1
|
Yang J, Mund NK, Yang L, Fang H. Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris. Enzyme Microb Technol 2025; 184:110576. [PMID: 39742835 DOI: 10.1016/j.enzmictec.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production. Here, we have reported the first-ever synthesis of LNnT employing P. pastoris as the host. Initially, LNnT biosynthetic pathway genes β-1,3-N-acetylglucosaminyltransferase (lgtA) and β-1,4-galactostltransferase (lgtB) along with lactose permease (lac12) and galactose epimerase (gal10) were integrated into the genome of P. pastoris, but only 0.139 g/L LNnT was obtained. Second, the titer of LNnT was improved to 0.162 g/L via up-regulating genes to strengthen the supply of precursors, UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) and UDP-Gal (Uridine diphosphate galactose), for LNnT biosynthesis. Third, by knocking out critical mediator pfk (6-phosphofructokinase) genes in glycolysis, the major glucose metabolic flux was rewired to the LNnT biosynthesis pathway. As a result, the strain accumulated 0.867 g/L LNnT in YPG medium supplemented with glucose and lactose. Finally, LNnT production was increased to 1.24 g/L in a 3 L bioreactor. The work aimed to explore the potential of P. pastoris as a for LNnT production.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Nitesh Kumar Mund
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Kottom TJ, Carmona EM, Limper AH. Characterization of the Pneumocystis jirovecii and Pneumocystis murina phosphoglucomutases (Pgm2s): a potential target for Pneumocystis therapy. Antimicrob Agents Chemother 2024; 68:e0075623. [PMID: 38259086 PMCID: PMC10916394 DOI: 10.1128/aac.00756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024] Open
Abstract
Pneumocystis cyst life forms contain abundant β-glucan carbohydrates, synthesized using β-1,3 and β-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for β-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Qiu C, Tao H, Shen Y, Qi Q, Hou J. Dynamic-tuning yeast storage carbohydrate improves the production of acetyl-CoA-derived chemicals. iScience 2022; 26:105817. [PMID: 36636342 PMCID: PMC9830206 DOI: 10.1016/j.isci.2022.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acetyl-coenzyme A (Acetyl-CoA) and malonyl-coenzyme A (malonyl-CoA) are important precursors for producing various chemicals, and their availability affects the production of their downstream chemicals. Storage carbohydrates are considered important carbon and energy reservoirs. Herein, we find that regulating the storage carbohydrate synthesis improves metabolic fluxes toward malonyl-CoA. Interestingly, not only directly decreasing storage carbohydrate accumulation improved malonyl-CoA availability but also increasing the storage carbohydrate by UGP1 overexpression enables an even higher production of acetyl-CoA- and malonyl-CoA-derived chemicals. We find that Ugp1p overexpression dynamically regulates the carbon flux to storage carbohydrate synthesis. In early exponential phases, Ugp1 overexpression causes more storage carbohydrate accumulation, while the carbon flux is then redirected toward acetyl-CoA and malonyl-CoA in later phases, thereby contributing to the synthesis of their derived products. Our study demonstrates the importance of storage carbohydrates rearrangement for the availability of acetyl-CoA and malonyl-CoA and therefore will facilitate the synthesis of their derived chemicals.
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China,Corresponding author
| |
Collapse
|
4
|
Chen J, Fan J, Liu W, Wang Z, Ren A, Shi L. Trehalose‐6‐phosphate synthase influences polysaccharide synthesis and cell wall components in
Ganoderma lucidum. J Basic Microbiol 2022; 62:1337-1345. [DOI: 10.1002/jobm.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Juhong Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Junpei Fan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Weidong Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Zi Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
5
|
Xu Z, He J, Tehseen Azhar M, Zhang Z, Fan S, Jiang X, Jia T, Shang H, Yuan Y. UDP-glucose pyrophosphorylase: genome-wide identification, expression and functional analyses in Gossypium hirsutum. PeerJ 2022; 10:e13460. [PMID: 35663522 PMCID: PMC9161816 DOI: 10.7717/peerj.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes were identified from the genomes of four cotton species, which are the members of Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship, gene structure, and expression provides the basis for studies on function of UGP genes in cotton. The evolutionary tree and gene structure analysis revealed that the UGP gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that amplification of UGP genes is due to repetitive crosstalk generating between new family genes, while being under strong selection pressure. The analysis of cis-acting elements exhibited that UGP genes play important role in cotton growth, development, abiotic and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at 15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency promoted the development of ovules and fiber clusters, and qRT-PCR showed that expression of these six UGP genes was differentially increased. These results suggest that the UGP gene may play an important role in fiber development, and provides the opportunity to plant researchers to explore the mechanisms involve in fiber development in cotton.
