1
|
Zhang D, Jiang Y, Dong Y, Fu L, Zhuang L, Wu K, Dou X, Xu B, Wang C, Gong J. siRNA targeting Atp5a1 gene encoding ATPase α, the ligand of Peg fimbriae, reduced Salmonella Enteritidis adhesion. Avian Pathol 2023; 52:412-419. [PMID: 37526573 DOI: 10.1080/03079457.2023.2243842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a zoonotic pathogen that can infect both humans and animals. Among the 13 types of fimbrial operons in S. Enteritidis, the highly conserved Peg fimbriae play a crucial role in the adhesion and invasion of S. Enteritidis into host cells but are not well studied. In this study, we identified the ATP synthase subunit alpha (ATPase α) as a ligand of Peg fimbriae using ligand blotting and mass spectrometry techniques. We confirmed the in vitro binding of ATPase α to the purified adhesion protein (PegD). Furthermore, we used siRNA to suppress the expression of ATPase α gene Atp5a1 in Leghorn male hepatoma (LMH) cells, which resulted in a significant reduction in the adhesion rate of S. Enteritidis to the cells (P < 0.05). The findings in this study provide insight into the mechanism of S. Enteritidis infection through Peg fimbriae and highlight the importance of ATPase α in the adhesion process.RESEARCH HIGHLIGHTS Ligand blotting was performed to screen the ligand of S. Enteritidis Peg fimbriae.Binding assay confirmed that ATPase α is the ligand of the Peg fimbriae.siRNA targeting ATPase α gene (Atp5a1) significantly reduced S. Enteritidis adhesion.
Collapse
Affiliation(s)
- Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yongyi Dong
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Lixia Fu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Linlin Zhuang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Kun Wu
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Xinhong Dou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Bu Xu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| |
Collapse
|
2
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
3
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
4
|
Reichhardt C. The Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Has Similarities to Other Fibrillar Adhesin Proteins. J Bacteriol 2023; 205:e0001923. [PMID: 37098957 PMCID: PMC10210978 DOI: 10.1128/jb.00019-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The ability of bacteria to adhere to each other and both biotic and abiotic surfaces is key to biofilm formation, and one way that bacteria adhere is using fibrillar adhesins. Fibrillar adhesins share several key characteristics, including (i) they are extracellular, surface-associated proteins, (ii) they contain an adhesive domain as well as a repetitive stalk domain, and (iii) they are either a monomer or homotrimer (i.e., identical, coiled-coil) of a high molecular weight protein. Pseudomonas aeruginosa uses the fibrillar adhesin called CdrA to promote bacterial aggregation and biofilm formation. Here, the current literature on CdrA is reviewed, including its transcriptional and posttranslational regulation by the second messenger c-di-GMP as well as what is known about its structure and ability to interact with other molecules. I highlight its similarities to other fibrillar adhesins and discuss open questions that remain to be answered toward a better understanding of CdrA.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Overly Cottom C, Stephenson R, Wilson L, Noinaj N. Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:679. [PMID: 37107041 PMCID: PMC10135246 DOI: 10.3390/antibiotics12040679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
The growing emergence of multidrug resistance in bacterial pathogens is an immediate threat to human health worldwide. Unfortunately, there has not been a matching increase in the discovery of new antibiotics to combat this alarming trend. Novel contemporary approaches aimed at antibiotic discovery against Gram-negative bacterial pathogens have expanded focus to also include essential surface-exposed receptors and protein complexes, which have classically been targeted for vaccine development. One surface-exposed protein complex that has gained recent attention is the β-barrel assembly machinery (BAM), which is conserved and essential across all Gram-negative bacteria. BAM is responsible for the biogenesis of β-barrel outer membrane proteins (β-OMPs) into the outer membrane. These β-OMPs serve essential roles for the cell including nutrient uptake, signaling, and adhesion, but can also serve as virulence factors mediating pathogenesis. The mechanism for how BAM mediates β-OMP biogenesis is known to be dynamic and complex, offering multiple modes for inhibition by small molecules and targeting by larger biologics. In this review, we introduce BAM and establish why it is a promising and exciting new therapeutic target and present recent studies reporting novel compounds and vaccines targeting BAM across various bacteria. These reports have fueled ongoing and future research on BAM and have boosted interest in BAM for its therapeutic promise in combatting multidrug resistance in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Claire Overly Cottom
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lindsey Wilson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Kon E, Levy Y, Elia U, Cohen H, Hazan-Halevy I, Aftalion M, Ezra A, Bar-Haim E, Naidu GS, Diesendruck Y, Rotem S, Ad-El N, Goldsmith M, Mamroud E, Peer D, Cohen O. A single-dose F1-based mRNA-LNP vaccine provides protection against the lethal plague bacterium. SCIENCE ADVANCES 2023; 9:eadg1036. [PMID: 36888708 PMCID: PMC9995031 DOI: 10.1126/sciadv.adg1036] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 05/28/2023]
Abstract
Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.
