1
|
Michalik M, Djahanschiri B, Leo JC, Linke D. An Update on "Reverse Vaccinology": The Pathway from Genomes and Epitope Predictions to Tailored, Recombinant Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:45-71. [PMID: 34918241 DOI: 10.1007/978-1-0716-1892-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the concept of reverse vaccinology. They all follow the same basic principles-mining available genome and proteome information for antigen candidates, and recombinantly expressing them for vaccine production. Some of the same principles have been used successfully for cancer therapy approaches. In this review, we focus on infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
| | - Bardya Djahanschiri
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Bumann D. Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0009-2019. [PMID: 30953427 PMCID: PMC11588158 DOI: 10.1128/microbiolspec.bai-0009-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic Salmonella enterica infections are a major cause of mortality worldwide and are becoming increasingly untreatable. Recent single-cell data from a mouse model of typhoid fever show that the host immune system actually eradicates many Salmonella cells, while other Salmonella organisms thrive at the same time in the same tissue, causing lethal disease progression. The surviving Salmonella cells have highly heterogeneous metabolism, growth rates, and exposure to various stresses. Emerging evidence suggests that similarly heterogeneous host-pathogen encounters might be a key feature of many infectious diseases. This heterogeneity offers fascinating opportunities for research and application. If we understand the mechanisms that determine the disparate local outcomes, we might be able to develop entirely novel strategies for infection control by broadening successful host antimicrobial attacks and closing permissive niches in which pathogens can thrive. This review describes suitable technologies, a current working model of heterogeneous host-Salmonella interactions, the impact of diverse Salmonella subsets on antimicrobial chemotherapy, and major open questions and challenges.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Noman EA, Al-Gheethi AAS, Radin Mohamed RMS, Talip BA, Nagao H, Mohd Kassim AH, Bakar SA. Consequences of the Improper Disposal of Greywater. MANAGEMENT OF GREYWATER IN DEVELOPING COUNTRIES 2019. [DOI: 10.1007/978-3-319-90269-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Al-Gheethi A, Noman E, Jeremiah David B, Mohamed R, Abdullah AH, Nagapan S, Hashim Mohd A. A review of potential factors contributing to epidemic cholera in Yemen. JOURNAL OF WATER AND HEALTH 2018; 16:667-680. [PMID: 30285950 DOI: 10.2166/wh.2018.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The menace of cholera epidemic occurrence in Yemen was reported in early 2017. Recent reports revealed that an estimated 500,000 people are infected with cholera whereas 2,000 deaths have been reported in Yemen. Cholera is transmitted through contaminated water and food. Yemen is the least developed country among the Middle East countries in terms of wastewater and solid waste management. The population of Yemen is about 24.5 million and generates about 70-100 million m3 of sewage. An estimated 7% of the population has sewerage systems. It has been revealed that 31.2 million m3 of untreated sewage is used for irrigation purposes especially for vegetables and Khat trees. In addition, more than 70% of the population in Yemen has no potable water. They depend on water wells as a water source which are located close to sewage disposal sites. The present review focuses on the current status of water, wastewater as well as solid waste management in Yemen and their roles in the outbreak of cholera. Future prospects for waste management have been proposed.
Collapse
Affiliation(s)
- Adel Al-Gheethi
- Higher institute of Health Sciences, Sana'a, Yemen E-mail: ; Micro-pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Efaq Noman
- Department of Applied Microbiology, School of Applied Sciences, Taiz University, Taiz, Yemen
| | - Bala Jeremiah David
- Department of Microbiology, School of Life Sciences, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
| | - Radin Mohamed
- Micro-pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Abd Halid Abdullah
- Department of Architecture and Engineering Design, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Sasitharan Nagapan
- Department of Architecture and Engineering Design, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Amir Hashim Mohd
- Micro-pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
5
|
Bumann D, Schothorst J. Intracellular Salmonella metabolism. Cell Microbiol 2017; 19. [PMID: 28672057 DOI: 10.1111/cmi.12766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
Growth of Salmonella inside infected host cells is a key aspect of their ability to cause local enteritis or systemic disease. This growth depends on exploitation of host nutrients through a large Salmonella metabolism network with hundreds of metabolites and enzymes. Studies in cell culture infection models are unravelling more and more of the underlying molecular and cellular mechanisms but also show striking Salmonella metabolic plasticity depending on host cell line and experimental conditions. In vivo studies have revealed a qualitatively diverse, but quantitatively poor, host-Salmonella nutritional interface, which on one side makes Salmonella fitness largely resilient against metabolic perturbations, but on the other side severely limits Salmonella biomass generation and growth rates. This review discusses goals and techniques for studying Salmonella intracellular metabolism, summarises main results and implications, and proposes key issues that could be addressed in future studies.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joep Schothorst
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Michalik M, Djahanshiri B, Leo JC, Linke D. Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines. Methods Mol Biol 2016; 1403:87-106. [PMID: 27076126 DOI: 10.1007/978-1-4939-3387-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the technology of reverse vaccinology. We focus here on bacterial infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bardya Djahanshiri
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.,Department for Applied Bioinformatics, Goethe-University, 60438, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway. .,Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Bumann D. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Front Immunol 2014; 5:381. [PMID: 25157252 PMCID: PMC4127814 DOI: 10.3389/fimmu.2014.00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
8
|
Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1267-76. [PMID: 24990908 DOI: 10.1128/cvi.00310-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid.
