphaproteobacteria observed in the other estuaries. Abundant bacterial families including Rhodobacteriaceae, Shingomonadaceae, Acidobacteriaceae, Vibrionaceae, and Xanthomondaceae also showed ubiquitous presence in the studied estuaries. However, rare taxa including Chloroflexi, Tenericutes, Nitrospirae, and Deinococcus‐Thermus showed clear site‐specific distribution patterns. Such distribution patterns were also reinstated by nMDS ordination plots. Such clustering patterns could hint toward the potential role of environmental parameters and substrate specificity which could result in distinct bacterioplankton communities at specific sites. The ubiquitous presence of abundant bacterioplankton groups along with their strong correlation with surface water temperature and dissolved nutrient concentrations indicates the role of such environmental parameters in shaping bacterioplankton community structure in estuaries. Overall, studies on biogeographic patters of bacterioplankton communities can provide interesting insights into ecosystem functioning and health of global estuaries.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
33
|
Xu H, Zhao D, Huang R, Cao X, Zeng J, Yu Z, Hooker KV, Hambright KD, Wu QL. Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake. MICROBIAL ECOLOGY 2018; 76:303-313. [PMID: 29318328 DOI: 10.1007/s00248-017-1131-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Free-living (FL) and particle-attached (PA) bacterial communities play critical roles in nutrient cycles, metabolite production, and as a food source in aquatic systems, and while their community composition, diversity, and functions have been well studied, we know little about their community interactions, co-occurrence patterns, and niche occupancy. In the present study, 13 sites in Taihu Lake were selected to study the differences of co-occurrence patterns and niches occupied between the FL and PA bacterial communities using correlation-based network analysis. The results show that both FL and PA bacterial community networks were non-random and significant differences of the network indexes (average path length, clustering coefficient, modularity) were found between the two groups. Furthermore, the PA bacterial community network consisted of more correlations between fewer OTUs, as well as higher average degree, making it more complex. The results of observed (O) to random (R) ratios of intra- or inter-phyla connections indicate more relationships such as cross-feeding, syntrophic, mutualistic, or competitive relationships in the PA bacterial community network. We also found that four OTUs (OTU00074, OTU00755, OTU00079, and OTU00454), which all had important influences on the nutrients cyclings, played different roles in the two networks as connectors or module hubs. Analysis of the relationships between the module eigengenes and environmental variables demonstrated that bacterial groups of the two networks favored quite different environmental conditions. These findings further confirmed the different ecological functions and niches occupied by the FL and PA bacterial communities in the aquatic ecosystem.
Collapse
Affiliation(s)
- Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Katherine V Hooker
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - K David Hambright
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
34
|
Kegler HF, Hassenrück C, Kegler P, Jennerjahn TC, Lukman M, Jompa J, Gärdes A. Small tropical islands with dense human population: differences in water quality of near-shore waters are associated with distinct bacterial communities. PeerJ 2018; 6:e4555. [PMID: 29761035 PMCID: PMC5944435 DOI: 10.7717/peerj.4555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/30/2022] Open
Abstract
Water quality deterioration caused by an enrichment in inorganic and organic matter due to anthropogenic inputs is one of the major local threats to coral reefs in Indonesia. However, even though bacteria are important mediators in coral reef ecosystems, little is known about the response of individual taxa and whole bacterial communities to these anthropogenic inputs. The present study is the first to investigate how bacterial community composition responds to small-scale changes in water quality in several coral reef habitats of the Spermonde Archipelago including the water column, particles, and back-reef sediments, on a densely populated and an uninhabited island. The main aims were to elucidate if (a) water quality indicators and organic matter concentrations differ between the uninhabited and the densely populated island of the archipelago, and (b) if there are differences in bacterial community composition in back-reef sediments and in the water column, which are associated with differences in water quality. Several key water quality parameters, such as inorganic nitrate and phosphate, chlorophyll a, and transparent exopolymer particles (TEP) were significantly higher at the inhabited than at the uninhabited island. Bacterial communities in sediments and particle-attached communities were significantly different between the two islands with bacterial taxa commonly associated with nutrient and organic matter-rich conditions occurring in higher proportions at the inhabited island. Within the individual reef habitats, variations in bacterial community composition between the islands were associated with differences in water quality. We also observed that copiotrophic, opportunistic bacterial taxa were enriched at the inhabited island with its higher chlorophyll a, dissolved organic carbon and TEP concentrations. Given the increasing strain on tropical coastal ecosystems, this study suggests that effluents from densely populated islands lacking sewage treatment can alter bacterial communities that may be important for coral reef ecosystem function.