Collapse
Affiliation(s)
- Edo Kon
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Uri Elia
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Assaf Ezra
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Gonna Somu Naidu
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Diesendruck
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Nitay Ad-El
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| |
Collapse
|
7
|
Gahlot DK, Taheri N, MacIntyre S. Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int J Mol Sci 2022; 24:ijms24010161. [PMID: 36613605 PMCID: PMC9820224 DOI: 10.3390/ijms24010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria express different types of hair-like proteinaceous appendages on their cell surface known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and their expression is tightly regulated by specific environmental stimuli. Genes essential for expression of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in bacterial virulence, they have potential to be harnessed in vaccine development. This review covers the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected examples to demonstrate both dedicated and global regulatory mechanisms.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.K.G.); (S.M.)
| | - Nayyer Taheri
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
| | - Sheila MacIntyre
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Correspondence: (D.K.G.); (S.M.)
| |
Collapse
|
8
|
Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf 2022; 8:100075. [PMID: 35198842 PMCID: PMC8841375 DOI: 10.1016/j.tcsw.2022.100075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
Gram-positive and Gram-negative bacterial pathogens are commonly found in Urinary Tract Infection (UTI), particularly infected in females like pregnant women, elder people, sexually active, or individuals prone to other risk factors for UTI. In this article, we review the expression of virulence surface proteins and their interaction with host cells for the most frequently isolated uropathogens: Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. In addition to the host cell interaction, surface protein regulation was also discussed in this article. The surface protein regulation serves as a key tool in differentiating the pathogen isotypes. Furthermore, it might provide insights on novel diagnostic methods to detect uropathogen that are otherwise easily overlooked due to limited culture-based assays. In essence, this review shall provide an in-depth understanding on secretion of virulence factors of various uropathogens and their role in host-pathogen interaction, this knowledge might be useful in the development of therapeutics against uropathogens.
Collapse
Affiliation(s)
| | - Kumaravel Kandaswamy
- Corresponding author at: Department of Biotechnology, Kumaraguru College of Technology (KCT), Chinnavedampatti, Coimbatore 641049, Tamil Nadu, India.
| |
Collapse
|
9
|
Pakharukova N, Malmi H, Tuittila M, Dahlberg T, Ghosal D, Chang YW, Myint SL, Paavilainen S, Knight SD, Lamminmäki U, Uhlin BE, Andersson M, Jensen G, Zavialov AV. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs. Nature 2022; 609:335-340. [PMID: 35853476 PMCID: PMC9452303 DOI: 10.1038/s41586-022-05095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Henri Malmi
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Minna Tuittila
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tobias Dahlberg
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Si Lhyam Myint
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sari Paavilainen
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Stefan David Knight
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Bernt Eric Uhlin
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anton V Zavialov
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J. Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Front Microbiol 2021; 12:738780. [PMID: 34659171 PMCID: PMC8517400 DOI: 10.3389/fmicb.2021.738780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing resistance to antibiotics and its great ability to survive in the hospital environment, which is linked to its capacity to form biofilms. Structural and functional investigations of post-translational modifications, such as phosphorylations, may lead to identification of candidates for therapeutic targets against this pathogen. Here, we present the first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two modes of growth (planktonic and biofilm) using TiO2 chromatography followed by high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97 phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and 102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth were identified, respectively. Both strains in the biofilm mode of growth showed a higher number of phosphosites and phosphoproteins compared to planktonic growth. Several phosphorylated sites are localized in key regions of proteins involved in either drug resistance (β-lactamases), adhesion to host tissues (pilins), or protein secretion (Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion system-mediated interbacterial competition, showed that four of the modified residues are essential for type VI secretion system activity.
Collapse
Affiliation(s)
- Sébastien Massier
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Brandon Robin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Brooke Hayes
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Pascal Cosette
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Emmanuelle Dé
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Julie Hardouin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| |
Collapse
|
11
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
12
|
Solovyova AS, Peters DT, Dura G, Waller H, Lakey JH, Fulton DA. Probing the oligomeric re-assembling of bacterial fimbriae in vitro: a small-angle X-ray scattering and analytical ultracentrifugation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:597-611. [PMID: 33948690 PMCID: PMC8190007 DOI: 10.1007/s00249-021-01543-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Capsular antigen fragment 1 (Caf1) is an oligomeric protein consisting of 15 kDa monomeric subunits that are non-covalently linked through exceptionally strong and kinetically inert interactions into a linear polymer chain. It has been shown that after its thermal depolymerisation into unfolded monomeric subunits, Caf1 is able to efficiently repolymerise in vitro to reform its polymeric structure. However, little is known about the nature of the repolymerisation process. An improved understanding of this process will lead to the development of methods to better control the lengths of the repolymerised species, and ultimately, to better design of the properties of Caf1-based materials. Here we utilize small-angle X-ray scattering to estimate the size of Caf1 polymers during the first 24 h of the re-polymerisation process. Analytical ultracentrifugation measurements were also used to investigate the process post-24 h, where the rate of repolymerisation becomes considerably slower. Results show that in vitro polymerisation proceeds in a linear manner with no evidence observed for the formation of a lateral polymer network or uncontrolled aggregates. The rate of Caf1 in vitro repolymerisation was found to be concentration-dependent. Importantly, the rate of polymer growth was found to be relatively fast over the first few hours, before continuing at a dramatically slower rate. This observation is not consistent with the previously proposed step-growth mechanism of in vitro polymerisation of Caf1, where a linear increase in polymer length would be expected with time. We speculate how our observations may support the idea that the polymerisation process may be occurring at the ends of the chains with monomers adding sequentially. Our findings will contribute towards the development of new biomaterials for 3D cell culture and bio-printing.