Collapse
|
9
|
Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014; 5:134. [PMID: 24744757 PMCID: PMC3978289 DOI: 10.3389/fimmu.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023] Open
Abstract
Vaccination with durable immunity is the main goal and fundamental to control leishmaniasis. To stimulate the immune response, small numbers of parasites are necessary to be presented in the mammalian host. Similar to natural course of infection, strategy using live vaccine is more attractive when compared to other approaches. Live vaccines present the whole spectrum of antigens to the host immune system in the absence of any adjuvant. Leishmanization was the first effort for live vaccination and currently used in a few countries against cutaneous leishmaniasis, in spite of their obstacle and safety. Then, live attenuated vaccines developed with similar promotion of creating long-term immunity in the host with lower side effect. Different examples of attenuated strains are generated through long-term in vitro culturing, culturing under drug pressure, temperature sensitivity, and chemical mutagenesis, but none is safe enough and their revision to virulent form is possible. Attenuation through genetic manipulation and disruption of virulence factors or essential enzymes for intracellular survival are among other approaches that are intensively under study. Other designs to develop live vaccines for visceral form of leishmaniasis are utilization of live avirulent microorganisms such as Lactococcus lactis, Salmonella enterica, and Leishmania tarentolae called as vectored vaccine. Apparently, these vaccines are intrinsically safer and can harbor the candidate antigens in their genome through different genetic manipulation and create more potential to control Leishmania parasite as an intracellular pathogen.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahareh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Chin'ombe N, Ruhanya V. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines. Open Virol J 2013; 7:121-6. [PMID: 24478808 PMCID: PMC3905348 DOI: 10.2174/1874357901307010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV
vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be
harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity.
These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic
compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering
expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the
studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of
the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice)
and are yet to reach human trials.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe ; Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Vurayai Ruhanya
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
11
|
Pierlé SA, Hammac GK, Palmer GH, Brayton KA. Transcriptional pathways associated with the slow growth phenotype of transformed Anaplasma marginale. BMC Genomics 2013; 14:272. [PMID: 23607288 PMCID: PMC3646689 DOI: 10.1186/1471-2164-14-272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 11/29/2022] Open
Abstract
Background The ability to genetically manipulate bacteria has been fundamentally important for both basic biological discovery and translational research to develop new vaccines and antibiotics. Experimental alteration of the genetic content of prokaryotic pathogens has revealed both expected functional relationships and unexpected phenotypic consequences. Slow growth phenotypes have been reported for multiple transformed bacterial species, including extracellular and intracellular pathogens. Understanding the genes and pathways responsible for the slow growth phenotype provides the opportunity to develop attenuated vaccines as well as bacteriostatic antibiotics. Transformed Anaplasma marginale, a rickettsial pathogen, exhibits slow growth in vitro and in vivo as compared to the parent wild type strain, providing the opportunity to identify the underlying genes and pathways associated with this phenotype. Results Whole genome transcriptional profiling allowed for identification of specific genes and pathways altered in transformed A. marginale. Genes found immediately upstream and downstream of the insertion site, including a four gene operon encoding key outer membrane proteins, were not differentially transcribed between wild type and transformed A. marginale. This lack of significant difference in transcription of flanking genes and the large size of the insert relative to the genome were consistent with a trans rather than a cis effect. Transcriptional profiling across the complete genome identified the most differentially transcribed genes, including an iron transporter, an RNA cleaving enzyme and several genes involved in translation. In order to confirm the trend seen in translation-related genes, K-means clustering and Gene Set Enrichment Analysis (GSEA) were applied. These algorithms allowed evaluation of the behavior of genes as groups that share transcriptional status or biological function. Clustering and GSEA confirmed the initial observations and found additional pathways altered in transformed A. marginale. Three pathways were significantly altered as compared to the wild type: translation, translation elongation, and purine biosynthesis. Conclusions Identification of perturbed genes and networks through genome wide transcriptional profiling highlights the relevance of pathways such as nucleotide biosynthesis, translation, and translation elongation in the growth phenotype of obligate intracellular bacteria. These genes and pathways provide specific targets for development of slow growing attenuated vaccines and for bacteriostatic antibiotics.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
12
|
Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol 2012; 97:3545-57. [DOI: 10.1007/s00253-012-4462-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
13
|
Bolhassani A, Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 2012; 131:1733-43. [PMID: 22610886 DOI: 10.1002/ijc.27640] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/10/2012] [Indexed: 01/13/2023]
Abstract
The design of efficient cancer treatments is one of the major challenges of medical science. Therapeutic vaccines of cancer have been emerged as an attractive approach for their capacity of breaking the immune tolerance and invoking long-term immune response targeting cancer cells without autoimmunity. An efficient antigen delivery system is the key issue of developing an effective cancer vaccine. In this regard, live vaccination strategies including various live bacterial and viral vectors have attracted a great attention. Several bacterial strains such as Salmonella, Listeria monocytogenes and Lactococcus lactis effectively colonize solid tumors and act as antitumor therapeutics. On the other hand, the use of viruses as vaccine vectors such as Vaccinia, Adenovirus, Herpes simplex virus, Paramyxovirus and Retroviruses utilizes mechanisms that evolved in these microbes for entering cells and capturing the cellular machinery to express viral proteins. Viral/bacterial-vectored vaccines induce systemic T-cell responses including polyfunctional cytokine-secreting CD4+ and CD8+ T-cells. However, there is an urgent need for the development of new safe live vaccine vectors that are capable of enhancing antigen presentation and eliciting potent immune responses without the risk of development of disease in humans. Recently, nonpathogenic parasites including Leishmania tarentolae, Toxoplasma gondii and Trypanosoma cruzi have emerged to be a novel candidate for gene delivery and heterologous genes expression. In this review, recent researches on cancer therapy using genetically modified bacteria and virus are summarized. In addition, live parasite-based vectors will be discussed as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
14
|
Amuguni H, Tzipori S. Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 2012; 8:979-86. [PMID: 22699442 DOI: 10.4161/hv.20694] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most pathogens enter the body through mucosal surfaces. Mucosal immunization, a non-invasive needle-free route, often stimulates a mucosal immune response that is both effective against mucosal and systemic pathogens. The development of mucosally administered heat-stable vaccines with long shelf life would therefore significantly enhance immunization programs in developing countries by avoiding the need for a cold chain or systemic injections. Currently, recombinant vaccine carriers are being used for antigen delivery. Engineering Bacillus subtilis for use as a non-invasive and heat stable antigen delivery system has proven successful. Bacterial spores protected by multiple layers of protein are known to be robust and resistant to desiccation. Stable constructs have been created by integration into the bacterial chromosome of immunogens. The spore coat has been used as a vehicle for heterologous antigen presentation and protective immunization. Sublingual (SL) and intranasal (IN) routes have recently received attention as delivery routes for therapeutic drugs and vaccines and recent attempts by several investigators, including our group, to develop vaccines that can be delivered intranasally and sublingually have met with a lot of success. As discussed in this review, the use of Bacillus subtilis to express antigens that can be administered either intranasally or sublingually is providing new insights in the area of mucosal vaccines. In our work, we evaluated the efficacy of SL and IN immunizations with B. subtilis engineered to express tetanus toxin fragment C (TTFC) in mice and piglets. These bacteria engineered to express heterologous antigen either on the spore surface or within the vegetative cell have been used for oral, IN and SL delivery of antigens. A Bacillus subtilis spore coat protein, CotC was used as a fusion partner to express the tetanus fragment C. B. subtilis spores known to be highly stable and safe are also easy to purify making this spore-based display system a potentially powerful approach for surface expression of antigens. These advances will help to accelerate the development and testing of new mucosal vaccines against many human and animal diseases.
