1
|
Schaks M, Staudinger I, Homeister L, Di Biase B, Steinkraus BR, Spiess AN. Local microbial yield-associating signatures largely extend to global differences in plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177946. [PMID: 39662421 DOI: 10.1016/j.scitotenv.2024.177946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Rapid advancements in high-throughput DNA sequencing have opened new avenues for applying microbiome-based machine learning to predict and model determinants that enhance agricultural productivity and sustainability in agroecosystems. Although early attempts have been made to predict crop yield or measures of soil health through the soil microbiome, it is unclear if microbial patterns associated with plant growth or crop yield on a local scale can be generalized to predict differences in plant growth on a continental or global scale. Herein, we measured the soil bacterial microbiome on a single maize field in Germany with high spatial sampling resolution and correlated the community composition with corresponding volume flow-based high-resolution yield measurements. Applying machine learning techniques, a least absolute shrinkage and selection operator (LASSO) regression model could retrospectively predict ∼65 % of variation in maize yield through cross-validation. We validated this locally trained model, comprising 26 genera, using data from seven publicly available datasets. Predictions from this model correlated with various yield or plant growth metrics throughout the world and could predict up to 37 % of variation in global vegetation, as assessed by normalized difference vegetation index data. Further feature inspection showed that the genera Hyphomicrobium, Luedemannella, Reyranella, JGI.0001001.H03, Aeromicrobium, Flavitalea and Ellin6055 most consistently contributed to plant growth prediction. Finally, repeating LASSO regression, an optimized model could predict up to 50 % of variation in global vegetation. In summary, our data suggests a globally conserved set of soil bacterial taxa that correlates with vegetation and might be used to predict plant growth.
Collapse
Affiliation(s)
| | - Isabella Staudinger
- Soilytix GmbH, Dammtorwall 7A, 20354 Hamburg, Germany; Lübbinchener Milch & Mast GbR, Feldscheunenweg 4, 03172 Schenkendöbern, Germany
| | - Linda Homeister
- Lübbinchener Milch & Mast GbR, Feldscheunenweg 4, 03172 Schenkendöbern, Germany
| | | | | | | |
Collapse
|
2
|
Suenaga H, Hira T, Yoshimura T, Oka T, Hira D. Selection and application of methanol-utilizing bacteria from tomato leaves for biocontrol of gray mold. Front Microbiol 2024; 15:1455699. [PMID: 39493851 PMCID: PMC11527628 DOI: 10.3389/fmicb.2024.1455699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Gray mold, caused by Botrytis cinerea, is a significant threat to tomato production. Traditional chemical control methods have become increasingly ineffective because of the development of resistance. This study aimed to isolate methanol-utilizing bacteria from tomato leaves and evaluate their biocontrol potential against gray mold. To obtain bacterial suspensions, tomato leaf samples were collected and washed. We analyzed the microbial communities of these samples using 16S rRNA amplicon sequencing and identified several methylotrophic strains. Among these, 405 isolated strains were cultivated on a solid low-nutrient inorganic salt medium containing methanol, and 7 strains exhibiting considerable antifungal activity against B. cinerea were identified. Greenhouse tests revealed that two strains-SY163 and SY183-significantly reduced the severity of gray mold on tomato leaves. Disease index scores and the area under the disease progress curve values confirmed the efficacy of these strains as biocontrol agents. Statistical analysis indicated the effectiveness of pre- and co-application of these strains with B. cinerea. Phylogenetic analysis identified Serratia rubidaea as the inhibitory strain. The biocontrol activity is likely mediated through the production of antifungal compounds and suppression of B. cinerea sporulation. This study provides the basis for developing a technology of gray mold suppression by controlling the abundance of S. rubidaea in plant microbial communities.
Collapse
Affiliation(s)
- Hiroyuki Suenaga
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | | | | | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
3
|
Cheng S, Meng F, Wang Y, Zhang J, Zhang L. The potential linkage between sediment oxygen demand and microbes and its contribution to the dissolved oxygen depletion in the Gan River. Front Microbiol 2024; 15:1413447. [PMID: 39144217 PMCID: PMC11322766 DOI: 10.3389/fmicb.2024.1413447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The role of sediment oxygen demand (SOD) in causing dissolved oxygen (DO) depletion is widely acknowledged, with previous studies mainly focusing on chemical and biological SOD separately. However, the relationship between the putative functions of sediment microbes and SOD, and their impact on DO depletion in overlying water, remains unclear. In this study, DO depletion was observed in the downstream of the Gan River during the summer. Sediments were sampled from three downstream sites (YZ, Down1, and Down2) and one upstream site (CK) as a control. Aquatic physicochemical parameters and SOD levels were measured, and microbial functions were inferred from taxonomic genes through analyses of the 16S rRNA gene. The results showed that DO depletion sites exhibited a higher SOD rate compared to CK. The microbial community structure was influenced by the spatial variation of Proteobacteria, Chloroflexi, and Bacteroidota, with total organic carbon (TOC) content acting as a significant environmental driver. A negative correlation was observed between microbial diversity and DO concentration (p < 0.05). Aerobic microbes were more abundant in DO depletion sites, particularly Proteobacteria. Microbes involved in various biogeochemical cycles, such as carbon (methane oxidation, methanotrophs, and methylotrophs), nitrogen (nitrification and denitrification), sulfur (sulfide and sulfur compound oxidation), and manganese cycles (manganese oxidation), exhibited higher abundance in DO depletion sites, except for the iron cycle (iron oxidation). These processes were negatively correlated with DO concentration and positively with SOD (p < 0.05). Overall, the results highlight that aerobic bacteria's metabolic processes consume oxygen, increasing the SOD rate and contributing to DO depletion in the overlying water. Additionally, the study underscores the importance of targeting the removal of in situ microbial molecular mechanisms associated with toxic H2S and CH4 to support reoxygenation efforts in rehabilitating DO depletion sites in the Gan River, aiding in identifying factors controlling DO consumption and offering practical value for the river's restoration and management.
Collapse
Affiliation(s)
- Shoutao Cheng
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Fansheng Meng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yeyao Wang
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- China National Environmental Monitoring Center, Beijing, China
| | - Jiasheng Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Lingsong Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
4
|
Yousaf T, Saleem F, Andleeb S, Ali M, Farhan Ul Haque M. Methylotrophic bacteria from rice paddy soils: mineral-nitrogen-utilizing isolates richness in bulk soil and rhizosphere. World J Microbiol Biotechnol 2024; 40:188. [PMID: 38702590 DOI: 10.1007/s11274-024-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.
Collapse
Affiliation(s)
- Tabassum Yousaf
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Fatima Saleem
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Ali
- Faculty of Agriculture Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | |
Collapse
|
5
|
Voutsinos MY, West-Roberts JA, Sachdeva R, Moreau JW, Banfield JF. Weathered granites and soils harbour microbes with lanthanide-dependent methylotrophic enzymes. BMC Biol 2024; 22:41. [PMID: 38369453 PMCID: PMC10875860 DOI: 10.1186/s12915-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.
