1
|
Lam AYW, Tomari Y, Tsuboyama K. No structure, no problem: Protein stabilization by Hero proteins and other chaperone-like IDPs. Biochim Biophys Acta Gen Subj 2025; 1869:130786. [PMID: 40037507 DOI: 10.1016/j.bbagen.2025.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
In order for a protein to function, it must fold into its proper three-dimensional structure. Otherwise, improperly folded proteins are typically prone to aggregate through a process that is detrimental to cellular health. It is widely known that a diverse group of proteins, called molecular chaperones, function to promote proper folding of other proteins and prevent aggregation. In contrast, intrinsically disordered proteins (IDPs) lack substantial tertiary structures, but nonetheless serve important functional roles. In some cases, IDPs have been observed to display remarkably chaperone-like activities, where they stabilize the activities of client proteins and prevent their aggregation. While it was previously thought that chaperone-like IDPs were mainly utilized by extremophilic organisms in their survival of extreme stress, we recently showed that a group of chaperone-like IDPs, we named heat-resistant obscure (Hero) proteins, are also widespread in non-extremophile animals, including humans and flies. Thus, we should consider the possibility that IDPs serve significant chaperone-like functions in protein stabilization relevant to physiological conditions. However, as most of our understanding of how chaperones function is based on insights from their structured domains, it is unclear how chaperone-like IDPs elicit chaperone-like effects without these structures. Here we summarize our understanding of Hero proteins to date and, based on experimental evidence, outline the features that are likely important for their protein stabilizing activities. We draw on concepts from the studies of chaperones and chaperone-like IDPs, in order to draft potential models of how chaperone-like IDPs achieve chaperone-like effects in the absence of well-defined structures.
Collapse
Affiliation(s)
- Andy Y W Lam
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Kotaro Tsuboyama
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
2
|
Bhairu Khot K, Jose J, Gopan G, Sandeep DS, Ashtekar H, Shastry P, Raviraj C. Stearyl amine coated liposome of rotigotine alleviates cognitive deficit in Parkinson's disease induced mice model: modulation of oxidative stress, and motor coordination. Drug Dev Ind Pharm 2025:1-16. [PMID: 40238494 DOI: 10.1080/03639045.2025.2494127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE The study was conducted to evaluate the brain targeted delivery of cationic liposomes of rotigotine via nasal route, addressing the limitations in brain penetration for Parkinson's disease intervention. METHODS Cationic liposomes were fabricated and optimized using a Box-Behnken design to improve the excipient composition for effective intranasal delivery. The optimized liposome, LR12, was surface modified with stearylamine at three concentrations to confer a cationic charge. The final formulation, RTG-LP3, was evaluated for physicochemical parameters, including size, entrapment efficiency, and zeta potential. A morphological study was performed within the 100-200 nm size range. The cytotoxicity of RTG-LP3 was determined in SH-SY5Y cell lines, whereas pharmacodynamic studies were evaluated in C57BL/6 mice following nasal administration. RESULTS The formulation RTG-LP3 exhibited a minimal vesicle size of 162 ± 2.94 nm, a high entrapment efficiency of 86.53 ± 0.33%, and a positive zeta potential of +19.8 ± 2.45 mV. Morphological investigation indicated spherical shape of liposomes in the size range of 100-200 nm. Cytotoxicity study showed fivefold safety margin for RTG-LP3 when compared with rotigotine. Pharmacodynamic assessments in PD-induced C57BL6 mice showed increased motor coordination and antioxidant benefits following nasal treatment. Histological study of brain regions treated with RTG-LP3 demonstrated improved neuronal architecture, indicating reduced neurodegeneration and improved disease condition. CONCLUSION The cationic liposome RTG-LP3 demonstrated effective delivery of liposomes with superior therapeutic effects in treating PD via nasal route. These findings highlight the potential of cationic liposomes as a viable method for improving brain penetration and neuroprotection in PD therapy.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - D S Sandeep
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Harsha Ashtekar
- Department of Pharmacology, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Chaithra Raviraj