Collapse
Affiliation(s)
- Alexandra S Solovyova
- Proteome and Protein Analysis, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Gema Dura
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de Ciencias yTecnologías Químicas-IRICA, Avda. C. J. Cela, 10, 13071, Ciudad Real, Spain
| | - Helen Waller
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Jeremy H Lakey
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - David A Fulton
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
13
|
González-Montalvo MA, Tavares-Carreón F, González GM, Villanueva-Lozano H, García-Romero I, Zomosa-Signoret VC, Valvano MA, Andrade A. Defining chaperone-usher fimbriae repertoire in Serratia marcescens. Microb Pathog 2021; 154:104857. [PMID: 33762200 DOI: 10.1016/j.micpath.2021.104857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022]
Abstract
Chaperone-usher (CU) fimbriae are surface organelles particularly prevalent among the Enterobacteriaceae. Mainly associated to their adhesive properties, CU fimbriae play key roles in biofilm formation and host cell interactions. Little is known about the fimbriome composition of the opportunistic human pathogen Serratia marcescens. Here, by using a search based on consensus fimbrial usher protein (FUP) sequences, we identified 421 FUPs across 39 S. marcescens genomes. Further analysis of the FUP-containing loci allowed us to classify them into 20 conserved CU operons, 6 of which form the S. marcescens core CU fimbriome. A new systematic nomenclature is proposed according to FUP sequence phylogeny. We also established an in vivo transcriptional assay comparing CU promoter expression between an environmental and a clinical isolate of S. marcescens, which revealed that promoters from 3 core CU operons (referred as fgov, fpo, and fps) are predominantly expressed in the two strains and might represent key core adhesion appendages contributing to S. marcescens pathogenesis.
Collapse
Affiliation(s)
- Martín A González-Montalvo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Faviola Tavares-Carreón
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Gloria M González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Hiram Villanueva-Lozano
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Viviana C Zomosa-Signoret
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, 64460, Mexico
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Angel Andrade
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
14
|
Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA. A Thermally Reformable Protein Polymer. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Pandey NK, Verma G, Kushwaha GS, Suar M, Bhavesh NS. Crystal structure of the usher chaperone YadV reveals a monomer with the proline lock in closed conformation suggestive of an intermediate state. FEBS Lett 2020; 594:3057-3066. [DOI: 10.1002/1873-3468.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Nishant Kumar Pandey
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), (Deemed to be University) Bhubaneswar India
| | - Garima Verma
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| | - Gajraj Singh Kushwaha
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| | - Mrutyunjay Suar
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), (Deemed to be University) Bhubaneswar India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| |
Collapse
|
16
|
Zalewska-Piątek B, Olszewski M, Lipniacki T, Błoński S, Wieczór M, Bruździak P, Skwarska A, Nowicki B, Nowicki S, Piątek R. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog 2020; 16:e1008247. [PMID: 31917805 PMCID: PMC7004390 DOI: 10.1371/journal.ppat.1008247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/06/2020] [Accepted: 11/28/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological shear stress and was almost irreversible over the entire range of generated shear force. Once Dr+ E. coli bound to host cells or collagen, they did not detach even in the presence of elevated shear stress or of chloramphenicol, a competitive inhibitor of binding. Investigating the role of epithelial surface architecture, we showed that the presence of budding cells–a model microarchitectural obstacle–promotes colonization of the urinary tract by E. coli. We report a previously undescribed phenomenon of epithelial cell “rolling-shedding” colonization, in which the detached epithelial cells reattach to the underlying cell line through a layer of adherent Dr+ E. coli. This rolling-shedding colonization progressed continuously due to “refilling” induced by the flow-perturbing obstacle. The shear stress of fluid containing free-floating bacteria fueled the rolling, while providing an uninterrupted supply of new bacteria to be trapped by the rolling cell. The progressive rolling allows for transfer of briefly attached bacteria onto the underlying monolayer in a repeating cascading event. Uropathogenic E. coli (UPEC) equipped with Dr fimbriae are associated with recurrent and chronic urinary tract infections (UTIs). The fimbriae assembled by the chaperone-usher pathway provide strong host-specific adherence which is, however, strongly modulated by the dynamically changing urine flow in the urinary tract (UT). In this paper, we use a dynamic in vitro micro-model of UTI to analyze the UT segment-specific impact of urinary outflow on the persistence and spread of Dr+ E. coli during host colonization. We conclude that the adhesive envelope formed by Dr fimbriae promotes strong and irreversible multivalent adherence of Dr+ E. coli to host receptors under flow conditions. We also observed that budding host cells–a model of any form of epithelial roughness, including carcinogenesis or physical injuries–facilitate the adherence of bacteria at flow conditions typically found in the UT, and our numerical simulations provided a mechanistic explanation for this effect. Finally, we combined the results to propose a rolling-shedding-refilling colonization model that shows how the wash off of detached colonized host cells may provoke a massive spread of UPEC. Our findings shed new light on UTI development and may be instrumental in the development of novel therapeutics.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Marcin Olszewski
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Sławomir Błoński
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Skwarska
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bogdan Nowicki
- Nowicki Institute for Woman’s Health Research, Brentwood, Tennessee, United States of America
| | - Stella Nowicki
- Nowicki Institute for Woman’s Health Research, Brentwood, Tennessee, United States of America
| | - Rafał Piątek
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
17
|
Psonis JJ, Chahales P, Henderson NS, Rigel NW, Hoffman PS, Thanassi DG. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J Biol Chem 2019; 294:14357-14369. [PMID: 31391254 PMCID: PMC6768635 DOI: 10.1074/jbc.ra119.009616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens assemble adhesive surface structures termed pili or fimbriae to initiate and sustain infection of host tissues. Uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, expresses type 1 and P pili required for colonization of the bladder and kidney, respectively. These pili are assembled by the conserved chaperone-usher (CU) pathway, in which a periplasmic chaperone works together with an outer membrane (OM) usher protein to build and secrete the pilus fiber. Previously, we found that the small molecule and antiparasitic drug nitazoxanide (NTZ) inhibits CU pathway-mediated pilus biogenesis in E. coli by specifically interfering with proper maturation of the usher protein in the OM. The usher is folded and inserted into the OM by the β-barrel assembly machine (BAM) complex, which in E. coli comprises five proteins, BamA-E. Here, we show that sensitivity of the usher to NTZ is modulated by BAM expression levels and requires the BamB and BamE lipoproteins. Furthermore, a genetic screen for NTZ-resistant bacterial mutants isolated a mutation in the essential BamD lipoprotein. These findings suggest that NTZ selectively interferes with an usher-specific arm of the BAM complex, revealing new details of the usher folding pathway and BAM complex function. Evaluation of a set of NTZ derivatives identified compounds with increased potency and disclosed that NTZ's nitrothiazole ring is critical for usher inhibition. In summary, our findings indicate highly specific effects of NTZ on the usher folding pathway and have uncovered NTZ analogs that specifically decrease usher levels in the OM.
