1
|
Khaliq H, Osickova A, Lichvarova M, Sulc M, Navarrete KM, Espinosa-Vinals C, Masin J, Osicka R. Structural and functional significance of two conserved lysine residues in acylated sites of Kingella kingae RtxA cytotoxin. Biochimie 2025; 232:105-116. [PMID: 39746438 DOI: 10.1016/j.biochi.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23 %) suggests that the complete acylation at K689 is crucial for toxin activity. Using a bacterial two-hybrid system, we show that substitutions of K558, but not K689, partially reduce the interaction of proRtxA with RtxC and that the acyltransferase interacts independently with each acylated site in vivo. While substitutions of K558 had no effect on the acylation of K689, substitutions of K689 resulted in an average 40 % increase in the acylation of K558. RtxA mutants monoacylated at either K558 or K689 irreversibly bound to erythrocyte membranes, with binding efficiency corresponding to the extent of lysine acylation. However, these mutants lysed erythrocytes with similarly low efficiency as nonacylated proRtxA and showed only residual overall membrane activity in planar lipid bilayers. Interestingly, despite forming fewer pores, the monoacylated mutants exhibited single-pore characteristics, such as conductance and lifetime, similar to those of intact RtxA. These findings indicate that the acylation at either K558 or K689 is sufficient for the irreversible insertion of RtxA into the membrane, but not for the efficient formation of membrane pores. Alternatively, K558 and K689 per se may play a crucial structural role in pore formation, regardless of their acylation status.
Collapse
Affiliation(s)
- Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic; Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Michaela Lichvarova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic; Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Miroslav Sulc
- Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Kevin Munoz Navarrete
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Carlos Espinosa-Vinals
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic.
| |
Collapse
|
2
|
Lindhaus H, Bischoff H, Harms M, Menke T, Helmer C, Hennig-Pauka I. Comparison of molecular serotyping methods for Actinobacillus pleuropneumoniae and analysis of atypical serotypes detected in routine diagnostics. J Microbiol Methods 2025; 232-234:107132. [PMID: 40245988 DOI: 10.1016/j.mimet.2025.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Clinical outbreaks due to Actinobacillus pleuropneumoniae (APP) and subclinical infections have high impact on swine health status worldwide although several commercial vaccines are available. Autogenous vaccination programs are implemented when APP outbreaks occur in commercially vaccinated herds. The identification and characterization of the involved APP serotypes is therefore crucial for the implementation of preventive strategies and antimicrobial usage reduction on the farm. Interpretation of serotyping results obtained by different methods might be difficult in case of mismatching results or untypable APP isolates. In this study results of two routine serotyping methods- a capsular gene based and an apx toxin gene PCR- were compared in 151 APP field and 19 APP reference strains. APP species was identified after bacterial culture by MALDI-TOF-MS followed by serotyping. Toxin profiles were not in accordance with the serotype defined by capsule gene PCR in 37 % of APP field strains which were grouped in those with (1) atypical capsule (cps) gene patterns (22 %) and those with (2) atypical apxIV toxin gene length (78 %). Selected atypical APP strains were further analysed by whole genome sequencing. The toxin gene-based PCR robustly identified the apxI-III toxin genes in all strains and revealed highly variable apxIV toxin gene patterns. For thirteen isolates a cps-gene type 6 and apxIV toxin gene pattern of serotype 2/8/15 could be confirmed via WGS. For three serotype 9/11 isolates the failure of the cps gene typing was found to be due to a deletion at the 3' of the cpsF gene. A standardized, precise description of the apx-toxin gene pattern as well as the cps-gene-based serotype for APP strains can be recommended (e.g. APP cps type 2, apx gene profile apxIB, apxII, apxIII).
Collapse
Affiliation(s)
- Henning Lindhaus
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany; Tieraerztliche Praxis Schoeppingen, Ebbinghoff 28, 48624 Schoeppingen, Germany.
| | - Henning Bischoff
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany; Genovo GmbH, Kirchstrasse 3, 26197 Grossenkneten, Germany
| | - Madita Harms
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Theresa Menke
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Carina Helmer
- San Group Biotech Germany GmbH former AniCon Labor GmbH, Höltinghausen, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
3
|
Ahmad JN, Modrak M, Fajfrova M, Sotoca BMB, Benada O, Sebo P. Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages. mBio 2025; 16:e0013825. [PMID: 40105369 PMCID: PMC11980580 DOI: 10.1128/mbio.00138-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Martin Modrak
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Marketa Fajfrova
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | | | - Oldrich Benada
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
El-Gazzar M, Gallardo R, Bragg R, Hashish A, Sun HL, Davison S, Feberwee A, Huberman Y, Skein T, Coertzen A, Kelly D, Soriano-Vargas E, Morales-Erasto V, Silva AD, Guo MJ, Ladman B, Dijkman R, Ghanem M. Avibacterium paragallinarum, the Causative Agent of Infectious Coryza: A Comprehensive Review. Avian Dis 2025; 68:362-379. [PMID: 40249575 DOI: 10.1637/aviandiseases-d-24-00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 04/19/2025]
Abstract
Infectious coryza (IC) caused by Avibacterium paragallinarum (AP) has risen in importance as a poultry disease over the past several years because of its increased incidence in commercial poultry in both Europe and the United States. Because of this rise in importance, more attention has been focused on diagnosis, isolation, and surveillance of this bacterial pathogen. As a result, new knowledge has been produced and published. This review was compiled with the main purpose of summarizing and presenting the updated knowledge available about AP. However, the new knowledge can only be understood in the context of previously known facts about the disease. Therefore, this review has been organized in two major parts. The first part is a review of the established knowledge about AP, followed by recent updates. In the first part, we summarize the established well-known as well as some of the less-known facts and literature about AP. The second section focuses on specifics of the latest IC outbreaks in commercial poultry in northern latitudes, particularly in Europe and in North America. Additionally, we reviewed the current geographical distribution of the disease in Asia, South America, and Africa. The crises created by emerging or re-emerging disease outbreaks ignite interest in understanding the disease and pathogen in order to combat it properly. This results in new knowledge that improves the understanding of the disease features, leading to improved disease prevention, control, and eradication. Although knowledge about AP has advanced, knowledge gaps about the disease still persist. Therefore, this review concludes with summarizing the current knowledge gaps as well as potential areas for future research.
