1
|
Domingues VDSP, Seldin L, Jurelevicius D. Understanding the implicit effects of 16S rRNA gene databases on microbial bioindicator studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107351. [PMID: 40222149 DOI: 10.1016/j.aquatox.2025.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
Analysis of the presence and the abundance of microorganisms related to diseases can be used to monitor marine environmental health. Our study evaluated the interference of taxonomic databases (SILVA, Greengenes v13.8, Greengenes2, and RDP) to monitor the distribution of bacterial genera potentially related to diseases in marine organisms (BGPRDs) from low- (Dois Rios Beach-DR), medium- (Abraão Beach-AB) and high (Guanabara Bay-GB) impacted marine environments. The frequency, richness, diversity, and composition of BGPRDs present in DR, AB and GB were significantly influenced by the different databases (p < 0.05). Consequently, the analyses revealed that the use of different databases resulted in controversial results regarding the distribution of BGPRDs in the DR, AB and GB. While Greengenes v13.8 and RDP showed that GB had the highest frequency of BGPRDs (p < 0.05), analysis based on Greengenes2 and SILVA revealed a greater frequency of BGPRDs in AB (p < 0.05). Additionally, there was no congruence of BGPRDs detected by each taxonomic database in DR, AB and GB. In highly-impacted GB, Arcobacter was the main BGPRD obtained with the Greengenes2 and RDP databases, whereas Synechococcus and Alteromonas represented the main BGPRD according to the Greengenes v13.8 and SILVA databases, respectively. Our results showed we cannot determine the exact composition and abundance of BGPRDs in low-, medium- and highly-impacted marine environments. These findings emphasize the critical influence of database choice on microbial community characterization and its implications for effective environmental monitoring and management strategies. Interestingly, alpha diversity indices of BGPRDs obtained from DR, AB and GB were consistent among the different databases and showed greater congruence than did the frequency, richness, distribution and abundance of BGPRDs. The use of diversity indices of BGPRDs can be an alternative to overcome the limitations caused by the bias of taxonomic annotations for biomonitoring marine environments.
Collapse
Affiliation(s)
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Lin P, Liu X, Gao Z, Yuan Y, Liu H, Huang L, He Z, Zeng Q, Wang S. Microplastics magnify inhibitive effects of perfluorooctanoic acid on the marine microbial loop. ENVIRONMENTAL RESEARCH 2025; 273:121223. [PMID: 40015436 DOI: 10.1016/j.envres.2025.121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The marine microbial loop comprising picophytoplankton, bacteria and microzooplankton is essential in global carbon cycling, which is currently affected by anthropogenic pollutants. Nonetheless, the impact of anthropogenic pollutants on the marine microbial loop remains elusive. In this study, perfluorooctanoic acid (PFOA) and microplastics (MPs) were selected as representative anthropogenic pollutants to investigate their impacts on the marine microbial loop with Prochlorococcus MED4 (picophytoplankton), Alteromonas macleodii EZ55 (bacteria), Pseudocohnilembus persalinus and Cafeteria roenbergensis (microzooplankton) as model microorganisms. The picophytoplankton was identified to be most sensitive to PFOA with a sensitivity order of MED4 > EZ55 > C. roenbergensis > P. persalinus. In contrast, polystyrene (PS) as a representative MP had less inhibition on the microbial loop, but synergistically magnified the inhibitive effects of PFOA on those four microorganisms. Moreover, PS significantly (p < 0.05) enhanced the bioconcentration and biomagnification of PFOA in the marine microbial loop, e.g., 1.89, 1.33, 1.22, and 2.18-fold increase in bioconcentration factor values in MED4, EZ55, P. persalinus and C. roenbergensis, respectively, compared to sole PFOA exposure. These results highlighted the exacerbated ecological risk of the co-existence of PFOA and MPs and provides the first insight into impacts of PFOA and PS on the marine microbial loop.
Collapse
Affiliation(s)
- Peichun Lin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaokun Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Zuyuan Gao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Yelinzi Yuan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Zhili He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Yan Z, Jin Y, Li T, Zhang X, Yang Q, Ren C, Qiao L. Monthly Variation, Environmental Drivers, and Ecological Functions of Marine Bacterial Community in a Eutrophic Coastal Area of China. Microorganisms 2025; 13:837. [PMID: 40284674 PMCID: PMC12029234 DOI: 10.3390/microorganisms13040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigated the monthly variations of bacterial communities in the surface seawater of the Wenzhou coastal area and their influencing factors, while exploring the ecological functions of microbial communities. The results indicated that the surface seawater bacterial communities in this region exhibited high diversity, with significantly higher diversity observed in the winter half-year compared to the summer half-year. The bacterial community structures showed distinct monthly variations, with high similarity between adjacent months, particularly from June to September. The dominant bacterial taxa primarily included Proteobacteria represented by the SAR86 clade, OM43 clade, and Rhodobacteraceae; Bacteroidota represented by Flavobacteriaceae; and Cyanobacteria mainly composed of Cyanobium PCC-6307 and Synechococcus CC9902. Temperature and nitrate ions were identified as the environmental factors most strongly correlated with monthly bacterial community variations, while dissolved oxygen, nitrite ions, and total organic carbon also showed significant correlations with relative abundances of certain taxa. Predictions of the bacterial community's ecological functions revealed that chemoheterotrophic functions were most abundant throughout the year, whereas photoautotrophic functions were primarily enriched in summer. Denitrification and other nitrogen cycling-related functions also displayed obvious monthly variations. Collectively, this study provides valuable insights into the temporal changes in coastal microbial communities and their interactions with different environments.
Collapse
Affiliation(s)
- Zezheng Yan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China; (Z.Y.); (X.Z.); (Q.Y.)
| | - Yanjian Jin
- Marine Ecological and Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China;
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Xiaoling Zhang
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China; (Z.Y.); (X.Z.); (Q.Y.)
| | - Qiao Yang
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China; (Z.Y.); (X.Z.); (Q.Y.)
| | - Chengzhe Ren
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316004, China; (Z.Y.); (X.Z.); (Q.Y.)
| | - Ling Qiao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| |
Collapse
|
4
|
Shi J, Ji C, Wang R, Sun C, Lv B. Simulated Discharge of Ballast Water Reveals Potential Contribution to Spread of Antibiotic Resistance Genes in Geographically Isolated Receiving Waters. Antibiotics (Basel) 2025; 14:340. [PMID: 40298465 PMCID: PMC12024036 DOI: 10.3390/antibiotics14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: The propagation of antibiotic resistance genes (ARGs) poses a huge threat to environmental and human health. The ballast water from ships has been recognized as an important vector of ARGs. However, little is known about how ballast water from geographically isolated water affects ARGs in receiving waters. Methods: Herein, we investigated the changes in ARGs in receiving water by microcosm experiments simulating the discharge of ballast water. Results: The simulated discharge of ballast water increased the abundances of target ARGs, which were 1.3-5.6-fold higher in the mixture of ballast water and receiving water (microcosm M) than in receiving water at the end of the experiment. The enrichment of target ARGs was significantly associated with MGEs. Moreover, the discharge of ballast water changed the microbial communities in receiving water. Further network analysis identified potential ARG hosts, such as Pseudohongiellaa and Amphritea, with the abundance in microcosm M (0.23% and 0.036%) being higher than in receiving water (0.09% and 0.006%), the changes of which might be responsible for ARG variations. Conclusions: Overall, our findings suggest the discharge of ballast water might promote the spread of ARGs in different geographical waters and the corresponding ecological risks should not be ignored.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chengyuan Ji
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Rui Wang
- CCCC National Engineering Research Center of Dredging and Equipment Co., Ltd., Shanghai 200082, China
- Key Laboratory of Dredging Technology, CCCC, Shanghai 200082, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
5
|
Stefanelli R, Beccia MR, Faure AL, Solari PL, Pagnotta S, Jeanson A, Vernier F, Moulin C, Monfort M, Aupiais J, Den Auwer C. Contamination of Bivalve Mytilus galloprovincialis, the Case of Radiocobalt in a Context of Environmental Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5726-5735. [PMID: 40066843 DOI: 10.1021/acs.est.4c11743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Since the end of nuclear weapon testing, anthropogenic metallic radionuclides have originated from nuclear accidents such as Chernobyl and Fukushima and controlled releases from the nuclear industry. 60Co is an activation product found in the effluents of nuclear power plants, mobile nuclear reactors, and fuel reprocessing facilities. In this paper, we are addressing the question of (radio)cobalt speciation upon bioaccumulation in the sentinel organism Mytilus galloprovincialis after in vivo contamination in a pseudo-natural system. For this study, inductively coupled plasma mass spectrometry and gamma spectroscopy were used to quantify the cobalt distribution in the various organs: hepatopancreas, gills, visceral mass, mantle, foot, and byssus, as well as in subcellular compartments. Two X-ray spectroscopic techniques were used to decipher cobalt speciation and localization, bulk X-ray absorption spectroscopy (XAS with EXAFS and XANES regimes), and micro X-ray fluorescence imaging (μ-XRF). Lastly, secondary ion mass spectrometry images provided information on cobalt distribution at a subcellular scale. The accumulation of cobalt exhibits significant differences depending on the origin of the individuals, with higher concentration factor values for mussels from the Toulon Naval Base (considered as polluted) compared to Villefranche sur Mer, France (considered as unpolluted). However, concentration in organs always follows the same order: byssus ≫ hepatopancreas ≫ other organs. In terms of spatial distribution, cobalt has been visualized in the hepatopancreas, revealing the presence of preferred zones within some digestive cells and this could be linked to detoxification mechanisms. Finally, the determination of speciation data using XAS suggested the presence of a Co(II)-metallothionein complex in the hepatopancreas and a potential Co(II)-mfp-1 complex in the byssus. While they can be challenging, accumulation and speciation studies in radioecology are essential steps for a comprehensive approach to the impact of trace metallic radionuclides on the marine biota.