Collapse
Affiliation(s)
- John J Psonis
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Peter Chahales
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nadine S Henderson
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nathan W Rigel
- Department of Biology, Hofstra University, Hempstead, New York 11549
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
18
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
19
|
Khalikova E, Somersalo S, Korpela T. Metabolites Produced by Alkaliphiles with Potential Biotechnological Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:157-193. [PMID: 31240347 DOI: 10.1007/10_2019_96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alkaliphiles are a diverse group of relatively less known microorganisms living in alkaline environments. To thrive in alkaline environments, alkaliphiles require special adaptations. This adaptation may have evolved metabolites which can be useful for biotechnological processes or other applications. In fact, certain metabolites are found unique to alkaliphiles or are effectively produced by alkaliphiles. This probably aroused the interest in metabolites of alkaliphiles. During recent years, many alkaliphilic microbes have been isolated, especially in countries having alkaline environments, like soda lakes. Even if the number of such isolated alkaliphiles is large, their metabolites have not yet been extensively analyzed and exploited. This is expected to come in the years ahead. So far, the focus of interests in metabolites from alkaliphiles falls into categories such as organic acids, ingredients for foodstuffs and cosmetics, antibiotics, and substances which modify properties of other materials used in industry. This chapter deals with biotechnologically important metabolites of alkaliphiles including compatible solutes, biosurfactants, siderophores, carotenoids, exopolysaccharides, and antimicrobial agents. It also covers the promising potential of alkaliphiles as sources of bioplastic raw materials. Moreover, an overview of the patent literature related to alkaliphiles is highlighted. Graphical Abstract.
Collapse
Affiliation(s)
- Elvira Khalikova
- Joint Biotechnology Laboratory, University of Turku, Turku, Finland
| | | | - Timo Korpela
- Department of Future Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
20
|
Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha) 2019; 65:45-65. [DOI: 10.1007/s12223-019-00719-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
|
21
|
Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Malmi H, Xu Y, Parilova O, Matthews S, Zavialov AV. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. J Biol Chem 2018; 293:17070-17080. [PMID: 30228191 DOI: 10.1074/jbc.ra118.004170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022] Open
Abstract
Adhesive pili are external component of fibrous adhesive organelles and help bacteria attach to biotic or abiotic surfaces. The biogenesis of adhesive pili via the chaperone-usher pathway (CUP) is independent of external energy sources. In the classical CUP, chaperones transport assembly-competent pilins in a folded but expanded conformation. During donor-strand exchange, pilins subsequently collapse, producing a tightly packed hydrophobic core and releasing the necessary free energy to drive fiber formation. Here, we show that pilus biogenesis in non-classical, archaic, and alternative CUPs uses a different source of conformational energy. High-resolution structures of the archaic Csu-pili system from Acinetobacter baumannii revealed that non-classical chaperones employ a short donor strand motif that is insufficient to fully complement the pilin fold. This results in chaperone-bound pilins being trapped in a substantially unfolded intermediate. The exchange of this short motif with the longer donor strand from adjacent pilin provides the full steric information essential for folding, and thereby induces a large unfolded-to-folded conformational transition to drive assembly. Our findings may inform the development of anti-adhesion drugs (pilicides) to combat bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sophie McKenna
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Minna Tuittila
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sari Paavilainen
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Henri Malmi
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Yingqi Xu
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Olena Parilova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Steve Matthews
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Anton V Zavialov
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| |
Collapse
|
22
|
Jiang W, Ubhayasekera W, Pearson MM, Knight SD. Structures of two fimbrial adhesins, AtfE and UcaD, from the uropathogenProteus mirabilis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1053-1062. [DOI: 10.1107/s2059798318012391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/03/2018] [Indexed: 11/10/2022]
Abstract
The important uropathogenProteus mirabilisencodes a record number of chaperone/usher-pathway adhesive fimbriae. Such fimbriae, which are used for adhesion to cell surfaces/tissues and for biofilm formation, are typically important virulence factors in bacterial pathogenesis. Here, the structures of the receptor-binding domains of the tip-located two-domain adhesins UcaD (1.5 Å resolution) and AtfE (1.58 Å resolution) from twoP. mirabilisfimbriae (UCA/NAF and ATF) are presented. The structures of UcaD and AtfE are both similar to the F17G type of tip-located fimbrial receptor-binding domains, and the structures are very similar despite having only limited sequence similarity. These structures represent an important step towards a molecular-level understanding ofP. mirabilisfimbrial adhesins and their roles in the complex pathogenesis of urinary-tract infections.