Collapse
Affiliation(s)
- Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| | - Rodrigo Gallardo
- University of California, School of Veterinary Medicine, Department of Population Health and Reproduction. Davis, CA 95616
| | - Robert Bragg
- Centre for Mineral Biogeochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Amro Hashish
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hui-Ling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine Beijing Academy of Agriculture and Forestry Sciences Haidian District Beijing China
| | - Sherrill Davison
- Pennsylvania Animal Diagnostic Animal Laboratory System, University of Pennsylvania, School of Veterinary Medicine, Department of Pathobiology, Kennett Square, PA 19348
| | | | - Yosef Huberman
- Bacteriology, INTA EEA Balcarce, Balcarce CP 07620, Buenos Aires, Argentina
| | - T Skein
- Centre for Mineral Biogeochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Azil Coertzen
- Centre for Mineral Biogeochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Donna Kelly
- Pennsylvania Animal Diagnostic Animal Laboratory System, University of Pennsylvania, School of Veterinary Medicine, Department of Pathobiology, Kennett Square, PA 19348
| | - Edgardo Soriano-Vargas
- Center for Advanced Investigations and Studies on Animal Health, Faculty of Veterinary Medicine and Zootechny, Autonomous University of the State of Mexico, Toluca 50000, Mexico
| | - Vladimir Morales-Erasto
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana Da Silva
- Centre for Mineral Biogeochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Meng-Jiao Guo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Brian Ladman
- Department of Animal and Food Sciences, Avian Biosciences Center, University of Delaware, Newark, DE
| | | | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, MD 20740
| |
Collapse
|
5
|
Zaragoza-Solas A, Baltar F. Ayu: a machine intelligence tool for identification of extracellular proteins in the marine secretome. Nat Commun 2025; 16:2793. [PMID: 40118827 PMCID: PMC11928666 DOI: 10.1038/s41467-025-57974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Microbes are the engines driving the elemental cycles. In order to interact with their environment and the community, microbes secrete proteins into the environment (known collectively as the secretome), where they remain active for prolonged periods of time. Despite the environmental relevance of microbes, our knowledge of the marine secretome remains limited due to a lack of effective in silico methods for the study of secreted proteins. An alternative approach to characterise the secretome is to combine modern machine learning tools with the evolutionary adaptation changes of the proteome to the marine environment. In this study, we identify and describe adaptations of marine extracellular proteins, which vary between phyla, resulting in differences in ATP costs, amino acid composition and nitrogen and sulphur content. We develop 'Ayu', a machine prediction tool that does not employ homology-based predictors and achieves better and quicker performance than current state-of-the-art software. When applied to oceanic samples (Tara Oceans dataset), our method was able to recover more than double the proteins compared to the most widely used method to identify secreted proteins. The application of this tool to open ocean samples allows better characterisation of the composition of the marine secretome.
Collapse
Affiliation(s)
- Asier Zaragoza-Solas
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassi-platz 1, 1030, Vienna, Austria.
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassi-platz 1, 1030, Vienna, Austria.
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Hadjisavva ME, Cooper RL. The Biphasic Effect of Lipopolysaccharide on Membrane Potential. MEMBRANES 2025; 15:74. [PMID: 40137026 PMCID: PMC11943570 DOI: 10.3390/membranes15030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Lipopolysaccharide (LPS) from certain strains of Gram-negative bacteria can induce a rapid (<1 s) hyperpolarization of membrane potential, followed by a gradual depolarization exceeding the initial resting membrane potential. Through overexpression of a Drosophila ORK1 two-pore-domain K+ channel (K2P) in larval muscles and altering the external concentrations of K+ and Na+ ions, it is clear that the hyperpolarization is due to activating K2P channels and the depolarization is due to promoting an inward Na+ leak. When the external Na+ concentration is negligible, the LPS-delayed depolarization is dampened. The hyperpolarization induced by LPS can exceed -100 mV when external K+ and Na+ concentrations are lowered. These results indicate direct action by LPS on ion channels independently of immune responses. Such direct actions may need to be considered when developing clinical treatments for certain forms of bacterial septicemia.
Collapse
Affiliation(s)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA;
| |
Collapse
|
7
|
Slivenecka E, Jurnecka D, Holubova J, Stanek O, Brazdilova L, Cizkova M, Bumba L. The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair. Microbiol Res 2025; 292:128043. [PMID: 39740637 DOI: 10.1016/j.micres.2024.128043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions. Both ApxIVA and ORF1 are essential for full virulence of A. pleuropneumoniae, but the molecular mechanisms by which they contribute to the pathogenicity are not yet understood. Here, we provide a comprehensive structural and functional analysis of ApxIVA and ORF1 proteins. Our findings reveal that the N-terminal segment of ApxIVA shares structural similarity with colicin M (ColM)-like bacteriocins and exhibits an antimicrobial activity. The ORF1 protein resembles the colicin M immunity protein (Cmi) and, like Cmi, is exported to the periplasm through its N-terminal signal peptide. Additionally, ORF1 can protect bacterial cells from the antimicrobial activity of ApxIVA, suggesting that ORF1 and ApxIVA function as an antibacterial toxin-immunity pair. Moreover, we demonstrate that fetal bovine serum could elicit ApxIVA and ORF1 production under in vitro conditions. These findings highlight the coordinated action of various RTX determinants, where the fine-tuned spatiotemporal production of ApxIVA may enhance the fitness of A. pleuropneumoniae, facilitating its invasion to a resident microbial community on the surface of airway mucosa.
Collapse
Affiliation(s)
- Eva Slivenecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
8
|
Groon LA, Bruns S, Dlugosch L, Wilkes H, Wienhausen G. Effects of vitamin B 12 supply on cellular processes of the facultative vitamin B 12 consumer Vibrio campbellii. Appl Environ Microbiol 2025; 91:e0142224. [PMID: 39840980 PMCID: PMC11837498 DOI: 10.1128/aem.01422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/08/2024] [Indexed: 01/23/2025] Open
Abstract
Vitamin B12 (cobalamin, herein B12) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B12 is often scarce, largely because only few prokaryotes can synthesize B12 de novo and are thus considered B12-prototrophs. B12-auxotrophy is mostly manifested by the absence of the B12-independent methionine synthase, MetE. Here, we focus on bacteria that we classified as facultative B12 consumers as they encode both B12-independent and -dependent (MetH) methionine synthases yet largely cannot synthesize B12 de novo. The genus Vibrio belongs to this group, and our work shows that upon B12 supply growth of Vibrio campbellii is accelerated and autoinducer-2 (AI-2) concentrations are enhanced. We speculate that methionine synthesis efficiency, dependent on B12 availability, is linked to AI-2 synthesis. The precursor for AI-2 synthesis is S-adenosyl-L-homocysteine (SAH), which in turn requires methionine as a precursor. In almost all Vibrio species studied, btuF (B12-binding protein), which is required for B12 uptake, and cobD (Adenosylcobinamide-phosphate synthase), which enables remodeling of B12-like compounds, are encoded on the same operon as pfs (or mtnN, Adenosylhomocysteine nucleosidase), the first enzyme in the two-step AI-2 synthesis reaction. Transcriptomic analyses show that virulence factors, such as toxin synthesis, fimbriae formation, and activation of the type-6 secretion system, which have been shown to be regulated by quorum sensing via AI-2, are significantly upregulated in V. campbellii when B12 is available. Our results demonstrate that V. campbellii is a facultative B12 consumer and indicate that B12 availability affects AI-2 levels and thus potentially virulence factor regulation.IMPORTANCEMetabolites play a key role in microbial metabolism and communication. While vitamin B12 is an essential cofactor for important enzymatic reactions, autoinducer-2 mediates interspecies signaling and can regulate the expression of genes that are crucial for virulence and survival. In our study, we hypothesize and present findings how these two important metabolites are linked in Vibrio species. Vibrio campbellii grows without B12 but at an accelerated rate when B12 is present, and we detect higher AI-2 values in cultures with B12 amendment. Transcriptome analyses show how vitamin B12 availability significantly upregulates gene expression of virulence factors such as toxin synthesis, fimbrial formation, and activation of the type-6 secretion system in V. campbellii.