Collapse
Affiliation(s)
- Zhongyang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiasen He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
6
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
7
|
UDP-glucose pyrophosphorylase gene affects mycelia growth and polysaccharide synthesis of Grifola frondosa. Int J Biol Macromol 2020; 161:1161-1170. [PMID: 32561281 DOI: 10.1016/j.ijbiomac.2020.06.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
To elucidate potential roles of UDP-glucose pyrophosphorylase (UGP) in mycelial growth and polysaccharide synthesis of Grifola frondosa, a putative 2036-bp UDP-glucose pyrophosphorylase gene gfugp encoding a 53.17-kDa protein was cloned and re-annotated. Two dual promoter RNA silencing vectors of pAN7-iUGP-P-dual and pAN7-iUGP-C-dual were constructed to down-regulate gfugp expression by targeting its promoter or conserved functional sequences, respectively. Results showed that silence of gfugp promoter sequence had a higher down-regulating efficiency with slower mycelial growth and polysaccharide production than those of conserved sequence. The monosaccharide compositions/percentages of mycelial and exo-polysaccharides significantly changed with the increase of galactose and arabinose contents possibly due to block of UDP-glucose supply by gfugp silence and alteration of sugar metabolism via up-regulation of UDP-glucose-4-epimerase (gfuge) and UDP-xylose-4-epimerase (gfuxe) transcription. Our findings would provide a reference to know the biosynthesis pathway of mushroom polysaccharides and improve their production by metabolic regulation.
Collapse
|
8
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Somani A, Box WG, Smart KA, Powell CD. Physiological and transcriptomic response of Saccharomyces pastorianus to cold storage. FEMS Yeast Res 2019; 19:5420514. [PMID: 31073596 DOI: 10.1093/femsyr/foz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Removal of yeast biomass at the end of fermentation, followed by a period of storage before re-inoculation into a subsequent fermentation, is common in the brewing industry. Storage is typically conducted at cold temperatures to preserve yeast quality, a practice which has unfavourable cost and environmental implications. To determine the potential for alleviating these effects, the transcriptomic and physiological response of Saccharomyces pastorianus strain W34/70 to standard (4°C) and elevated (10°C) storage temperatures was explored. Higher temperatures resulted in increased expression of genes associated with the production and mobilisation of intracellular glycogen, trehalose, glycerol and fatty acids, although these observations were limited to early stages of storage. Intracellular trehalose and glycerol concentrations were higher at 4°C than at 10°C, as a consequence of the cellular response to cold stress. However, significant changes in glycogen degradation or cellular fatty acid composition did not occur between the two sets of populations, ensuring that cell viability remained consistent. It is anticipated that this data may lead to changes in standard practice for handling yeast cultures, without compromising yeast quality. This work has significance not only for the brewing industry, but also for food and biofuel sectors requiring short-term storage of liquid yeast.
Collapse
Affiliation(s)
- Abhishek Somani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Gogerddan Campus, University of Aberystwyth, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - Wendy G Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Katherine A Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcet Drive, Cambridge, Cambridgeshire, CB3 0AS, United Kingdom
| | - Chris D Powell
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
10
|
Aon JC, Tecson RC, Loladze V. Saccharomyces cerevisiae morphological changes and cytokinesis arrest elicited by hypoxia during scale-up for production of therapeutic recombinant proteins. Microb Cell Fact 2018; 17:195. [PMID: 30572885 PMCID: PMC6300885 DOI: 10.1186/s12934-018-1044-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
Background Scaling up of bioprocesses represents a crucial step in the industrial production of biologicals. However, our knowledge about the impact of scale-up on the organism’s physiology and function is still incomplete. Our previous studies have suggested the existence of morphological changes during the scale-up of a yeast (Saccharomyces cerevisiae) fermentation process as inferred from the volume fraction occupied by yeast cells and exometabolomics analyses. In the current study, we noticed cell morphology changes during scale-up of a yeast fermentation process from bench (10 L) to industrial scale (10,000 L). We hypothesized that hypoxia observed during scale-up partially impaired the availability of N-acetyl-glucosamine, a precursor of chitin synthesis, a key polysaccharide component of yeast mother-daughter neck formation. Results Using a combination of flow cytometry with two high throughput cell imaging technologies, Vi-CELL and Flow Imaging, we found changes in the distribution of cell size and morphology as a function of process duration at the industrial scale of the production process. At the end of run, concomitantly with lowest levels of dissolved oxygen (DO), we detected an increase in cell subpopulations exhibiting low aspect ratio corresponding to morphologies exhibited by large-single-budded and multi-budded cells, reflecting incomplete cytokinesis at the M phase of the yeast mitotic cycle. Metabolomics from the intracellular milieu pointed to an impaired supply of precursors for chitin biosynthesis likely affecting the septum formation between mother and daughter and cytokinesis. Inducing hypoxia at the 10 L bench scale by varying DO levels, confirmed the existence and impact of hypoxic conditions on yeast cell size and morphology observed at the industrial scale. Conclusions We conclude that the observed increments in wet cell weight at the industrial scale correspond to morphological changes characterized by the large diameter and low aspect ratio exhibited by cell subpopulations comprising large single-budded and multi-budded cells. These changes are consistent with impairment of cytokinesis triggered by hypoxia as indicated by experiments mimicking this condition at DO 5% and 10 L scale. Mechanistically, hypoxia impairs N-acetyl-glucosamine availability, a key precursor of chitin synthesis.