Collapse
Affiliation(s)
- Romain Stefanelli
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
- CEA, DAM, DIF, Arpajon F-91297, France
| | - Maria Rosa Beccia
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | - Pier Lorenzo Solari
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108 Nice, France
| | - Aurélie Jeanson
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | | | | | | | | |
Collapse
|
6
|
Zhang X, Yang Y, Yuan W, Ruess L. The response of microbial communities to environmental factors in bank soil and river sediment: A case study along the mainstream of the Yangtze River. ENVIRONMENTAL RESEARCH 2025; 269:120903. [PMID: 39842759 DOI: 10.1016/j.envres.2025.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 km, ranging from the plateau to the estuary. Redundancy analysis revealed that microbial community composition in the bank soil was affected by MP (7.8%), geography (19.2%), and physicochemical properties (23.1%), while in the sediment, relevant factors were MP additives (12.8%), metals (21.1%), and physicochemical properties (23.3%). Variations in climate conditions along the course of the river had no effect on the microbial communities in the two habitats. Linear discriminant analysis of the PLFAs profiles showed changes in microbial community composition due to land use (forest, grass, cropland and built land), site class (up-, mid- and downstream) and MPs pollution level in both bank soil and sediment. The increased Gram-positive to negative bacteria (g+/g-) ratio and decreased iso-to anteiso-fatty acid (i/a) ratio indicated greater stress, such as caused by MP pollution (g+/g-: 12.6 to 19.3; i/a: 1.9 to 1.6). In bank soil, total microbial biomass was influenced by urbanization rate and nutrient availability. Specifically, total carbon (TC), total phosphorus (TP), and ammonium nitrogen (NH4+-N) had a positive impact, while inorganic phosphorus (IP), total potassium (TK) and nitrate nitrogen (NO3--N) had a negative impact. In contrast, in sediment only TC had a negative effect on biomass. This study applied PLFA to explore microbial communities and structures responses to environmental drivers in riverine habitats, revealing that anthropogenic factors (e.g. MP pollution and nutrient enrichment) alter microbial communities with urbanization.
Collapse
Affiliation(s)
- Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Berlin, 10115, Germany.
| | - Yuyi Yang
- Chinese Academy of Sciences, Wuhan Botanical Garden, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan, 430074, China; Chinese Academy of Sciences & Hubei Province, Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Wuhan, 430074, China; Chinese Academy of Sciences, Wuhan Botanical Garden, Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China
| | - Wenke Yuan
- Chinese Academy of Sciences, Wuhan Botanical Garden, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan, 430074, China; Chinese Academy of Sciences & Hubei Province, Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Wuhan, 430074, China; Chinese Academy of Sciences, Wuhan Botanical Garden, Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China.
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Berlin, 10115, Germany
| |
Collapse
|
7
|
Wan FG, Chen YL, Zheng JL, Jin WY, Chen TH, Zhu QL, Zhan QH, Jiang LH, Chen S, Song WH, Yan XJ. Exploring eutrophic effects of marine sediments underneath fish cage farms: Insights from changes in eukaryotic and bacterial communities and volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178820. [PMID: 39952204 DOI: 10.1016/j.scitotenv.2025.178820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The roles of bacteria and eukaryotes in the sediments of fish farms have received considerable attention. High concentrations of volatile organic compounds (VOCs) in eutrophic sediments pose significant problems in the marine environment. However, the identification of VOCs and their association with bacteria and eukaryotes in marine sediments from fish farms remain unexplored. By using third-generation 18 s/16 s sequencing with bacterial absolute quantity and headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC-MS), we investigated benthic community structure and VOCs composition in the sediments from five large yellow croaker farms in China (DJ, DC, DT, NJ, and ND), as well as geological and chemical changes. The ND sediments, characterized as mud substrates with the highest moisture and nutrient levels, were dominated by ciliates and flagellates, whereas typical benthic organisms such as echinoderms, annelids, and cnidarians were absent in other farming areas. These sediments had higher bacterial density and increased proportions of Desulfuromonadia and Desulfobacterota but lower proportions of Campylobacterota compared to other areas. Additionally, ND sediments exhibited the highest VOC content, with 2-Octen-1-ol being the most abundant compound, characterized by mushroom-like, earthy, fishy, rancid, and metallic odors that may negatively influence the flavor of large yellow croaker. We identified 76 differential VOCs, most of which showed a positive correlation with bacteria, ciliates, and flagellates, while some VOCs showed a positive correlation with the annelid Aurospio foodbancsia and the cnidarian Diadumene cincta. Our study is the first to elucidate the complex interactions of benthic organisms and VOCs during the eutrophication process in sediments from cage fish farms, providing potential biomarkers for ecosystem monitoring.
Collapse
Affiliation(s)
- Fa-Guo Wan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yong-Long Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Wang-Yang Jin
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tian-Hong Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Hao Zhan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Hua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shun Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China; Institute of Nanji Islands National Marine Nature Reserve, Wenzhou, Zhejiang, PR China
| | - Wei-Hua Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Jun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
8
|
Feng X, Ji F, Xu W, Song C, Xu J, Jia P, Dong X, Xi W, Yan Z, Niu F. Characteristics and environmental driving mechanisms of bacterial communities in the Bohai Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106996. [PMID: 39929087 DOI: 10.1016/j.marenvres.2025.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 03/08/2025]
Abstract
The Bohai Sea, a semi-enclosed marginal sea, hosts a diverse array of bacterial communities that play pivotal roles in marine biogeochemical cycles. However, understanding of bacterial communities remains fragmented in the Bohai Sea, with unclear links between environmental factors and key species, and limited insights into the roles of environment and space in shaping the bacterial communities. In this study, we compiled a series of data, and investigated how spatial and environmental factors influence the region's distribution, assembly, and function of bacterial communities using high-throughput sequencing and statistical analyses. The results revealed that the bacterial communities in the Bohai Sea exhibited a high heterogeneity of spatial and environmental factors. Major drivers of community assembly included geographic location, nutrient availability (NO2-N, NO3-N, and NH4-N), temperature, and dissolved oxygen. Additionally, we found that the bacterial community structure in the nearshore waters of the Bohai Sea was distinctly different from that in the distant seas. Furthermore, we identified key bacterial species, including Marinimicrobia, Proteobacteria, Lentisphaerae, and Cyanobacteria that significantly contributed to community structure and function by random forest analysis. Notably, the abundance of Cyanobacteria was strongly correlated with environmental factors (NO2-N, NO3-N, and NH4-N), suggesting their potential as bioindicators of environmental change in marine ecosystems. More importantly, deterministic processes in the assembly of bacterial communities played a greater role than stochastic processes in highly polluted regions (BS3). The results of this research enhanced our understanding of the ecological processes governing bacterial community dynamics and provided valuable insights for monitoring and management marine ecosystem.
Collapse
Affiliation(s)
- Xu Feng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China.
| | - Changmin Song
- Marine Ecology Laboratory, Dalian Boyuan Testing and Evaluation Center Co., Ltd., Dalian, 116699, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China
| | - Peng Jia
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Wenqiu Xi
- Research & Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, 124200, China
| | - Zhigang Yan
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Fengjuan Niu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| |
Collapse
|
9
|
Yan J, Wei X, Si L, Zhang Z, Zhao J, Deng L, Tian T, Li Q, Yin Z, Wu Z. Bacterial Community Composition and Its Relationship with Environmental Factors in the Artificial Reef Area for Marine Ranching in Changhai County. Animals (Basel) 2025; 15:639. [PMID: 40075922 PMCID: PMC11898205 DOI: 10.3390/ani15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, samples were collected from different types of artificial fish reefs and prevention and control areas in the sea areas of the northern part of Da Changshan Island and the northeastern part of Xiao Changshan Island in the North Yellow Sea. The purpose is to compare the differences in the bacterial communities among different regions, determine the impacts of environmental factors on the bacterial communities, and evaluate the ecological effects of artificial fish reefs on the marine bacterial communities. We obtained a total of 2,128,186 effective sequences and 4321 bacterial operational taxonomic units (OTUs), which were classified into 14 phyla and 76 genera. Proteobacteria were the most abundant phylum across the 32 samples, followed by Bacteroidetes. We found that all samples from the deep-sea control area exhibited the highest bacterial richness. In addition, all samples from the shallow-water concrete reef exhibited high community richness. The distribution of bacterial communities showed differences among different regions. In two specific sea areas, the bacteria in the sediment samples exhibited particularly remarkable characteristics of high diversity. Importantly, environmental factors significantly influence bacterial communities. In seawater samples, salinity (Sal) and dissolved oxygen (DO) were the primary factors affecting bacterial communities. Furthermore, grain size (GS) emerged as the most critical physicochemical factor influencing bacterial communities in sediment. This study compared the characteristics of bacterial communities in different types of artificial reefs and control areas in two marine ranches and revealed the main environmental factors affecting the bacterial communities. This is of great significance for protecting biodiversity and evaluating the ecological effects of artificial reef placement.