Collapse
Affiliation(s)
- Luna-Agrippina Groon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Elizondo-Reyna E, Martínez-Montoya H, Tamayo-Ordoñez Y, Cruz-Hernández MA, Carrillo-Tripp M, Tamayo-Ordoñez MC, Sosa-Santillán GDJ, Rodríguez-de la Garza JA, Hernández-Guzmán M, Bocanegra-García V, Acosta-Cruz E. Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production. Curr Issues Mol Biol 2025; 47:56. [PMID: 39852170 PMCID: PMC11763638 DOI: 10.3390/cimb47010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The genome sequence of Pantoea agglomerans UADEC20 is presented, which is a strain isolated from agricultural fields in northeast Mexico. The genome was assembled into 13 scaffolds, constituting a total chromosome size of 4.2 Mbp, with two of the scaffolds representing closed plasmids. The strain exhibits activity in phosphate solubilization and exopolysaccharide (EPS) production and secretion; therefore, we explored its biotechnological potential via its genome sequencing and annotation. Genomic analyses showed that a total of 57 and 58 coding sequences (CDSs) related to phosphate solubilization and EPS production were identified within its genome, in addition to a reduced number of CDSs related to drug resistance and phages. The comprehensive set of genes supporting phosphate solubilization, EPS synthesis, and secretion, along with its low virulence and antibiotic resistance levels, justify further research for its potential biotechnological application and possible use as a plant growth-promoting agent in the field. These findings suggest a unique genetic background in the P. agglomerans UADEC20 strain.
Collapse
Affiliation(s)
- Edith Elizondo-Reyna
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo C.P. 25280, Mexico
| | - Humberto Martínez-Montoya
- Departamento de Microbiología, U.A.M. Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa C.P. 88740, Mexico
| | - Yahaira Tamayo-Ordoñez
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Mexico
| | - María Antonia Cruz-Hernández
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca C.P. 66600, Mexico
| | | | | | | | - Mario Hernández-Guzmán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada C.P. 22860, Mexico
| | - Virgilio Bocanegra-García
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Mexico
| | - Erika Acosta-Cruz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo C.P. 25280, Mexico
| |
Collapse
|
10
|
Phurahong T, Soonson P, Thawonsuwan J, Tanasomwang V, Areechon N, E-kobon T, Unajak S. Comparative Genome Analysis of Piscine Vibrio vulnificus: Virulence-Associated Metabolic Pathways. Microorganisms 2024; 12:2518. [PMID: 39770721 PMCID: PMC11676643 DOI: 10.3390/microorganisms12122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Vibriosis caused by Vibrio vulnificus is a major problem in aquatic animals, particularly brown marble groupers (Epinephelus fuscoguttatus). V. vulnificus biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I V. vulnificus strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence. To gain insight into the different genetic features revealed by the potential virulence mechanisms of V. vulnificus in relation to a spectrum of pathogenesis, comparative genomic analyses of three biotype I V. vulnificus strains belonging to different subgroups (SUKU_G1, SUKU_G2, and SUKU_G3) were performed. The V. vulnificus genome is composed of two circular chromosomes with average sizes of 3 Mbp and 1.7 Mbp that are evolutionarily related based on the analysis of orthologous genes. A comparative genome analysis of V. vulnificus revealed 5200 coding sequences, of which 3887 represented the core genome and the remaining 1313 constituted the dispensable genome. The most virulent isolate (SUKU_G1) carries unique enzymes that are important for lipopolysaccharide (LPS) and capsular polysaccharide (CPS) synthesis, as well as flagellar glycosylation, and harbors another type of repeat in toxin (RTX) and bacterial defense mechanisms. The less virulent isolate (SUKU_G2) shares enzymes related to CPS biosynthesis or flagellar glycosylation, while the avirulent isolate (SUKU_G3) and a less virulent isolate (SUKU_G2) share enzymes related to the production of rare sugars. Interestingly, the isolates from the three subgroups containing specific CMP-N-acetylneuraminate-producing enzymes that are correlated with their growth abilities. Collectively, these observations provide an understanding of the molecular mechanisms underlying disease pathogenesis and support the development of strategies for bacterial disease prevention and control.
Collapse
Affiliation(s)
- Thararat Phurahong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Patcharee Soonson
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Jumroensri Thawonsuwan
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Varin Tanasomwang
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Ruzickova E, Lichvarova M, Osickova A, Filipi K, Jurnecka D, Khaliq H, Espinosa-Vinals C, Pompach P, Masin J, Osicka R. Two pairs of back-to-back α-helices of Kingella kingae RtxA toxin are crucial for the formation of a membrane pore. Int J Biol Macromol 2024; 283:137604. [PMID: 39542310 DOI: 10.1016/j.ijbiomac.2024.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The RtxA cytotoxin, a member of the RTX (Repeats in ToXin) family of pore-forming toxins, is the primary virulence factor of the paediatric facultative pathogen Kingella kingae. Although structure-function studies of RTX toxins have defined their characteristic domains and features, the exact membrane topology of RTX toxins remains unknown. Here, we used labelling of cell-bound RtxA with a membrane-impermeable, lysine-reactive reagent and subsequent detection of the labelled lysine residues by mass spectrometry, which revealed that most of the membrane-bound toxin is localised extracellularly. A trypsin protection assay with cell-bound RtxA demonstrated that five of seven transmembrane α-helices, predicted by various algorithms within the N-terminal half of the molecule, are irreversibly embedded in the membrane. Structure-function analysis showed that these α-helices, four of which are arranged as two pairs of back-to-back helices, are essential for the formation of an ion-conducting membrane pore. In contrast, the C-terminal half of RtxA is required for the interaction with the cell surface and for the irreversible insertion of the toxin into the membrane via acyl chains covalently linked to the molecule. These findings advance our understanding of the structure-function relationships of RtxA and enable us to propose a membrane topology model of the toxin.
Collapse
Affiliation(s)
- Eliska Ruzickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Lichvarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Filipi
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Carlos Espinosa-Vinals
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Minnullina LF, Misheeva PS, Mukhtarova GI, Mardanova AM. Influence of Urinary Urea Concentration on Hemolytic Activity and Cytotoxicity of Uropathogenic Morganella morganii Strain. Bull Exp Biol Med 2024; 178:227-232. [PMID: 39762703 DOI: 10.1007/s10517-025-06312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 01/15/2025]
Abstract
We studied the effect of urinary urea concentration on the hemolysin production and cytotoxicity of the uropathogenic Morganella morganii strain MM 190. The highest hemolytic activity of M. morganii cultivated in urine with low urea concentration (23 and 82 mmol/liter) was observed between 3rd and 4th hours of post-inoculation, while in urine with standard urea level (117 mmol/liter), the activity was observed at 5th hour of post-inoculation. Our findings indicate a correlation between this activity and the expression of the hlyA gene. Bacterial culture fluid containing hemolysin caused the death of up to 40% of urothelial cells; cytotoxicity was more pronounced against OKP-GS kidney carcinoma cells compared to T-24 bladder carcinoma cells. Hence, in urine with higher urea concentrations, hemolytic activity of bacteria was observed at later stages of growth, and this culture fluid exhibited higher cytotoxicity.