Collapse
Affiliation(s)
- Hauke F. Kegler
- Department of Biogeochemistry and Geology, Leibniz-Centre for Tropical Marine Research, Bremen, Germany
- Faculty of Biology and Chemistry (FB2), University of Bremen, Bremen, Germany
| | - Christiane Hassenrück
- Department of Biogeochemistry and Geology, Leibniz-Centre for Tropical Marine Research, Bremen, Germany
| | - Pia Kegler
- Department of Ecology, Leibniz-Centre for Tropical Marine Research, Bremen, Germany
| | - Tim C. Jennerjahn
- Department of Biogeochemistry and Geology, Leibniz-Centre for Tropical Marine Research, Bremen, Germany
| | - Muhammad Lukman
- Department of Marine Science, Universitas Hasanuddin, Makassar, Indonesia
| | - Jamaluddin Jompa
- Department of Marine Science, Universitas Hasanuddin, Makassar, Indonesia
| | - Astrid Gärdes
- Department of Biogeochemistry and Geology, Leibniz-Centre for Tropical Marine Research, Bremen, Germany
| |
Collapse
|
35
|
Wang H, Shen Y, Hu C, Xing X, Zhao D. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:71-78. [PMID: 29161575 DOI: 10.1016/j.envpol.2017.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 05/19/2023]
Abstract
Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Sciences and Engineering, Guangzhou University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| |
Collapse
|
36
|
16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer). PLoS One 2018; 13:e0191653. [PMID: 29377905 PMCID: PMC5788372 DOI: 10.1371/journal.pone.0191653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/09/2018] [Indexed: 02/01/2023] Open
Abstract
Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM) to investigate their species-specific trophic interactions and potential symbiotic associations. 53–99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU) from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM), but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83–95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta contained significant numbers of phytoplankton OTUs. We present an alternative view of their trophic interactions and discuss these results within the context of modelling global planktonic foraminiferal abundances in response to high-latitude climate change.
Collapse
|
37
|
Hattenrath-Lehmann TK, Gobler CJ. Identification of unique microbiomes associated with harmful algal blooms caused by Alexandrium fundyense and Dinophysis acuminata. HARMFUL ALGAE 2017; 68:17-30. [PMID: 28962978 DOI: 10.1016/j.hal.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Biotic interactions dominate plankton communities, yet the microbial consortia associated with harmful algal blooms (HABs) have not been well-described. Here, high-throughput amplicon sequencing of ribosomal genes was used to quantify the dynamics of bacterial (16S) and phytoplankton assemblages (18S) associated with blooms and cultures of two harmful algae, Alexandrium fundyense and Dinophysis acuminata. Experiments were performed to assess changes in natural bacterial and phytoplankton communities in response to the filtrate from cultures of these two harmful algae. Analysis of prokaryotic sequences from ecosystems, experiments, and cultures revealed statistically unique bacterial associations with each HAB. The dinoflagellate, Alexandrium, was strongly associated with multiple genera of Flavobacteria including Owenweeksia spp., Maribacter spp., and individuals within the NS5 marine group. While Flavobacteria also dominated Dinophysis-associated communities, the relative abundance of Alteromonadales bacteria strongly co-varied with Dinophysis abundances during blooms and Ulvibacter spp. (Flavobacteriales) and Arenicella spp. (Gammaproteobacteria) were associated with cells in culture. Eukaryotic sequencing facilitated the discovery of the endosymbiotic, parasitic dinoflagellate, Amoebophrya spp., that had not been regionally described but represented up to 17% of sequences during Alexandrium blooms. The presence of Alexandrium in field samples and in experiments significantly altered the relative abundances of bacterial and phytoplankton by both suppressing and promoting different taxa, while this effect was weaker in Dinophysis. Experiments specifically revealed a negative feedback loop during blooms whereby Alexandrium filtrate promoted the abundance of the parasite, Amoebophrya spp. Collectively, this study demonstrates that HABs formed by Alexandrium and Dinophysis harbor unique prokaryotic and eukaryotic microbiomes that are likely to, in turn, influence the dynamics of these HABs.