Collapse
Affiliation(s)
- Juan C Aon
- Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA.
| | - Ricardo C Tecson
- Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| | - Vakhtang Loladze
- Department of Bioanalytical Sciences, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| |
Collapse
|
11
|
Watanabe D, Takagi H. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Biosci Biotechnol Biochem 2017; 81:1061-1068. [DOI: 10.1080/09168451.2017.1295805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G2/M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
12
|
Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie 2017; 138:90-101. [PMID: 28465215 DOI: 10.1016/j.biochi.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023]
Abstract
Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| | - Prajakta Pradhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Nayasha Madhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Galen C Gist
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Andrew Brittingham
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
13
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2016; 82:340-51. [PMID: 26497456 PMCID: PMC4702617 DOI: 10.1128/aem.02977-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022] Open
Abstract
The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yukiko Sugimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kenichi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hitoshi Shimoi
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
15
|
Yi DG, Huh WK. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2015; 467:657-63. [PMID: 26498530 DOI: 10.1016/j.bbrc.2015.10.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/18/2015] [Indexed: 11/17/2022]
Abstract
Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates.
Collapse
Affiliation(s)
- Dae-Gwan Yi
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.
| |
Collapse
|
16
|
Li M, Chen T, Gao T, Miao Z, Jiang A, Shi L, Ren A, Zhao M. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose. Fungal Genet Biol 2015; 82:251-63. [PMID: 26235043 DOI: 10.1016/j.fgb.2015.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP) is a key enzyme involved in carbohydrate metabolism, but there are few studies on the functions of this enzyme in fungi. The ugp gene of Ganoderma lucidum was cloned, and enzyme kinetic parameters of the UGP recombinant protein were determined in vitro, revealing that this protein was functional and catalyzed the reversible conversion between Glc-1-P and UDP-Glc. ugp silencing by RNA interference resulted in changes in the levels of the intermediate metabolites Glc-1-P and UDP-Glc. The compounds and structure of the cell wall in the silenced strains were also altered compared with those in the wild-type strains. Moreover, the number of hyphal branches was also changed in the silenced strains. To verify the role of UGP in hyphal branching, a ugp-overexpressing strain was constructed. The results showed that the number of hyphal branches was influenced by UGP. The mechanism underlying hyphal branching was further investigated by adding exogenous Glc-1-P. Our results showed that hyphal branching was regulated by a change in the cytosolic Ca(2+) concentration, which was affected by the level of the intermediate metabolite Glc-1-P, in G. lucidum. Our findings indicate the existence of an interaction between carbon metabolism and Ca(2+) signaling in this fungus.
Collapse
Affiliation(s)
- Mengjiao Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tianxi Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhigang Miao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ailiang Jiang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Yi DG, Huh WK. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast. FEBS Lett 2015; 589:2409-16. [DOI: 10.1016/j.febslet.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
|
18
|
Führing JI, Cramer JT, Schneider J, Baruch P, Gerardy-Schahn R, Fedorov R. A quaternary mechanism enables the complex biological functions of octameric human UDP-glucose pyrophosphorylase, a key enzyme in cell metabolism. Sci Rep 2015; 5:9618. [PMID: 25860585 PMCID: PMC5381698 DOI: 10.1038/srep09618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/09/2015] [Indexed: 11/29/2022] Open
Abstract
In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.
Collapse
Affiliation(s)
- Jana Indra Führing
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Thomas Cramer
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia Schneider
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Petra Baruch
- Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Roman Fedorov
- 1] Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany [2] Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
19
|
Sheng L, Zhu G, Tong Q. Mechanism study of Tween 80 enhancing the pullulan production by Aureobasidium pullulans. Carbohydr Polym 2013; 97:121-3. [DOI: 10.1016/j.carbpol.2013.04.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
|
20
|
Führing J, Damerow S, Fedorov R, Schneider J, Münster-Kühnel AK, Gerardy-Schahn R. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase. Glycobiology 2012; 23:426-37. [PMID: 23254995 DOI: 10.1093/glycob/cws217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.
Collapse
Affiliation(s)
- Jana Führing
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
22
|
Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering. Appl Environ Microbiol 2012; 78:7579-86. [PMID: 22904057 DOI: 10.1128/aem.01444-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the mutations RAS2(Lys77), RAS2(Tyr112), and ERG5(Pro370) were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2(Lys77) mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2(Tyr112) mutation also improved the specific galactose uptake rate and also resulted in many transcriptional changes, including ergosterol metabolism. The ERG5(Pro370) mutation only showed a small improvement, but when it was combined with PGM2 overexpression, the phenotype was almost the same as that of the evolved mutants. Combination of the RAS2 mutations with PGM2 overexpression also led to a complete recovery of the adaptive phenotype in galactose utilization. Recovery of the gross phenotype by the reconstructed mutants was achieved with much fewer changes in the genome and transcriptome than for the evolved mutants. Our study demonstrates how the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast.