- Department of Advance Research Centre, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| |
Collapse
|
3
|
Martin LJ, Lee JK, Niedzwiecki MV, Amrein Almira A, Javdan C, Chen MW, Olberding V, Brown SM, Park D, Yohannan S, Putcha H, Zheng B, Garrido A, Benderoth J, Kisner C, Ghaemmaghami J, Northington FJ, Kratimenos P. Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic-Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation. Cells 2025; 14:586. [PMID: 40277911 PMCID: PMC12025496 DOI: 10.3390/cells14080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic-ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29-96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - May W. Chen
- Department of Pediatrics, Johns Hopkins University School of Medicine, CMSC, 600 North Wolfe Street, Baltimore, MD 21287-0001, USA
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Stephen M. Brown
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Sophie Yohannan
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Hasitha Putcha
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Becky Zheng
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Annalise Garrido
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Jordan Benderoth
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Chloe Kisner
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Javid Ghaemmaghami
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2916, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, CMSC, 600 North Wolfe Street, Baltimore, MD 21287-0001, USA
| | - Panagiotis Kratimenos
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2916, USA
| |
Collapse
|
4
|
Hu X, Wu J, Shi L, Wang F, He K, Tan P, Hu Y, Yang Y, Wang D, Ma T, Ding S. The transcription factor MEF2C restrains microglial overactivation by inhibiting kinase CDK2. Immunity 2025; 58:946-960.e10. [PMID: 40139186 DOI: 10.1016/j.immuni.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Microglial intrinsic immune checkpoints are essential safeguards to maintain immune homeostasis by preventing microglial overactivation, a process that substantially influences neurological disorders such as autism spectrum disorder (ASD). MEF2C is a crucial immune checkpoint that regulates microglial activation, but the mechanism remains unclear. We found that MEF2C-deficient (MEF2C-/-) induced microglia-like cells (iMGLs) derived from human pluripotent stem cells (hPSCs) exhibited overactivation following lipopolysaccharide stimulation, mimicking patterns observed in various neuroinflammatory disorders. High-throughput screening identified BMS265246, a cyclin-dependent kinase 2 (CDK2) inhibitor, which suppressed overactivation of MEF2C-/- iMGLs and normalized their inflammatory responses. Mechanistically, MEF2C transcriptionally upregulated p21 to inhibit CDK2 activation-mediated retinoblastoma protein (RB) degradation, thereby preventing transcription factor nuclear factor κB (NFκB) nuclear translocation and consequent microglial overactivation. BMS265246 treatment substantially ameliorated microglial overactivation and ASD-like behaviors in Mef2c-deficient mice. Our findings identify the MEF2C-p21-CDK2-RB-NFκB axis as a critical pathway to maintain microglial homeostasis and highlight CDK2 as a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Xiaodan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianchen Wu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Shi
- CRE Life Institute, Beijing 100000, China
| | - Folin Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kezhang He
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Pengcheng Tan
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Sheng Ding
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Ongtanasup T, Eawsakul K. Developing Novel Beta-Secretase Inhibitors in a Computer Model as a Possible Treatment for Alzheimer's Disease. Adv Pharmacol Pharm Sci 2025; 2025:5528793. [PMID: 40201042 PMCID: PMC11976051 DOI: 10.1155/adpp/5528793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that causes neurons and axons in the brain to deteriorate over time and in a specific pattern. The enzyme beta-secretase-1 (BACE-1) plays a crucial role in the onset and progression of AD. In silico approaches, or computer-aided drug design, have become useful tools for reducing the number of therapeutic candidates that need to be evaluated in human clinical trials. Finding chemicals that bind to BACE-1's active site and inhibit its activity is key for preventing AD. A pharmacophore model was developed in this study based on potent