Collapse
Affiliation(s)
- Marcos Y Voutsinos
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacob A West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Jillian F Banfield
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
7
|
Pugliese G, Ingrisch J, Meredith LK, Pfannerstill EY, Klüpfel T, Meeran K, Byron J, Purser G, Gil-Loaiza J, van Haren J, Dontsova K, Kreuzwieser J, Ladd SN, Werner C, Williams J. Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest. Nat Commun 2023; 14:5064. [PMID: 37604817 PMCID: PMC10442410 DOI: 10.1038/s41467-023-40661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific 13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate.
Collapse
Affiliation(s)
- Giovanni Pugliese
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany.
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Universität Innsbruck, Department of Ecology, Innsbruck, Austria
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Eva Y Pfannerstill
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, USA
| | - Thomas Klüpfel
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Joseph Byron
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gemma Purser
- UK Centre for Ecology & Hydrology, Penicuik, Edinburgh, UK
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Joost van Haren
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Katerina Dontsova
- Biosphere 2, University of Arizona, Oracle, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
8
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
9
|
Oudova-Rivera B, Crombie AT, Murrell JC, Lehtovirta-Morley LE. Alcohols as inhibitors of ammonia oxidizing archaea and bacteria. FEMS Microbiol Lett 2023; 370:fnad093. [PMID: 37698885 PMCID: PMC11025371 DOI: 10.1093/femsle/fnad093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Ammonia oxidizers are key players in the global nitrogen cycle and are responsible for the oxidation of ammonia to nitrite, which is further oxidized to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidizers. The AMO has not been purified in an active form, and much of what is known about its potential structure and function comes from studies on its interactions with inhibitors. The archaeal AMO is less well studied as ammonia oxidizing archaea were discovered much more recently than their bacterial counterparts. The inhibition of ammonia oxidation by aliphatic alcohols (C1-C8) using the model terrestrial ammonia oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus' C13 and the ammonia oxidizing bacterium Nitrosomonas europaea was examined in order to expand knowledge about the range of inhibitors of ammonia oxidizers. Methanol was the most potent specific inhibitor of the AMO in both ammonia oxidizers, with half-maximal inhibitory concentrations (IC50) of 0.19 and 0.31 mM, respectively. The inhibition was AMO-specific in 'Ca. N. franklandus' C13 in the presence of C1-C2 alcohols, and in N. europaea in the presence of C1-C3 alcohols. Higher chain-length alcohols caused non-specific inhibition and also inhibited hydroxylamine oxidation. Ethanol was tolerated by 'Ca. N. franklandus' C13 at a higher threshold concentration than other chain-length alcohols, with 80 mM ethanol being required for complete inhibition of ammonia oxidation.
Collapse
Affiliation(s)
- Barbora Oudova-Rivera
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | |
Collapse
|
10
|
Oudova-Rivera B, Wright CL, Crombie AT, Murrell JC, Lehtovirta-Morley LE. The effect of methane and methanol on the terrestrial ammonia-oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus C13'. Environ Microbiol 2023; 25:948-961. [PMID: 36598494 DOI: 10.1111/1462-2920.16316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
The ammonia monooxygenase (AMO) is a key enzyme in ammonia-oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper-containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co-oxidation of alternative substrates. The phylogenetic and structural similarity between the pMMO and the archaeal AMO is well-established, but there is surprisingly little information on the influence of methane and methanol on the archaeal AMO and terrestrial nitrification. The aim of this study was to examine the effects of methane and methanol on the soil ammonia-oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus C13'. We demonstrate that both methane and methanol are competitive inhibitors of the archaeal AMO. The inhibition constants (Ki ) for methane and methanol were 2.2 and 20 μM, respectively, concentrations which are environmentally relevant and orders of magnitude lower than those previously reported for ammonia-oxidizing bacteria. Furthermore, we demonstrate that a specific suite of proteins is upregulated and downregulated in 'Ca. Nitrosocosmicus franklandus C13' in the presence of methane or methanol, which provides a foundation for future studies into metabolism of one-carbon (C1) compounds in ammonia-oxidizing archaea.
Collapse
Affiliation(s)
| | - Chloe L Wright
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | | |
Collapse
|
11
|
Timsy T, Behrendt U, Ulrich A, Foesel BU, Spanner T, Neumann-Schaal M, Wolf J, Schloter M, Horn MA, Kolb S. Genomic evidence for two pathways of formaldehyde oxidation and denitrification capabilities of the species Paracoccus methylovorus sp. nov. Int J Syst Evol Microbiol 2022; 72. [PMID: 36861375 DOI: 10.1099/ijsem.0.005581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.
Collapse
Affiliation(s)
- Timsy Timsy
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Bärbel U Foesel
- Research Unit Molecular Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jacqueline Wolf
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
12
|
Kanukollu S, Remus R, Rücker AM, Buchen-Tschiskale C, Hoffmann M, Kolb S. Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. ENVIRONMENTAL MICROBIOME 2022; 17:35. [PMID: 35794633 PMCID: PMC9258066 DOI: 10.1186/s40793-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Managed grasslands are global sources of atmospheric methanol, which is one of the most abundant volatile organic compounds in the atmosphere and promotes oxidative capacity for tropospheric and stratospheric ozone depletion. The phyllosphere is a favoured habitat of plant-colonizing methanol-utilizing bacteria. These bacteria also occur in the rhizosphere, but their relevance for methanol consumption and ecosystem fluxes is unclear. Methanol utilizers of the plant-associated microbiota are key for the mitigation of methanol emission through consumption. However, information about grassland plant microbiota members, their biodiversity and metabolic traits, and thus key actors in the global methanol budget is largely lacking. RESULTS We investigated the methanol utilization and consumption potentials of two common plant species (Festuca arundinacea and Taraxacum officinale) in a temperate grassland. The selected grassland exhibited methanol formation. The detection of 13C derived from 13C-methanol in 16S rRNA of the plant microbiota by stable isotope probing (SIP) revealed distinct methanol utilizer communities in the phyllosphere, roots and rhizosphere but not between plant host species. The phyllosphere was colonized by members of Gamma- and Betaproteobacteria. In the rhizosphere, 13C-labelled Bacteria were affiliated with Deltaproteobacteria, Gemmatimonadates, and Verrucomicrobiae. Less-abundant 13C-labelled Bacteria were affiliated with well-known methylotrophs of Alpha-, Gamma-, and Betaproteobacteria. Additional metagenome analyses of both plants were consistent with the SIP results and revealed Bacteria with methanol dehydrogenases (e.g., MxaF1 and XoxF1-5) of known but also unusual genera (i.e., Methylomirabilis, Methylooceanibacter, Gemmatimonas, Verminephrobacter). 14C-methanol tracing of alive plant material revealed divergent potential methanol consumption rates in both plant species but similarly high rates in the rhizosphere and phyllosphere. CONCLUSIONS Our study revealed the rhizosphere as an overlooked hotspot for methanol consumption in temperate grasslands. We further identified unusual new but potentially relevant methanol utilizers besides well-known methylotrophs in the phyllosphere and rhizosphere. We did not observe a plant host-specific methanol utilizer community. Our results suggest that our approach using quantitative SIP and metagenomics may be useful in future field studies to link gross methanol consumption rates with the rhizosphere and phyllosphere microbiome.