Collapse
|
23
|
Gostinčar C, Turk M. Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 2012; 3:293-7. [PMID: 22705892 DOI: 10.4161/bioe.20713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased stress tolerance of economically important plants and microorganisms can improve yields in agriculture and industrial microbiology. The pool of resources used for the genetic modification of crops and industrial fungal strains in the past has been relatively limited, and has frequently included only stress-sensitive organisms. However, certain groups of fungi have evolved specialized mechanisms that enable them to thrive under even the most extreme of environmental conditions. These species can be considered as promising sources of biotechnologically interesting genes. Together with a powerful and convenient high-throughput functional screening method, extremotolerant fungi represent a new opportunity for the identification of stress-tolerance-conferring genes. The approaches described here should provide important contributions to the enhancing of the properties of economically important organisms in the future.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
24
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mitra S, Cui J, Robbins PW, Samuelson J. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities. Glycobiology 2010; 20:1233-40. [PMID: 20507884 DOI: 10.1093/glycob/cwq081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Giardia lamblia, which is an important parasitic cause of diarrhea, uses activated forms of glucose to make glycogen and activated forms of mannose to make glycophosphosphoinositol anchors. A necessary step for glucose activation is isomerization of glucose-6-phosphate to glucose-1-phosphate by a phosphoglucomutase (PGM). Similarly, a phosphomannomutase (PMM) converts mannose-6-phosphate to mannose-1-phosphate. While whole genome sequences of Giardia predict two PGM candidates, no PMM candidate is present. The hypothesis tested here is that at least one of the two Giardia PGM candidates has both PGM and PMM activity, as has been described for bacterial PGM orthologs. Nondenaturing gels showed that Giardia has two proteins with PGM activity, one of which also has PMM activity. Phylogenetic analyses showed that one of the two Giardia PGM candidates (Gl-PGM1) shares recent common ancestry with other eukaryotic PGMs, while the other Giardia PGM candidate (Gl-PGM2) is deeply divergent. Both Gl-PGM1 and Gl-PGM2 rescue a Saccharomyces cerevisiae pgm1Delta/pgm2Delta double deletion strain, while only Gl-PGM2 rescues a temperature-sensitive PMM mutant of S. cerevisiae (sec53-ts). Recombinant Gl-PGM1 has PGM activity only, whereas Gl-PGM2 has both PGM and PMM activities. We conclude that Gl-PGM1 behaves as a conventional eukaryotic PGM, while Gl-PGM2 is a novel eukaryotic PGM that also has PMM activity.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
27
|
Lamerz AC, Damerow S, Kleczka B, Wiese M, van Zandbergen G, Lamerz J, Wenzel A, Hsu FF, Turk J, Beverley SM, Routier FH. Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology 2010; 20:872-82. [PMID: 20335578 DOI: 10.1093/glycob/cwq045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nucleotide sugar UDP-galactose (UDP-Gal) is essential for the biosynthesis of several abundant glycoconjugates forming the surface glycocalyx of the protozoan parasite Leishmania major. Current data suggest that UDP-Gal could arise de novo by epimerization of UDP-glucose (UDP-Glc) or by a salvage pathway involving phosphorylation of Gal and the action of UDP-glucose:alpha-D-galactose-1-phosphate uridylyltransferase as described by Leloir. Since both pathways require UDP-Glc, inactivation of the UDP-glucose pyrophosphorylase (UGP) catalyzing activation of glucose-1 phosphate to UDP-Glc was expected to deprive parasites of UDP-Gal required for Leishmania glycocalyx formation. Targeted deletion of the gene encoding UGP, however, only partially affected the synthesis of the Gal-rich phosphoglycans. Moreover, no alteration in the abundant Gal-containing glycoinositolphospholipids was found in the deletion mutant. Consistent with these findings, the virulence of the UGP-deficient mutant was only modestly affected. These data suggest that Leishmania elaborates a UDP-Glc independent salvage pathway for UDP-Gal biosynthesis.
Collapse
|
28
|
Tiwari A, Bhat JP. Molecular characterization reveals that YMR278w encoded protein is environmental stress response homologue of Saccharomyces cerevisiae PGM2. Biochem Biophys Res Commun 2008; 366:340-5. [DOI: 10.1016/j.bbrc.2007.11.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/14/2007] [Indexed: 11/27/2022]
|
29
|
Duan X, Chi Z, Wang L, Wang X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 2008; 73:587-93. [PMID: 26048225 DOI: 10.1016/j.carbpol.2007.12.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/28/2007] [Accepted: 12/30/2007] [Indexed: 11/28/2022]
Abstract
Effects of different sugars on pullulan production, UDP-glucose level, and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in Aureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium containing glucose than when it was cultivated in the medium supplementing other sugars. Our results demonstrate that when more pullulan was synthesized, less UDP-glucose was left in the cells of A. pullulans Y68. However, it was observed that more pullulan was synthesized, the cells had higher activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glycosyltransferase. Therefore, high pullulan yield is related to high activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in A. pullulans Y68 grown on different sugars. A pathway of pullulan biosynthesis in A. pullulan Y68 was proposed based on the results of this study and those from other researchers. This study will be helpful to metabolism-engineer the yeast strain to further enhance pullulan yield.