Collapse
|
23
|
Quan G, Xia P, Zhao J, Zhu C, Meng X, Yang Y, Wang Y, Tian Y, Ding X, Zhu G. Fimbriae and related receptors for Salmonella Enteritidis. Microb Pathog 2018; 126:357-362. [PMID: 30347261 DOI: 10.1016/j.micpath.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Infection with Salmonella Enteritidis (SE) is one of the main causes for food- and water-borne diseases, and is a major concern to public health for both humans and animals worldwide. Some fimbrial antigens expressed by SE strains have been described and characterized, containing SEF14, SEF17, SEF21, long polar fimbriae and plasmid-encoded fimbriae, they play a role in bacterial survival in the host or external environment. However, their functions remain to be well elucidated, with the initial attachment and binding for fimbriae-mediated SE infections only minimally understood. Meanwhile, host-pathogen interactions provide insights into receptor modulation of the host innate immune system. Therefore, to well understand the pathogenicity of SE bacteria and to comprehend the host response to infection, the host cell-SE interactions need to be characterized. This review describes SE fimbriae receptors with an emphasis on the interaction between the receptor and SE fimbriae.
Collapse
Affiliation(s)
- Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Jing Zhao
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225125, China.
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yuqian Yang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yiting Wang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yan Tian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiuyan Ding
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
24
|
Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Nature 2018; 562:444-447. [PMID: 30283140 PMCID: PMC6309448 DOI: 10.1038/s41586-018-0587-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
|
25
|
Byvalov AA, Konyshev IV, Novikova OD, Portnyagina OY, Belozerov VS, Khomenko VA, Davydova VN. The Adhesiveness of the OmpF and OmpC Porins from Yersinia pseudotuberculosis to J774 Macrophages. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Lee JY, Miller DP, Wu L, Casella CR, Hasegawa Y, Lamont RJ. Maturation of the Mfa1 Fimbriae in the Oral Pathogen Porphyromonas gingivalis. Front Cell Infect Microbiol 2018; 8:137. [PMID: 29868494 PMCID: PMC5954841 DOI: 10.3389/fcimb.2018.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
The Mfa1 fimbriae of the periodontal pathogen Porphyromonas gingivalis are involved in adhesion, including binding to synergistic species in oral biofilms. Mfa1 fimbriae are comprised of 5 proteins: the structural component Mfa1, the anchor Mfa2, and Mfa3-5 which constitute the fimbrial tip complex. Interactions among the Mfa proteins and the polymerization mechanism for Mfa1 are poorly understood. Here we show that Mfa3 can bind to Mfa1, 2, 4, and 5 in vitro, and may function as an adaptor protein interlinking other fimbrial subunits. Polymerization of Mfa1 is independent of Mfa3-5 and requires proteolytic processing mediated by the RgpA/B arginine gingipains of P. gingivalis. Both the N- and C- terminal regions of Mfa1 are necessary for polymerization; however, potential β-strand disrupting amino acid substitutions in these regions do not impair Mfa1 polymerization. In contrast, substitution of hydrophobic amino acids with charged residues in either the N- or C- terminal domains yielded Mfa1 proteins that failed to polymerize. Collectively, these results indicate that Mfa3 serves as an adaptor protein between Mfa1 and other accessory fimbrial proteins. Mfa1 fimbrial polymerization is dependent on hydrophobicity in both the N- and C-terminal regions, indicative of an assembly mechanism involving the terminal regions forming a hydrophobic binding interface between Mfa1 subunits.
Collapse
Affiliation(s)
- Jae Y Lee
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Leng Wu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Carolyn R Casella
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| |
Collapse
|
27
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
28
|
Azriel S, Goren A, Shomer I, Aviv G, Rahav G, Gal-Mor O. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence 2017; 8:1791-1807. [PMID: 28922626 DOI: 10.1080/21505594.2017.1380766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A are human-restricted pathogens and the leading causative agents of enteric fever. The Typhi colonization factor (Tcf) is a chaperone-usher fimbria, thought to play a role in the host-specificity of typhoidal serovars. Here we show that the tcf cluster (tcfABCD tinR tioA) is present in at least 25 non-typhoidal Salmonella (NTS) serovars and demonstrate its native expression in clinically-important serovars including Schwarzengrund, 9,12:l,v:-, Choleraesuis, Bredeney, Heidelberg, Montevideo, Virchow and Infantis. Although the genetic organization of the tcf cluster is well conserved, the N-terminal half of the fimbrial adhesin, TcfD is highly diverse, suggesting different binding properties of distinct tcfD variants. Comparison of tcfA expression in typhoidal and NTS serovars demonstrated unexpected differences in its expression profiles, with the highest transcription levels in S. Typhi, S. Choleraesuis and S. Infantis. In the latter, tcf is induced in rich broth and under microaerobic conditions, characterizing the intestines of warm blooded animals. Furthermore, Tcf is negatively regulated by the ancestral leucine-responsive transcriptional regulator (Lrp). Using the colitis mouse model, we demonstrate that during mice infection tcfA is expressed at higher levels by S. Infantis than S. Schwarzengrund or S. Heidelberg. Moreover, while Tcf is dispensable for S. Schwarzengrund and S. Heidelberg mouse colonization, Tcf is involved in cecum and colon colonization by S. Infantis. Taken together, our results establish that Tcf is broadly encoded by multiple NTS serovars, but presents variable expression profiles and contributes differently to their virulence.
Collapse
Affiliation(s)
- Shalhevet Azriel
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Alina Goren
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Inna Shomer
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Gili Aviv
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Galia Rahav
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Ohad Gal-Mor
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|
29
|
Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife 2017; 6:28619. [PMID: 29125121 PMCID: PMC5700814 DOI: 10.7554/elife.28619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation.