Collapse
Affiliation(s)
- Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
15
|
Abstract
Salmonella enterica is an invasive, facultative intracellular gastrointestinal pathogen causing human diseases such as gastroenteritis and typhoid fever. Virulence-attenuated strains of this pathogen have interesting capacities for the generation of live vaccines. Attenuated live typhoidal and nontyphoidal Salmonella strains can be used for vaccination against Salmonella infections and to target tumor tissue. Such strains may also serve as live carriers for the development of vaccination strategies against other bacterial, viral or parasitic pathogens. Various strategies have been developed to deploy regulatory circuits and protein secretion systems for efficient expression and delivery of foreign antigens by Salmonella carrier strains. One prominent example is the use of type III secretion systems to translocate recombinant antigens into antigen presenting cells. In this review, we will describe the recent developments in strategies that utilize live attenuated Salmonella as vaccine carriers for prophylactic vaccination against infectious diseases and therapeutic vaccination against tumors. Considerations for generating safe, attenuated carrier strains, designing stable expression systems and the use of adjuvants for live carrier strategies are discussed.
Collapse
Affiliation(s)
- Wael Abdel Halim Hegazy
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück Barbarastrasse 11, 49076 Osnabrück, Germany
| | | |
Collapse
|
16
|
Schroeder J, Brown N, Kaye P, Aebischer T. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. PLoS Negl Trop Dis 2011; 5:e1406. [PMID: 22216363 PMCID: PMC3246433 DOI: 10.1371/journal.pntd.0001406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis is a major neglected tropical disease, with an estimated 500,000 new cases and more than 50,000 deaths attributable to this disease every year. Drug therapy is available but costly and resistance against several drug classes has evolved. Despite all efforts, no commercial, let alone affordable, vaccine is available to date. Thus, the development of cost effective, needle-independent vaccines is a high priority. Here, we have continued efforts to develop live vaccine carriers based on recombinant Salmonella. We used an in silico approach to select novel Leishmania parasite antigens from proteomic data sets, with selection criteria based on protein abundance, conservation across Leishmania species and low homology to host species. Five chosen antigens were differentially expressed on the surface or in the cytosol of Salmonella typhimurium SL3261. A two-step procedure was developed to select optimal Salmonella vaccine strains for each antigen, based on bacterial fitness and antigen expression levels. We show that vaccine strains of Salmonella expressing the novel Leishmania antigens LinJ08.1190 and LinJ23.0410 significantly reduced visceralisation of L. major and enhanced systemic resistance against L. donovani in susceptible BALB/c mice. The results show that Salmonella are valid vaccine carriers for inducing resistance against visceral leishmaniasis but that their use may not be suitable for all antigens.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Disease Models, Animal
- Drug Carriers/administration & dosage
- Female
- Genetic Vectors
- Leishmania donovani/genetics
- Leishmania donovani/immunology
- Leishmania major/genetics
- Leishmania major/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Mice
- Mice, Inbred BALB C
- Salmonella typhimurium/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Juliane Schroeder
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Paul Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Toni Aebischer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
17
|
Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 2010; 1:235-43. [PMID: 21327055 DOI: 10.4161/bbug.1.4.11243] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 02/07/2023] Open
Abstract
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.
Collapse
Affiliation(s)
- Vafa Shahabi
- Advaxis Inc., Research and Development, North Brunswick, NJ, USA
| | | | | | | |
Collapse
|
18
|
Bumann D, Behre C, Behre K, Herz S, Gewecke B, Gessner JE, von Specht BU, Baumann U. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: A clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 2010; 28:707-13. [DOI: 10.1016/j.vaccine.2009.10.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
19
|
Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 2009; 28:1021-30. [PMID: 19914191 DOI: 10.1016/j.vaccine.2009.10.127] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/12/2009] [Accepted: 10/25/2009] [Indexed: 11/25/2022]
Abstract
The development of new-generation vaccines has followed a number of strategic avenues including the use of live recombinant bacteria. Of these, the use of genetically engineered bacterial spores has been shown to offer promise as both a mucosal as well as a heat-stable vaccine delivery system. Spores of the genus Bacillus are currently in widespread use as probiotics enabling a case to be made for their safety. In this work we have discovered that the negatively charged and hydrophobic surface layer of spores provides a suitable platform for adsorption of protein antigens. Binding can be promoted under conditions of low pH and requires a potent combination of electrostatic and hydrophobic interactions between spore and immunogen. Using appropriately adsorbed spores we have shown that mice immunised mucosally can be protected against challenge with tetanus toxin, Clostridium perfringens alpha toxin and could survive challenge with anthrax toxin. In some cases protection is actually greater than using a recombinant vaccine. Remarkably, killed or inactivated spores appear equally effective as live spores. The spore appears to present a bound antigen in its native conformation promoting a cellular (T(h)1-biased) response coupled with a strong antibody response. Spores then, should be considered as mucosal adjuvants, most similar to particulate adjuvants, by enhancing responses against soluble antigens. The broad spectrum of immune responses elicited coupled with the attendant benefits of safety suggest that spore adsorption could be appropriate for improving the immunogenicity of some vaccines as well as the delivery of biotherapeutic molecules.