Collapse
Affiliation(s)
| | - P S Misheeva
- Kazan (Volga region) Federal University, Kazan, Russia
| | | | - A M Mardanova
- Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
13
|
Viravathana P, Burbank LP, Jablonska B, Sun Q, Roper MC. A membrane localized RTX-like protein mediates physiochemical properties of the Pantoea stewartii subsp. stewartii cell envelope that impact surface adhesion, cell surface hydrophobicity and plant colonization. BMC Microbiol 2024; 24:369. [PMID: 39342134 PMCID: PMC11438254 DOI: 10.1186/s12866-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Pantoea stewartii subsp. stewartii (Pnss), is the bacterial causal agent of Stewart's wilt of sweet corn. Disease symptoms include systemic wilting and foliar, water-soaked lesions. A Repeat-in-toxin (RTX)-like protein, RTX2, causes cell leakage and collapse in the leaf apoplast of susceptible corn varieties and is a primary mediator of water-soaked lesion formation in the P. stewartii-sweet corn pathosystem. RTX toxins comprise a large family of proteins, which are widely distributed among Gram-negative bacteria. These proteins are generally categorized as cellulolysins, but the Biofilm-Associated Proteins (Bap) subfamily of RTX toxins are implicated in surface adhesion and other biofilm behaviors. The Pnss RTX2 is most phylogenetically related to other Bap proteins suggesting that Pnss RTX2 plays a dual role in adhesion to host surfaces in addition to mediating the host cell lysis that leads to water-soaked lesion formation. Here we demonstrated that RTX2 localizes to the bacterial cell envelope and influences physiochemical properties of the bacterial cell envelope that impact bacterial cell length, cell envelope integrity and overall cellular hydrophobicity. Interestingly, the role of RTX2 as an adhesin was only evident in absence of exopolysaccharide (EPS) production suggesting that RTX2 plays a role as an adhesin early in biofilm development before EPS production is fully induced. However, deletion of rtx2 severely impacted Pnss' colonization of the xylem suggesting that the dual role of RTX2 as a cytolysin and adhesin is a mechanism that links the apoplastic water-soaked lesion phase of infection to the wilting phase of the infection in the xylem.
Collapse
Affiliation(s)
- Polrit Viravathana
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Lindsey P Burbank
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WI, 54481, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
14
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Graham LA, Hansen T, Yang Y, Sherik M, Ye Q, Soares BP, Kinrade B, Guo S, Davies PL. Adhesin domains responsible for binding bacteria to surfaces they colonize project outwards from companion split domains. Proteins 2024; 92:933-945. [PMID: 38591850 DOI: 10.1002/prot.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly β-sandwich extender modules, but other domains like a β-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yanzhi Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Blake P Soares
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Kanaan H, Chapalain A, Chokr A, Doublet P, Gilbert C. Legionella pneumophila cell surface RtxA release by LapD/LapG and its role in virulence. BMC Microbiol 2024; 24:266. [PMID: 39026145 PMCID: PMC11264772 DOI: 10.1186/s12866-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Legionella pneumophila is a Gram-negative intracellular bacillus and is the causative agent of a severe form of pneumonia called Legionnaires' disease which accounts for 2-9% of cases of community acquired pneumonia. It produces an extremely large protein belonging to the RTX (Repeats in ToXin) family, called RtxA, and we previously reported that RtxA is transported by a dedicated type 1 secretion system (T1SS) to the cell surface. RTX proteins have been shown to participate in the virulence or biofilm formation of various bacteria, the most studied models being the pore forming hemolysin A (HlyA) of Escherichia coli and the biofilm associated protein LapA of P. fluorescens. LapA localization depends on the enzymatic release by LapD/LapG complex activity. This study aimed to elucidate the dual localization (cell surface associated or released state) of L. pneumophila RTX protein (RtxA) and whether this released versus sequestered state of RtxA plays a role in L. pneumophila virulence. RESULTS The hereby work reveals that, in vitro, LapG periplasmic protease cleaves RtxA N-terminus in the middle of a di-alanine motif (position 108-109). Consistently, a strain lacking LapG protease maintains RtxA on the cell surface, whereas a strain lacking the c-di-GMP receptor LapD does not exhibit cell surface RtxA because of its continuous cleavage and release, as in the LapA-D-G model of Pseudomonas fluorescens. Interestingly, our data point out a key role of RtxA in enhancing the infection process of amoeba cells, regardless of its location (embedded or released); therefore, this may be the result of a secondary role of this surface protein. CONCLUSIONS This is the first experimental identification of the cleavage site within the RTX protein family. The primary role of RtxA in Legionella is still questionable as in many other bacterial species, hence it sounds reasonable to propose a major function in biofilm formation, promoting cell aggregation when RtxA is embedded in the outer membrane and facilitating biofilm dispersion in case of RtxA release. The role of RtxA in enhancing the infection process may be a result of its action on host cells (i.e., PDI interaction or pore-formation), and independently of its status (embedded or released).
Collapse
Affiliation(s)
- Hussein Kanaan
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Annelise Chapalain
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Patricia Doublet
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Christophe Gilbert
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
17
|
Li Z, Baidoun R, Brown AC. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids Surf B Biointerfaces 2024; 238:113870. [PMID: 38555763 PMCID: PMC11148792 DOI: 10.1016/j.colsurfb.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
18
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Qiu GW, Zheng WC, Yang HM, Wang YY, Qi X, Huang D, Dai GZ, Shi H, Price NM, Qiu BS. Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation. Nat Commun 2024; 15:4426. [PMID: 38789507 PMCID: PMC11126600 DOI: 10.1038/s41467-024-48847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Iron and phosphorus are essential nutrients that exist at low concentrations in surface waters and may be co-limiting resources for phytoplankton growth. Here, we show that phosphorus deficiency increases the growth of iron-limited cyanobacteria (Synechocystis sp. PCC 6803) through a PhoB-mediated regulatory network. We find that PhoB, in addition to its well-recognized role in controlling phosphate homeostasis, also regulates key metabolic processes crucial for iron-limited cyanobacteria, including ROS detoxification and iron uptake. Transcript abundances of PhoB-targeted genes are enriched in samples from phosphorus-depleted seawater, and a conserved PhoB-binding site is widely present in the promoters of the target genes, suggesting that the PhoB-mediated regulation may be highly conserved. Our findings provide molecular insights into the responses of cyanobacteria to simultaneous iron/phosphorus nutrient limitation.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wen-Can Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hao-Ming Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yu-Ying Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xing Qi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Da Huang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neil M Price
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Québec, H3A 1B1, Canada
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
20
|
Srivastava V, Bandhu S, Mishra S, Chaudhuri TK. Calcium-induced structural transitions are central to the folding, function, and processing of serratiopeptidase zymogen into mature form. FEBS J 2024; 291:1958-1973. [PMID: 38700222 DOI: 10.1111/febs.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 05/05/2024]
Abstract
Serratia marcescens is an emerging health-threatening, gram-negative opportunistic pathogen associated with a wide variety of localized and life-threatening systemic infections. One of the most crucial virulence factors produced by S. marcescens is serratiopeptidase, a 50.2-kDa repeats-in-toxin (RTX) family broad-specificity zinc metalloprotease. RTX family proteins are functionally diverse exoproteins of gram-negative bacteria that exhibit calcium-dependent structural dynamicity and are secreted through a common type-1 secretion system (T1SS) machinery. To evaluate the impact of various divalent ligands on the folding and maturation of serratiopeptidase zymogen, the protein was purified and a series of structural and functional investigations were undertaken. The results indicate that calcium binding to the C-terminal RTX domain acts as a folding switch, triggering a disordered-to-ordered transition in the enzyme's conformation. Further, the auto-processing of the 16-amino acid N-terminal pro-peptide results in the maturation of the enzyme. The binding of calcium ions to serratiopeptidase causes a highly cooperative conformational transition in its structure, which is essential for the enzyme's activation and maturation. This conformational change is accompanied by an increase in solubility and enzymatic activity. For efficient secretion and to minimize intracellular toxicity, the enzyme needs to be in an unfolded extended form. The calcium-rich extracellular environment favors the folding and processing of zymogen into mature serratiopeptidase, i.e., the holo-form required by S. marcescens to establish infections and survive in different environmental niches.