BACE-1 inhibitors previously identified, and subsequently employed to screen a commercially available compound database for similar compounds. ZINC35883784 was identified with high binding affinities and hydrogen bonding interactions. Moreover, similar properties to donepezil were found in a compound made by altering the structure of ZINC35883784 called (4R,5R)-2-[1-(2-ethylcyclohexyl)ethyl]-4-hydroxy-5-(4-hydroxybutyl)cyclohexanolate (M4). Compounds were tested for interactions with BACE-1 and favorable properties. Binding scores were confirmed after molecular docking. The assessment of drug-likeness was conducted utilizing Swiss ADME analysis. Molecular dynamics simulations assessed the stability of compound interactions with BACE-1. MMPBSA calculated binding free energy and contribution energy. Results showed that M4 had strong and steady interactions with BACE-1. M4 was also analyzed by predicted NMR and retrosynthesis. However, further experiments are needed to evaluate M4's potential as a BACE-1 inhibitor.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
6
|
Mesias A, Borges S, Pintado M, Baptista-Silva S. Bioactive peptides as multipotent molecules bespoke and designed for Alzheimer's disease. Neuropeptides 2025; 111:102515. [PMID: 40056763 DOI: 10.1016/j.npep.2025.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
In an increasingly aging world where neurodegenerative diseases (NDs) are exponentially rising, research into more effective and innovative treatments seems paramount. Bioactive peptides (BPs) emerge as promising compounds with revolutionary potential in the treatment of NDs, particularly in well-known conditions like Alzheimer's disease (AD). The biological potential of these compounds is primarily attributed to their drug development advantages such as enhanced penetration, low toxicity, and rapid clearance, as well as, their antioxidant, and anti-inflammatory properties bio-linked to the neuroprotective effect, able to attenuate the multifactorial pathologies of AD. BPs can be sourced from common dietary origins, like animals, plants, marine, and from emerging sources like edible insects. However, to isolate an active BP with beneficial biological effects it must first be released from its parent protein, followed by a synthesis-flow. While in silico approaches can predict a BP's potential bioactivity and structural characteristics, in vitro, cell-based, and in vivo assays should be conducted to ensure these properties. The blood-brain-barrier (BBB) microenvironment and permeability in health or disease state are key factors to consider since they can limit the ability of circulating therapeutical agents, including BPs, to reach the brain. This review focuses on the bioactivity properties of BPs from different dietary protein sources and explores their beneficial effect and neuroprotective activity in AD, unraveling new paths of treatment.
Collapse
Affiliation(s)
- Ana Mesias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
7
|
Hashimoto K, Sato H. Neurodevelopmental Process Monitoring of Cytosine Arabinoside-Exposed Neurons Using Raman Spectroscopy. APPLIED SPECTROSCOPY 2025; 79:396-403. [PMID: 39497409 DOI: 10.1177/00037028241289147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Raman spectroscopy is used to monitor the development of live neurons exposed to cytosine arabinoside (ara-C). Ara-C is widely used to culture neurons and exclude non-neuronal cells. In this study, Raman spectra obtained from neurons exposed to ara-C were plotted using an analytical model of neuronal development to evaluate the impact of ara-C on neuronal development. After two days of culturing, neurons were exposed to ara-C for 24 h at final concentrations of 0 (control), 5, and 25 μM. Principal component analysis (PCA) was performed to build an analytical model for evaluating neurodevelopmental disorders caused by ara-C treatment. We projected the Raman spectra obtained from ara-C-treated cells onto the control group dataset. The distribution of PC1 scores for neurons exposed to ara-C at a final concentration of 5 μM was not significantly different from that of the control group. In contrast, under a final concentration of 25 μM, the data population at 10 and 15 days of culturing overlapped significantly with that of neurons at 4 days of normal culturing. These results suggest that Raman spectroscopy can detect very small physiological alterations in the neurons even after a short-term exposure (24 h) of ara-C. Our analytical method has high potential to evaluate the developmental stages for living neurons under exposure to chemicals.