Collapse
Affiliation(s)
| | - Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, USA.
| |
Collapse
|
38
|
Zhao D, Xu H, Zeng J, Cao X, Huang R, Shen F, Yu Z. Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 2017; 93:3814240. [DOI: 10.1093/femsec/fix062] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/09/2017] [Indexed: 11/12/2022] Open
|
39
|
Witt V, Ayris PM, Damby DE, Cimarelli C, Kueppers U, Dingwell DB, Wörheide G. Volcanic ash supports a diverse bacterial community in a marine mesocosm. GEOBIOLOGY 2017; 15:453-463. [PMID: 28256065 PMCID: PMC5413822 DOI: 10.1111/gbi.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.
Collapse
Affiliation(s)
- V. Witt
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
- MWM‐Museum Witt MünchenMunichGermany
| | - P. M. Ayris
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
| | - D. E. Damby
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
- United States Geological SurveyMenlo ParkCAUSA
| | - C. Cimarelli
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
| | - U. Kueppers
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
| | - D. B. Dingwell
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
| | - G. Wörheide
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
- GeoBio‐CenterMunichGermany
- SNSB‐Bavarian State Collections of Palaeontology und GeologyMunichGermany
| |
Collapse
|
40
|
Kegler HF, Lukman M, Teichberg M, Plass-Johnson J, Hassenrück C, Wild C, Gärdes A. Bacterial Community Composition and Potential Driving Factors in Different Reef Habitats of the Spermonde Archipelago, Indonesia. Front Microbiol 2017; 8:662. [PMID: 28473810 PMCID: PMC5397486 DOI: 10.3389/fmicb.2017.00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2017] [Indexed: 12/04/2022] Open
Abstract
Coastal eutrophication is a key driver of shifts in bacterial communities on coral reefs. With fringing and patch reefs at varying distances from the coast the Spermonde Archipelago in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal eutrophication along a spatially defined gradient. The present study investigated bacterial community composition of three coral reef habitats: the water column, sediments, and mucus of the hard coral genus Fungia, along that cross-shelf environmental and water quality gradient. The main research questions were: (1) How do water quality and bacterial community composition change along a coastal shelf gradient? (2) Which water quality parameters influence bacterial community composition? (3) Is there a difference in bacterial community composition among the investigated habitats? For this purpose, a range of key water parameters were measured at eight stations in distances from 2 to 55 km from urban Makassar. This was supplemented by sampling of bacterial communities of important microbial habitats using 454 pyrosequencing. Findings revealed that the population center Makassar had a strong effect on the concentrations of Chlorophyll a, suspended particulate matter (SPM), and transparent exopolymer particles (TEP), which were all significantly elevated at the inshore compared the other seven sites. Shifts in the bacterial communities were specific to each sampled habitat. Two OTUs, belonging to the genera Escherichia/Shigella (Gammaproteobacteria) and Ralstonia (Betaproteobacteria), respectively, both dominated the bacterial community composition of the both size fractions of the water column and coral mucus. The sampled reef sediments were more diverse, and no single OTUs was dominant. There was no gradual shift in bacterial classes or OTUs within the sampled habitats. In addition, we observed very distinct communities between the investigated habitats. Our data show strong changes in the bacterial community composition at the inshore site for water column and sediment samples. Alarmingly, there was generally a high prevalence of potentially pathogenic bacteria across the entire gradient.