Collapse
Affiliation(s)
- Xiaohui Duan
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China
| | - Zhenming Chi
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China.
| | - Lin Wang
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China
| | - Xianghong Wang
- UNESCO Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No.5, Qingdao, China
| |
Collapse
|
30
|
Mehlgarten C, Zink S, Rutter J, Schaffrath R. Dosage suppression of the Kluyveromyces lactis zymocin by Saccharomyces cerevisiae ISR1 and UGP1. FEMS Yeast Res 2007; 7:722-30. [PMID: 17367514 DOI: 10.1111/j.1567-1364.2007.00216.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Kluyveromyces lactis zymocin complex kills Saccharomyces cerevisiae cells in a process that involves tRNA cleavage by its tRNAse gamma-toxin subunit. In contrast to the gamma-toxin mode of action, the early steps of the zymocin response are less well characterized. Here, we present high-dosage suppressors of zymocin that encode a putative Pkc1-related kinase (ISR1) and UDP-glucose pyrophosphorylase (UGPase) (UGP1). Anti-UGPase Western blots and GAL10 - ISR1 overexpression suggest that zymocin suppression correlates with overproduction of UGPase or Isr1. As judged from protection against exo-zymocin and unaltered sensitivity to endogenous gamma-toxin, high-copy ISR1 and UGP1 operate in early, nontarget steps of the zymocin pathway. Consistent with a recent report on in vitro phosphorylation of Isr1 and UGPase by the CDK Pho85, high-copy ISR1 and UGP1 suppression of zymocin is abolished in a pho85 null mutant lacking CDK activity of Pho85. Moreover, suppression requires UGPase enzyme activity, and ISR1 overexpression also protects against CFW, a chitin-interfering poison. Our data agree with roles for UGPase in cell wall biosynthetic processes and for Isr1 in Pkc1-related cell wall integrity. In sum, high-copy ISR1 and UGP1 cells affect early steps of the zymocin response and potentially prevent the lethal K. lactis killer complex from establishing cell surface recognition and/or contact.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Biologicum, Institut für Biologie, Institutsbereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
31
|
Penha LL, Mendonça-Previato L, Previato JO, Scharfstein J, Heise N, Lima APCDA. Cloning and characterization of the phosphoglucomutase of Trypanosoma cruzi and functional complementation of a Saccharomyces cerevisiae PGM null mutant. Glycobiology 2005; 15:1359-67. [PMID: 16037487 DOI: 10.1093/glycob/cwj023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas' disease, a chronic illness characterized by progressive cardiomyopathy and/or denervation of the digestive tract. The parasite surface is covered with glycoconjugates, such as mucin-type glycoproteins and glycoinositolphospholipids (GIPLs), whose glycans are rich in galactopyranose (Galp) and/or galactofuranose (Galf) residues. These molecules have been implicated in attachment of the parasite to and invasion of mammalian cells and in modulation of the host immune responses during infection. In T. cruzi, galactose (Gal) biosynthesis depends on the conversion of uridine diphosphate (UDP)-glucose (UDP-Glc) into UDP-Gal by an NAD-dependent reduction catalyzed by UDP-Gal 4-epimerase. Phosphoglucomutase (PGM) is a key enzyme in this metabolic pathway catalyzing the interconversion of Glc-6-phosphate (Glc-6-P) and Glc-1-P which is then converted into UDP-Glc. We here report the cloning of T. cruzi PGM, encoding T. cruzi PGM, and the heterologous expression of a functional enzyme in Saccharomyces cerevisiae. T. cruzi PGM is a single copy gene encoding a predicted protein sharing 61% amino acid identity with Leishmania major PGM and 43% with the yeast enzyme. The 59-trans-splicing site of PGM RNA was mapped to a region located at 18 base pairs upstream of the start codon. Expression of T. cruzi PGM in a S. cerevisiae null mutant-lacking genes encoding both isoforms of PGM (pgm1Delta/pgm2Delta) rescued the lethal phenotype induced upon cell growth on Gal as sole carbon source.
Collapse
Affiliation(s)
- Luciana L Penha
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde-Bloco G, Universidade Federal do Rio de Janeiro, 21944-970, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Leslie N, Yager C, Reynolds R, Segal S. UDP-galactose pyrophosphorylase in mice with galactose-1-phosphate uridyltransferase deficiency. Mol Genet Metab 2005; 85:21-7. [PMID: 15862277 DOI: 10.1016/j.ymgme.2005.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/12/2005] [Accepted: 01/12/2005] [Indexed: 11/21/2022]
Abstract
UDP-glucose pyrophosphorylase (E.C. 2.7.7.9), encoded by ugp, provides UDP-glucose which is critical to the synthesis of glycogen, and also catalyzes the reaction between UTP and galactose-1-phosphate, yielding UDP-galactose. This activity of UDP-gal pyrophosphorylase (UDP-galPP) suggests a role in an alternate pathway for galactose metabolism in patients with deficiency of galactose-1-phosphate uridyltransferase (GALT). We examined the effects of GALT deficiency and dietary galactose on UDP-glucose pyrophosphorylase (UDP-gluPP) and UDP-galactose pyrophosphorylase activity and ugp expression in liver of mice with homozygous deletion of the critical regions of galt. Activity with glucose-1-phosphate as substrate was significantly higher than that with galactose-1-phosphate. In liver from mice with GALT deficiency (G/G), UDP-galPP activity appeared to be lower than that measured in liver from control (N/N) animals. This difference disappeared when the N/N tissue homogenate was dialyzed to remove residual UDP-glucose, confirming that careful elimination of residual GALT activity is necessary, since GALT has 1000-fold greater activity toward galactose-1-phosphate than that of UDP-galPP in liver homogenates. Prior exposure to conventional mouse chow, high galactose chow, and high glucose chow did not alter UDP-glu PP or UDP-galPP activity. Steady state UGP mRNA levels were determined in tissues from normal and G/G animals. UGP expression was highest in liver, and did not differ by genotype or exposure to high galactose chow. UDP-galPP activity may account for unexplained ability to oxidize galactose in animals with no GALT activity, but is insufficient to alter accumulation of galactose metabolites.