Collapse
Affiliation(s)
- Saranya Kanukollu
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Rainer Remus
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Caroline Buchen-Tschiskale
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Present Address: Johann Heinrich von Thünen-Institut, Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Mathias Hoffmann
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
13
|
Van De Ven CJC, Laurenzi L, Arnold AC, Hallam SJ, Mayer KU. The nature of gas production patterns associated with methanol degradation in natural aquifer sediments: A microcosm study. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103988. [PMID: 35303484 DOI: 10.1016/j.jconhyd.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
With growing global use of methanol as a fuel additive and extensive use in other industrial processes, there is the potential for unintended release and spills into soils and aquifers. In these subsurface systems it is likely that methanol will be readily biodegraded; however, degradation may lead to the production of by-products, most importantly methane possibly resulting in explosion hazards and volatile fatty acids (VFAs) causing aesthetic issues for groundwater. In this study, the formation of these potentially harmful by-products due to methanol biodegradation was investigated in natural sand and silt sediments using microcosms inoculated with neat methanol (100%) ranging in concentration from 100 to 100,000 ppm. To assess the rate of degradation and by-product formation, water and headspace samples were collected and analyzed for methanol, volatile fatty acids (VFAs, including acetic, butyric, and propionic acid), cation (metal) concentrations (Al, Ca, Fe, K, Mg, Mn and Na), microbial community structure and activity, headspace pressure, gas composition (CH4, CO2, O2 and N2), and compound specific isotopes. Methanol was completely biodegraded in sand and silt up to concentrations of 1000 ppm and 10,000 ppm, respectively. Degradation was initially aerobic, consuming oxygen (O2) and producing carbon dioxide (CO2). When O2 was depleted, the microcosms became anaerobic and a lag in methanol degradation occurred (ranging from 41 to 87 days). Following this lag, methanol was preferentially degraded to acetate, coupled with CO2 reduction. Microcosms with high methanol concentrations (10,000 ppm) were driven further down the redox ladder and exhibited fermentation, leading to concurrent acetate and methane (CH4) generation. In all cases acetate was an intermediate product, further degraded to the final products of CH4 and CO2. Carbonates present in the microcosm sediments helped buffer VFA acidification and replenished CO2. Methane generation in the anaerobic microcosms was short-lived, but temporarily reached high rates up to 13 mg kg-1 day-1. Under the conditions of these experiments, methanol degradation occurred rapidly, after initial lag periods, which were a function of methanol concentration and sediment type. Our experiment also showed that methanol degradation and associated methane production can occur in a stepwise fashion.
Collapse
Affiliation(s)
- Cole J C Van De Ven
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Carleton University, Department of Civil & Environmental Engineering, Ottawa, ON K1S 5B6, Canada.
| | - Laura Laurenzi
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Ashley C Arnold
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada; Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - K Ulrich Mayer
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
14
|
Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic Utilization of Methanol for Microbial Growth and Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:169-212. [PMID: 34761324 DOI: 10.1007/10_2021_177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
15
|
Aleissa YM, Bakshi BR. Constructed Wetlands as Unit Operations in Chemical Process Design: Benefits and Simulation. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yadav A, Borrelli JC, Elshahed MS, Youssef NH. Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria) Expands the Metabolic Capacities of the Phylum and Highlights Adaptations to Terrestrial Habitats. Appl Environ Microbiol 2021; 87:e0094721. [PMID: 34160232 PMCID: PMC8357285 DOI: 10.1128/aem.00947-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Approaches for recovering and analyzing genomes belonging to novel, hitherto-unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on Earth, yet currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone Spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and nonsoil habitats, to examine the metabolic capabilities and ecological role of members of family UBA6911 (group 18) Acidobacteria. The analyzed genomes clustered into five distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher numbers of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling debranching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, nonsoil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, and trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood-Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage but also provide interesting clues on how terrestrialization and niche adaptation drive metabolic specialization within the Acidobacteria. IMPORTANCE Members of the Acidobacteria are important players in global biogeochemical cycles, especially in soils. A wide range of acidobacterial lineages remain currently unexplored. We present a detailed genomic characterization of genomes belonging to family UBA6911 (also known as group 18) within the phylum Acidobacteria. The genomes belong to different genera and were obtained from soil (genera Gp18_AA60 and QHZH01), freshwater habitats (genera Ga0212092 and UBA6911), and an anaerobic digestor (genus Ga0209509). While all members of the family shared common metabolic features, e.g., heterotrophic respiratory abilities, broad substrate utilization capacities, and few auxotrophies, distinct differences between soil and nonsoil genera were observed. Soil genera were characterized by expanded genomes, higher numbers of CRISPR loci, a larger carbohydrate active enzyme (CAZyme) repertoire enabling monomer extractions from polymer side chains, and methylotrophic (methanol and methylamine) degradation capacities. In contrast, nonsoil genera encoded more versatile respiratory capacities for utilizing nitrite, sulfate, TMAO, and the WL pathway, in addition to oxygen as electron acceptors. Our results not only broaden our understanding of the metabolic capacities within the Acidobacteria but also provide interesting clues on how terrestrialization shaped Acidobacteria evolution and niche adaptation.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jenna C. Borrelli
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
17
|
Viros J, Santonja M, Temime‐Roussel B, Wortham H, Fernandez C, Ormeño E. Volatilome of Aleppo Pine litter over decomposition process. Ecol Evol 2021; 11:6862-6880. [PMID: 34141261 PMCID: PMC8207447 DOI: 10.1002/ece3.7533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023] Open
Abstract
Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1-C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15-month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR-ToF-MS) and offline analyses (GC-MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM -1 hr-1 mainly composed by terpene emissions (e.g., α-pinene, terpinolene, β-caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.