Collapse
Affiliation(s)
- Vishal Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Sheetal Bandhu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Shivam Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|
21
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
22
|
Razooqi Z, Tjellström I, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Johansson A, Oscarsson J. Association of Filifactor alocis and its RTX toxin gene ftxA with periodontal attachment loss, and in synergy with Aggregatibacter actinomycetemcomitans. Front Cell Infect Microbiol 2024; 14:1376358. [PMID: 38596650 PMCID: PMC11002136 DOI: 10.3389/fcimb.2024.1376358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The Gram-positive bacterium, Filifactor alocis is an oral pathogen, and approximately 50% of known strains encode a recently identified repeat-in-toxin (RTX) protein, FtxA. By assessing a longitudinal Ghanaian study population of adolescents (10-19 years of age; mean age 13.2 years), we recently discovered a possible correlation between deep periodontal pockets measured at the two-year follow-up, presence of the ftxA gene, and a high quantity of F. alocis. To further understand the contribution of F. alocis and FtxA in periodontal disease, we used qPCR in the present study to assess the carriage loads of F. alocis and the prevalence of its ftxA gene in subgingival plaque specimens, sampled at baseline from the Ghanaian cohort (n=500). Comparing these results with the recorded clinical attachment loss (CAL) longitudinal progression data from the two-year follow up, we concluded that carriers of ftxA-positive F. alocis typically exhibited higher loads of the bacterium. Moreover, high carriage loads of F. alocis and concomitant presence of the ftxA gene were two factors that were both associated with an enhanced prevalence of CAL progression. Interestingly, CAL progression appeared to be further promoted upon the simultaneous presence of F. alocis and the non-JP2 genotype of Aggregatibacter actinomycetemcomitans. Taken together, our present findings are consistent with the notion that F. alocis and its ftxA gene promotes CAL during periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Brovst, Denmark
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Abettan A, Nguyen MH, Ladant D, Monticelli L, Chenal A. CyaA translocation across eukaryotic cell membranes. Front Mol Biosci 2024; 11:1359408. [PMID: 38584704 PMCID: PMC10995232 DOI: 10.3389/fmolb.2024.1359408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Amiel Abettan
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
| | - Minh-Ha Nguyen
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
24
|
Sherik M, Eves R, Guo S, Lloyd CJ, Klose KE, Davies PL. Sugar-binding and split domain combinations in repeats-in-toxin adhesins from Vibrio cholerae and Aeromonas veronii mediate cell-surface recognition and hemolytic activities. mBio 2024; 15:e0229123. [PMID: 38171003 PMCID: PMC10865825 DOI: 10.1128/mbio.02291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent Vibrio cholerae, flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a Kd of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from Aeromonas veronii was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by V. cholerae and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, Vibrio cholerae, which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.
Collapse
Affiliation(s)
- Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
26
|
Joye R, Cousin VL, Malaspinas I, Mwizerwa L, Bouhabib M, Nalecz T, Sologashvili T, Beghetti M, L’Huillier AG, Wacker J. Infective Endocarditis Due to Kingella kingae. Microorganisms 2024; 12:164. [PMID: 38257992 PMCID: PMC10819173 DOI: 10.3390/microorganisms12010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Infective endocarditis due to Kingella kingae is a rare but serious invasive infection that occurs mostly in children. Recent advances in nucleic acid amplification testing as well as in cardiac imaging have enabled more accurate diagnosis. A good understanding of the epidemiology and virulence factors remains crucial to guide the therapeutic approach. Here, we synthesize the current state of knowledge on epidemiological features, pathophysiological insights, complications, and therapy regarding Kingella kingae endocarditis in children and adults. Finally, throughout this comprehensive review, knowledge gaps and areas for future research are also identified.
Collapse
Affiliation(s)
- Raphael Joye
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| | - Vladimir L. Cousin
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
- Pediatric Intensive Care Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Iliona Malaspinas
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| | - Leonce Mwizerwa
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| | - Maya Bouhabib
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| | - Tomasz Nalecz
- Pediatric Cardiac Surgery Unit, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (T.N.); (T.S.)
| | - Tornike Sologashvili
- Pediatric Cardiac Surgery Unit, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (T.N.); (T.S.)
| | - Maurice Beghetti
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| | - Arnaud G. L’Huillier
- Pediatric Infectious Disease Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Julie Wacker
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (V.L.C.); (I.M.); (L.M.); (M.B.); (J.W.)
| |
Collapse
|
27
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
28
|
Taheri-Anganeh M, Nezafat N, Gharibi S, Khatami SH, Vahedi F, Shabaninejad Z, Asadi M, Savardashtaki A, Movahedpour A, Ghasemi H. Designing a Secretory form of RTX-A as an Anticancer Toxin: An In Silico Approach. Recent Pat Biotechnol 2024; 18:332-343. [PMID: 38817010 DOI: 10.2174/0118722083267796231210060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.
Collapse
Affiliation(s)
- Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Gharibi
- School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
29
|
Kastner PD, Noell SE, Essig DA. Complete genome sequence of a winter season Vibrio facilitates discovery of a novel subclade of cold-adapted species in the albus clade. Microb Genom 2024; 10:001178. [PMID: 38230915 PMCID: PMC10868602 DOI: 10.1099/mgen.0.001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
In temperate marine climate zones, seasonal changes in water temperature contribute to distinct populations of warm- and cold-water vibrios. We report here the complete genome sequence (BUSCO score=94.8) of the novel strain Vibrio sp. VB16 isolated in late winter from the intertidal zone near Virginia Beach, Virginia, USA with the ability to form colonies at 4 °C. The 5.2 Mbp genome is composed of a large (3.6 Mbp) and small (1.6 Mbp) chromosome. Based on paired average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH), V. sp. VB16 is the same species as V. sp. UBA2437 from a North Sea tidal flat and is closely related to V. sp. DW001 from Antarctic sea ice. Our phylogenomic and bioinformatic analyses placed VB16, UBA2437 and DW001 into a cold-tolerant subclade within the albus clade, along with two non-cold-tolerant subclades. Orthovenn analysis indicated that VB16 and its other albus clade members shared 1544 gene orthologue clusters, including clusters for biosynthesis of polar flagella and tight adhesion pili that predict multiple lifestyles, either free-living or as an opportunistic pathogen within a marine eukaryotic host. The cold-tolerant subclade shared 552 orthologue proteins, including genes known to promote survival in cold or freezing temperatures, such as the eicosapentaenoic acid biosynthetic gene cluster, syp exopolysaccharide gene cluster and novel giant proteins with ice-binding domains. This subclade represents a group of psychrotolerant or 'moderate psychrophile' winter season Vibrio species. The discovery of this subclade opens the door for experimental work on the physiological features, virulence potential and ecological importance of this subclade.
Collapse
Affiliation(s)
- Paul D. Kastner
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Stephen E. Noell
- Te Aka Mātuatua – School of Science, Thermophile Research Unit, Te Whare Wānanga o Waikato – University of Waikato, Hamilton, New Zealand
| | - David A. Essig
- Department of Biology, Geneva College, Beaver Falls, PA, USA
| |
Collapse
|
30
|
Minnullina LF, Misheeva PS, Mukhtarova GI, Sharipova MR, Mardanova AM. Features of Hemolysin Biosynthesis by Morganella morganii. Bull Exp Biol Med 2023; 176:181-186. [PMID: 38191876 DOI: 10.1007/s10517-024-05991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 01/10/2024]
Abstract
We studied the influence of medium composition and aeration on the hemolytic activity of uropathogenic Morganella morganii strain MM 190. The maximum level of hemolysis was observed in LB (59%), DMEM supplemented with fetal bovine serum (62%), and urine (53%) under aeration conditions during the exponential growth phase. The presence of 2% urea in the medium suppressed hemolysin synthesis. Moreover, addition of bacterial culture fluid containing hemolysin to a monolayer of T-24 bladder carcinoma and OKP-GS kidney carcinoma cells led to 25 and 42% cell death, respectively. We found that the maximum expression of the hemolysin gene hlyA was observed in 2-h culture in LB medium, which correlated with the hemolytic activity of the bacteria in this medium and indicated the predominance of the short hlyCA transcript in the cells.