Collapse
Affiliation(s)
- Nancy Leslie
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
33
|
Zea CJ, Pohl NL. General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry. Anal Biochem 2005; 328:196-202. [PMID: 15113697 DOI: 10.1016/j.ab.2004.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 10/26/2022]
Abstract
An electrospray ionization mass spectrometry-based assay has been developed to study the class of enzymes called sugar nucleotidyltransferases that couple sugar-1-phosphates and nucleotide triphosphates to form Leloir pathway glycosyl donors. The recombinant Escherichia coli and the commercially available yeast uridine-diphosphoglucose pyrophosphorylases were used as model systems. This technique allows the simultaneous and direct detection of the substrates and products without separation and, as described, is as sensitive as traditional coupled techniques. More importantly, the assay is capable of easily measuring kinetic values and inhibition constants for a range of natural and nonnatural substrates. This new assay was used to show for the first time that the reaction of the commercially available yeast uridine-diphosphoglucose pyrophosphorylase preparation is competitively inhibited by adenosine 5'-triphosphate (ATP), an observation that indicates a single active site that accepts both uridine 5'-triphosphate and ATP substrates.
Collapse
Affiliation(s)
- Corbin J Zea
- Department of Chemistry and the Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
34
|
Yiannikouris A, François J, Poughon L, Dussap CG, Bertin G, Jeminet G, Jouany JP. Adsorption of Zearalenone by beta-D-glucans in the Saccharomyces cerevisiae cell wall. J Food Prot 2004; 67:1195-200. [PMID: 15222549 DOI: 10.4315/0362-028x-67.6.1195] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell walls of yeasts and bacteria are able to complex with mycotoxins and limit their bioavailability in the digestive tract when these yeasts and bacteria are given as feed additives to animals. To identify the component(s) of the yeast cell wall and the chemical interaction(s) involved in complex formation with zearalenone, four strains of Saccharomyces cerevisiae differing in their cell wall glucan and mannan content were tested. Laboratory strains wt292, fks1, and mnn9 were compared with industrial S. cerevisiae strain sc1026. The complex-forming capacity of the yeast cell walls was determined in vitro by modelling the plots of amount of toxin bound versus amount of toxin added using Hill's model. A cooperative relationship between toxin and adsorbent was shown, and a correlation between the amount of beta-D-glucans in cell walls and complex-forming efficacy was revealed (R2 = 0.889). Cell walls of strains wt292 and mnn9, which have higher levels of beta-D-glucans, were able to complex larger amounts of zearalenone, with higher association constants and higher affinity rates than those of the fks1 and sc1026 strains. The high chitin content in strains mnn9 and fks1 increased the alkali insolubility of beta-D-glucans from isolated cell walls and decreased the flexibility of these cell walls, which restricted access of zearalenone to the chemical sites of the beta-D-glucans involved in complex formation. The strains with high chitin content thus had a lower complex-forming capacity than expected based on their beta-D-glucans content. Cooperativity and the three-dimensional structure of beta-D-glucans indicate that weak noncovalent bonds are involved in the complex-forming mechanisms associated with zearalenone. The chemical interactions between beta-D-glucans and zearalenone are therefore more of an adsorption type than a binding type.
Collapse
Affiliation(s)
- A Yiannikouris
- UR1053 INRA, Unité de Recherches sur les Herbivores, Centre de Clermont-Theix, 63122 St. Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PAS kinase is a serine/threonine kinase regulated in cis by a PAS domain. A genetic study of the two PAS kinase genes in budding yeast gave evidence of the involvement of these enzymes in the control of sugar metabolism and translation. Using a biochemical screen for PAS kinase substrates, three translation factors were identified as direct phosphorylation targets. PAS kinase was also found to phosphorylate UDP-glucose pyrophosphorylase and glycogen synthase, the enzymes catalyzing the two final steps in the glycogen biosynthetic pathway. Genetic, biochemical, and physiological data provide evidence that both of these enzymes are inhibited by PAS kinase-dependent phosphorylation, thereby downregulating carbohydrate storage. These studies provide evidence of a cell-autonomous signaling system that both controls and connects the balance of fuel consumption/storage to protein synthesis.