Collapse
Affiliation(s)
- Jiamin Yan
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xu Wei
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Liwei Si
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zheng Zhang
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jingsi Zhao
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Liyu Deng
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Tao Tian
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Industry Research Institute of Marine Ranching, Dalian Ocean University, Dalian 116023, China
| | - Qingxia Li
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zengqiang Yin
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China
- Industry Research Institute of Marine Ranching, Dalian Ocean University, Dalian 116023, China
| | - Zhongxin Wu
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian 116023, China; (J.Y.); (X.W.); (L.S.); (Z.Z.); (L.D.); (Q.L.); (Z.Y.); (Z.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Industry Research Institute of Marine Ranching, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
10
|
Fontana LF, Belart P, Bonetti C, Junior DS, Frontalini F, Martínez-Colón M, Bouchet VMP, Laut L. Foraminifera and geomicrobiology as indicators of the environmental recovery in a mangrove affected by oil spills in the Guanabara Bay (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177650. [PMID: 39579897 DOI: 10.1016/j.scitotenv.2024.177650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Foraminifera could be used as indicators to evaluate the impacts of oil spills because the crude oil causes several disturbances on the development and reproduction of the species. However, little is known about the relationship between mangrove species and this pollutant. Foraminiferal assemblages were studied in 22 surface sediment samples collected from a mangrove in Guanabara Bay (Brazil) that was severely impacted by an oil spill six years earlier. The foraminiferal responses to the environmental stress helped to determine the most degraded areas. Elevated concentrations of aromatic compounds and potentially bioavailable heavy metals, with contamination levels up to nine times higher compared to the pre-industrial period in the Guanabara Bay. The dominance of anaerobic bacteria, and high esterase enzyme activity (ESTE) suggest that the bacterial community is metabolizing the hydrocarbons in the sediments. Despite these stressors, density and diversity of living foraminifera are comparable to values observed in less impacted Brazilian mangroves. Species distribution patterns reveal an environmental gradient across the mangrove with numerous species increasing their relative abundance towards the areas topographically lower and with higher levels of pollutants and ESTE. Specifically, Caronia exilis, Tiphotrocha comprimata, Ammobaculites exiguus, Textularia paranaguaensis, Ammotium cassis, Ammobaculites dilatatus, Polyssaccamina hipohalina, Siphotrochammina lobata, Ammonia tepida, Ammotium morenoi, Miliammina fusca, Entzia macrescens, Trochammina squamata and Paratrochammina clossi are inferred as pollution-tolerant taxa. This integrated geochemical, microbiological and ecological approach applied to assess the sediment quality in a complex ecosystem has important implications for the use of living foraminifera in recovery stage assessments and biomonitoring plans.
Collapse
Affiliation(s)
- Luiz Francisco Fontana
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LABMICRO, Av. Pasteur 458, s. 500, Urca, Rio de Janeiro, RJ 22290-240, Brazil
| | - Pierre Belart
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LABMICRO, Av. Pasteur 458, s. 500, Urca, Rio de Janeiro, RJ 22290-240, Brazil
| | - Carla Bonetti
- Universidade Federal de Santa Catarina - UFSC, Campus Universitário Reitor João David Ferreira Lima, s/n°, 88040-900, Trindade, Florianópolis, SC, Brazil
| | - Décio Semensatto Junior
- Universidade Federal de São Paulo - UNIFESP, Laboratório de Ciências Integradas (LabInSciences), Departamento de Ciências Ambientais, Rua Prof. Artur Riedel 275, Diadema, SP 09972-270, Brazil
| | | | | | - Vincent M P Bouchet
- Université de Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000 Lille, France
| | - Lazaro Laut
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LABMICRO, Av. Pasteur 458, s. 500, Urca, Rio de Janeiro, RJ 22290-240, Brazil.
| |
Collapse
|
11
|
Kelbrick M, Fenton A, Parratt S, Hall JPJ, O'Brien S. Nutrient-rich spatial refuges buffer against extinction and promote evolutionary rescue in evolving microbial populations. Proc Biol Sci 2024; 291:20242197. [PMID: 39657803 PMCID: PMC11631407 DOI: 10.1098/rspb.2024.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microbial populations are often exposed to long-term abiotic disturbances, which can reduce population viability and cause local extinction. Eco-evolutionary theory suggests that spatial refuges can facilitate persistence and evolutionary rescue. However, one drawback of spatial refuges is reduced exposure to nutrients such as carbon and oxygen, suggesting the protective effect of refuges depends on the interplay between environmental conditions and the degree of stress. Here, we test this general idea using mathematical modelling, and experimental evolution of the model bacterium Pseudomonas fluorescens SBW25 under salinity stress. As our model predicted, we find that the ability of spatial refuges to rescue evolving populations from extinction crucially depends on nutrient availability. Populations evolving under salinity stress where nutrient-rich spatial refuges were available, harboured clones that displayed enhanced salt resistance, indicating that nutrient-rich spatial refuges can facilitate evolutionary rescue. Furthermore, while control-salinity-evolved populations adapted to spatial structure by evolving enhanced motility (likely through parallel mutations in PFLU_4551, a predicted aerotaxis response regulator), this phenotype was constrained under high salinity, because increased motility negates the benefits of a spatial refuge. Our results reveal a general interplay between spatial refuges and nutrient availability that could be leveraged to reduce extinction risk in natural populations.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Andrew Fenton
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Stephen Parratt
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - James P. J. Hall
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Siobhan O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Lam KL, Tam NFY, Xu SJL, Mo WY, Tse YT, Lai KKY, Chan PL, Lee FWF. Habitat variations of sediment microbial community structure and functions and the influential environmental factors in a Ramsar protected wetland in South China. MARINE POLLUTION BULLETIN 2024; 209:117166. [PMID: 39442350 DOI: 10.1016/j.marpolbul.2024.117166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Ecological functions of coastal wetlands are closely linked to microbiome that is affected by anthropogenic pollution, but related systematic research is rare. This study explored microbial community and physicochemical characteristics of sediments in three habitats, mudflat, mangrove and inter-tidal shrimp ponds (gei wai), in a Ramsar using 16S amplicon sequencing. Proteobacteria was the most abundant and Vibrio was detected in all habitats. Microbial diversity in mangrove is higher than mudflat, with gei wai in between. Microbial functions predicted by PICRUSt revealed prevalence of carbohydrate and amino acid metabolism, with enrichment of nitrogen metabolism in mangrove habitat. Gene annotation identified approximately 800 intrinsic antibiotic resistance genes (iARGs) and dominant mechanism was antibiotic inactivation. Variation partitioning analysis indicated sediment characteristics together with antibiotics and heavy metals shaped microbiomes and iARGs composition in sediments. This study offers insights into variations of sediment microbial diversity, function and iARGs among different habitats in protected wetlands.
Collapse
Affiliation(s)
- Kit-Ling Lam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China; Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Wing-Yin Mo
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Yuet-Tung Tse
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Kaze King-Yip Lai
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China
| | - Ping-Lung Chan
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China.
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China; Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China.
| |
Collapse
|
13
|
Delaunay E, Jouanneau S, Durand MJ, Thouand G. Evaluating toxic impact on marine microbial community using combined genetic and phenotypic approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66120-66135. [PMID: 39615011 DOI: 10.1007/s11356-024-35640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Preserving the oceans is a major challenge for the twenty-first century. In 2000, the Water Framework Directive harmonized European regulations on water management to protect and restore the good ecological status of aquatic ecosystems, including the marine environment. This study aims to address the need to understand how pollutants affect marine ecosystems, particularly microbial communities, which are vital for ecosystem balance and biogeochemical cycling. By combining genetic and phenotypic approaches, we aimed to predict the long-term ecological effects of marine pollution and develop improved management strategies. We used microcosms to expose a marine microbial community to various toxicant (anthracene, benzene, chlorpyrifos, copper chloride, and PFOA) and combined phenotypic and genetic approaches to assess i) changes in community structure, ii) phenotypic responses to pollutant, and iii) the benefits of integrating these methods to better evaluate the impact of pollutants on microbial communities and ecosystem services. The obtained results highlight a certain functional resilience despite a significant effect on genetic diversity. Moreover, only specific exposure conditions, such as higher pollutant concentrations, appear to significantly affect ecosystem functions. Leveraging this knowledge, the future challenge will be to develop a straightforward biosensor to estimate and predict the impact of pollutants on these ecosystems, in order to better protect them.