Collapse
Affiliation(s)
- Jen-Min Huang
- School of Biological Sciences, Royal Holloway, University of London, Surrey, UK
| | | | | | | | | | | |
Collapse
|
20
|
Bumann D. System-level analysis of Salmonella metabolism during infection. Curr Opin Microbiol 2009; 12:559-67. [PMID: 19744878 DOI: 10.1016/j.mib.2009.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/29/2009] [Accepted: 08/06/2009] [Indexed: 01/05/2023]
Abstract
Infectious diseases represent a major threat to human health. To develop urgently needed new control strategies, a transition from research focusing on individual factors to a more integrated system-level analysis might be needed. Such an approach faces great challenges and might require development of new concepts in large-scale data analysis. Here, I discuss for the well-characterized model pathogen Salmonella, how extensively studied metabolism can be used as a training field for infection biology at the systems level. Extensive experimental data can be analyzed in context using metabolic network visualization tools and in silico modeling based on genome-scale metabolic reconstructions. Suitable approaches to obtain still missing comprehensive quantitative data on Salmonella nutrition in infected host tissues are described. Such an integrated investigation of Salmonella metabolism during infection will enable an unprecedented large-scale understanding of pathogen in vivo activities, help to evaluate concepts and strategies for system-level analysis of host/pathogen interactions in general, and provide a basis for rational development of novel antimicrobials and efficacious live vaccines.
Collapse
Affiliation(s)
- Dirk Bumann
- Infection Biology, Biozentrum, University of Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland.
| |
Collapse
|
21
|
Wang L, Coppel RL. Oral vaccine delivery: can it protect against non-mucosal pathogens? Expert Rev Vaccines 2008; 7:729-38. [PMID: 18665772 DOI: 10.1586/14760584.7.6.729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vaccination is an efficient and cost-effective form of preventing infectious diseases. However, most currently available vaccines are delivered by injection, which makes mass immunization more costly and less safe, particularly in resource-poor developing countries. Oral vaccines have several attractive features compared with parenteral vaccines, but studies on their use have been limited almost exclusively to protection against mucosally transmitted pathogens. Their potential for controlling non-mucosally transmitted diseases has not yet been appreciated in general. In this article, we provide evidence that oral immunization is a feasible alternative for preventing infections transmitted through non-mucosal routes, including infections such as malaria, Japanese encephalitis and hepatitis B. Although there are still hurdles to overcome before such approaches can be deployed widely, recent progress in the oral vaccination field and the availability of a range of delivery systems offers hope for the development of a larger number of oral vaccines.
Collapse
Affiliation(s)
- Lina Wang
- Department of Microbiology, Monash University, Clayton, Victoira 3800, Australia.
| | | |
Collapse
|
22
|
Benyacoub J, Rochat F, Saudan KY, Rochat I, Antille N, Cherbut C, von der Weid T, Schiffrin EJ, Blum S. Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J Nutr 2008; 138:123-9. [PMID: 18156414 DOI: 10.1093/jn/138.1.123] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fructooligosaccharides (FOS) are considered prebiotics because of their ability to promote growth of specific beneficial gut bacteria, such as bifidobacteria. Some studies reported potential immune-modulating properties. The aim of this study was to investigate the effect of FOS:inulin mix on murine response to Salmonella vaccine and evaluate the relevance toward protection against Salmonella infection. Balb/c mice were fed a diet containing 5% FOS:inulin mix or a control diet 1 wk before oral immunization with a suboptimal dose of live attenuated Salmonella typhimurium vaccine. Four weeks after vaccination, mice were infected with LD100 of virulent S. typhimurium. Specific blood Salmonella immunoglobulin G and fecal immunoglobulin A significantly increased in mice fed the diet containing prebiotics compared with control mice 4 wk postimmunization. Peritoneal macrophage phagocytic activity also significantly increased in FOS:inulin-fed mice at 1 wk postimmunization compared with control mice. No detectable effects were observed on the percentage of lymphoid cell subsets in the spleen. However, production of cytokines, interferon-gamma, interleukin-12, and tumor necrosis factor alpha, was numerically increased in spleen cell cultures stimulated with mitogens from FOS:inulin-fed mice 1 and 4 wk postimmunization. Salmonella translocation to lymphoid organs was not affected by feeding FOS:inulin. However, the improved response to Salmonella vaccine was concomitant with an increase in the survival rate of FOS:inulin-fed mice upon challenge with virulent Salmonella. No detectable effects were observed on the composition or the metabolic activity of the microbiota. Overall, the data suggest that a diet supplemented with FOS:inulin mix stimulates mucosal immunity and seems to improve efficacy of an oral vaccine.