Collapse
Affiliation(s)
- Justine Viros
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| | | | | | | | | | - Elena Ormeño
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| |
Collapse
|
18
|
Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepanauskas R, Woyke T, Elshahed MS, Youssef NH. Genomic Analysis of the Yet-Uncultured Binatota Reveals Broad Methylotrophic, Alkane-Degradation, and Pigment Production Capacities. mBio 2021; 12:e00985-21. [PMID: 34006650 PMCID: PMC8262859 DOI: 10.1128/mbio.00985-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023] Open
Abstract
The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates. Methylotrophy in Binatota was characterized by order-specific substrate degradation preferences, as well as extensive metabolic versatility, i.e., the utilization of diverse sets of genes, pathways, and combinations to achieve a specific metabolic goal. The genomes also encoded multiple alkane hydroxylases and monooxygenases, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids (lycopene, β- and γ-carotenes, xanthins, chlorobactenes, and spheroidenes) production. Further, the majority of genes involved in bacteriochlorophyll a, c, and d biosynthesis were identified, although absence of key genes and failure to identify a photosynthetic reaction center preclude proposing phototrophic capacities. Analysis of 16S rRNA databases showed the preferences of Binatota to terrestrial and freshwater ecosystems, hydrocarbon-rich habitats, and sponges, supporting their potential role in mitigating methanol and methane emissions, breakdown of alkanes, and their association with sponges. Our results expand the lists of methylotrophic, aerobic alkane-degrading, and pigment-producing lineages. We also highlight the consistent encountering of incomplete biosynthetic pathways in microbial genomes, a phenomenon necessitating careful assessment when assigning putative functions based on a set-threshold of pathway completion.IMPORTANCE A wide range of microbial lineages remain uncultured, yet little is known regarding their metabolic capacities, physiological preferences, and ecological roles in various ecosystems. We conducted a thorough comparative genomic analysis of 108 genomes belonging to the Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. We present evidence that members of the order Binatota specialize in methylotrophy and identify an extensive repertoire of genes and pathways mediating the oxidation of multiple one-carbon (C1) compounds in Binatota genomes. The occurrence of multiple alkane hydroxylases and monooxygenases in these genomes was also identified, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids production. We also report on the presence of incomplete chlorophyll biosynthetic pathways in all genomes and propose several evolutionary-grounded scenarios that could explain such a pattern. Assessment of the ecological distribution patterns of the Binatota indicates preference of its members to terrestrial and freshwater ecosystems characterized by high methane and methanol emissions, as well as multiple hydrocarbon-rich habitats and marine sponges.
Collapse
Affiliation(s)
- Chelsea L Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkley, California, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
19
|
Too CC, Ong KS, Yule CM, Keller A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp forest. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Rainfall Alters Permafrost Soil Redox Conditions, but Meta-Omics Show Divergent Microbial Community Responses by Tundra Type in the Arctic. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall-induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5-fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community-wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low-lying wet sedge tundra soils across the Arctic.
Collapse
|
21
|
Fischer PQ, Sánchez‐Andrea I, Stams AJM, Villanueva L, Sousa DZ. Anaerobic microbial methanol conversion in marine sediments. Environ Microbiol 2021; 23:1348-1362. [PMID: 33587796 PMCID: PMC8048578 DOI: 10.1111/1462-2920.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023]
Abstract
Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Collapse
Affiliation(s)
- Peter Q. Fischer
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
- Faculty of GeosciencesUtrecht University, Princetonlaan 8aUtrecht3584 CBThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
22
|
A Novel Moderately Thermophilic Facultative Methylotroph within the Class Alphaproteobacteria. Microorganisms 2021; 9:microorganisms9030477. [PMID: 33668875 PMCID: PMC7996495 DOI: 10.3390/microorganisms9030477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Methylotrophic bacteria (non-methanotrophic methanol oxidizers) consuming reduced carbon compounds containing no carbon–carbon bonds as their sole carbon and energy source have been found in a great variety of environments. Here, we report a unique moderately thermophilic methanol-oxidising bacterium (strain LS7-MT) that grows optimally at 55 °C (with a growth range spanning 30 to 60 °C). The pure isolate was recovered from a methane-utilizing mixed culture enrichment from an alkaline thermal spring in the Ethiopia Rift Valley, and utilized methanol, methylamine, glucose and a variety of multi-carbon compounds. Phylogenetic analysis of the 16S rRNA gene sequences demonstrated that strain LS7-MT represented a new facultatively methylotrophic bacterium within the order Hyphomicrobiales of the class Alphaproteobacteria. This new strain showed 94 to 96% 16S rRNA gene identity to the two methylotroph genera, Methyloceanibacter and Methyloligella. Analysis of the draft genome of strain LS7-MT revealed genes for methanol dehydrogenase, essential for methanol oxidation. Functional and comparative genomics of this new isolate revealed genomic and physiological divergence from extant methylotrophs. Strain LS7-MT contained a complete mxaF gene cluster and xoxF1 encoding the lanthanide-dependent methanol dehydrogenase (XoxF). This is the first report of methanol oxidation at 55 °C by a moderately thermophilic bacterium within the class Alphaproteobacteria. These findings expand our knowledge of methylotrophy by the phylum Proteobacteria in thermal ecosystems and their contribution to global carbon and nitrogen cycles.
Collapse
|
23
|
Kang CS, Dunfield PF, Semrau JD. The origin of aerobic methanotrophy within the Proteobacteria. FEMS Microbiol Lett 2020; 366:5485640. [PMID: 31054238 DOI: 10.1093/femsle/fnz096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Aerobic methanotrophs play critical roles in the global carbon cycle, but despite their environmental ubiquity, they are phylogenetically restricted. Via bioinformatic analyses, it is shown that methanotrophy likely arose from methylotrophy from the lateral gene transfer of either of the two known forms of methane monooxygenase (particulate and soluble methane monooxygenases). Moreover, it appears that both known forms of pyrroloquinoline quinone-dependent methanol dehydrogenase (MeDH) found in methanotrophs-the calcium-containing Mxa-MeDH and the rare earth element-containing Xox-MeDH-were likely encoded in the genomes before the acquisition of the methane monooxygenases (MMOs), but that some methanotrophs subsequently received an additional copy of Xox-MeDH-encoding genes via lateral gene transfer. Further, data are presented that indicate the evolution of methanotrophy from methylotrophy not only required lateral transfer of genes encoding for methane monooxygenases, but also likely the pre-existence of a means of collecting copper. Given the emerging interest in valorizing methane via biological platforms, it is recommended that future strategies for heterologous expression of methane monooxygenase for conversion of methane to methanol also include cloning of genes encoding mechanism(s) of copper uptake, especially for expression of particulate methane monooxygenase.