Collapse
Affiliation(s)
- Eva Delaunay
- Nantes Université, CNRS, Oniris, GEPEA, UMR 6144, UMR CNRS 6144, 85000, La Roche-Sur-Yon, France
| | - Sulivan Jouanneau
- Nantes Université, CNRS, Oniris, GEPEA, UMR 6144, UMR CNRS 6144, 85000, La Roche-Sur-Yon, France.
| | - Marie-José Durand
- Nantes Université, CNRS, Oniris, GEPEA, UMR 6144, UMR CNRS 6144, 85000, La Roche-Sur-Yon, France
| | - Gérald Thouand
- Nantes Université, CNRS, Oniris, GEPEA, UMR 6144, UMR CNRS 6144, 85000, La Roche-Sur-Yon, France
| |
Collapse
|
14
|
Ortiz-Severín J, Hodar C, Stuardo C, Aguado-Norese C, Maza F, González M, Cambiazo V. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. Biol Res 2024; 57:84. [PMID: 39523335 PMCID: PMC11552226 DOI: 10.1186/s40659-024-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Laboratorio de Bioinformática y Bioestadística del Genoma, INTA, Universidad de Chile, Santiago, Chile
| | - Camila Stuardo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Constanza Aguado-Norese
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile.
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
15
|
Gawande PS, Manigandan V, Ganesh R S, Kannan VR, Ramu K, Murthy MVR. Metagenomic analysis of pathogenic bacteria and virulence factor genes in coastal sediments from highly urbanized cities of India. Microb Pathog 2024; 196:106984. [PMID: 39341578 DOI: 10.1016/j.micpath.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
A metagenomic approach was employed to investigate the diversity and distribution of Virulence Factors Genes (VFGs) and Pathogenic Bacteria (PB) in sediment samples collected from highly urbanized cities along the Indian coastline. Among the study locations, Mumbai, Veraval and Paradeep showed a higher abundance of PB, with Vibrio and Pseudomonas as dominant at the genus level, and Escherichia coli and Pseudomonas aeruginosa at the species level. In total, 295 VFGs were detected across all sediment samples, of which 40 VFGs showed a similarity of ≥90 % with the Virulence Database (VFDB) and were focused in this study. Among the virulent proteins, twitching motility protein and flagellar P-ring were found to be prevalent and significantly associated with Vibrio spp., and Pseudomonas spp., indicating potential bacterial pathogenicity. This investigation serves as the basis for future studies and provides insights into the comprehensive taxonomic profiles of PB, VFGs and their associated PB in the coastal sediments of India.
Collapse
Affiliation(s)
- Pradip Sahebrao Gawande
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India; Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Vajravelu Manigandan
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - Sankar Ganesh R
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - V Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India.
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Chen XL, Wu LJ, Miao LL, Li L, Qiu LM, Zhu HQ, Si XR, Li HF, Zhao QL, Qi PZ, Hou TT. Chronic polystyrene microplastics exposure-induced changes in thick-shell mussel (Mytilus coruscus) metaorganism: A holistic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116961. [PMID: 39208580 DOI: 10.1016/j.ecoenv.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have emerged as a significant global concern, particularly in marine ecosystems. While extensive research has focused on the toxicological effects of microplastics on marine animals and/or their associated microorganisms as two separate entities, the holistic perspective of the adaptability and fitness of a marine animal metaorganism-comprising the animal host and its microbiome-remains largely unexplored. In this study, mussel metaorganisms subjected chronic PS-MPs exposure experienced acute mortality but rapidly adapted. We investigated the response of innate immunity, digestive enzymes and their associated microbiomes to chronic PS-MPs exposure. We found that PS-MPs directly and indirectly interacted with the host and microbe within the exposure system. The adaptation was a joint effort between the physiological adjustments of mussel host and genetic adaptation of its microbiome. The mussel hosts exhibited increased antioxidant activity, denser gill filaments and increased immune cells, enhancing their innate immunity. Concurrently, the gill microbiome and the digestive gland microbiome respective selectively enriched for plastic-degrading bacteria and particulate organic matter-utilizing bacteria, facilitating the microbiome's adaptation. The microbial adaptation to chronic PS-MPs exposure altered the ecological roles of mussel microbiome, as evidenced by alterations in microbial interactions and nutrient cycling functions. These findings provided new insights into the ecotoxicological impact of microplastics on marine organisms from a metaorganism perspective.
Collapse
Affiliation(s)
- Xing-Lu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lin-Jun Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long-Mei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hui-Qiang Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xi-Rui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hong-Fei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, Zhejiang 316000, China
| | - Peng-Zhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Ting-Ting Hou
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
17
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
18
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Deng W, Chen S, Chen S, Xing B, Chan Z, Zhang Y, Chen B, Chen G. Impacts of eutrophication on microbial community structure in sediment, seawater, and phyllosphere of seagrass ecosystems. Front Microbiol 2024; 15:1449545. [PMID: 39206368 PMCID: PMC11350616 DOI: 10.3389/fmicb.2024.1449545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Seagrass-associated microbial communities play a crucial role in the growth and health of seagrasses. However, like seagrass meadows, seagrass-associated microbial communities are often affected by eutrophication. It remains unclear how eutrophication influences the composition and function of microbial communities associated with different parts of seagrass. Methods We employed prokaryotic 16S rRNA gene high-throughput sequencing combining microbial community structure analysis and co-occurrence network analysis to investigate variances in microbial community compositions, potential functions and complexities across sediment, seagrass leaves, and seawater within different eutrophic areas of two adjacent seagrass meadows on Hainan Island, China. Results Our results indicated that microbial diversity on seagrass leaves was significantly lower than in sediment but significantly higher than in seawater. Both sediment and phyllosphere microbial diversity showed no significant difference between the highly eutrophic and less eutrophic sites in each lagoon. However, sediment microbial diversity was higher in the more eutrophic lagoon, while phyllosphere microbial diversity was higher in the less eutrophic lagoon. Heavy eutrophication increased the relative abundance of phyllosphere microorganisms potentially involved in anaerobic metabolic processes, while reducing those responsible for beneficial functions like denitrification. The main factor affecting microbial diversity was organic carbon in seawater and sediment, with high organic carbon levels leading to decreased microbial diversity. The co-occurrence network analysis revealed that heavy eutrophication notably reduced the complexity and internal connections of the phyllosphere microbial community in comparison to the sediment and seawater microbial communities. Furthermore, ternary analysis demonstrated that heavy eutrophication diminished the external connections of the phyllosphere microbial community with the sediment and seawater microbial communities. Conclusion The pronounced decrease in biodiversity and complexity of the phyllosphere microbial community under eutrophic conditions can lead to greater microbial functional loss, exacerbating seagrass decline. This study emphasizes the significance of phyllosphere microbial communities compared to sediment microbial communities in the conservation and restoration of seagrass meadows under eutrophic conditions.
Collapse
Affiliation(s)
- Wenchao Deng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| | - Shunyang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Bingpeng Xing
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| | - Zhuhua Chan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
20
|
Ramljak A, Žučko J, Lučić M, Babić I, Morić Z, Fafanđel M, Furdek Turk M, Matijević S, Karpouzas D, Udiković-Kolić N, Petrić I. Microbial communities as indicators of marine ecosystem health: Insights from coastal sediments in the eastern Adriatic Sea. MARINE POLLUTION BULLETIN 2024; 205:116649. [PMID: 38944966 DOI: 10.1016/j.marpolbul.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Considering the adaptability and responsiveness of microorganisms to environmental changes, their indicator potential is still not acknowledged in European directives. This comprehensive study examined the changes of microbial communities in sediments and a range of geochemical parameters from pristine and anthropogenically impacted coastal areas in the eastern Adriatic Sea. Various analytical methods found evidence of sediment contamination (high toxicity level, enrichments of metals, tributyltin) in certain areas, leading to the categorization of sediments based on the level of anthropogenic disturbance. Prokaryotes were identified as the most promising group of microbes for further research, with specific bacterial families (Rhodobacteraceae, Ectothiorhodospiraceae, Cyclobacteriaceae) and genera (Boseongicola, B2M28, Subgroup 23, Sva0485, Thiogranum) proposed as potential indicators of environmental status. Finally, predictive models were developed to identify key indicator variables for assessing anthropogenic impact in sediments. This research represents an essential step toward incorporating microbial communities into assessments of benthic environmental health.