Collapse
Affiliation(s)
- Hauke F Kegler
- Tropical Marine Microbiology, Department of Biogeochemistry and Geology, Leibniz Center for Tropical Marine ResearchBremen, Germany.,Faculty of Biology and Chemistry (FB 2), University of BremenBremen, Germany
| | - Muhammad Lukman
- Marine Science Department, Faculty of Marine Science and Fisheries, Hasanuddin UniversitySouth Sulawesi, Indonesia
| | - Mirta Teichberg
- Algae and Seagrass Ecology, Department of Ecology, Leibniz Center for Tropical Marine ResearchBremen, Germany
| | - Jeremiah Plass-Johnson
- Algae and Seagrass Ecology, Department of Ecology, Leibniz Center for Tropical Marine ResearchBremen, Germany.,Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of DenmarkCharlottenlund, Denmark
| | - Christiane Hassenrück
- Tropical Marine Microbiology, Department of Biogeochemistry and Geology, Leibniz Center for Tropical Marine ResearchBremen, Germany.,HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Christian Wild
- Faculty of Biology and Chemistry (FB 2), University of BremenBremen, Germany
| | - Astrid Gärdes
- Tropical Marine Microbiology, Department of Biogeochemistry and Geology, Leibniz Center for Tropical Marine ResearchBremen, Germany
| |
Collapse
|
41
|
Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME JOURNAL 2017; 11:999-1010. [PMID: 28045454 DOI: 10.1038/ismej.2016.166] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Depending on their relationship with the pelagic particulate matter, planktonic prokaryotes have traditionally been classified into two types of communities: free-living (FL) or attached (ATT) to particles, and are generally separated using only one pore-size filter in a differential filtration. Nonetheless, particulate matter in the oceans appears in a continuum of sizes. Here we separated this continuum into six discrete size-fractions, from 0.2 to 200 μm, and described the prokaryotes associated to each of them. Each size-fraction presented different bacterial communities, with a range of 23-42% of unique (OTUs) in each size-fraction, supporting the idea that they contained distinct types of particles. An increase in richness was observed from the smallest to the largest size-fractions, suggesting that increasingly larger particles contributed new niches. Our results show that a multiple size-fractionation provides a more exhaustive description of the bacterial diversity and community structure than the use of only one filter. In addition, and based on our results, we propose an alternative to the dichotomy of FL or ATT lifestyles, in which we differentiate the taxonomic groups with preference for the smaller fractions, those that do not show preferences for small or large fractions, and those that preferentially appear in larger fractions.
Collapse
|
42
|
Kashulin A, Seredkina N, Sørum H. Cold-water vibriosis. The current status of knowledge. JOURNAL OF FISH DISEASES 2017; 40:119-126. [PMID: 27072873 DOI: 10.1111/jfd.12465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
The current review for the first time summarizes the findings of the 30 years of research on cold-water vibriosis (CWV). The diseased caused by Aliivibrio salmonicida (earlier known as Vibrio salmonicida) was for the first time described in 1986 and became one of the most important bacterial diseases in salmon aquaculture. The lack of appropriate vaccine hampered development of Atlantic salmon aquaculture until the late 1980s when a novel vaccine allowed dramatic increase in the Atlantic salmon farming. In December 2007, the genus Vibrio was split into two genera and several bacterial species including V. salmonicida were transferred to genus Aliivibrio. The change of the names create significant difficulties with the designation of the CWV disease agent since its abbreviation A. salmonicida became similar to another well-known salmon pathogen Aeromonas salmonicida (A. salmonicida). The disease was considered as controlled by vaccination, but reappeared at Atlantic salmon farms in 2011, this time affecting vaccinated Atlantic salmon. The current review summarizes the knowledge on pathogenesis, vaccination and treatment of CWV and proposes further directions for studying the disease.