Collapse
Affiliation(s)
- Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
30
|
Aviv G, Elpers L, Mikhlin S, Cohen H, Vitman Zilber S, Grassl GA, Rahav G, Hensel M, Gal-Mor O. The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts. PLoS Pathog 2017; 13:e1006559. [PMID: 28817673 PMCID: PMC5560535 DOI: 10.1371/journal.ppat.1006559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S. enterica subspecies diarizonae and subspecies VII, Klf is related to the known K88-Fae fimbria and klf clusters were identified in seven S. enterica subspecies I serovars, harboring interchanging alleles of the fimbria major subunit, KlfG. Regulation studies showed that the klf genes expression is negatively and positively controlled by the pESI-encoded regulators KlfL and KlfB, respectively, and are activated by the ancestral leucine-responsive regulator (Lrp). ipf genes are negatively regulated by Fur and activated by OmpR. Furthermore, induced expression of both klf and ipf clusters occurs under microaerobic conditions and at 41°C compared to 37°C, in-vitro. Consistent with these results, we demonstrate higher expression of ipf and klf in chicks compared to mice, characterized by physiological temperature of 41.2°C and 37°C, respectively. Interestingly, while Klf was dispensable for S. Infantis colonization in the mouse, Ipf was required for maximal colonization in the murine ileum. In contrast to these phenotypes in mice, both Klf and Ipf contributed to a restrained infection in chicks, where the absence of these fimbriae has led to moderately higher bacterial burden in the avian host. Taken together, these data suggest that physiological differences between host species, such as the body temperature, can confer differences in fimbriome expression, affecting Salmonella colonization and other host-pathogen interplays.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | - Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Guntram A. Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Pilipczuk J, Zalewska-Piątek B, Bruździak P, Czub J, Wieczór M, Olszewski M, Wanarska M, Nowicki B, Augustin-Nowacka D, Piątek R. Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli. J Biol Chem 2017; 292:16136-16149. [PMID: 28739804 PMCID: PMC5625045 DOI: 10.1074/jbc.m117.785477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond that joins their A and B strands. Here, we investigated how this disulfide bond affects the stability and folding/unfolding pathway of DraE. We found that the disulfide bond stabilizes self-complemented DraE (DraE-sc) by ∼50 kJ mol−1 in an exclusively thermodynamic manner, i.e. by lowering the free energy of the native state and with almost no effect on the free energy of the transition state. This finding was confirmed by experimentally determined folding and unfolding rate constants of DraE-sc and a disulfide bond-lacking DraE-sc variant. Although the folding of both proteins exhibited similar kinetics, the unfolding rate constant changed upon deletion of the disulfide bond by 10 orders of magnitude, from ∼10−17 s−1 to 10−7 s−1. Molecular simulations revealed that unfolding of the disulfide bond-lacking variant is initiated by strands A or G and that disulfide bond-mediated joining of strand A to the core strand B cooperatively stabilizes the whole protein. We also show that the disulfide bond in DraE is recognized by the DraB chaperone, indicating a mechanism that precludes the incorporation of less stable, non-oxidized DraE forms into the fimbriae.
Collapse
Affiliation(s)
- Justyna Pilipczuk
- From the Departments of Molecular Biotechnology and Microbiology and
| | | | - Piotr Bruździak
- Physical Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Physical Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Miłosz Wieczór
- Physical Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Marcin Olszewski
- From the Departments of Molecular Biotechnology and Microbiology and
| | - Marta Wanarska
- From the Departments of Molecular Biotechnology and Microbiology and
| | - Bogdan Nowicki
- the Nowicki Institute for Women's Health Research, Brentwood, Tennessee 37027, and
| | | | - Rafał Piątek
- From the Departments of Molecular Biotechnology and Microbiology and
| |
Collapse
|
32
|
Byvalov AA, Kononenko VL, Konyshev IV. Effect of lipopolysaccharide O-side chains on the adhesiveness of Yersinia pseudotuberculosis to J774 macrophages as revealed by optical tweezers. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
34
|
Pakharukova N, Roy S, Tuittila M, Rahman MM, Paavilainen S, Ingars AK, Skaldin M, Lamminmäki U, Härd T, Teneberg S, Zavialov AV. Structural basis for Myf and Psa fimbriae-mediated tropism of pathogenic strains of Yersinia for host tissues. Mol Microbiol 2016; 102:593-610. [PMID: 27507539 DOI: 10.1111/mmi.13481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Three pathogenic species of the genus Yersinia assemble adhesive fimbriae via the FGL-chaperone/usher pathway. Closely related Y. pestis and Y. pseudotuberculosis elaborate the pH6 antigen (Psa), which mediates bacterial attachment to alveolar cells of the lung. Y. enterocolitica, instead, assembles the homologous fimbriae Myf of unknown function. Here, we discovered that Myf, like Psa, specifically recognizes β1-3- or β1-4-linked galactose in glycosphingolipids, but completely lacks affinity for phosphatidylcholine, the main receptor for Psa in alveolar cells. The crystal structure of a subunit of Psa (PsaA) complexed with choline together with mutagenesis experiments revealed that PsaA has four phosphatidylcholine binding pockets that enable super-high-avidity binding of Psa-fibres to cell membranes. The pockets are arranged as six tyrosine residues, which are all missing in the MyfA subunit of Myf. Conversely, the crystal structure of the MyfA-galactose complex revealed that the galactose-binding site is more extended in MyfA, enabling tighter binding to lactosyl moieties. Our results suggest that during evolution, Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells, whereas Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Saumendra Roy