Collapse
Affiliation(s)
- Christina S Kang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| |
Collapse
|
24
|
Shoiful A, Ohta T, Kambara H, Matsushita S, Kindaichi T, Ozaki N, Aoi Y, Imachi H, Ohashi A. Multiple organic substrates support Mn(II) removal with enrichment of Mn(II)-oxidizing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109771. [PMID: 32072950 DOI: 10.1016/j.jenvman.2019.109771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Three different organic substrates, K-medium, sterilized activated sludge (SAS), and methanol, were examined for utility as substrates for enriching manganese-oxidizing bacteria (MnOB) in an open bioreactor. The differences in Mn(II) oxidation performance between the substrates were investigated using three down-flow hanging sponge (DHS) reactors continuously treating artificial Mn(II)-containing water over 131 days. The results revealed that all three substrates were useful for enriching MnOB. Surprisingly, we observed only slight differences in Mn(II) removal between the substrates. The highest Mn(II) removal rate for the SAS-supplied reactor was 0.41 kg Mn⋅m-3⋅d-1, which was greater than that of K-medium, although the SAS performance was unstable. In contrast, the methanol-supplied reactor had more stable performance and the highest Mn(II) removal rate. We conclude that multiple genera of Comamonas, Pseudomonas, Mycobacterium, Nocardia and Hyphomicrobium play a role in Mn(II) oxidation and that their relative predominance was dependent on the substrate. Moreover, the initial inclusion of abiotic-MnO2 in the reactors promoted early MnOB enrichment.
Collapse
Affiliation(s)
- Ahmad Shoiful
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan; Center of Technology for the Environment, Agency for the Assessment and Application of Technology (BPPT), Geostech Building, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, 15314, Indonesia
| | - Taiki Ohta
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan
| | - Hiromi Kambara
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan
| | - Shuji Matsushita
- Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 2-10-1, Aga-minami, Kure, Hiroshima, 737-0004, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan.
| |
Collapse
|
25
|
Macey MC, Pratscher J, Crombie AT, Murrell JC. Impact of plants on the diversity and activity of methylotrophs in soil. MICROBIOME 2020; 8:31. [PMID: 32156318 PMCID: PMC7065363 DOI: 10.1186/s40168-020-00801-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle. Video abstract.
Collapse
Affiliation(s)
- Michael C. Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, Buckinghamshire MK7 6AA UK
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AP UK
| | - Andrew T. Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
26
|
Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: Challenges and opportunities. Biotechnol Adv 2020; 39:107467. [DOI: 10.1016/j.biotechadv.2019.107467] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022]
|
27
|
Biodiesel’s trash is a biorefineries’ treasure: the use of “dirty” glycerol as an industrial fermentation substrate. World J Microbiol Biotechnol 2019; 36:2. [DOI: 10.1007/s11274-019-2776-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
28
|
Abstract
Understanding the sources and controls on microbial methane production from wetland soils is critical to global methane emission predictions, particularly in light of changing climatic conditions. Current biogeochemical models of methanogenesis consider only acetoclastic and hydrogenotrophic sources and exclude methylotrophic methanogenesis, potentially underestimating microbial contributions to methane flux. Our multi-omic results demonstrated that methylotrophic methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater wetland, with metatranscripts indicating that methanol, not methylamines, was the likely substrate under the conditions measured here. However, laboratory experiments indicated the potential for other methanogens to become enriched in response to trimethylamine, revealing the reservoir of methylotrophic methanogenesis potential residing in these soils. Collectively, our approach used coupled field and laboratory investigations to illuminate metabolisms influencing the terrestrial microbial methane cycle, thereby offering direction for increased realism in predictive process-oriented models of methane flux in wetland soils. Wetland soils are one of the largest natural contributors to the emission of methane, a potent greenhouse gas. Currently, microbial contributions to methane emissions from these systems emphasize the roles of acetoclastic and hydrogenotrophic methanogens, while less frequently considering methyl-group substrates (e.g., methanol and methylamines). Here, we integrated laboratory and field experiments to explore the potential for methylotrophic methanogenesis in Old Woman Creek (OWC), a temperate freshwater wetland located in Ohio, USA. We first demonstrated the capacity for methylotrophic methanogenesis in these soils using laboratory soil microcosms amended with trimethylamine. However, subsequent field porewater nuclear magnetic resonance (NMR) analyses to identify methanogenic substrates failed to detect evidence for methylamine compounds in soil porewaters, instead noting the presence of the methylotrophic substrate methanol. Accordingly, our wetland soil-derived metatranscriptomic data indicated that methanol utilization by the Methanomassiliicoccaceae was the likely source of methylotrophic methanogenesis. Methanomassiliicoccaceae relative contributions to mcrA transcripts nearly doubled with depth, accounting for up to 8% of the mcrA transcripts in 25-cm-deep soils. Longitudinal 16S rRNA amplicon and mcrA gene surveys demonstrated that Methanomassiliicoccaceae were stably present over 2 years across lateral and depth gradients in this wetland. Meta-analysis of 16S rRNA sequences similar (>99%) to OWC Methanomassiliicoccaceae in public databases revealed a global distribution, with a high representation in terrestrial soils and sediments. Together, our results demonstrate that methylotrophic methanogenesis likely contributes to methane flux from climatically relevant wetland soils. IMPORTANCE Understanding the sources and controls on microbial methane production from wetland soils is critical to global methane emission predictions, particularly in light of changing climatic conditions. Current biogeochemical models of methanogenesis consider only acetoclastic and hydrogenotrophic sources and exclude methylotrophic methanogenesis, potentially underestimating microbial contributions to methane flux. Our multi-omic results demonstrated that methylotrophic methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater wetland, with metatranscripts indicating that methanol, not methylamines, was the likely substrate under the conditions measured here. However, laboratory experiments indicated the potential for other methanogens to become enriched in response to trimethylamine, revealing the reservoir of methylotrophic methanogenesis potential residing in these soils. Collectively, our approach used coupled field and laboratory investigations to illuminate metabolisms influencing the terrestrial microbial methane cycle, thereby offering direction for increased realism in predictive process-oriented models of methane flux in wetland soils.