Collapse
Affiliation(s)
- L F Minnullina
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia.
| | - P S Misheeva
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - G I Mukhtarova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - M R Sharipova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - A M Mardanova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
31
|
Tang H, Wang R, Pang S, Han W, Zhang Q, Fang Q, Chen X, Huang Q, Qiu D, Zhou R, Li L. Native ApxIIA secreted by Actinobacillus pleuropneumoniae induces apoptosis in porcine alveolar macrophages dependent on concentration and acylation. Vet Microbiol 2023; 287:109908. [PMID: 37952264 DOI: 10.1016/j.vetmic.2023.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing substantial economic losses to the global pig industry. The Apx toxins of A. pleuropneumoniae belong to the RTX toxin family and are major virulence factors. In addition to hemolysis and/or cytotoxicity via pore-forming activity, RTX toxins, such as ApxIA of A. pleuropneumoniae, have been reported to cause other effects on target cells, e.g., apoptosis. A. pleuropneumoniae ApxIIA is expressed by most serotypes and has moderate hemolytic and cytotoxic activities. In this study, porcine alveolar macrophages (3D4/21) were stimulated with different concentrations of purified native ApxIIA from the serotype 7 strain AP76 which only secretes ApxIIA. By observation of nuclear condensation via fluorescent staining and detection of apoptosis and necrosis by flow cytometry, it was found that high and low concentrations of native ApxIIA mainly caused necrosis or apoptosis of 3D4/21 cells, respectively. ApxIIA purified from an AP76 mutant with a deleted acetyltransferase gene (apxIIC) did not induce necrosis nor apoptosis. Western blot analysis using specific antibodies showed that a cleaved caspase 3 and activated capase 9 was detected after treatment of cells with a low concentration of native ApxIIA, while general or specific inhibitors of caspase 3, 8, 9 blocked these effects. ApxIIA-induced apoptosis of macrophages may be a mechanism of A. pleuropneumoniae to escape host immune clearance.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Siqi Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Weiyao Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Dexin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
32
|
Schmidt K, Scholz HC, Appelt S, Michel J, Jacob D, Dupke S. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries. Front Microbiol 2023; 14:1282135. [PMID: 38075873 PMCID: PMC10703170 DOI: 10.3389/fmicb.2023.1282135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2025] Open
Abstract
Global warming has caused an increase in the emergence of Vibrio species in marine and estuarine environments as well as fresh water bodies. Over the past decades, antimicrobial resistance (AMR) has evolved among Vibrio species toward various antibiotics commonly used for the treatment of Vibrio infections. In this study, we assessed virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 strains derived from Germany and other European countries. A total of 63 clinical and 24 environmental Vibrio cholerae non-O1/non-O139 strains, collected between 2011 and 2021, were analyzed. In silico antibiotic resistances were compared with resistance phenotypes according to EUCAST breakpoints. Additionally, genetic relatedness between isolates was assessed by two cgMLST schemes (SeqSphere +, pubMLST). Both cgMLST schemes yielded similar results, indicating high genetic diversity among V. cholerae non-O1/non-O139 isolates. Some isolates were found to be genetically closely related (allelic distance < 20), which suggests an epidemiological link. Thirty-seven virulence genes (VGs) were identified among 87 V. cholerae non-O1/non-O139 isolates, which resulted in 38 virulence profiles (VPs). VPs were similar between clinical and environmental isolates, with the exception of one clinical isolate that displayed a higher abundance of VGs. Also, a cluster of 11 environmental isolates was identified to have the lowest number of VGs. Among all strains, the predominant virulence factors were quorum sensing protein (luxS), repeats-in-toxins (rtxC/rtxD), hemolysin (hlyA) and different type VI secretion systems (T6SS) genes. The genotypic profiles revealed antibiotic resistance genes (ARGs) associated with resistance to beta-lactams, quinolones, macrolides, tetracycline, antifolate, aminoglycosides, fosfomycin, phenicols and sulfonamide. Carbapenemase gene VCC-1 was detected in 10 meropenem-resistant V. cholerae non-O1/non-O139 isolates derived from surface water in Germany. The proportion of resistance among V. cholerae non-O1/non-O139 species isolates against first line treatment (3rd generation cephalosporin, tetracycline and fluoroquinolone) was low. Empirical treatment would likely have been effective for all of the clinical V. cholerae non-O1/non-O139 isolates examined. Nevertheless, carbapenem-resistant isolates have been present in fresh water in Germany and might represent a reservoir for ARGs. Monitoring antimicrobial resistance is crucial for public health authorities to minimize the risks for the human population.
Collapse
Affiliation(s)
- Katarzyna Schmidt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Holger C Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Sandra Appelt
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Jana Michel
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Susann Dupke
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
33
|
Wang H, Miao X, Zhai C, Chen Y, Lin Z, Zhou X, Guo M, Chai Z, Wang R, Shen W, Li H, Hu C. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensis Revealed by Single-Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16128-16137. [PMID: 37916685 DOI: 10.1021/acs.langmuir.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaopu Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Cong Zhai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yulu Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zuzeng Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Mengdi Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhongyan Chai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ruifen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
34
|
Dourado MN, Pierry PM, Feitosa-Junior OR, Uceda-Campos G, Barbosa D, Zaini PA, Dandekar AM, da Silva AM, Araújo WL. Transcriptome and Secretome Analyses of Endophyte Methylobacterium mesophilicum and Pathogen Xylella fastidiosa Interacting Show Nutrient Competition. Microorganisms 2023; 11:2755. [PMID: 38004766 PMCID: PMC10673610 DOI: 10.3390/microorganisms11112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Xylella fastidiosa is the causal agent of several plant diseases affecting fruit and nut crops. Methylobacterium mesophilicum strain SR1.6/6 was isolated from Citrus sinensis and shown to promote plant growth by producing phytohormones, providing nutrients, inhibiting X. fastidiosa, and preventing Citrus Variegated Chlorosis. However, the molecular mechanisms involved in the interaction among these microbes are still unclear. The present work aimed to analyze physiological and molecular aspects of M. mesophilicum SR1.6/6 and X. fastidiosa 9a5c in co-culture. The transcriptome and secretome analyses indicated that X. fastidiosa down-regulates cell division and transport genes and up-regulates stress via induction of chaperones and pathogenicity-related genes including, the lipase-esterase LesA, a protease, as well as an oligopeptidase in response to M. mesophilicum competition. On the other hand, M. mesophilicum also down-regulated transport genes, except for iron uptake, which was up-regulated. Secretome analysis identified four proteins in M. mesophilicum exclusively produced in co-culture with X. fastidiosa, among these, three are related to phosphorous uptake. These results suggest that M. mesophilicum inhibits X. fastidiosa growth mainly due to nutrient competition for iron and phosphorous, thus promoting X. fastidiosa starvation, besides producing enzymes that degrade X. fastidiosa cell wall, mainly hydrolases. The understanding of these interactions provides a direction for control and management of the phytopathogen X. fastidiosa, and consequently, helps to improve citrus growth and productivity.