Collapse
Affiliation(s)
- A Ramljak
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - J Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - M Lučić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - I Babić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Z Morić
- Department of Computer Science, Algebra University, Gradišćanska 24, 10000 Zagreb, Croatia
| | - M Fafanđel
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - M Furdek Turk
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - S Matijević
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - D Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41221 Larissa, Greece
| | - N Udiković-Kolić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - I Petrić
- Division for Marine and Environmental Research, Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Yang F, Li Q, Yin X. Metagenomic analysis of the effects of salinity on microbial community and functional gene diversity in glacial meltwater estuary, Ny-Alesund, Arctic. Braz J Microbiol 2024; 55:1587-1599. [PMID: 38647870 PMCID: PMC11153410 DOI: 10.1007/s42770-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Due to the inflow of meltwater from the Midre Lovénbreen glacier upstream of Kongsfjorden, the nutrient concentration of Kongsfjorden change from the estuary to the interior of the fjord. Our objective was to explore the changes in bacterial community structure and metabolism-related genes from the estuary to fjord by metagenomic analysis. Our data indicate that glacial meltwater input has altered the physicochemical properties of the fjords, with a significant effect, in particular, on fjords salinity, thus altering the relative abundance of some specific bacterial groups. In addition, we suggest that the salinity of a fjord is an important factor affecting the abundance of genes associated with the nitrogen and sulfur cycles in the fjord. Changes in salinity may affect the relative abundance of microbial populations that carry metabolic genes, thus affecting the relative abundance of genes associated with the nitrogen and sulfur cycles.
Collapse
Affiliation(s)
- Fan Yang
- Management College, Ocean University of China, Qingdao, China
- Business College, Qingdao University, Qingdao, China
| | - Qinxin Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Xiaofei Yin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.
| |
Collapse
|
22
|
Rekadwad BN, Shouche YS, Jangid K. A culture-independent approach, supervised machine learning, and the characterization of the microbial community composition of coastal areas across the Bay of Bengal and the Arabian Sea. BMC Microbiol 2024; 24:162. [PMID: 38730339 PMCID: PMC11084130 DOI: 10.1186/s12866-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource, DBT - National Centre for Cell Science (DBT-NCCS), NCCS-Complex, Savitribai Phule Pune University (SPPU) Campus, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| | - Yogesh Shreepad Shouche
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, Karnataka, 560034, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, Maharashtra, 411 004, India
| |
Collapse
|
23
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
24
|
Gao L, Zhao Y, Wang Z, Zhang Y, Ming J, Sun X, Ni SQ. Seasonal and distance-decay patterns of surface sediments microbial nitrogen and sulfur cycling linkage in the eastern coast of China. MARINE POLLUTION BULLETIN 2024; 201:116169. [PMID: 38428046 DOI: 10.1016/j.marpolbul.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The surface sediments as a repository of pelagic environment changes and microbial community structural succession tend to have a profound effect on global and local nitrogen and sulfur cycling. In this study, analysis of sediment samples collected from the Bohai Sea, Yellow Sea, and north of the East China Seas (BYnECS) revealed longitude, latitude, depth, and chlorophyll had the strongest influence on microbial community structure (p-values < 0.005). A clear distance-decay pattern was exhibited in BYnECS. The result of co-occurrence network modularization implied that the more active pathway in winter was thiosulfate reduction and nitrate reduction, while in summer it was nitrification. The potential functional genes were predicted in microbial communities, and the most dominant genes were assigned to assimilatory sulfur reduction, denitrification, and dissimilatory nitrate reduction. This study innovatively explored the potential relationships between nitrogen and sulfur cycling genes of these three sea regions in the China Sea.
Collapse
Affiliation(s)
- Linjie Gao
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Yiyi Zhao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, China
| | - Yong Zhang
- Shenzhen Xinbaoying Technology Co., Ltd, Guangdong, China
| | - Jie Ming
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Xiaojie Sun
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China.
| |
Collapse
|
25
|
Zhang X, Hua J, Song Z, Li K. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiol 2024; 10:239-254. [PMID: 38919720 PMCID: PMC11194620 DOI: 10.3934/microbiol.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.
Collapse
Affiliation(s)
| | | | | | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
26
|
Beavogui A, Lacroix A, Wiart N, Poulain J, Delmont TO, Paoli L, Wincker P, Oliveira PH. The defensome of complex bacterial communities. Nat Commun 2024; 15:2146. [PMID: 38459056 PMCID: PMC10924106 DOI: 10.1038/s41467-024-46489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities. Here we performed a large-scale in-depth analysis of the defensomes of 7759 high-quality bacterial population genomes reconstructed from soil, marine, and human gut environments. We observed a wide variation in the frequency and nature of the defensome among large phyla, which correlated with lifestyle, genome size, habitat, and geographic background. The defensome's genetic mobility, its clustering in defense islands, and genetic variability was found to be system-specific and shaped by the bacterial environment. Hence, our results provide a detailed picture of the multiple immune barriers present in environmentally distinct bacterial communities and set the stage for subsequent identification of novel and ingenious strategies of diversification among uncultivated microbes.
Collapse
Affiliation(s)
- Angelina Beavogui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Auriane Lacroix
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Nicolas Wiart
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes lab, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France.
| |
Collapse
|
27
|
Garcia-Bustos V, Acosta-Hernández B, Cabañero-Navalón MD, Pemán J, Ruiz-Gaitán AC, Rosario Medina I. The Ecology of Non- Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. J Fungi (Basel) 2024; 10:111. [PMID: 38392783 PMCID: PMC10889755 DOI: 10.3390/jof10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cetaceans, which are integral to marine ecosystems, face escalating anthropogenic threats, including climate change and pollution, positioning them as critical sentinel species for ocean and human health. This review explores the neglected realm of non-Candida yeasts in cetaceans, addressing the gaps in the understanding of their prevalence, pathogenicity, and environmental impacts. By examining identified species such as Cryptococcus spp., Paracoccidioides spp., and several dimorphic fungi, this review emphasizes global prevalence, epidemiology and ecology, pathogenicity, and potential zoonotic implications. It also discusses the fine line between yeast commensalism and pathogenicity by considering environmental influences such as pollution, climate shifts, and immune suppression. Environmental impact discussions delve into how rising ocean temperatures and pollution can modify yeast mycobiota, potentially affecting marine host health and broader ecosystem dynamics. The cetacean's unique physiology and ecological niches are considered, highlighting potential impacts on behaviors, reproductive success, and survival rates. Identifying crucial knowledge gaps, the review calls for intensified research efforts, employing advanced molecular techniques to unravel the cetacean mycobiome. Systematic studies on yeast diversity, antifungal susceptibility, and their influence on environmental and ecosystem health are proposed, and the balance between commensal and pathogenic species emphasizes the significance of the One Health approach. In conclusion, as marine mammals face unprecedented challenges, unveiling non-Candida yeasts in cetaceans emerges as a critical endeavor with far-reaching implications for the conservation of marine ecosystems and for both animal and human public health.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Begoña Acosta-Hernández
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | | | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | | | - Inmaculada Rosario Medina
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| |
Collapse
|
28
|
Wang J, Zhu YG, Tiedje JM, Ge Y. Global biogeography and ecological implications of cobamide-producing prokaryotes. THE ISME JOURNAL 2024; 18:wrae009. [PMID: 38366262 PMCID: PMC10900890 DOI: 10.1093/ismejo/wrae009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Cobamides, a class of essential coenzymes synthesized only by a subset of prokaryotes, are model nutrients in microbial interaction studies and play significant roles in global ecosystems. Yet, their spatial patterns and functional roles remain poorly understood. Herein, we present an in-depth examination of cobamide-producing microorganisms, drawn from a comprehensive analysis of 2862 marine and 2979 soil metagenomic samples. A total of 1934 nonredundant metagenome-assembled genomes (MAGs) potentially capable of producing cobamides de novo were identified. The cobamide-producing MAGs are taxonomically diverse but habitat specific. They constituted only a fraction of all the recovered MAGs, with the majority of MAGs being potential cobamide users. By mapping the distribution of cobamide producers in marine and soil environments, distinct latitudinal gradients were observed: the marine environment showed peak abundance at the equator, whereas soil environments peaked at mid-latitudes. Importantly, significant and positive links between the abundance of cobamide producers and the diversity and functions of microbial communities were observed, as well as their promotional roles in essential biogeochemical cycles. These associations were more pronounced in marine samples than in soil samples, which suggests a heightened propensity for microorganisms to engage in cobamide sharing in fluid environments relative to the more spatially restricted soil environment. These findings shed light on the global patterns and potential ecological roles of cobamide-producing microorganisms in marine and soil ecosystems, enhancing our understanding of large-scale microbial interactions.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, United States
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Thomas MC, Waugh G, Vanwonterghem I, Webster NS, Rinke C, Fisher R, Luter HM, Negri AP. Protecting the invisible: Establishing guideline values for copper toxicity to marine microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166658. [PMID: 37659522 DOI: 10.1016/j.scitotenv.2023.166658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 μg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 μg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.