Collapse
|
29
|
Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, Lee EY. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng 2019; 57:1-12. [PMID: 31626985 DOI: 10.1016/j.ymben.2019.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022]
Abstract
Methylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M. alcaliphilum 20Z grown on methane and methanol. Systems assessment of core carbon metabolism indicated the methanol assimilation pathway is mostly coupled with the efficient Embden-Meyerhof-Parnas (EMP) pathway along with the serine cycle. In addition, an incomplete TCA cycle operated in M. alcaliphilum 20Z on methanol, which might only supply precursors for de novo synthesis but not reducing powers. Instead, it appears that the direct formaldehyde oxidation pathway supply energy for the whole metabolic system. Additionally, a comparative transcriptomic analysis in multiple gammaproteobacterial methanotrophs also revealed the transcriptional responses of central metabolism on carbon substrate change. These findings provided a systems-level understanding of carbon metabolism and new opportunities for strain design to produce relevant products from different C1-feedstocks.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Yeub Hwang
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Richard Hamilton
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Marina G Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
30
|
Firsova YE, Torgonskaya ML. Different roles of two groEL homologues in methylotrophic utiliser of dichloromethane Methylorubrum extorquens DM4. Antonie van Leeuwenhoek 2019; 113:101-116. [PMID: 31463590 DOI: 10.1007/s10482-019-01320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
The genome of methylotrophic bacteria Methylorubrum extorquens DM4 contains two homologous groESL operons encoding the 60-kDa and 10-kDa subunits of GroE heat shock chaperones with highly similar amino acid sequences. To test a possible functional redundancy of corresponding GroEL proteins we attempted to disrupt the groEL1 and groEL2 genes. Despite the large number of recombinants analysed and the gentle culture conditions the groEL1-lacking mutant was not constructed suggesting that the loss of GroEL1 was lethal for cells. At the same time the ∆groEL2 strain was viable and varied from the wild-type by increased sensitivity to acid, salt and desiccation stresses as well as by the impaired growth with a toxic halogenated compound-dichloromethane (DCM). The evaluation of activity of putative PgroE1 and PgroE2 promoters using the reporter gene of green fluorescent protein (GFP) showed that the expression of groESL1 operon greatly prevails (about two orders of magnitude) over those of groESL2 under all tested conditions. However the above promoters demonstrated differential regulation in response to stresses. The expression from PgroE1 was heat-inducible, while the activity of PgroE2 was upregulated upon acid shock and cultivation with DCM. Based on these results we conclude that the highly conservative groESL1 operon (old locus tags METDI5839-5840) encodes the housekeeping chaperone essential for fundamental cellular processes. On the contrary the second pair of paralogues (METDI4129-4130) is dispensable, but corresponding GroE2 chaperone promotes the tolerance to acid and salt stresses, in particular, during the growth with DCM.
Collapse
Affiliation(s)
- Yulia E Firsova
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Maria L Torgonskaya
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, Pushchino, Russia, 142290.
| |
Collapse
|
31
|
Murakami T, Segawa T, Takeuchi N, Barcaza Sepúlveda G, Labarca P, Kohshima S, Hongoh Y. Metagenomic analyses highlight the symbiotic association between the glacier stonefly Andiperla willinki and its bacterial gut community. Environ Microbiol 2018; 20:4170-4183. [PMID: 30246365 DOI: 10.1111/1462-2920.14420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
The glacier stonefly Andiperla willinki is the largest metazoan inhabiting the Patagonian glaciers. In this study, we analysed the gut microbiome of the aquatic nymphs by 16S rRNA gene amplicon and metagenomic sequencing. The bacterial gut community was consistently dominated by taxa typical of animal digestive tracts, such as Dysgonomonadaceae and Lachnospiraceae, as well as those generally indigenous to glacier environments, such as Polaromonas. Interestingly, the dominant Polaromonas phylotypes detected in the stonefly gut were almost never detected in the glacier surface habitat. Fluorescence in situ hybridization analysis revealed that the bacterial lineages typical of animal guts colonized the gut wall in a co-aggregated form, while Polaromonas cells were not included in the aggregates. Draft genomes of several dominant bacterial lineages were reconstructed from metagenomic datasets and indicated that the predominant Dysgonomonadaceae bacterium is capable of degrading various polysaccharides derived from host-ingested food, such as algae, and that other dominant bacterial lineages ferment saccharides liberated by the polysaccharide degradation. Our results suggest that the gut bacteria-host association in the glacier stonefly contributes to host nutrition as well as material cycles in the glacier environment.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan.,Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Takahiro Segawa
- Center of Life Science Research, University of Yamanashi, Yamanashi, Japan.,National Institute of Polar Research, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Chiba University, Chiba, Japan
| | | | | | - Shiro Kohshima
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
32
|
Kramshøj M, Albers CN, Holst T, Holzinger R, Elberling B, Rinnan R. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. Nat Commun 2018; 9:3412. [PMID: 30143640 PMCID: PMC6109083 DOI: 10.1038/s41467-018-05824-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Warming in the Arctic accelerates thawing of permafrost-affected soils, which leads to a release of greenhouse gases to the atmosphere. We do not know whether permafrost thaw also releases non-methane volatile organic compounds that can contribute to both negative and positive radiative forcing on climate. Here we show using proton transfer reaction-time of flight-mass spectrometry that substantial amounts of ethanol and methanol and in total 316 organic ions were released from Greenlandic permafrost soils upon thaw in laboratory incubations. We demonstrate that the majority of this release is taken up in the active layer above. In an experiment using 14C-labeled ethanol and methanol, we demonstrate that these compounds are consumed by microorganisms. Our findings highlight that the thawing permafrost soils are not only a considerable source of volatile organic compounds but also that the active layer regulates their release into the atmosphere.
Collapse
Affiliation(s)
- Magnus Kramshøj
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.,Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Christian N Albers
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.,Department of Physical Geography & Ecosystem Science, Lund University, Sölvegatan 12, S-22362, Lund, Sweden
| | - Rupert Holzinger
- Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark. .,Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.
| |
Collapse
|
33
|
Chaignaud P, Morawe M, Besaury L, Kröber E, Vuilleumier S, Bringel F, Kolb S. Methanol consumption drives the bacterial chloromethane sink in a forest soil. ISME JOURNAL 2018; 12:2681-2693. [PMID: 29991765 PMCID: PMC6194010 DOI: 10.1038/s41396-018-0228-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Halogenated volatile organic compounds (VOCs) emitted by terrestrial ecosystems, such as chloromethane (CH3Cl), have pronounced effects on troposphere and stratosphere chemistry and climate. The magnitude of the global CH3Cl sink is uncertain since it involves a largely uncharacterized microbial sink. CH3Cl represents a growth substrate for some specialized methylotrophs, while methanol (CH3OH), formed in much larger amounts in terrestrial environments, may be more widely used by such microorganisms. Direct measurements of CH3Cl degradation rates in two field campaigns and in microcosms allowed the identification of top soil horizons (i.e., organic plus mineral A horizon) as the major biotic sink in a deciduous forest. Metabolically active members of Alphaproteobacteria and Actinobacteria were identified by taxonomic and functional gene biomarkers following stable isotope labeling (SIP) of microcosms with CH3Cl and CH3OH, added alone or together as the [13C]-isotopologue. Well-studied reference CH3Cl degraders, such as Methylobacterium extorquens CM4, were not involved in the sink activity of the studied soil. Nonetheless, only sequences of the cmuA chloromethane dehalogenase gene highly similar to those of known strains were detected, suggesting the relevance of horizontal gene transfer for CH3Cl degradation in forest soil. Further, CH3Cl consumption rate increased in the presence of CH3OH. Members of Alphaproteobacteria and Actinobacteria were also 13C-labeled upon [13C]-CH3OH amendment. These findings suggest that key bacterial CH3Cl degraders in forest soil benefit from CH3OH as an alternative substrate. For soil CH3Cl-utilizing methylotrophs, utilization of several one-carbon compounds may represent a competitive advantage over heterotrophs that cannot utilize one-carbon compounds.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Mareen Morawe
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Ludovic Besaury
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,UMR FARE 614 Fractionnement des AgroRessources et Environnement, Chaire AFERE, INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Eileen Kröber
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Landscape Research, Müncheberg, Germany
| | - Stéphane Vuilleumier
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Françoise Bringel
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.
| | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Landscape Research, Müncheberg, Germany.
| |
Collapse
|
34
|
Thulasi K, Jayakumar A, Balakrishna Pillai A, Gopalakrishnapillai Sankaramangalam VK, Kumarapillai H. Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem. Arch Microbiol 2018; 200:829-833. [PMID: 29637291 DOI: 10.1007/s00203-018-1509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Methylotrophs present in the soil play an important role in the regulation of one carbon compounds in the environment, and thereby aid in mitigating global warming. The study envisages the isolation and characterization of methanol-degrading bacteria from Kuttanad wetland ecosystem, India. Three methylotrophs, viz. Achromobacter spanius KUT14, Acinetobacter sp. KUT26 and Methylobacterium radiotolerans KUT39 were isolated and their phylogenetic positions were determined by constructing a phylogenetic tree based on 16S rDNA sequences. In vitro activity of methanol dehydrogenase enzyme, responsible for methanol oxidation was evaluated and the genes involved in methanol metabolism, mxaF and xoxF were partially amplified and sequenced. The specific activity of methanol dehydrogenase (451.9 nmol min-1 mg-1) observed in KUT39 is the highest, reported ever to our knowledge from a soil bacterium. KUT14 recorded the least activity of 50.15 nmol min-1 mg-1 and is the first report on methylotrophy in A. spanius.
Collapse
Affiliation(s)
- Kavitha Thulasi
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | - Arjun Jayakumar
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | - Aneesh Balakrishna Pillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | | | - Harikrishnan Kumarapillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
35
|
Ma J, Zhang W, Zhang S, Zhu Q, Feng Q, Chen F. Short-term effects of CO 2 leakage on the soil bacterial community in a simulated gas leakage scenario. PeerJ 2017; 5:e4024. [PMID: 29158972 PMCID: PMC5691795 DOI: 10.7717/peerj.4024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/22/2017] [Indexed: 11/24/2022] Open
Abstract
The technology of carbon dioxide (CO2) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO2 geological storage was designed to investigate the short-term effects of different CO2 leakage concentration (from 400 g m−2 day−1 to 2,000 g m−2 day−1) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO2 concentrations. Increasing CO2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 (p < 0.05). Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA) hydrolytic enzyme activity was inhibited by the increasing CO2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h) (p < 0.05). However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO2 concentration increased. The dominant phylum in the soil samples was Proteobacteria, whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% (p < 0.01). Moreover, the abundances of genera Methylophilus, Methylobacillus, and Methylovorus increased, while GP4, GP6 and GP7 decreased. Canonical correlation analysis results suggested that there was a correlation between the abundance variation of Proteobacteria, Acidobacteria, and the increasing nitrate nitrogen, urease and polyphenol oxidase enzyme activities, as well as the decreasing FDA hydrolytic enzyme activity, Olsen-phosphorus and total phosphorus contents. These results might be useful for evaluating the risk of potential CO2 leakages on soil ecosystems.
Collapse
Affiliation(s)
- Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, China
| | - Wangyuan Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Shaoliang Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Qianlin Zhu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, China
| | - Qiyan Feng
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, China
| | - Fu Chen
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
36
|
Chaignaud P, Maucourt B, Weiman M, Alberti A, Kolb S, Cruveiller S, Vuilleumier S, Bringel F. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium. Front Microbiol 2017; 8:1600. [PMID: 28919881 PMCID: PMC5585157 DOI: 10.3389/fmicb.2017.01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France.,Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Bruno Maucourt
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Marion Weiman
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Adriana Alberti
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry-Leibniz Centre for Agricultural Landscape Research (ZALF)Müncheberg, Germany
| | - Stéphane Cruveiller
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Stéphane Vuilleumier
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Françoise Bringel
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
37
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
38
|
Farhan Ul Haque M, Gu W, Baral BS, DiSpirito AA, Semrau JD. Carbon source regulation of gene expression in Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 2017; 101:3871-3879. [PMID: 28108763 DOI: 10.1007/s00253-017-8121-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper regulating expression of alternative forms of methane monooxygenase. Here, we show that growth substrate also affects expression of genes encoding for enzymes responsible for the oxidation of methane to formaldehyde and the assimilation of carbon. Specifically, in Methylosinus trichosporium OB3b, expression of genes involved in the conversion of methane to methanol (pmoA and mmoX) and methanol to formaldehyde (mxaF, xoxF1, and xoxF2) as well as in carbon assimilation (fae1, fae2, metF, and sga) decreased when this strain was grown on methanol vs. methane, indicating that methanotrophs manipulate gene expression in response to growth substrate as well as the availability of copper. Interestingly, growth of M. trichosporium OB3b on methane vs. methanol was similar despite such large changes in gene expression. Finally, methanol-grown cultures of M. trichosporium OB3b also exhibited the "copper-switch." That is, expression of pmoA increased and mmoX decreased in the presence of copper, indicating that copper still controlled the expression of alternative forms of methane monooxygenase in M. trichosporium OB3b even though methane was not provided. Such findings indicate that methanotrophs can sense and respond to multiple environmental parameters simultaneously.
Collapse
Affiliation(s)
- Muhammad Farhan Ul Haque
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA
| | - Bipin S Baral
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-3260, USA
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-3260, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA.
| |
Collapse
|
39
|
Methylophilaceae and Hyphomicrobium as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants. ACTA ACUST UNITED AC 2017; 44:35-47. [DOI: 10.1007/s10295-016-1860-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2016] [Indexed: 01/05/2023]
Abstract
Abstract
Molecular monitoring of bacterial communities can explain and predict the stability of bioprocesses in varying physicochemical conditions. To study methanol-fed denitrification biofilters of municipal wastewater treatment plants, bacterial communities of two full-scale biofilters were compared through fingerprinting and sequencing of the 16S rRNA genes. Additionally, 16S rRNA gene fingerprinting was used for 10-week temporal monitoring of the bacterial community in one of the biofilters. Combining the data with previous study results, the family Methylophilaceae and genus Hyphomicrobium were determined as suitable target groups for monitoring. An increase in the relative abundance of Hyphomicrobium-related biomarkers occurred simultaneously with increases in water flow, NOx − load, and methanol addition, as well as a higher denitrification rate, although the dominating biomarkers linked to Methylophilaceae showed an opposite pattern. The results indicate that during increased loading, stability of the bioprocess is maintained by selection of more efficient denitrifier populations, and this progress can be analyzed using simple molecular fingerprinting.