Collapse
Affiliation(s)
- A Kashulin
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - N Seredkina
- Department of Medical Biology, Arctic University of Norway, Tromsø, Norway
| | - H Sørum
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
43
|
Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents. Appl Microbiol Biotechnol 2016; 100:5839-48. [PMID: 26944731 DOI: 10.1007/s00253-016-7408-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
Everyday huge amount of treated municipal wastewater is discharged into the coastal seawater. However, microbial biomarkers for the municipal effluent instead of the fecal species from raw sewage have not been proposed. Meanwhile, bacterial taxa for degrading large amounts of input organics have not been fully understood. In this study, raw effluent and serial water samples were collected from the coastal dispersal of two sewage treatment plants in Xiamen, China. Free-living (FL) and particle-associated (PA) bacterial communities were analyzed via high-throughput sequencing of 16S rRNA gene and quantitative PCR to measure bacterial abundance. The PA bacterial communities in our samples exhibited higher cell abundance, alpha diversity, and population dynamics than the FL bacterial communities, which supports greater environmental significance of the PA bacterial communities. Two non-fecal but typical genera in activated sludge, Zoogloea and Dechloromonas, exhibited decreased but readily detectable abundance along the effluent dispersal distance. Furthermore, the dominating microbial species near the outfalls were related to well-known marine indigenous taxa, such as SAR11 clade, OM60 clade, low-GC Actinobacteria, and unclassified Flavobacteriales, as well as the less understood taxa like Pseudohongiella and Microbacteriaceae. It is interesting that these taxa exhibited two types of correlation patterns with COD concentration. Our study suggested Zoogloea as a potential indicator of municipal effluents and also proposed potential utilizers of residual effluent COD in marine environments.
Collapse
|
44
|
Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione JF. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4242-4256. [PMID: 26122564 DOI: 10.1007/s11356-015-4768-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Marc Tedetti
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Catherine Guigue
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Chloé Dumas
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Raphaël Lami
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Mireille Pujo-Pay
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Pascal Conan
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Madeleine Goutx
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Jean-François Ghiglione
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France.
| |
Collapse
|
45
|
Mayali X, Stewart B, Mabery S, Weber PK. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:68-75. [PMID: 26525158 DOI: 10.1111/1758-2229.12352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 05/26/2023]
Abstract
We investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.
Collapse
Affiliation(s)
- Xavier Mayali
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Benjamin Stewart
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Shalini Mabery
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
46
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Liu H, Yuan X, Xu J, Harrison PJ, He L, Yin K. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters. Sci Rep 2015; 5:14217. [PMID: 26404394 PMCID: PMC4585901 DOI: 10.1038/srep14217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022] Open
Abstract
Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters.
Collapse
Affiliation(s)
- Hao Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China, 510006.,Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, Guangzhou, China, 510006
| | - Xiangcheng Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jie Xu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Paul J Harrison
- Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lei He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China, 510006.,Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, Guangzhou, China, 510006
| | - Kedong Yin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China, 510006.,Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, Guangzhou, China, 510006
| |
Collapse
|
48
|
Park BS, Kim JH, Kim JH, Gobler CJ, Baek SH, Han MS. Dynamics of bacterial community structure during blooms of Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae) in Korean coastal waters. HARMFUL ALGAE 2015; 48:44-54. [PMID: 29724475 DOI: 10.1016/j.hal.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/08/2023]
Abstract
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p≤0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms.
Collapse
Affiliation(s)
- Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Joo-Hwan Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Jin Ho Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Seung Ho Baek
- Korea Institute of Ocean Science and Technology/South Sea Institute, Geoje 656-830, South Korea
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea.