Collapse
Affiliation(s)
- Kosuke Hashimoto
- Research Center for Pre-disease Science, University of Toyama, Toyama, Japan
- School of Biological and Environmental Sciences, Kwansei Gakuin University 1, Sanda, Hyogo, Japan
| | - Hidetoshi Sato
- School of Biological and Environmental Sciences, Kwansei Gakuin University 1, Sanda, Hyogo, Japan
| |
Collapse
|
8
|
Bashir B, Vishwas S, Gupta G, Paudel KR, Dureja H, Kumar P, Cho H, Sugandhi VV, Kumbhar PS, Disouza J, Dhanasekaran M, Goh BH, Gulati M, Dua K, Singh SK. Does drug repurposing bridge the gaps in management of Parkinson's disease? Unravelling the facts and fallacies. Ageing Res Rev 2025; 105:102693. [PMID: 39961372 DOI: 10.1016/j.arr.2025.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Repurposing the existing drugs for the management of both common and rare diseases is increasingly appealing due to challenges such as high attrition rates, the economy, and the slow pace of discovering new drugs. Drug repurposing involves the utilization of existing medications to treat diseases for which they were not originally intended. Despite encountering scientific and economic challenges, the pharmaceutical industry is intrigued by the potential to uncover new indications for medications. Medication repurposing is applicable across different stages of drug development, with the greatest potential observed when the drug has undergone prior safety testing. In this review, strategies for repurposing drugs for Parkinson's disease (PD) are outlined, a neurodegenerative disorder predominantly impacting dopaminergic neurons in the substantia nigra pars compacta region. PD is a debilitating neurodegenerative condition marked by an amalgam of motor and non-motor symptoms. Despite the availability of certain symptomatic treatments, particularly targeting motor symptoms, there remains a lack of established drugs capable of modifying the clinical course of PD, leading to its unchecked progression. Although standard drug discovery initiatives focusing on treatments that relieve diseases have yielded valuable understanding into the underlying mechanisms of PD, none of the numerous promising candidates identified in preclinical studies have successfully transitioned into clinically effective medications. Due to the substantial expenses associated with drug discovery endeavors, it is understandable that there has been a notable shift towards drug reprofiling strategies. Assessing the efficacy of an existing medication offers the additional advantage of circumventing the requirement for preclinical safety assessments and formulation enhancements, consequently streamlining the process and reducing both the duration of time and financial investments involved in bringing a treatment to clinical fruition. Furthermore, repurposed drugs may benefit from lower rates of failure, presenting an additional potential advantage. Various strategies for repurposing drugs are available to researchers in the field of PD. Some of these strategies have demonstrated effectiveness in identifying appropriate drugs for clinical trials, thereby providing validation for such strategies. This review provides an overview of the diverse strategies employed for drug reprofiling from approaches that place emphasis on single-gene transcriptional investigations to comprehensive epidemiological correlation analysis. Additionally, instances of previous or current research endeavors employing each strategy have been discussed. For the strategies that have not been yet implemented in PD research, their strategic efficacy is demonstrated using examples involving other disorders. In this review, we assess the safety and efficacy potential of prominent candidates repurposed as potential treatments for modifying the course of PD undergoing advanced clinical trials.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra, 416113, India.
| | - John Disouza
- Bombay Institute of Pharmacy and Research, Dombivli, Mumbai, Maharashtra, 421 203, India..
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
9
|
Purnamasari Y, Hermawati E, Mujahidin D, Happyana N, Syah YM. Xanthorrhizol derivatives and their biological properties as caspase-7 inhibitors. Nat Prod Res 2025; 39:1582-1590. [PMID: 38230507 DOI: 10.1080/14786419.2024.2302919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Xanthorrhizol (1) is known as the major terpenoid component of the rhizome of Curcuma xanthorrhiza and having some interesting biological activities. In this report, we synthesised five derivatives of 1 containing nitrogen-functional groups. Four of them are new synthesised compounds, including (R)-4-(3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propyl)morpholine (2), (R)-N-benzyl-3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propan-1-amine (3), (R)-6,7-dimethoxy-3-(3-(2-methyl-5-(6-methylhept-5-en-2-yl)phenoxy)propyl)quinazolin-4(3H)-one (4), and (R)-6-methyl-3-(6-methylhept-5-en-2-yl)-2-nitrophenol (5) groups. Meanwhile the other is the known compound, that is (R)-2-methyl-5-(6-methylhept-5-en-2-yl)-4-nitrophenol (6). The caspase-7 inhibitory activity of compounds 1-6 was evaluated as well. In comparison to other derivatives, compounds 5 and 6 exhibited higher activity. Consequently, compounds 5 and 6 may be a promising lead compound for further development as a caspase-7 inhibitor.