Collapse
|
40
|
Methylacidiphilum fumariolicum SolV, a thermoacidophilic 'Knallgas' methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME JOURNAL 2016; 11:945-958. [PMID: 27935590 PMCID: PMC5364354 DOI: 10.1038/ismej.2016.171] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Abstract
Methanotrophs play a key role in balancing the atmospheric methane concentration. Recently, the microbial methanotrophic diversity was extended by the discovery of thermoacidophilic methanotrophs belonging to the Verrucomicrobia phylum in geothermal areas. Here we show that a representative of this new group, Methylacidiphilum fumariolicum SolV, is able to grow as a real 'Knallgas' bacterium on hydrogen/carbon dioxide, without addition of methane. The full genome of strain SolV revealed the presence of two hydrogen uptake hydrogenases genes, encoding an oxygen-sensitive (hup-type) and an oxygen-insensitive enzyme (hhy-type). The hhy-type hydrogenase was constitutively expressed and active and supported growth on hydrogen alone up to a growth rate of 0.03 h-1, at O2 concentrations below 1.5%. The oxygen-sensitive hup-type hydrogenase was expressed when oxygen was reduced to below 0.2%. This resulted in an increase of the growth rate to a maximum of 0.047 h-1, that is 60% of the rate on methane. The results indicate that under natural conditions where both hydrogen and methane might be limiting strain SolV may operate primarily as a methanotrophic 'Knallgas' bacterium. These findings argue for a revision of the role of hydrogen in methanotrophic ecosystems, especially in soil and related to consumption of atmospheric methane.
Collapse
|
41
|
Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M. Methylophaga and Hyphomicrobium can be used as target genera in monitoring saline water methanol-utilizing denitrification. ACTA ACUST UNITED AC 2016; 43:1647-1657. [DOI: 10.1007/s10295-016-1839-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Which bacterial taxonomic groups can be used in monitoring saline water methanol-utilizing denitrification and whether nitrate is transformed into N2 in the process are unclear. Therefore, methylotrophic bacterial communities of two efficiently functioning (nitrate/nitrite reduction was 63–96 %) tropical and cool seawater reactors at a public aquarium were investigated with clone library analysis and 454 pyrosequencing of the 16S rRNA genes. Transformation of nitrate into N2 was confirmed using 15N labeling in incubation of carrier material from the tropical reactor. Combining the data with previous study results, Methylophaga and Hyphomicrobium were determined to be suitable target genera for monitoring the function of saline water methanol-fed denitrification systems. However, monitoring was not possible at the single species level. Interestingly, potential nitrate-reducing methylotrophs within Filomicrobium and closely related Fil I and Fil II clusters were detected in the reactors suggesting that they also contributed to methylotrophic denitrification in the saline environment.
Collapse
Affiliation(s)
- Antti J Rissanen
- grid.6986.1 0000000093279856 Department of Chemistry and Bioengineering Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Anne Ojala
- grid.7737.4 0000000404102071 Department of Environmental Sciences University of Helsinki P.O. Box 65 FI-00014 Helsinki Finland
- grid.7737.4 0000000404102071 Department of Forest Sciences University of Helsinki P.O. Box 27 FI-00014 Helsinki Finland
| | | | - Jouni Jaakkola
- SEA LIFE, Helsinki Tivolitie 10 FI-00510 Helsinki Finland
| | - Marja Tiirola
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| |
Collapse
|
42
|
Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, Hettich RL, Suttle KB, Probst AJ, Tringe SG, Northen T, Pan C, Banfield JF. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016; 4:e2687. [PMID: 27843720 PMCID: PMC5103831 DOI: 10.7717/peerj.2687] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10–20 cm and 30–40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Cristina N Butterfield
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Peter F Andeer
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Susan Spaulding
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Andrea Singh
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Kenwyn B Suttle
- Department of Ecology and Evolutionary Biology, University of California , Santa Cruz , CA , United States
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | | | - Trent Northen
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
43
|
Yanagawa K, Tani A, Yamamoto N, Hachikubo A, Kano A, Matsumoto R, Suzuki Y. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments. Microbes Environ 2016; 31:190-3. [PMID: 27301420 PMCID: PMC4912158 DOI: 10.1264/jsme2.me15204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments.
Collapse
|
44
|
Khan MI, Lee J, Yoo K, Kim S, Park J. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:873-881. [PMID: 26342802 DOI: 10.1016/j.jhazmat.2015.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jaejin Lee
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Keunje Yoo
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seonghoon Kim
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
45
|
Eyice Ö, Schäfer H. Culture-dependent and culture-independent methods reveal diverse methylotrophic communities in terrestrial environments. Arch Microbiol 2015; 198:17-26. [DOI: 10.1007/s00203-015-1160-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/27/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
46
|
Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA. Methylopila turkiensis sp. nov., a new aerobic facultatively methylotrophic phytosymbiont. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Srinivasiah S, Lovett J, Ghosh D, Roy K, Fuhrmann JJ, Radosevich M, Wommack KE. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. FEMS Microbiol Ecol 2015; 91:fiv063. [PMID: 26149131 DOI: 10.1093/femsec/fiv063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/14/2022] Open
Abstract
Viruses are highly abundant in soils with their numbers exceeding those of cooccurring bacterial cells by 10- to over 1000-fold. Water and organic matter content influence the magnitude of the viral-to-bacterial ratio in soils; thus, ecosystem type and land use shape interactions between viral and host microbial communities in soils. Less understood are the shorter term interactions between viral and host communities that ultimately maintain the large viral standing stock within soils. This study examined short-term dynamics of viral and bacterial communities in soils to determine whether the growth of soil bacterial communities results in the production of soil viruses, and if viral community responses occur within specific populations. In microcosms amended with different carbon sources, increases in viral abundance (VA) accompanied increases in bacterial abundance (BA) and bacterial respiration rate (BRR). The timing and intensity of increases in BA, VA and BRR were different across C sources suggesting differences in the predominant mode of viral replication within growth-stimulated bacterial populations. Moreover, compositional changes occurred in soil bacterial and viral communities indicating that new viral production arose from a subset of host populations. To our knowledge, these are the first observations of soil viral populations responding to short-term changes in soil bacterial communities.
Collapse
Affiliation(s)
- Sharath Srinivasiah
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Jacqueline Lovett
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Dhritiman Ghosh
- Biosystems Engineering & Soil Science Department, University of Tennessee, Knoxville, TN 37996 USA
| | - Krishnakali Roy
- Biosystems Engineering & Soil Science Department, University of Tennessee, Knoxville, TN 37996 USA
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mark Radosevich
- Biosystems Engineering & Soil Science Department, University of Tennessee, Knoxville, TN 37996 USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
48
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
49
|
Iguchi H, Yurimoto H, Sakai Y. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria. Microorganisms 2015; 3:137-51. [PMID: 27682083 PMCID: PMC5023238 DOI: 10.3390/microorganisms3020137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 01/19/2023] Open
Abstract
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
50
|
Doronina NV, Torgonskaya ML, Fedorov DN, Trotsenko YA. Aerobic methylobacteria as promising objects of modern biotechnology (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|