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Mohammad M Rahman
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Anna-Karin Ingars
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Maksym Skaldin
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Torleif Härd
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Anton V Zavialov
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| |
Collapse
|
35
|
Rasheed M, Garnett J, Pérez-Dorado I, Muhl D, Filloux A, Matthews S. Crystal structure of the CupB6 adhesive tip from the chaperone-usher family of pili from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1500-5. [PMID: 27481165 PMCID: PMC5022761 DOI: 10.1016/j.bbapap.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronic infection of the lungs of cystic fibrosis patients. Chaperone-usher systems in P. aeruginosa are known to translocate and assemble adhesive pili on the bacterial surface and contribute to biofilm formation within the host. Here, we report the crystal structure of the tip adhesion subunit CupB6 from the cupB1–6 gene cluster. The tip domain is connected to the pilus via the N-terminal donor strand from the main pilus subunit CupB1. Although the CupB6 adhesion domain bears structural features similar to other CU adhesins it displays an unusual polyproline helix adjacent to a prominent surface pocket, which are likely the site for receptor recognition. Crystal structure of the tip adhesion subunit CupB6 from the cupB1-6 gene cluster of Pseudomonas aeruginosa CupB6 possesses an atypical adhesion domain connected to a canonical chaperone-usher pilus subunit CupB6 caps the pilus shaft via donor strand complementation with the N-terminus of CupB1 CupB6 possesses unusual polyproline helices adjacent to a prominent surface pocket
Collapse
Affiliation(s)
- Masooma Rasheed
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Garnett
- Queen Mary University of London, Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Joseph Priestley Building, Mile End Road, London E1 4NS, United Kingdom
| | | | - Daniela Muhl
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alain Filloux
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
36
|
Lee WC, Matthews S, Garnett JA. Crystal structure and analysis of HdaB: The enteroaggregative Escherichia coli AAF/IV pilus tip protein. Protein Sci 2016; 25:1898-905. [PMID: 27400770 PMCID: PMC5029526 DOI: 10.1002/pro.2982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022]
Abstract
Enteroaggregative Escherichia coli is the primary cause of pediatric diarrhea in developing countries. They utilize aggregative adherence fimbriae (AAFs) to promote initial adherence to the host intestinal mucosa, promote the formation of biofilms, and mediate host invasion. Five AAFs have been identified to date and AAF/IV is amongst the most prevalent found in clinical isolates. Here we present the X‐ray crystal structure of the AAF/IV tip protein HdaB at 2.0 Å resolution. It shares high structural homology with members of the Afa/Dr superfamily of fimbriae, which are involved in host invasion. We highlight surface exposed residues that share sequence homology and propose that these may function in invasion and also non‐conserved regions that could mediate HdaB specific adhesive functions. PDB Code(s): 5D55
Collapse
Affiliation(s)
- Wei-Chao Lee
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Steve Matthews
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - James A Garnett
- School of Biological and Chemical Sciences, Queen Mary University London, London, E1 4NS, United Kingdom.
| |
Collapse
|
37
|
Monteiro R, Ageorges V, Rojas-Lopez M, Schmidt H, Weiss A, Bertin Y, Forano E, Jubelin G, Henderson IR, Livrelli V, Gobert AP, Rosini R, Soriani M, Desvaux M. A secretome view of colonisation factors in Shiga toxin-encodingEscherichia coli(STEC): from enterohaemorrhagicE. coli(EHEC) to related enteropathotypes. FEMS Microbiol Lett 2016; 363:fnw179. [DOI: 10.1093/femsle/fnw179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
|
38
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
39
|
Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 2016; 60:2028-38. [PMID: 26824945 DOI: 10.1128/aac.02221-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly.
Collapse
|
40
|
Pakharukova N, Garnett JA, Tuittila M, Paavilainen S, Diallo M, Xu Y, Matthews SJ, Zavialov AV. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. PLoS Pathog 2015; 11:e1005269. [PMID: 26587649 PMCID: PMC4654587 DOI: 10.1371/journal.ppat.1005269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - James A. Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Mamou Diallo
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Steve J. Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Anton V. Zavialov
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
- * E-mail:
| |
Collapse
|
41
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
42
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
43
|
The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nat Struct Mol Biol 2015; 22:540-6. [PMID: 26052892 PMCID: PMC4496297 DOI: 10.1038/nsmb.3044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
The chaperone-usher (CU) pathway assembles organelles termed pili or
fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic
Escherichia coli are prototypical structures assembled by
the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic
chaperone and an outer membrane protein termed the usher (FimD). We show that
the FimD C-terminal domains provide the high-affinity substrate binding site,
but that these domains are masked in the resting usher. Domain masking requires
the FimD plug domain, which serves as a switch controlling usher activation. We
demonstrate that usher molecules can act in trans for pilus
biogenesis, providing conclusive evidence for a functional usher oligomer. These
results reveal mechanisms by which molecular machines such as the usher regulate
and harness protein-protein interactions, and suggest that ushers may interact
in a cooperative manner during pilus assembly in bacteria.