Collapse
Affiliation(s)
- Yunita Purnamasari
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Elvira Hermawati
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Didin Mujahidin
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Nizar Happyana
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Yana M Syah
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
10
|
Yadav P, Nair A, Chawla R, Ghosh S, Aleem M, Butola BS, Sharma N, Khan HA. From cell to organ: Exploring the toxicological correlation of organophosphorus compounds in living system. Toxicology 2025; 511:154049. [PMID: 39798862 DOI: 10.1016/j.tox.2025.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different levels in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level in surviving species model. Addressing this gap through further research is essential for a comprehensive understanding of malathion's impact on biological systems, facilitating better risk assessment and management strategies. Current research systemically evaluated the effects of malathion on the central nervous system and peripheral immune cells using immunological techniques in the BALB/c mice models. For this, animals were placed inside an inhalation chamber containing malathion (dose of 89.5 mg/ml/m3) for a specific exposure time. The group exposed for 6 minutes has shown a significant change in plasma-neurotransmitter (serotonin, dopamine) levels and decreased expression of Tyrosine hydroxylase in striatum and SNPC region of brain. The depolarized mitochondria and increased level of cleaved caspase-3 level and mature neurons in DG, CA1 and CA3 were also observed in the brain. Peripheral blood analysis illustrated a decrease in total leukocyte count and an increased level of early apoptosis at the same time point. From neurobehavioral results a significant locomotor hyperactivity, restlessness, and risk-taking behavior was observed. Taken together, results from the current study indicate that exposure to malathion at prolonged time durations induces neuronal and immune cell toxicity, and its toxicity may be mediated via changes in neurotransmitter levels and metabolite concentrations.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, 110016, India
| | - Raman Chawla
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Subhajit Ghosh
- NCI-Stephenson Cancer Center, Oklahoma city, OK 73104, USA
| | - Mohd Aleem
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Bhupendra Singh Butola
- Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, 110016, India
| | - Navneet Sharma
- Amity Institute of Pharmacy, Amity University, Noida 201313, India.
| | - Haider Ali Khan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi 110062, India.
| |
Collapse
|
11
|
Qin X, Li X, Guo J, Zhou M, Xu Q, Lv Q, Zhu H, Xiao K, Liu Y, Chen S. Necroptosis contributes to deoxynivalenol-induced activation of the hypothalamic-pituitary-adrenal axis in a piglet model. Int Immunopharmacol 2024; 143:113541. [PMID: 39541842 DOI: 10.1016/j.intimp.2024.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The mycotoxin deoxynivalenol (DON) is highly prevalent in cereals as an immune stressor. The hypothalamic-pituitary-adrenal (HPA) axis is activated during periods of stress, and the organism is accompanied by inflammation. Necroptosis is a newly identified type of cell death. However, the relationship between necroptosis and HPA axis activation induced by DON is rarely reported. Our study aimed to explore the role played by necroptosis in HPA activation in a stress of piglet model produced by DON. Our results indicated that both feeding with a contaminated-DON diet (4 ppm) and DON injection at 0.8 mg/kg BW increased the concentration of plasma corticotropin-releasing hormone (CRH) and adrenocorticotrophic hormone (ACTH) and the mRNA expression of adrenal steroidogenic acute regulatory protein (StAR). Furthermore, the mRNA expression of pro-inflammatory cytokines and factors related to necroptosis in the hypothalamus, pituitary gland, and adrenal gland were increased. As an inhibitor of necroptosis, necrostatin-1 (Nec-1) inhibited necroptosis through decreasing mRNA expression of necroptosis signal factors in the HPA axis. Nec-1 also reduced the mRNA levels of pro-inflammatory cytokines in the HPA axis. Meanwhile, the activation of the HPA axis was inhibited by Nec-1 as shown by the decrease of plasma CRH and ACTH concentrations and the mRNA expressions of hypothalamus CRH and pituitary POMC. These findings indicated that as a result of necroptosis, the HPA axis was activated by DON. In light of these findings, necroptosis could be considered as an intervention target that alleviates HPA axis activation and stress responses.
Collapse
Affiliation(s)
- Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaotong Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
12
|
Jongwachirachai P, Ruankham W, Apiraksattayakul S, Intharakham S, Prachayasittikul V, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis. Neurochem Res 2024; 49:3308-3325. [PMID: 39298035 PMCID: PMC11502562 DOI: 10.1007/s11064-024-04239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Coriander (Coriandrum sativum L.), a culinary plant in the Apiaceae family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress via protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.