Collapse
Affiliation(s)
- Jared Rutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
36
|
Bishop JD, Moon BC, Harrow F, Ratner D, Gomer RH, Dottin RP, Brazill DT. A second UDP-glucose pyrophosphorylase is required for differentiation and development in Dictyostelium discoideum. J Biol Chem 2002; 277:32430-7. [PMID: 12060658 DOI: 10.1074/jbc.m204245200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uridine diphosphoglucose pyrophosphorylase (UDPGP) is a developmentally regulated enzyme in Dictyostelium discoideum, which is involved in trehalose, cellulose, and glycogen synthesis. Two independent UDPGP proteins are believed to be responsible for this activity. To determine the relative contributions of each protein, the genes encoding them were disrupted individually. Cells lacking the udpgp1 gene exhibit normal growth and development and make normal levels of cellulose. In agreement with these phenotypes, udpgp1(-) cells still have UDPGP activity, although at a reduced level. This supports the importance of the second UDPGP gene. This newly identified gene, ugpB, encodes an active UDPGP as determined by complementation in Escherichia coli. When this gene is disrupted, cells undergo aberrant differentiation and development ending with small, gnarled fruiting bodies. These cells also have decreased spore viability and decreased levels of glycogen, whose production requires UDPGP activity. These phenotypes suggest that UgpB constitutes the major UDPGP activity produced during development. Sequence analysis of the two UDPGP genes shows that UgpB has higher homology to other eukaryotic UDPGPs than does UDPGP1. This includes the presence of 5 conserved lysine residues. Udpgp1 only has 1 of these lysines.
Collapse
Affiliation(s)
- John D Bishop
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, Texas 77251-1892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lagorce A, Le Berre-Anton V, Aguilar-Uscanga B, Martin-Yken H, Dagkessamanskaia A, François J. Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1697-707. [PMID: 11895440 DOI: 10.1046/j.1432-1327.2002.02814.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-wall damage caused by mutations of cell-wall-related genes triggers a compensatory mechanism which eventually results in hyperaccumulation of chitin reaching 20% of the cell-wall dry mass. We show that activation of chitin synthesis is accompanied by a rise, from 1.3-fold to 3.5-fold according to the gene mutation, in the expression of most of the genes encoding enzymes of the chitin metabolic pathways. Evidence that GFA1, which encodes glutamine-fructose-6-Phosphate amidotransferase (Gfa1p), the first committed enzyme of this pathway, plays a major role in this process was as follows. Activation of chitin synthesis in the cell-wall mutants correlated with activation of GFA1 and with a proportional increase in Gfa1p activity. Overexpression of GFA1 caused an approximately threefold increase in chitin in the transformed cells, whereas chitin content was barely affected by the joint overexpression of CHS3 and CHS7. Introduction of a gfa1-97 allele mutation in the cell-wall-defective gas1Delta mutant or cultivation of this mutant in a hyperosmotic medium resulted in reduction in chitin synthesis that was proportional to the decrease in Gfa1p activity. Finally, the stimulation of chitin production was also accompanied by an increase in pools of fructose 6-Phosphate, a substrate of Gfa1p. In quantitative terms, we estimated the flux-coefficient control of Gfa1p to be in the range of 0.90, and found that regulation of the chitin metabolic pathway was mainly hierarchical, i.e. dominated by regulation of the amount of newly synthesized GFA1 protein. In the search for the mechanism by which GFA1 is activated in response to cell-wall perturbations, we could only show that neither MCM1 nor RLM1, which encode two transcriptional factors of the MADS box family that are required for expression of cell-cycle and cell-wall-related genes, was involved in this process.
Collapse
Affiliation(s)
- Arnaud Lagorce
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UR-INRA 792, Département de Génie Biochimique et Alimentaire, Complexe Scientifique de Rangeuil, Toulouse, France
| | | | | | | | | | | |
Collapse
|
38
|
Masuda CA, Xavier MA, Mattos KA, Galina A, Montero-Lomeli M. Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 2001; 276:37794-801. [PMID: 11500487 DOI: 10.1074/jbc.m101451200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lithium is a drug frequently used in the treatment of manic depressive disorder. We have observed that the yeast Saccharomyces cerevisiae is very sensitive to lithium when growing in galactose medium. In this work we show that lithium inhibits with high affinity yeast (IC50 approximately 0.2 mm) and human (IC50 approximately 1.5 mm) phosphoglucomutase, the enzyme that catalyzes the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Lithium inhibits the rate of fermentation when yeast are grown in galactose and induces accumulation of glucose 1-phosphate and galactose 1-phosphate. Accumulation of these metabolites was also observed when a strain deleted of the two isoforms of phosphoglucomutase was incubated in galactose medium. In glucose-grown cells lithium reduces the steady state levels of UDP-glucose, resulting in a defect on trehalose and glycogen biosynthesis. Lithium acts as a competitive inhibitor of yeast phosphoglucomutase activity by competing with magnesium, a cofactor of the enzyme. High magnesium concentrations revert lithium inhibition of growth and phosphoglucomutase activity. Lithium stress causes an increase of the phosphoglucomutase activity due to an induction of transcription of the PGM2 gene, and its overexpression confers lithium tolerance in galactose medium. These results show that phosphoglucomutase is an important in vivo lithium target.