| |
Collapse
|
49
|
Seo HS, Yang SH, Oh JH, Lee JH, Kwon KK. Pseudomaricurvus alcaniphilus sp. nov., a marine bacterium isolated from tidal flat sediment and emended descriptions of the genus Pseudomaricurvus, Pseudomaricurvus alkylphenolicus Iwaki et al. 2014 and Maricurvus nonylphenolicus Iwaki et al. 2012. Int J Syst Evol Microbiol 2015; 65:3591-3596. [PMID: 26297504 DOI: 10.1099/ijsem.0.000463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-reaction-negative, rod-shaped, aerobic and motile strain, designated MEBiC06469T, was isolated from tidal flat sediment of the Taean province, South Korea. Strain MEBiC06469T produced ivory-coloured colonies on marine agar 2216 medium and could degrade carboxymethyl-cellulose. On the basis of 16S rRNA gene sequence similarity, the closest relative was Pseudomaricurvus alkylphenolicus KU41GT with 96.5 % similarity. The isolate was catalase-positive but oxidase-negative. Growth was observed at 16-38 °C (optimum, 32 °C), at pH 6.0-9.0 (optimum, pH 7.5) and in the presence of 0.0-8.0 % (w/v) NaCl (optimum, 1.5 %). The only isoprenoid quinone was Q-8.The dominant fatty acids were summed feature 3 (comprised of C15 : 0 2-OH and/or C16 : 1ω7c; 20.4 %) and C17 : 1ω8c (30.9 %), summed feature 8 (comprised of C18 : 1ω7c and/or C18 : 1ω6c; 9.5 %), C16 : 0 (9.0 %), C15 : 1ω8c (5.3 %), and C11 : 0 3-OH (5.2 %). Based on these phenotypic properties and phylogenetic data, strain MEBiC06469T should be classified as a novel species within the genus Pseudomaricurvus for which the name Pseudomaricurvus alcaniphilus sp. nov. is proposed. The type strain is MEBiC06469T ( = KCCM 42976T = JCM 18313T). Emended descriptions of the genus Pseudomaricurvus, Pseudomaricurvus alkylphenolicusIwaki et al. 2014, and Maricurvus nonylphenolicusIwaki et al. 2012 are also provided.
Collapse
Affiliation(s)
- Hyun-Seok Seo
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, South Korea
| | - Sung-Hyun Yang
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, South Korea
| | - Ji Hye Oh
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, South Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, South Korea
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Kae Kyoung Kwon
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, South Korea
| |
Collapse
|
50
|
Gutiérrez MH, Galand PE, Moffat C, Pantoja S. Melting glacier impacts community structure of Bacteria, Archaea and Fungi in a Chilean Patagonia fjord. Environ Microbiol 2015; 17:3882-97. [PMID: 25856307 DOI: 10.1111/1462-2920.12872] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 01/30/2023]
Abstract
Jorge Montt glacier, located in the Patagonian Ice Fields, has undergone an unprecedented retreat during the past century. To study the impact of the meltwater discharge on the microbial community of the downstream fjord, we targeted Bacteria, Archaea and Fungi communities during austral autumn and winter. Our results showed a singular microbial community present in cold and low salinity surface waters during autumn, when a thicker meltwater layer was observed. Meltwater bacterial sequences were related to Cyanobacteria, Proteobacteria, Actinobacteria and Bacteriodetes previously identified in freshwater and cold ecosystems, suggesting the occurrence of microorganisms adapted to live in the extreme conditions of meltwater. For Fungi, representative sequences related to terrestrial and airborne fungal taxa indicated transport of allochthonous Fungi by the meltwater discharge. In contrast, bottom fjord waters from autumn and winter showed representative Operational Taxonomic Units (OTUs) related to sequences of marine microorganisms, which is consistent with current models of fjord circulation. We conclude that meltwater can significantly modify the structure of microbial communities and support the development of a major fraction of microorganisms in surface waters of Patagonian fjords.
Collapse
Affiliation(s)
- Marcelo H Gutiérrez
- Department of Oceanography, Universidad de Concepción, Concepción, Chile.,COPAS Sur-Austral Program, Universidad de Concepción, Concepción, Chile
| | - Pierre E Galand
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, F-66650, Banyuls sur Mer, France
| | - Carlos Moffat
- Department of Oceanography, Universidad de Concepción, Concepción, Chile.,COPAS Sur-Austral Program, Universidad de Concepción, Concepción, Chile.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Silvio Pantoja
- Department of Oceanography, Universidad de Concepción, Concepción, Chile.,COPAS Sur-Austral Program, Universidad de Concepción, Concepción, Chile
| |
Collapse
|