Collapse
Affiliation(s)
- Marie C Thomas
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
| | - Gretel Waugh
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Antarctic Division, Hobart, TAS 7050, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science Crawley, Crawley, WA, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
30
|
Wang SH, Yuan SW, Che FF, Wan X, Wang YF, Yang DH, Yang HJ, Zhu D, Chen P. Strong bacterial stochasticity and fast fungal turnover in Taihu Lake sediments, China. ENVIRONMENTAL RESEARCH 2023; 237:116954. [PMID: 37619629 DOI: 10.1016/j.envres.2023.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.
Collapse
Affiliation(s)
- Shu-Hang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng-Wu Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei-Fei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dian-Hai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hai-Jiang Yang
- Key Laboratory of Western China's Environmental Systems (MOE), College of Earth and Environmental Sciences, Lanzhou University, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
31
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
32
|
Gonzalez SV, Dafforn KA, Gribben PE, O'Connor WA, Johnston EL. Organic enrichment reduces sediment bacterial and archaeal diversity, composition, and functional profile independent of bioturbator activity. MARINE POLLUTION BULLETIN 2023; 196:115608. [PMID: 37797537 DOI: 10.1016/j.marpolbul.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Eutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments. A mesocosm experiment was conducted with two enrichment conditions (natural or enriched) and 5 cockle treatments (small, medium, large, mixed sizes and a control). This study was unable to detect A. trapezia effects on microbial communities irrespective of body size. However, a substantial decrease of bacterial richness, diversity, and structural and functional shifts, were seen with organic enrichment of sediments. Archaea were similarly changed although the magnitude of effect was less than for bacteria. Overall, we found evidence to suggest that A. trapezia had limited capacity to affect sediment microbial communities and mitigate the effects of organic enrichment.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia.
| | - Katherine A Dafforn
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| | - Paul E Gribben
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Emma L Johnston
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia
| |
Collapse
|
33
|
Zou K, Zhu Y, Jiang Y, Ma S, Li M, Zhao W, Wang J. Distinct stochastic processes drive bacterial community assembly and co-occurrence patterns with common antibiotic resistance genes in two highly urbanised coastal ecosystems of the Pearl River Estuary. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132161. [PMID: 37523960 DOI: 10.1016/j.jhazmat.2023.132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
To comprehensively elucidate the ecology of the bacterial community and antibiotic resistance genes (ARGs) in urbanised coastal ecosystems, this study investigated the variations of bacterial community and five common types of ARGs, the impacting factors and assembly of bacterial community, as well as their co-occurrence relationships in two ecosystems of the Pearl River Estuary (PRE). The bacterial community composition and structure of the nearshore ecosystem (NSE) and the eight mouths of the PRE (EPR) markedly differed, with 38 phyla shared between these two ecosystems. The abundances of 10 ARGs and bacterial community diversity were significantly higher in the EPR than NSE. Moreover, 67.82% and 27.82% of the variation in the bacterial community was explained by spatial (44.42%/8.63%) and environmental (23.40%/19.19%) variables in the NSE and EPR, respectively. Significant distance-decay patterns were observed, and distinct stochastic processes (undominated processes or dispersal limitation) dominated bacterial community assembly in the NSE and EPR. Furthermore, co-occurrence patterns showed significant positive correlations between 48/182 ASVs belonging to 6/15 bacterial phyla and 8/11 ARGs in the NSE/EPR, with six common dominant hosts. These results clarify the drivers and mechanism shaping the bacterial community, providing further proof for potential ARG bacterial hosts in urbanised estuarine ecosystems.
Collapse
Affiliation(s)
- Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| | - Yiyi Zhu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yun Jiang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Shanshan Ma
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Min Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, China; Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangzhou 510300, Guangdong Province, China
| | - Wencheng Zhao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
34
|
Robicheau BM, Tolman J, Desai D, LaRoche J. Microevolutionary patterns in ecotypes of the symbiotic cyanobacterium UCYN-A revealed from a Northwest Atlantic coastal time series. SCIENCE ADVANCES 2023; 9:eadh9768. [PMID: 37774025 PMCID: PMC10541017 DOI: 10.1126/sciadv.adh9768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.
Collapse
Affiliation(s)
- Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Panda B, Sundaray L, Mishra A, Palai S, Padhi SR, Patro S, Mohanty PK. Preliminary assessment of the water quality of Rushikulya estuary based on the abundance of pathogenic bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1169. [PMID: 37682420 DOI: 10.1007/s10661-023-11784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Estuaries are among the most dynamic ecosystems in coastal regions and are facing serious threats due to increasing anthropogenic activities. The aim of the present study is to evaluate the water quality of the Rushikulya estuary by analyzing the abundance of pathogenic bacteria in both its water and sediment. Water and sediment samples were collected from five different stations at the mouth of the Rushikulya estuary during the monsoon and post-monsoon seasons. These samples were analyzed to assess the abundance of pathogenic bacteria and environmental parameters. The results revealed that bacterial abundance is significantly higher in the sediment than in the water, possibly due to a longer residence time of pathogenic bacteria in the sediment. Seasonal observations indicated an increase in pathogenic bacterial abundance during the monsoon season, suggesting an impact from monsoonal discharge. Escherichia coli-like organism, faecal coliforms, Shigella-like organisms, and Vibrio cholera-like organisms were the dominant pathogenic bacteria in both the water and sediment of the Rushikulya estuary. The higher abundance of these pathogens and the results of statistical analysis, which showed a strong correlation between Total Streptococci and BOD (r = 0.79), indicate the influence of human settlement and the mixing of untreated sewage in the Rushikulya estuary. The elevated levels of E. coli, faecal coliforms, and Shigella-like organisms in the Rushikulya estuary raise significant concerns that require immediate attention.
Collapse
Affiliation(s)
- Bhubaneswari Panda
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Lokeshwara Sundaray
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Ankita Mishra
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Subhadarshani Palai
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Sanjukta Rani Padhi
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| | - Shesdev Patro
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India.
| | - Pratap Kumar Mohanty
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Berhampur, Odisha, 760007, India
| |
Collapse
|
36
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
37
|
Leontidou K, Rubel V, Stoeck T. Comparing quantile regression spline analyses and supervised machine learning for environmental quality assessment at coastal marine aquaculture installations. PeerJ 2023; 11:e15425. [PMID: 37334127 PMCID: PMC10274583 DOI: 10.7717/peerj.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Organic enrichment associated with marine finfish aquaculture is a local stressor of marine coastal ecosystems. To maintain ecosystem services, the implementation of biomonitoring programs focusing on benthic diversity is required. Traditionally, impact-indices are determined by extracting and identifying benthic macroinvertebrates from samples. However, this is a time-consuming and expensive method with low upscaling potential. A more rapid, inexpensive, and robust method to infer the environmental quality of marine environments is eDNA metabarcoding of bacterial communities. To infer the environmental quality of coastal habitats from metabarcoding data, two taxonomy-free approaches have been successfully applied for different geographical regions and monitoring goals, namely quantile regression splines (QRS) and supervised machine learning (SML). However, their comparative performance remains untested for monitoring the impact of organic enrichment introduced by aquaculture on marine coastal environments. We compared the performance of QRS and SML using bacterial metabarcoding data to infer the environmental quality of 230 aquaculture samples collected from seven farms in Norway and seven farms in Scotland along an organic enrichment gradient. As a measure of environmental quality, we used the Infaunal Quality Index (IQI) calculated from benthic macrofauna data (reference index). The QRS analysis plotted the abundance of amplicon sequence variants (ASVs) as a function to the IQI from which the ASVs with a defined abundance peak were assigned to eco-groups and a molecular IQI was subsequently calculated. In contrast, the SML approach built a random forest model to directly predict the macrofauna-based IQI. Our results show that both QRS and SML perform well in inferring the environmental quality with 89% and 90% accuracy, respectively. For both geographic regions, there was high correspondence between the reference IQI and both the inferred molecular IQIs (p < 0.001), with the SML model showing a higher coefficient of determination compared to QRS. Among the 20 most important ASVs identified by the SML approach, 15 were congruent with the good quality spline ASV indicators identified via QRS for both Norwegian and Scottish salmon farms. More research on the response of the ASVs to organic enrichment and the co-influence of other environmental parameters is necessary to eventually select the most powerful stressor-specific indicators. Even though both approaches are promising to infer environmental quality based on metabarcoding data, SML showed to be more powerful in handling the natural variability. For the improvement of the SML model, addition of new samples is still required, as background noise introduced by high spatio-temporal variability can be reduced. Overall, we recommend the development of a powerful SML approach that will be onwards applied for monitoring the impact of aquaculture on marine ecosystems based on eDNA metabarcoding data.