Collapse
Affiliation(s)
- Manuella Nobrega Dourado
- Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Agronomic Engineering College, University of Sorocaba, Sorocaba, Sao Paulo 18023-000, Brazil
| | - Paulo Marques Pierry
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | | | - Guillermo Uceda-Campos
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Deibs Barbosa
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Paulo A. Zaini
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.)
| | - Aline Maria da Silva
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (P.M.P.); (O.R.F.-J.)
| | - Welington Luiz Araújo
- Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
35
|
Li Z, Baidoun R, Brown AC. Toxin-Triggered Liposomes for the Controlled Release of Antibiotics to Treat Infections Associated with Gram-Negative Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559931. [PMID: 37808632 PMCID: PMC10557637 DOI: 10.1101/2023.09.28.559931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
- Current Affiliation: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| |
Collapse
|
36
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Wein P, Dornblut K, Herkersdorf S, Krüger T, Molloy EM, Brakhage AA, Hoffmeister D, Hertweck C. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease. mBio 2023; 14:e0078723. [PMID: 37486262 PMCID: PMC10470514 DOI: 10.1128/mbio.00787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.
Collapse
Affiliation(s)
- Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
38
|
Osickova A, Knoblochova S, Bumba L, Man P, Kalaninova Z, Lepesheva A, Jurnecka D, Cizkova M, Biedermannova L, Goldsmith JA, Maynard JA, McLellan JS, Osicka R, Sebo P, Masin J. A conserved tryptophan in the acylated segment of RTX toxins controls their β 2 integrin-independent cell penetration. J Biol Chem 2023; 299:104978. [PMID: 37390987 PMCID: PMC10392135 DOI: 10.1016/j.jbc.2023.104978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind β2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for β2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the β2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking β2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by β2 integrins.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Kalaninova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lada Biedermannova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, USA
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
39
|
Brock KE, Cooper RL. The Effects of Doxapram Blocking the Response of Gram-Negative Bacterial Toxin (LPS) at Glutamatergic Synapses. BIOLOGY 2023; 12:1046. [PMID: 37626932 PMCID: PMC10451348 DOI: 10.3390/biology12081046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Lipopolysaccharides (LPS) associated with Gram-negative bacteria are one factor responsible for triggering the mammalian immune response. Blocking the action of LPS is key to reducing its downstream effects. However, the direct action of LPS on cells is not yet fully addressed. LPS can have rapid, direct effects on cells in the absence of a systemic immune response. Recent studies have shown that doxapram, a blocker of a subset of K2P channels, also blocks the acute actions of LPS. Doxapram was evaluated to determine if such action also occurs at glutamatergic synapses in which it is known that LPS can increase synaptic transmission. Doxapram at 5 mM first enhanced synaptic transmission, then reduced synaptic response, while 10 mM rapidly blocked transmission. Doxapram at 5 mM blocked the excitatory response induced by LPS. Enhancing synaptic transmission with LPS and then applying LPS combined with doxapram also resulted in retarding the response of LPS. It is possible doxapram and LPS are mediated via a similar receptor or cellular responses. The potential of designing pharmacological compounds with a similar structure to doxapram and determining the binding of such compounds can aid in addressing the acute, direct actions by LPS on cells.
Collapse
Affiliation(s)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA;
| |
Collapse
|
40
|
Rahman WU, Fiser R, Osicka R. Kingella kingae RtxA toxin interacts with sialylated gangliosides. Microb Pathog 2023:106200. [PMID: 37315629 DOI: 10.1016/j.micpath.2023.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
The membrane-damaging RTX family cytotoxin RtxA is a key virulence factor of the emerging pediatric pathogen Kingella kingae, but little is known about the mechanism of RtxA binding to host cells. While we have previously shown that RtxA binds cell surface glycoproteins, here we demonstrate that the toxin also binds different types of gangliosides. The recognition of gangliosides by RtxA depended on sialic acid side groups of ganglioside glycans. Moreover, binding of RtxA to epithelial cells was significantly decreased in the presence of free sialylated gangliosides, which inhibited cytotoxic activity of the toxin. These results suggest that RtxA utilizes sialylated gangliosides as ubiquitous cell membrane receptor molecules on host cells to exert its cytotoxic action and support K. kingae infection.
Collapse
Affiliation(s)
- Waheed Ur Rahman
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
41
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
42
|
Mittal M, Tripathi S, Saini A, Mani I. Phage for treatment of Vibrio cholerae infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:21-39. [PMID: 37770173 DOI: 10.1016/bs.pmbts.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (or "phages") are ubiquitous and the amplest biological entities on our planet. It is a natural enemy of bacteria. Cholera is one of the most known diseases to cause multiple pandemics around the world, killing millions of people. The pathogen of cholera is Vibrio species. Up until the emergence of multidrug resistance, preventive therapeutics like antibiotics were the most effective means of battling bacteria. Globally, one of the most significant challenges in treating microbial infections is the development of drug-resistant strains. Based on their antibacterial properties and unique characteristics, phages are being comprehensively evaluated taxonomically. Moreover, phage-based vaccination is evolving as one of the most encouraging preventive approaches. Due to this, its related research got remarkable recognition. However, due to the rapid emergence of bacterial resistance to antibiotics, the use of phages (phage therapy) could be a major motive for research because the most promising solution lies in bacteriophages. This chapter briefly highlights the promising use of bacteriophages to combat Vibrio-related infectious diseases.
Collapse
Affiliation(s)
- Milky Mittal
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Surbhi Tripathi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
43
|
Vereecke N, Vandekerckhove A, Theuns S, Haesebrouck F, Boyen F. Whole genome sequencing to study antimicrobial resistance and RTX virulence genes in equine Actinobacillus isolates. Vet Res 2023; 54:33. [PMID: 37020296 PMCID: PMC10074821 DOI: 10.1186/s13567-023-01160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Actinobacillus equuli is mostly associated with disease in horses and is most widely known as the causative agent of sleepy foal disease. Even though existing phenotypic tools such as biochemical tests, 16S rRNA gene sequencing, and Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) can be used to identify members of the Actinobacillus genus, these methods struggle to differentiate between certain species and do not allow strain, virulence, and antimicrobial susceptibility typing. Hence, we performed in-depth analysis of 24 equine Actinobacillus isolates using phenotypic identification and susceptibility testing on the one hand, and long-read nanopore whole genome sequencing on the other hand. This allowed to address strain divergence down to the whole genome single nucleotide polymorphism (SNP) level. While lowest resolution was observed for 16S rRNA gene classification, a new multi-locus sequence typing (MLST) scheme allowed proper classification up to the species level. Nevertheless, a SNP-level analysis was required to distinguish A. equuli subspecies equuli and haemolyticus. Our data provided first WGS data on Actinobacillus genomospecies 1, Actinobacillus genomospecies 2, and A. arthritidis, which allowed the identification of a new Actinobacillus genomospecies 1 field isolate. Also, in-depth characterization of RTX virulence genes provided information on the distribution, completeness, and potential complementary nature of the RTX gene operons within the Actinobacillus genus. Even though overall low prevalence of acquired resistance was observed, two plasmids were identified conferring resistance to penicillin-ampicillin-amoxicillin and chloramphenicol in one A. equuli strain. In conclusion our data delivered new insights in the use of long-read WGS in high resolution identification, virulence gene typing, and antimicrobial resistance (AMR) of equine Actinobacillus species.