Collapse
|
23
|
Klumpp J, Fuchs TM. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. MICROBIOLOGY-SGM 2007; 153:1207-1220. [PMID: 17379730 DOI: 10.1099/mic.0.2006/004747-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) survives and proliferates within macrophage cells. A mutant library of strain ATCC 14028 based on gene disruption by homologous recombination was screened in order to identify genes that are required for wild-type-like intracellular replication. Randomly generated chromosomal fragments from the genome of S. typhimurium were cloned into a temperature-sensitive vector, and approximately 8000 individual mutant clones were obtained by insertional-duplication mutagenesis (IDM) upon selection at non-permissive temperature. Large-scale screening for replication defects in mouse macrophages, but not during growth in rich or minimal medium, revealed a set of attenuated mutants that were further characterized by PCR amplification and sequencing of the mutagenic fragments. Following analysis of a Salmonella genome map with the annotated positions of vector insertions, an accumulation of 33 attenuating insertions within genes of ten non-collinear regions was found. Insertions in virK, gipA and five SPI-2 genes as well as seven non-polar deletions validated the screen. No invasion deficiencies of the mutants were observed. The cob-cbi-pdu cluster containing the genes for cobalamin synthesis and 1,2-propanediol degradation was shown to be required for Salmonella replication within macrophages. These data gave rise to a model of eukaryotic glycoconjugates and phospholipids as alternative carbon, nitrogen and energy sources for intracellularly replicating bacteria. The contribution of as yet unknown components of SPI-6 and the Gifsy-1 and Gifsy-2 prophage islands to intracellular replication is reported, as well as the fivefold reduced intracellular growth rate of a mutant with a deletion of STM1677, which probably encodes a LysR-like transcriptional regulator. The intracellular replication rate of three double mutants, each lacking two gene products of the cob-cbi-pdu cluster or the Gifsy-1 prophage, was shown to be lower than that of the respective single mutants, suggesting that additive effects of subtle intracellular advantages contribute to Salmonella fitness in vivo.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food Science and Nutrition, ETH Zürich, Schmelzbergstr. 7, 8092 Zürich, Switzerland
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
24
|
Fraillery D, Baud D, Pang SYY, Schiller J, Bobst M, Zosso N, Ponci F, Nardelli-Haefliger D. Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1285-95. [PMID: 17687110 PMCID: PMC2168124 DOI: 10.1128/cvi.00164-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) can prevent HPV-induced genital neoplasias, the precursors of cervical cancer. However, most cervical cancers occur in developing countries, where the implementation of expensive vaccines requiring multiple injections will be difficult. A live Salmonella-based vaccine could be a lower-cost alternative. We previously demonstrated that high HPV type 16 (HPV16)-neutralizing titers are induced after a single oral immunization of mice with attenuated Salmonella enterica serovar Typhimurium strains expressing a codon-optimized version of HPV16 L1 (L1S). To allow the testing of this type of vaccine in women, we constructed a new L1-expressing plasmid, kanL1S, and tested kanL1S recombinants of three Salmonella enterica serovar Typhi vaccine strains shown to be safe in humans, i.e., Ty21a, the actual licensed typhoid vaccine, and two highly immunogenic typhoid vaccine candidates, Ty800 and CVD908-htrA. In an intranasal mouse model of Salmonella serovar Typhi infection, Ty21a kanL1S was unique in inducing HPV16-neutralizing antibodies in serum and genital secretions, while anti-Salmonella responses were similar to those against the parental Ty21a vaccine. Electron microscopy examination of Ty21a kanL1S lysates showed that L1 assembled in capsomers and capsomer aggregates but not well-ordered VLPs. Comparison to the neutralizing antibody response induced by purified HPV16 L1 VLP immunizations in mice suggests that Ty21a kanL1S may be an effective prophylactic HPV vaccine. Ty21a has been widely used against typhoid fever in humans with a remarkable safety record. These finds encourage clinical testing of Ty21a kanL1S as a combined typhoid fever/cervical cancer vaccine with the potential for worldwide application.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cells, Cultured
- Female
- Genetic Vectors
- Human papillomavirus 16/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Plasmids/genetics
- Plasmids/immunology
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/genetics
- Polysaccharides, Bacterial/immunology
- Salmonella typhi/genetics
- Salmonella typhi/immunology
- Typhoid Fever/immunology
- Typhoid Fever/prevention & control
- Typhoid-Paratyphoid Vaccines/administration & dosage
- Typhoid-Paratyphoid Vaccines/genetics
- Typhoid-Paratyphoid Vaccines/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/prevention & control
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Dominique Fraillery
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McKenzie GJ, Craig NL. Fast, easy and efficient: site-specific insertion of transgenes into enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol 2006; 6:39. [PMID: 16646962 PMCID: PMC1475584 DOI: 10.1186/1471-2180-6-39] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022] Open
Abstract
Background Inserting transgenes into bacterial chromosomes is generally quite involved, requiring a selection for cells carrying the insertion, usually for drug-resistance, or multiple cumbersome manipulations, or both. Several approaches use phage λ red recombination, which allows for the possibility of mutagenesis of the transgene during a PCR step. Results We present a simple, rapid and highly efficient method for transgene insertion into the chromosome of Escherichia coli, Salmonella or Shigella at a benign chromosomal site using the site-specific recombination machinery of the transposon Tn7. This method requires very few manipulations. The transgene is cloned into a temperature-sensitive delivery plasmid and transformed into bacterial cells. Growth at the permissive temperature with induction of the recombination machinery leads to transgene insertion, and subsequent growth at the nonpermissive temperature cures the delivery plasmid. Transgene insertion is highly site-specific, generating insertions solely at the Tn7 attachment site and so efficient that it is not necessary to select for the insertion. Conclusion This method is more efficient and straightforward than other techniques for transgene insertion available for E. coli and related bacteria, making moving transgenes from plasmids to a chromosomal location a simple matter. The non-requirement for selection is particularly well suited for use in development of unmarked strains for environmental release, such as live-vector vaccine strains, and also for promoter-fusion studies, and experiments in which every bacterial cell must express a transgene construct.