Collapse
Affiliation(s)
- C A Masuda
- Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, C. P. 68041, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | |
Collapse
|
39
|
Abstract
Glycogen and trehalose are the two glucose stores of yeast cells. The large variations in the cell content of these two compounds in response to different environmental changes indicate that their metabolism is controlled by complex regulatory systems. In this review we present information on the regulation of the activity of the enzymes implicated in the pathways of synthesis and degradation of glycogen and trehalose as well as on the transcriptional control of the genes encoding them. cAMP and the protein kinases Snf1 and Pho85 appear as major actors in this regulation. From a metabolic point of view, glucose-6-phosphate seems the major effector in the net synthesis of glycogen and trehalose. We discuss also the implication of the recently elucidated TOR-dependent nutrient signalling pathway in the control of the yeast glucose stores and its integration in growth and cell division. The unexpected roles of glycogen and trehalose found in the control of glycolytic flux, stress responses and energy stores for the budding process, demonstrate that their presence confers survival and reproductive advantages to the cell. The findings discussed provide for the first time a teleonomic value for the presence of two different glucose stores in the yeast cell.
Collapse
Affiliation(s)
- J François
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 135 Avenue de Rangeuil, 31077 Toulouse Cedex 04, France.
| | | |
Collapse
|
40
|
Wysocki R, Van Dyck E, Fairhead C, Foury F. Mass-murdering: deletion of twenty-three ORFs from Saccharomyces cerevisiae chromosome XI reveals five genes essential for growth and three genes conferring detectable mutant phenotype. Gene 1999; 229:37-45. [PMID: 10095102 DOI: 10.1016/s0378-1119(99)00030-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the frame of the European Network for Functional Analysis (EUROFAN), two regions from chromosome XI covering 54kb have been subjected to 'mass-murder'. Ten deletions covering 23 novel open reading frames (ORFs) were constructed in haploid and diploid strains. Six deletions were lethal in haploid strains. One deletion caused slow germination of spores and slow cellular growth, and another one was associated with both cellular growth thermosensitivity and poor growth on glycerol. These two defects were assigned to two different genes. All mutant phenotypes were complemented by a single gene, enabling us to identify five genes essential for vegetative growth, three genes with detectable phenotype and 15 dispensable genes under standard physiological conditions.
Collapse
Affiliation(s)
- R Wysocki
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2/20, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
41
|
Abstract
The oligosaccharide substrate for the N-linked protein glycosylation is assembled at the membrane of the endoplasmic reticulum. Dolichyl pyrophosphate serves as a carrier in this biosynthetic pathway. In this review, we discuss the function of the lipid carrier dolichol in oligosaccharide assembly and give an overview of the biosynthesis of the different sugar donors required for the building of the oligosaccharide. Yeast genetic techniques have made it possible to identify many different loci encoding specific glycosyltransferases required for the precise and ordered assembly of the dolichyl pyrophosphate-linked oligosaccharide. Based on the knowledge obtained from studying this pathway in yeast, we compare it to the process of N-linked protein glycosylation in archaea. We suggest that N-linked glycosylation in eukaryotes and in archaea share a common evolutionary origin.
Collapse
Affiliation(s)
- P Burda
- Mikrobiologisches Institut, ETH Zürich, Schmelzbergstr. 7, CH-092 Zürich, Switzerland
| | | |
Collapse
|
42
|
Dallies N, François J, Paquet V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 1998; 14:1297-306. [PMID: 9802208 DOI: 10.1002/(sici)1097-0061(1998100)14:14<1297::aid-yea310>3.0.co;2-l] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A reliable acid hydrolysis method for quantitative determination of the proportion of beta-glucan, mannan and chitin in Saccharomyces cerevisiae cell wall is reported together with a simple extraction procedure to quantify within a standard error of less than 2% the proportion of the wall per gram of cell dry mass. This method is an optimized version of Saeman's procedure based on sulfuric acid hydrolysis of complex polysaccharides. It resulted in an almost complete release of glucose, mannose and glucosamine residues from cell wall polysaccharides. After complete removal of sulfate ions by precipitation with barium hydroxide, the liberated monosaccharides were separated and quantified by high performance anion-exchange chromatography with pulsed amperometric detection. The superiority of this method over the hydrolysis in either trifluoroacetic or hydrochloric acid resides in its higher efficiency regarding the release of glucose from beta 1,6-glucan and of glucosamine from chitin. The sulfuric acid method was successfully applied to determine the beta-glucan, mannan and chitin contents in cell walls of genetically well-characterized yeast mutants defective in cell wall biosynthesis, and in Schizosaccharomyces pombe cell walls. The simplicity and reliability of this procedure make it the method of choice for the characterization of cell walls from S. cerevisiae mutants generated in the EUROFAN programme, as well as for other pharmacological and biotechnological applications.
Collapse
Affiliation(s)
- N Dallies
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, LA. INRA, Departement de Genie Biochimique et Alimentaire, Institut National des Sciences Appliquees, Toulouse, France
| | | | | |
Collapse
|