Collapse
|
38
|
Ribas MP, García-Ulloa M, Espunyes J, Cabezón O. Improving the assessment of ecosystem and wildlife health: microbiome as an early indicator. Curr Opin Biotechnol 2023; 81:102923. [PMID: 36996728 DOI: 10.1016/j.copbio.2023.102923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Human activities are causing dramatic declines in ecosystem health, compromising the functioning of the life-support system, economic activity, and animal and human health. In this context, monitoring the health of ecosystems and wildlife populations is crucial for determining ecological dynamics and assessing management interventions. A growing body of evidence indicates that microbiome provides a meaningful early indicator of ecosystem and wildlife health. Microbiome is ubiquitous and both environmental and host-associated microbiomes rapidly reflect anthropogenic disturbances. However, we still need to overcome current limitations such as nucleic acid degradation, sequencing depth, and the establishment of baseline data to maximize the potential of microbiome studies.
Collapse
|
39
|
Nathani NM, Mootapally C, Sharma P, Solomon S, Kumar R, Fulke AB, Kumar M. Microbial machinery dealing diverse aromatic compounds: Decoded from pelagic sediment ecogenomics in the gulfs of Kathiawar Peninsula and Arabian Sea. ENVIRONMENTAL RESEARCH 2023; 225:115603. [PMID: 36863652 DOI: 10.1016/j.envres.2023.115603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Aromatic hydrocarbons are persistent pollutants in aquatic systems as endocrine disruptors, significantly impacting natural ecosystems and human health. Microbes perform as natural bioremediators to remove and regulate aromatic hydrocarbons in the marine ecosystem. The present study focuses upon the comparative diversity and abundance of various hydrocarbon-degrading enzymes and their pathways from deep sediments along the Gulf of Kathiawar Peninsula and Arabian Sea, India. The elucidation of large number of degradation pathways in the study area under the presence of a wide range of pollutants whose fate needs to be addressed. Sediment core samples were collected, and the whole microbiome was sequenced. Analysis of the predicted ORFs (open reading frames) against the AromaDeg database revealed 2946 aromatic hydrocarbon-degrading enzyme sequences. Statistical analysis portrayed that the Gulfs were more diverse in degradation pathways compared to the open sea, with the Gulf of Kutch being more prosperous and more diverse than the Gulf of Cambay. The vast majority of the annotated ORFs belonged to groups of dioxygenases that included catechol, gentisate, and benzene dioxygenases, along with Rieske (2Fe-2S) and vicinal oxygen chelate (VOC) family proteins. From the sampling sites, only 960 of the total predicted genes were given taxonomic annotations, which mention the presence of many under-explored marine microorganism-derived hydrocarbon degrading genes and pathways. Through the present study, we tried to unveil the array of catabolic pathways of aromatic hydrocarbon degradation and genes from a marine ecosystem that upholds economic and ecological significance in India. Thus, this study provides vast opportunities and strategies for microbial resource recovery in marine ecosystems, which can be investigated to explore aromatic hydrocarbon degradation and their potential mechanisms under various oxic or anoxic environments. Future studies should focus on aromatic hydrocarbon degradation by considering degradation pathways, biochemical analysis, enzymatic, metabolic, and genetic systems, and regulations.
Collapse
Affiliation(s)
- Neelam M Nathani
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Parth Sharma
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India
| | - Solly Solomon
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Kochi, 682022, Kerala, India; Cochin Base of Fishery Survey of India, Post Box 853 Kochangady, Cochin, 682005, Kerala, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Abhay B Fulke
- Microbiology Division, CSIR - National Institute of Oceanography (CSIR-NIO), Regional Centre, Andheri (West), Maharashtra, 400053, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
40
|
Kamala K, Sivaperumal P. Predominance of multi-drug resistant extended spectrum β lactamase producing bacteria from marine fishes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121314. [PMID: 36813100 DOI: 10.1016/j.envpol.2023.121314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed to determine the extended spectrum beta lactamase (ESBL) genes in the bacteria from fresh exportable fish samples collected along South east coast of India, Chennai. ESBL genes are the base for the antibiotic resistance in pathogens and it transmitted from one to other species. Totally 2670 isolates were isolated from 293 fish samples which belong to 31 species dominated by Aeromonas, Klebsiella, Serratia, Leclerica, Proteus, Enterobacter, Acinetobacter, Haemophilus, Escherichia, Shigella sp. Out of 2670 isolates, 1958 isolates have multi drug resistant capacity with ESBL genes of blaCTX, blaSHV, blaTEM and blaAmpC and 712 isolates are not detected ESBL genes. The present study revealed that, the contamination of fresh fish sample with pathogenic bacteria resistant to multiple antibiotics can incriminate seafood as a potential carrier and accentuate an immediate need to prevent environmental infectivity and distribution. Further, hygienic facilitated markets should be developed with ensured quality of seafood.
Collapse
Affiliation(s)
- Kannan Kamala
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
41
|
Trade-Offs between Competitive Ability and Resistance to Top-Down Control in Marine Microbes. mSystems 2023; 8:e0101722. [PMID: 36916988 PMCID: PMC10134844 DOI: 10.1128/msystems.01017-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Trade-offs between competitive ability and resistance to top-down control manifest the "kill-the-winner" hypothesis that explains how mortality caused by protists and viruses can promote bacterial diversity. However, the existence of such trade-offs has rarely been investigated in natural marine bacterial communities. To address this question, we conducted on-board dilution experiments to manipulate top-down control pressure (protists only or protists plus viruses [protists+viruses] combined) and then applied 16S rRNA gene high-throughput sequencing techniques to assess the responses of each bacterial taxon. Dilution experiments enabled us to measure the top-down-control-free growth rate as the competitive ability and top-down-control-caused mortality as the reverse of resistance to top-down control. Overall, bacterial taxa with higher top-down-control-free growth rates were accompanied by lower top-down-control-caused resistance. Furthermore, competition-resistance trade-offs were stronger and more consistent when top-down control was caused by protists+viruses combined than by protists only. When protists+viruses were diluted, the bacterial rank abundance distribution became steepened and evenness and richness were decreased. However, when protists were diluted, only richness decreased. Our results indicate the existence of competition-resistance trade-offs in marine microbes and demonstrate the positive impacts of such trade-offs on bacterial diversity. Regardless, the strength of the competition-resistance trade-offs and the impacts on bacterial diversity were contingent on whether top-down control was caused by protists+viruses combined or protists only. IMPORTANCE We addressed the "kill-the-winner" hypothesis from the perspective of its principle (the competition-resistance trade-off) in marine bacterial communities incubated in situ. Our results supported the existence of competition-resistance trade-offs and the positive effect on bacterial community diversity. The study linked theoretical expectations and complex natural systems and provided new knowledge regarding how top-down controls and competition trade-offs shaped natural bacterial communities.
Collapse
|
42
|
de Pao Mendonca K, Angeletti B, Dufour A, Borchiellini C, Heimbürger-Boavida LE, Renard E, Issartel J. The sponge Oscarella lobularis (Porifera, Homoscleromorpha) as a suitable biomonitor of metallic contamination in Mediterranean coastal ecosystems. MARINE POLLUTION BULLETIN 2023; 188:114665. [PMID: 36764142 DOI: 10.1016/j.marpolbul.2023.114665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The biomonitoring of metallic contamination in marine ecosystems is often focused on animal species of commercial interest and in lesser extent on non-model marine invertebrates. The aim of this study was to compare the metal concentrations (Li, Al, Ti, Cr, Fe, Ni, Cu, Zn, As, Ag, Cd, Hg, Pb) in seven marine sponges with a particular interest in the homoscleromorph sponge Oscarella lobularis at different sites of the Bay of Marseille, France. Inter-species variabilities suggest that the seven sponge species studied accumulate metals differently. In O. lobularis, a multi-site analysis shows different bioaccumulation between the eight sampled populations. These inter-site differences may reflect differences in the hydrodynamic features and in past and present industrial activities. Because Oscarella lobularis shows a homogeneous metal accumulation pattern in comparison with the other tested species, it appears to be suitable for metal contamination biomonitoring in Mediterranean coastal waters, in particular of the coralligenous communities.