Collapse
Affiliation(s)
- Gregory J McKenzie
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
26
|
Alpert CA, Mater DDG, Muller MC, Ouriet MF, Duval-Iflah Y, Corthier G. Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice. ACTA ACUST UNITED AC 2005; 2:173-80. [PMID: 15612415 DOI: 10.1051/ebr:2003010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Since genetically modified (GM) lactic acid bacteria (LAB) might be released in open environments for future nutritional and medical applications, the purpose of this study was to determine an upper limit for the horizontal gene transfer (HGT) in the digestive tract (DT) from Lactococcus lactis carrying heterologous genes (lux genes encoding a bacterial luciferase) to Enterococcus faecalis. Two enterococcal wide host-range conjugative model systems were used: (i) a system composed of a mobilizable plasmid containing the heterologous lux genes and a native conjugative helper plasmid; and (ii) a Tn916-lux transposon. Both systems were tested under the most transfer-prone conditions, i.e. germfree mice mono-associated with the recipient E. faecalis. No transfer was observed with the transposon system. Transfers of the mobilizable plasmid carrying heterologous genes were below 10(2) transconjugants per g of faeces for a single donor dose and reached between 10(3) and 10(4) transconjugants per g of faeces when continuous inoculation of the donor strain was used. Once established in mice, transconjugants persisted at low levels in the mouse DT.
Collapse
Affiliation(s)
- Carl-Alfred Alpert
- Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
27
|
Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J. Potential and opportunities for use of recombinant lactic acid bacteria in human health. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:1-64. [PMID: 15566975 DOI: 10.1016/s0065-2164(04)56001-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sean Hanniffy
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blanquet S, Antonelli R, Laforet L, Denis S, Marol-Bonnin S, Alric M. Living recombinant Saccharomyces cerevisiae secreting proteins or peptides as a new drug delivery system in the gut. J Biotechnol 2005; 110:37-49. [PMID: 15099904 DOI: 10.1016/j.jbiotec.2004.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 01/19/2004] [Accepted: 01/23/2004] [Indexed: 11/16/2022]
Abstract
New strategies to prevent or treat diseases have been focusing on innovative approaches, such as the oral administration of living recombinant micro-organisms delivering active compounds in the digestive environment. The survival rate and the ability of two recombinant Saccharomyces cerevisiae strains (WppV(5)H(6) and WppGSTV(5)H(6)) to initiate the synthesis and secrete either a model peptide (peptide-V(5)H(6), MW: 5.6 kDa) or a model protein (glutathione-S-transferase-V(5)H(6), MW: 31.5 kDa) were studied in a gastric-small intestinal system simulating human digestive conditions. The WppV(5)H(6) and WppGSTV(5)H(6) strains respectively showed 83.1%+/-9.6 (n=3) and 95.3%+/-22.7 (n=4) survival rates in the model upper digestive tract after 270 min of digestion. The secretion products were detected as early as 90 min after the yeast intake/gene induction in each compartment of the in vitro system, but mostly in the jejunum and ileum. The GST-V(5)H(6) concentrations in the digestive medium reached 15 ng ml(-1), close to values measured in batch cultures. These results open up new opportunities for the set up of drug delivery systems based on engineered yeasts secreting compounds directly in the digestive tract. The main potential medical applications include the development of oral vaccines, the correction of metabolic disorders and the in situ production of biological mediators.
Collapse
Affiliation(s)
- Stéphanie Blanquet
- Equipe de Recherche Technologique 'Conception, Ingénierie et Développement de l'Aliment et du Médicament' (ERT CIDAM), Centre de Recherche en Nutrition Humaine (CRNH), Université d'Auvergne, Faculté de Pharmacie, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
29
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Vivas J, Riaño J, Carracedo B, Razquin BE, López-Fierro P, Naharro G, Villena AJ. The auxotrophic aroA mutant of Aeromonas hydrophila as a live attenuated vaccine against A. salmonicida infections in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2004; 16:193-206. [PMID: 15123323 DOI: 10.1016/s1050-4648(03)00078-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 05/27/2003] [Indexed: 05/24/2023]
Abstract
An auxotrophic aroA mutant of the Aeromonas hydrophila AG2 strain is a live attenuated vaccine against A. hydrophila infection in rainbow trout (Oncorhynchus mykiss). The protection conferred by the live attenuated vaccine against A. salmonicida strains is reported here, and several parameters of the specific and non-specific immune response in vaccinated trout were characterised. Vaccination with a dose of 10(7)cells/fish of the aroA mutant elicited significant protection against the Hooke and DK30 strains of A. salmonicida (relative percent survival RPS >60%). This cross-protection correlated moderately with the activation of the humoral and cellular specific immune responses, which show cross-reactivity against antigens shared by the two bacterial species, and a moderate increase in the lysozyme and antiprotease activities in the serum of vaccinated trout.
Collapse
Affiliation(s)
- Jose Vivas
- Departmento de Biología Celular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Bumann D. T cell receptor-transgenic mouse models for studying cellular immune responses to Salmonella in vivo. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 37:105-9. [PMID: 12832113 DOI: 10.1016/s0928-8244(03)00064-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular immune responses are crucial both for protective immunity against salmonellosis, and for the immunogenicity of oral vaccines based on avirulent live Salmonella as antigen carriers. The crucial early steps of T cell induction are difficult to investigate in conventional animals, but recently developed T cell receptor (TCR)-transgenic models allow visualization of antigen-specific T cells in vivo while they become induced. In this review, the results obtained with four different TCR-transgenic Salmonella infection models are described, and advantages and potential limits of each of the different models are compared.