Collapse
|
44
|
Pakharukova N, Tuittila M, Paavilainen S, Zavialov A. Crystallization and preliminary X-ray diffraction analysis of the Csu pili CsuC-CsuA/B chaperone-major subunit pre-assembly complex from Acinetobacter baumannii. Acta Crystallogr F Struct Biol Commun 2015; 71:770-4. [PMID: 26057810 PMCID: PMC4461345 DOI: 10.1107/s2053230x15007955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
The attachment of many Gram-negative pathogens to biotic and abiotic surfaces is mediated by fimbrial adhesins, which are assembled via the classical, alternative and archaic chaperone-usher (CU) pathways. The archaic CU fimbrial adhesins have the widest phylogenetic distribution, yet very little is known about their structure and mechanism of assembly. To elucidate the biogenesis of archaic CU systems, structural analysis of the Csu fimbriae, which are used by Acinetobacter baumannii to form stable biofilms and cause nosocomial infection, was focused on. The major fimbriae subunit CsuA/B complexed with the CsuC chaperone was purified from the periplasm of Escherichia coli cells co-expressing CsuA/B and CsuC, and the complex was crystallized in PEG 3350 solution using the hanging-drop vapour-diffusion method. Selenomethionine-labelled CsuC-CsuA/B complex was purified and crystallized under the same conditions. The crystals diffracted to 2.40 Å resolution and belonged to the hexagonal space group P6(4)22, with unit-cell parameters a = b = 94.71, c = 187.05 Å, α = β = 90, γ = 120°. Initial phases were derived from a single anomalous diffraction (SAD) experiment using the selenomethionine derivative.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Anton Zavialov
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| |
Collapse
|
45
|
Garnett JA, Muhl D, Douse CH, Hui K, Busch A, Omisore A, Yang Y, Simpson P, Marchant J, Waksman G, Matthews S, Filloux A. Structure-function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation. Protein Sci 2015; 24:670-87. [PMID: 25641651 PMCID: PMC4420518 DOI: 10.1002/pro.2640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain.
Collapse
Affiliation(s)
- James A Garnett
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom; Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Structural insight into host recognition by aggregative adherence fimbriae of enteroaggregative Escherichia coli. PLoS Pathog 2014; 10:e1004404. [PMID: 25232738 PMCID: PMC4169507 DOI: 10.1371/journal.ppat.1004404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces. Enteroaggregative Escherichia coli (EAEC) is a major cause of diarrhea worldwide and is commonly present as an infection in symptomatic travelers returning from developing countries. The attachment of EAEC to the human intestine is mediated protein filaments extending from the bacterial surface known as aggregative adherence fimbria (AAF). Here we use X-ray crystallography and nuclear magnetic resonance (NMR) structures to provide an atomic structure of the protein fibers made by the two major variants, AAF/I and AAF/II. The structures of the major subunit proteins show that the AAFs assemble into flexible, linear polymers that are capped by a single minor protein subunit at the tip. Biochemical assays reveal that the AAFs recognize a common receptor, the extracellular matrix protein fibronectin, via clusters of positively-charged amino acid residues running along the length of the fimbriae. Our structures suggest a unique mechanism based on ionic interactions for AAF-mediated receptor binding and biofilm formation.
Collapse
|
47
|
Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol 2014; 9:887-900. [DOI: 10.2217/fmb.14.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rise of multidrug resistant bacteria is a major worldwide health concern. There is currently an unmet need for the development of new and selective antibacterial drugs. Therapies that target and disarm the crucial virulence factors of pathogenic bacteria, while not actually killing the cells themselves, could prove to be vital for the treatment of numerous diseases. This article discusses the main surface architectures of pathogenic Gram-negative bacteria and the small molecules that have been discovered, which target their specific biogenesis pathways and/or actively block their virulence. The future perspective for the use of antivirulence compounds is also assessed.
Collapse
Affiliation(s)
- David Steadman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Alvin Lo
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gabriel Waksman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Han Remaut
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
48
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
49
|
Banadakoppa M, Goluszko P, Liebenthal D, Nowicki BJ, Nowicki S, Yallampalli C. PI3K/Akt pathway restricts epithelial adhesion of Dr + Escherichia coli by down-regulating the expression of decay accelerating factor. Exp Biol Med (Maywood) 2014; 239:581-94. [PMID: 24599886 DOI: 10.1177/1535370214522183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study, we showed that the PI3K/Akt pathway negatively regulated the expression of DAF on the epithelial cell surface and thus inhibited the adhesion of Dr(+) E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt, we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr(+) E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF, and decreased the adhesion of Dr(+) E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lo AWH, Van de Water K, Gane PJ, Chan AWE, Steadman D, Stevens K, Selwood DL, Waksman G, Remaut H. Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization. J Antimicrob Chemother 2013; 69:1017-26. [PMID: 24324225 PMCID: PMC3956373 DOI: 10.1093/jac/dkt467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objectives To identify and to characterize small-molecule inhibitors that target the subunit polymerization of the type 1 pilus assembly in uropathogenic Escherichia coli (UPEC). Methods Using an SDS–PAGE-based assay, in silico pre-filtered small-molecule compounds were screened for specific inhibitory activity against the critical subunit polymerization step of the chaperone–usher pathway during pilus biogenesis. The biological activity of one of the compounds was validated in assays monitoring UPEC type 1 pilus biogenesis, type 1 pilus-dependent biofilm formation and adherence to human bladder epithelial cells. The time dependence of the in vivo inhibitory activity and the overall effect of the compound on UPEC growth were determined. Results N-(4-chloro-phenyl)-2-{5-[4-(pyrrolidine-1-sulfonyl)-phenyl]-[1,3,4]oxadiazol-2-yl sulfanyl}-acetamide (AL1) inhibited in vitro pilus subunit polymerization. In bacterial cultures, AL1 disrupted UPEC type 1 pilus biogenesis and pilus-dependent biofilm formation, and resulted in the reduction of bacterial adherence to human bladder epithelial cells, without affecting bacterial cell growth. Bacterial exposure to the inhibitor led to an almost instantaneous loss of type 1 pili. Conclusions We have identified and characterized a small molecule that interferes with the assembly of type 1 pili. The molecule targets the polymerization step during the subunit incorporation cycle of the chaperone–usher pathway. Our discovery provides new insight into the design and development of novel anti-virulence therapies targeting key virulence factors of bacterial pathogens.
Collapse
Affiliation(s)
- Alvin W H Lo
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|