Collapse
Affiliation(s)
- Kassandra de Pao Mendonca
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France; Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France
| | - Aurélie Dufour
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | | | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, IBDM, Marseille, France; Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France.
| | - Julien Issartel
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France.
| |
Collapse
|
43
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
44
|
Moreira VA, Cravo-Laureau C, de Carvalho ACB, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial indicators along a metallic contamination gradient in tropical coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130244. [PMID: 36327839 DOI: 10.1016/j.jhazmat.2022.130244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The structure and diversity of microbial community inhabiting coastal sediments reflect the exposition to contaminants. Aiming to assess the changes in the microbiota from Sepetiba Bay (SB, Brazil) sediments, correlations between the 16S rRNA gene data (V4-V5 region), metal contamination factors (CF), and the ecological risk classification provided by the Quality Ratio (QR) index were considered. The results show that microbial diversity differs significantly between the less (SB external sector) and the most (SB internal sector) polluted sectors. Also, differences in the microbial community structure regarding the ecological risk classifications validated the QR index as a reliable tool to report the SB chronic contamination. Microbial indicator genera resistant to metals (Desulfatiglans, SEEP-SRB1, Spirochaeta 2, among others) presented mainly anaerobic metabolisms. These genera are related to the sulfate reducing and methanogenic metabolisms probably participating in the natural attenuation processes but also associated with greenhouse gas emissions. In contrast, microbial indicator genera sensitive to metals (Rubripirellula, Blastopirellula, Aquibacter, among others) presented mainly aerobic metabolisms. It is suggested that future works should investigate the metabolic functions to evaluate the influence of metallic contaminants on microbial community inhabiting SB sediment.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
45
|
Zárate A, Molina V, Valdés J, Icaza G, Vega SE, Castillo A, Ugalde JA, Dorador C. Spatial co-occurrence patterns of benthic microbial assemblage in response to trace metals in the Atacama Desert Coastline. Front Microbiol 2023; 13:1020491. [PMID: 36726571 PMCID: PMC9885135 DOI: 10.3389/fmicb.2022.1020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023] Open
Abstract
Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Biotecnología en Ambientes Extremos, Centro de Excelencia en Medicina Traslacional, Universidad de la Frontera, Temuco, Chile,*Correspondence: Ana Zárate, ✉
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile,Verónica Molina, ✉
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Facultad de Ciencias del Mar y de Recursos Biológicos, Instituto de Ciencias Naturales A. von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | | | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule, Vicerrectoría de Investigación de Investigación y Posgrado, Universidad Católica del Maule, Campus San Miguel, Talca, Chile,J’EAI CHARISMA (IRD-France, UMNG-Colombia, UA-Chile, UCM-Chile, UCH-Chile, IGP-Peru, UPCH-Peru) and Nucleo Milenio UPWELL, Concepción, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile,Cristina Dorador, ✉
| |
Collapse
|
46
|
Changes in the bacterial community in port waters during ship’s ballast water discharge. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Correia Costa I, Amorim de Oliveira M, Wosnick N, Ann Hauser-Davis R, Siciliano S, Nunes JLS. Elasmobranch-associated microbiota: a scientometric literature review. PeerJ 2022; 10:e14255. [PMID: 36345481 PMCID: PMC9636872 DOI: 10.7717/peerj.14255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Elasmobranchs provide greatly relevant ecosystem services for the balance of the environments in which they are inserted. In recent decades, sharp population declines have been reported for many species in different regions worldwide, making this taxonomic group currently one of the most threatened with extinction. This scenario is almost entirely due to excessive fishing pressure, but any contributing factor that may cause additional mortality to populations must be mapped and monitored. In a fast-changing world, emerging marine pollution associated with climate change display the potential to increase the spread of infectious agents. These can, in turn, lead to mortality events, both directly and indirectly, by reducing immune responses and the physical and nutritional condition of affected individuals. In this context, the present study aimed to analyze data concerning elasmobranch-associated microbiota, identifying study trends and knowledge gaps in order to direct future studies on this topic of growing relevance for the health of wild populations, as well as individuals maintained in captivity, considering the zoonotic potential of these microorganisms.
Collapse
Affiliation(s)
- Ivana Correia Costa
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Mariene Amorim de Oliveira
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Natascha Wosnick
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/FIOCRUZ, Rio de Janeiro, Brazil
| | - Jorge Luiz Silva Nunes
- Laboratório de Organismos Aquáticos, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
48
|
Muñoz-García A, Arbeli Z, Boyacá-Vásquez V, Vanegas J. Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. MARINE POLLUTION BULLETIN 2022; 184:114204. [PMID: 36219973 DOI: 10.1016/j.marpolbul.2022.114204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mangroves are often exposed to heavy metals that accumulate in the food chain, generate toxicity to mangrove plants and affect microbial diversity. This study determined the abundance of genes associated with resistance and tolerance to heavy metals in the rhizosphere microbiome of Avicennia germinans from a semi-arid mangrove of La Guajira-Colombia by metagenomics and genomics approach. Twenty-eight genes associated with tolerance and 49 genes related to resistance to heavy metals were detected. Genes associated with tolerance and resistance to Cu, especially cusA and copA, were the most abundant. The highest number of genes for tolerance and resistance were for Zn and Co, respectively. The isolate Vibrio fluvialis showed the ability to tolerate Cu, Ni, Zn, and Cd. This work used a complementary approach of metagenomics and genomics to characterize the potential of mangrove microorganisms to tolerate and resist heavy metals and the influence of salinity on their abundance.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Pontificia Universidad Javeriana, Bogotá, Colombia; Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia
| | - Ziv Arbeli
- Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia.
| |
Collapse
|
49
|
Bulbul M, Bhattacharya S, Ankit Y, Yadav P, Anoop A. Occurrence, distribution and sources of phthalates and petroleum hydrocarbons in tropical estuarine sediments (Mandovi and Ashtamudi) of western Peninsular India. ENVIRONMENTAL RESEARCH 2022; 214:113679. [PMID: 35714689 DOI: 10.1016/j.envres.2022.113679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The present study provides baseline information on the concentration levels, distribution characteristics and pollution sources of environmental contaminants, such as phthalic acid esters (PAEs or phthalates) and petroleum hydrocarbons in surface sediments of the tropical estuaries (Mandovi and Ashtamudi) from western Peninsular India. Total PAEs (∑5PAEs), hopanes, steranes and diasteranes concentrations from Ashtamudi estuary ranged from 7.77 to 1478.2 ng/g, n.d.-363.2 ng/g, n.d.-121.5 ng/g and n.d.-116.6 ng/g, respectively. Likewise, PAEs (∑6PAEs), steranes and diasteranes concentrations from Mandovi estuary ranged from 60.1 to 271.9 ng/g, 2.33-40.1 ng/g and 2.28-23.0 ng/g, respectively. The PAEs comprising di-isobutyl phthalate (DIBP), dibutyl phthalate (DBP), an isomer peak for DBP, di(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate were dominant in Ashtamudi estuary sediments, while PAEs including diethyl phthalate, DIBP, DBP and its isomer, DEHP, di(2-ethylhexyl) terephthalate were detected in the Mandovi sediment samples. The results of this study show an insignificant correlation of TOC with PAEs, and indicates that the varying spatial distributions of the PAEs in both the estuaries can be the result of discharge sources. The higher concentration of PAE congeners was noticed in Ashtamudi, a Ramsar wetland site, that can be attributed to land-based plastic waste. The petroleum biomarkers were abundantly present in Mandovi estuary due to anthropogenic activities such as boating and spillage from oil tankers. The findings of the present study will serve as a reference point for future investigation of organic contaminants in Indian estuaries, and calls for attention towards implementing effective measures in controlling the pervasion of the PAEs and petroleum biomarkers.
Collapse
Affiliation(s)
- Mehta Bulbul
- Indian Institute of Science Education and Research, Mohali, 140306, India.
| | | | - Yadav Ankit
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Pushpit Yadav
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Ambili Anoop
- Indian Institute of Science Education and Research, Mohali, 140306, India
| |
Collapse
|
50
|
Moreira VA, Cravo-Laureau C, Borges de Carvalho AC, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial community metabolic alterations and resistance to metals and antibiotics driven by chronic exposition to multiple pollutants in a highly impacted tropical coastal bay. CHEMOSPHERE 2022; 307:135928. [PMID: 35944693 DOI: 10.1016/j.chemosphere.2022.135928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities from Sepetiba Bay (SB, Rio de Janeiro, Brazil), characterized by 16S rRNA gene (V4-V5 region) sequencing analysis, were found to be correlated with the metallic contamination factor and the Quality Ratio (QR) index. Consistently, the predicted function of microbial communities, obtained with Tax4Fun2, showed that the functional patterns in SB internal sector under the highest anthropogenic pressure were different from that observed in the external sector with the lowest contamination level. Signal transduction, cellular community, membrane transport, and energy metabolism were among the KEGG pathways favored by metallic contamination in the SB internal sector, while lipid metabolism, transcription, and translation were among the pathways favored in the SB external sector. Noteworthy, the relative proportions of KEGG pathways and genes associated with metallic homeostasis showed significant differences according to the SB sectors, consistently with the ecological risk classification (QR index) of sediments. The functional prediction approach is an economically viable alternative and presents an overview of the main pathways/genes favored in the SB microbiota exposed to long-term pollution. In contrast, the microgAMBI, ecological status index based on bacterial community composition, was not consistent with the metallic contamination of SB, suggesting that this index requires improvements to be applied in tropical areas. Our study also revealed a strong correlation between metal resistance genes (MRG) and antibiotic resistance genes (ARG), indicating that MRG and ARG are co-selected by the metallic contamination prevailing in SB.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|