Collapse
Affiliation(s)
- Dirk Bumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstrasse 21/22, 10117 Berlin, Germany.
| |
Collapse
|
32
|
Bout D, Mévélec MN, Velge-Roussel F, Dimier-Poisson I, Lebrun M. [Vaccines on mucosal surfaces]. Arch Pediatr 2003; 10:565-70. [PMID: 12915029 DOI: 10.1016/s0929-693x(03)00180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Abstract
M cells are located in the epithelia overlying mucosa-associated lymphoid tissues such as Peyer's patches where they function as the antigen sampling cells of the mucosal immune system. Paradoxically, some pathogens exploit M cells as a route of invasion. Here we review our current knowledge of intestinal M cells with particular emphasis on the mechanisms underlying bacterial infection of these atypical epithelial cells.
Collapse
Affiliation(s)
- M Ann Clark
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
34
|
Yépez SH, Pando RH, Argumedo LS, Paredes MV, Cueto AH, Isibasi A, Bonilla CRG. Therapeutic efficacy of an E coli strain carrying an ovalbumin allergenic peptide as a fused protein to OMPC in a murine model of allergic airway inflammation. Vaccine 2003; 21:566-578. [PMID: 12531657 DOI: 10.1016/s0264-410x(02)00244-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An Escherichia coli strain expressing the ovalbumin (OVA) 323-329 allergenic peptide on the bacterial surface was evaluated for its ability to reduce the lung inflammatory response in mice allergic to OVA. BALB/c mice were rendered allergic by means of two intraperitoneal injections of OVA suspended in alum 5 days apart, and one intratracheal boost 1 week later. The mice were then treated with two intranasal, 1 week apart, doses of 4x10(9) E. coli-UH302 transformed with plasmids pST13 or pST13-OVA(323-339), which bear the OmpC porin from Salmonella enterica serovar Typhi or the OmpC with the OVA allergenic 323-339 amino acid sequence inserted in the external loop 5. The allergic inflammatory reaction was evaluated on day 31, finding that mice treated with E. coli-UH302-pST13-OVA reduced four to seven times perivascular and peribronchial infiltrates, mucus production, goblet cell hyperplasia and eosinophils when compared with mice treated with E. coli-UH302-pST13 or saline solution. These results were consistent with a significant decrease of IL-5 mRNA and induction of IFN-gamma mRNA in cells from bronchio-alveolar lavages (BAL). Specific serum IgE anti-OVA was also reduced, although the decrease did not reach statistical significance. These results demonstrate that the bacterial live vector bearing an allergenic peptide successfully moderated two important components of allergy, pulmonary inflammation and mucus overproduction.
Collapse
Affiliation(s)
- Sara Huerta Yépez
- Unidad de Investigación Médica en Inmunología e Infectologi;a, Hospital de Infectología "Dr Daniel Méndez Hernández" Centro Médico "La Raza" IMSS, Apartado Postal 15-095, Mexico City, DF 02990, Mexico
| | | | | | | | | | | | | |
Collapse
|
35
|
Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18. [PMID: 12531639 DOI: 10.1016/s0264-410x(02)00472-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi (S. Typhi) strains can serve as safe and effective oral vaccines to prevent typhoid fever and as live vectors to deliver foreign antigens to the immune system, either by the bacteria expressing antigens through prokaryotic expression plasmids or by delivering foreign genes carried on eukaryotic expression systems (DNA vaccines). The practical utility of such live vector vaccines relies on achieving a proper balance between minimizing the vaccine's reactogenicity and maximizing its immunogenicity. To advance to clinical trials, vaccine candidates need to be pre-clinically evaluated in relevant animal models that attempt to predict what their safety and immunogenicity profile will be when administered to humans. Since S. Typhi is a human-restricted pathogen, a major obstacle that has impeded the progress of vaccine development has been the shortcomings of the animal models available to assess vaccine candidates. In this review, we summarize the usefulness of animal models in the assessment of the degree of attenuation and immunogenicity of novel attenuated S. Typhi strains as vaccine candidates for the prevention of typhoid fever and as live vectors in humans.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
36
|
Avall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A. Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 2002; 68:5943-51. [PMID: 12450814 PMCID: PMC134443 DOI: 10.1128/aem.68.12.5943-5951.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.
Collapse
Affiliation(s)
- Silja Avall-Jääskeläinen
- Department of Basic Veterinary Sciences, Section of Microbiology, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
37
|
Abstract
The prospect of the deliberate environmental release of genetically manipulated microorganisms has given rise to a great deal of polemic. Amongst the rational scientific concerns are those concerned with the fate of the released bacteria, the fate of the recombinant genes that they carry, the selective pressures acting upon them in different environmental situations and the long term effects on the environment and human health. All recombinant DNA is carried by vectors (plasmids, transposons or bacteriophage or remnants of these). Thus the way in which recombinant constructions are made may itself lead to potential biosafety concerns, irrespective of the host bacterium and the recombinant DNA fragment of primary interest. The purpose of the present review is to assess progress in improved vector design aimed at eliminating risks due to the way recombinant vectors are constructed. Improved vector constructions include the avoidance of the use, or removal, of antibiotic resistance genes, the use of defective transposons rather than plasmids in order to reduce horizontal transfer and the development of conditionally lethal suicide systems. More recently, new site-specific recombination systems have permitted transposon vectors to be manipulated following strain construction, but before environmental release, so that virtually all recombinant DNA not directly involved in the release experiment is eliminated. Such bacteria are thus pseudo-wild type in that they contain no heterologous DNA other than the genes of interest.