Collapse
Affiliation(s)
- Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- PathoSense BV, Lier, Belgium.
| | - Arlette Vandekerckhove
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
44
|
Chacko FM, Schmitt L. Interaction of RTX toxins with the host cell plasma membrane. Biol Chem 2023:hsz-2022-0336. [PMID: 36907826 DOI: 10.1515/hsz-2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Repeats in ToXins (RTX) protein family is a group of exoproteins secreted by Type 1 secretion system (T1SS) of several Gram-negative bacteria. The term RTX is derived from the characteristic nonapeptide sequence (GGxGxDxUx) present at the C-terminus of the protein. This RTX domain binds to calcium ions in the extracellular medium after being secreted out of the bacterial cells, and this facilitates folding of the entire protein. The secreted protein then binds to the host cell membrane and forms pores via a complex pathway, which eventually leads to the cell lysis. In this review, we summarize two different pathways in which RTX toxins interact with host cell membrane and discuss the possible reasons for specific and unspecific activity of RTX toxins to different types of host cells.
Collapse
Affiliation(s)
- Feby M Chacko
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Dong J, Sun C, Tian Y, Zhang H, Liu Z, Gao F, Ye X. Genomic organization and gene evolution of two warm temperature acclimation proteins (Wap65s) of Micropterus salmoides and their responses to temperature and bacterial/viral infections. Int J Biol Macromol 2023; 227:340-353. [PMID: 36529221 DOI: 10.1016/j.ijbiomac.2022.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Warm temperature acclimation-related 65-kDa proteins (Wap65s) are fish plasma acute-phase glycoproteins homologous to hemopexin with high affinity and clearance for heme. The study characterized Mswap65-1 and Mswap65-2 genes in Micropterus salmoides. Structural analysis showed MsWap65s contained conserved heme-binding sites. MsWap65-1 had a chloride-binding site similar to hemopexin, while MsWap65-2 had an additional calcium-binding site. Phylogenetic and Ka/Ks analysis showed that fish Wap65s were evolutionarily conserved and underwent strong purifying selection. Functional divergence analysis indicated that fish Wap65-2 retained the putative function of ancestral Wap65, while Wap65-1 underwent neofunctional differentiation. QPCR showed Mswap65s were predominantly expressed in liver, but prolonged hyperthermy inhibited Mswap65-2 expression. Mswap65-2 expression was up-regulated in liver and spleen after Nocardia seriolae infection, while Mswap65-1 was down-regulated. MsWap65-2 may be associated with pathogenesis and play potential role in pathogen resistance. LMBV infection resulted in both significant downregulation of Mswap65s were both significantly down-regulated, with differences observed between sexes. We speculated the immune system might suppress expression after viral infection. Exogenous rMsWap65s were prepared, and injection of rMsWap65s alleviated phenylhydrazine-induced hemolysis and inhibited increases in heme, complement C3 and inflammatory symptoms. Our results contribute to an advanced understanding of the functions and mechanisms of MsWap65s in stress resistance.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hetong Zhang
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
46
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
47
|
Shahoumi LA, Saleh MHA, Meghil MM. Virulence Factors of the Periodontal Pathogens: Tools to Evade the Host Immune Response and Promote Carcinogenesis. Microorganisms 2023; 11:115. [PMID: 36677408 PMCID: PMC9860638 DOI: 10.3390/microorganisms11010115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is the most common chronic, inflammatory oral disease that affects more than half of the population in the United States. The disease leads to destruction of the tooth-supporting tissue called periodontium, which ultimately results in tooth loss if uncured. The interaction between the periodontal microbiota and the host immune cells result in the induction of a non-protective host immune response that triggers host tissue destruction. Certain pathogens have been implicated periodontal disease formation that is triggered by a plethora of virulence factors. There is a collective evidence on the impact of periodontal disease progression on systemic health. Of particular interest, the role of the virulence factors of the periodontal pathogens in facilitating the evasion of the host immune cells and promotion of carcinogenesis has been the focus of many researchers. The aim of this review is to examine the influence of the periodontal pathogens Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) in the modulation of the intracellular signaling pathways of the host cells in order to evade the host immune response and interfere with normal host cell death and the role of their virulence factors in this regard.
Collapse
Affiliation(s)
- Linah A. Shahoumi
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Muhammad H. A. Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Mohamed M. Meghil
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
48
|
Cooper RL, Krall RM. Hyperpolarization Induced by Lipopolysaccharides but Not by Chloroform Is Inhibited by Doxapram, an Inhibitor of Two-P-Domain K + Channel (K2P). Int J Mol Sci 2022; 23:ijms232415787. [PMID: 36555429 PMCID: PMC9779748 DOI: 10.3390/ijms232415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial septicemia is commonly induced by Gram-negative bacteria. The immune response is triggered in part by the secretion of bacterial endotoxin lipopolysaccharide (LPS). LPS induces the subsequent release of inflammatory cytokines which can result in pathological conditions. There is no known blocker to the receptors of LPS. The Drosophila larval muscle is an amendable model to rapidly screen various compounds that affect membrane potential and synaptic transmission such as LPS. LPS induces a rapid hyperpolarization in the body wall muscles and depolarization of motor neurons. These actions are blocked by the compound doxapram (10 mM), which is known to inhibit a subtype of the two-P-domain K+ channel (K2P channels). However, the K2P channel blocker PK-THPP had no effect on the Drosophila larval muscle at 1 and 10 mM. These channels are activated by chloroform, which also induces a rapid hyperpolarization of these muscles, but the channels are not blocked by doxapram. Likewise, chloroform does not block the depolarization induced by doxapram. LPS blocks the postsynaptic glutamate receptors on Drosophila muscle. Pre-exposure to doxapram reduces the LPS block of these ionotropic glutamate receptors. Given that the larval Drosophila body wall muscles are depolarized by doxapram and hyperpolarized by chloroform, they offer a model to begin pharmacological profiling of the K2P subtype channels with the potential of identifying blockers for the receptors to mitigate the actions of the Gram-negative endotoxin LPS.
Collapse
Affiliation(s)
- Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
- Correspondence:
| | - Rebecca M. Krall
- Department of STEM Education, University of Kentucky, Lexington, KY 40506-0001, USA
| |
Collapse
|
49
|
Pourhassan N. Z, Hachani E, Spitz O, Smits SHJ, Schmitt L. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Front Microbiol 2022; 13:1055032. [PMID: 36532430 PMCID: PMC9751043 DOI: 10.3389/fmicb.2022.1055032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2024] Open
Abstract
The ABC transporter hemolysin B (HlyB) is the key protein of the HlyA secretion system, a paradigm of type 1 secretion systems (T1SS). T1SS catalyze the one-step substrate transport across both membranes of Gram-negative bacteria. The HlyA T1SS is composed of the ABC transporter (HlyB), the membrane fusion protein (HlyD), and the outer membrane protein TolC. HlyA is a member of the RTX (repeats in toxins) family harboring GG repeats that bind Ca2+ in the C-terminus upstream of the secretion signal. Beside the GG repeats, the presence of an amphipathic helix (AH) in the C-terminus of HlyA is essential for secretion. Here, we propose that a consensus length between the GG repeats and the AH affects the secretion efficiency of the heterologous RTX secreted by the HlyA T1SS. Our in silico studies along with mutagenesis and biochemical analysis demonstrate that there are two binding pockets in the nucleotide binding domain of HlyB for HlyA. The distances between the domains of HlyB implied to interact with HlyA indicated that simultaneous binding of the substrate to both cytosolic domains of HlyB, the NBD and CLD, is possible and required for efficient substrate secretion.
Collapse
Affiliation(s)
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
50
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|