Collapse
Affiliation(s)
- John Davison
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, INRA-Versailles, 78026 Versailles Cedex, France.
| |
Collapse
|
38
|
|
39
|
Curtiss R. Bacterial infectious disease control by vaccine development. J Clin Invest 2002; 110:1061-6. [PMID: 12393839 PMCID: PMC150804 DOI: 10.1172/jci16941] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Roy Curtiss
- Department of Biology, Washington University, 1 Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
40
|
Bumann D, Metzger WG, Mansouri E, Palme O, Wendland M, Hurwitz R, Haas G, Aebischer T, von Specht BU, Meyer TF. Safety and immunogenicity of live recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 2001; 20:845-52. [PMID: 11738748 DOI: 10.1016/s0264-410x(01)00391-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori urease was expressed in the common live typhoid vaccine Ty21a yielding Ty21a(pDB1). Nine volunteers received Ty21a(pDB1) and three control volunteers received Ty21a. No serious adverse effects were observed in any of the volunteers. Ten out of 12 volunteers developed humoral immune responses to the Salmonella carrier as detected by antigen-specific antibody-secreting cells but only two volunteers seroconverted. A total of five volunteers showed responses in one or two out of three assays for cellular responses to the carrier (proliferation, IFN-gamma-secretion, IFN-gamma-ELISPOT). Three of the volunteers that had received Ty21a(pDB1) showed a weak but significant T-cell response to Helicobacter urease, while no volunteer had detectable humoral responses to urease. Ty21a(pDB1) is a suitable prototype to optimize Salmonella-based vaccination for efficient cellular responses that could mediate protective immunity against Helicobacter.
Collapse
Affiliation(s)
- D Bumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bumann D. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect Immun 2001; 69:7493-500. [PMID: 11705925 PMCID: PMC98839 DOI: 10.1128/iai.69.12.7493-7500.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulated antigen expression can influence the immunogenicity of live recombinant Salmonella vaccines, but a rational optimization has remained difficult since important aspects of this effect are incompletely understood. Here, attenuated Salmonella enterica serovar Typhimurium SL3261 strains expressing the model antigen GFP_OVA were used to quantify in vivo antigen levels by flow cytometry and to simultaneously follow the crucial early steps of antigen-specific T-cell responses in mice that are transgenic for a T-cell receptor recognizing ovalbumin. Among seven tested promoters, P(pagC) has the highest activity in murine tissues combined with low in vitro expression, whereas P(tac) has a comparable in vivo and a very high in vitro activity. Both SL3261 (pP(pagC)GFP_OVA) and SL3261 (pP(tac)GFP_OVA) cells can induce potent ovalbumin-specific cellular immune responses following oral administration, but doses almost 1,000-fold lower are sufficient for the in vivo-inducible construct SL3261 (pP(pagC)GFP_OVA) compared to SL3261 (pP(tac)GFP_OVA). This efficacy difference is largely explained by impaired early colonization capabilities of SL3261 (pP(tac)GFP_OVA) cells. Based on the findings of this study, appropriate in vivo expression levels for any given antigen can be rationally selected from the increasing set of promoters with defined properties. This will allow the improvement of recombinant Salmonella vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- D Bumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin, Germany.
| |
Collapse
|
42
|
Abstract
Intestinal M cells, the specialised antigen-sampling cells of the mucosal immune system, are exploited by Salmonella and other pathogens as a route of invasion. Salmonella entry into M cells and colonisation of Peyer's patches involve mechanisms critical for infection of cultured cells as well as factors not accurately modelled in vitro.
Collapse
Affiliation(s)
- M A Jepson
- Cell Imaging Facility and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
43
|
McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001; 413:852-6. [PMID: 11677609 DOI: 10.1038/35101614] [Citation(s) in RCA: 1435] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Salmonella enterica subspecies I, serovar Typhimurium (S. typhimurium), is a leading cause of human gastroenteritis, and is used as a mouse model of human typhoid fever. The incidence of non-typhoid salmonellosis is increasing worldwide, causing millions of infections and many deaths in the human population each year. Here we sequenced the 4,857-kilobase (kb) chromosome and 94-kb virulence plasmid of S. typhimurium strain LT2. The distribution of close homologues of S. typhimurium LT2 genes in eight related enterobacteria was determined using previously completed genomes of three related bacteria, sample sequencing of both S. enterica serovar Paratyphi A (S. paratyphi A) and Klebsiella pneumoniae, and hybridization of three unsequenced genomes to a microarray of S. typhimurium LT2 genes. Lateral transfer of genes is frequent, with 11% of the S. typhimurium LT2 genes missing from S. enterica serovar Typhi (S. typhi), and 29% missing from Escherichia coli K12. The 352 gene homologues of S. typhimurium LT2 confined to subspecies I of S. enterica-containing most mammalian and bird pathogens-are useful for studies of epidemiology, host specificity and pathogenesis. Most of these homologues were previously unknown, and 50 may be exported to the periplasm or outer membrane, rendering them accessible as therapeutic or vaccine targets.
Collapse
Affiliation(s)
- M McClelland
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ryan EJ, Daly LM, Mills KH. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 2001; 19:293-304. [PMID: 11451471 DOI: 10.1016/s0167-7799(01)01670-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current paediatric immunization programmes include too many injections in the first months of life. Oral or nasal vaccine delivery eliminates the requirement for needles and can induce immunity at the site of infection. However, protein antigens are poorly immunogenic when so delivered and can induce tolerance. Novel ways to enhance immune responses to protein or polysaccharide antigens have opened up new possibilities for the design of effective mucosal vaccines. Here, we discuss the immunological principles underlying mucosal vaccine development and review the application of immunomodulatory molecules and delivery systems to the selective enhancement of protective immune responses at mucosal surfaces.
Collapse
Affiliation(s)
- E J Ryan
- Institute of Immunology, National University of Ireland, Maynooth, Co., Kildare, Ireland
| | | | | |
Collapse
|
45
|
Bumann D. In vivo visualization of bacterial colonization, antigen expression, and specific T-cell induction following oral administration of live recombinant Salmonella enterica serovar Typhimurium. Infect Immun 2001; 69:4618-26. [PMID: 11402006 PMCID: PMC98539 DOI: 10.1128/iai.69.7.4618-4626.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4(+) T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination.
Collapse
Affiliation(s)
- D Bumann
- Abteilung Molekulare Biologie, Max-Planck-Institut für Infektionsbiologie, D-10117 Berlin, Germany.
| |
Collapse
|