Collapse
Affiliation(s)
- Papitcha Jongwachirachai
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Saruta Intharakham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Wilasinee Suwanjang
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
13
|
Panda SP, Kesharwani A, Singh B, Marisetti AL, Chaitanya M, Dahiya S, Ponnusankar S, Kumar S, Singh M, Shakya PK, Prasad PD, Guru A. 14-3-3 protein and its isoforms: A common diagnostic marker for Alzheimer's disease, Parkinson's disease and glaucomatous neurodegeneration. Ageing Res Rev 2024; 102:102572. [PMID: 39489380 DOI: 10.1016/j.arr.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
There is a molecular coupling between neurodegenerative diseases, including glaucomatous neurodegeneration (GN), Alzheimer's disease (AD), and Parkinson's disease (PD). Many cells in the eye and the brain have the right amount of 14-3-3 proteins (14-3-3 s) and their isoforms, such as β, ε, γ, η, θ, π, and γ. These cells include keratocytes, endothelial cells, corneal epithelial cells, and primary conjunctival epithelial cells. 14-3-3 s regulate autophagy and mitophagy, help break down built-up proteins, and connect to other proteins to safeguard against neurodegeneration in AD, PD, GN, and glioblastoma. By interacting with these proteins, 14-3-3 s stop Bad and Bax proteins from entering mitochondria and make them less effective. These interactions inhibit neuronal apoptosis. They play many important roles in managing the breakdown of lysosomal proteins, tau, and Aβ, which is why the 14-3-3 s could be used as therapeutic targets in AD. Furthermore, researchers have discovered 14-3-3 s in Lewy bodies, which are associated with various proteins like LRRK2, ASN, and Parkin, all of which play a role in developing Parkinson's disease (PD). The 14-3-3 s influence the premature aging and natural wrinkles of human skin. Studies have shown that lowering 14-3-3 s in the brain can lead to an increase in cell-death proteins like BAX and ERK, which in turn causes excitotoxicity-induced neurodegeneration. This review aimed to clarify the role of 14-3-3 s in the neuropathology of AD, PD, and GN, as well as potential diagnostic markers for improving neuronal survival and repair.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Bhoopendra Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Mvnl Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, Panjab 144411, India
| | - Saurabh Dahiya
- Department of Pharmaceutical Chemistry and Quality Assurance, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - S Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and ResearchOoty, Tamil Nadu 643001, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Shakya
- Shri Santanpal Singh Pharmacy College, Mirjapur, Shahjahanpur, Uttar Pradesh 242221, India
| | - P Dharani Prasad
- Department of Pharmacology, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
14
|
Ferrão R, Rai A. Advanced Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. CHEMICAL PHYSICS OF POLYMER NANOCOMPOSITES 2024:843-885. [DOI: 10.1002/9783527837021.ch27] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Yu Z, Guan Y, Xia T, Li X, Liu M, Huo Y, Wang Z, Liu Z, Luo Y, Yan W, Sun L, Wu W, Shen B, Zhang Y. Overcoming Low mRNA Expression in White Matter: A Protocol for RNA Extraction From the Optic Nerve in Large Animals for Transcriptomic Analysis. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 39540862 PMCID: PMC11572753 DOI: 10.1167/iovs.65.13.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose White matter (WM) abnormalities are associated with various central nervous system (CNS) disorders, and the optic nerve provides a unique opportunity to study WM pathology. Large animal models offer a more suitable platform for preclinical testing of novel therapeutic strategies for optic neuropathy due to their similarities to humans in size and relevant anatomy. Transcriptomic analyses of optic nerve tissue are essential for understanding the underlying pathological mechanisms. However, extracting high-quality RNA from the optic nerve in large animals remains challenging. Methods We utilized in situ hybridization and single-nucleus RNA sequencing (snRNA-seq) to examine mRNA expression in WM cells and gray matter (GM) cells. Results We discovered that mRNA expression levels in WM cells were only 15% to 66% of those in GM neurons. To overcome the low mRNA yield, we developed a specialized RNA extraction protocol for the intra-canalicular optic nerve in large animal models, achieving an RNA integrity number (RIN) of 6.8 ± 0.06. For single-cell transcriptomics (scRNA-seq), we obtained a cell density of 1.0 × 105 cells/µL, cell viability of 93% ± 1.84%, and an agglomeration rate of 5.37% ± 0.75%. This approach is also applicable for postmortem human optic nerve with a RIN of 8.3 ± 0.3 using snRNA-seq. Conclusions We first discovered that the mRNA expression in the WM was significantly lower than that in the GM. Our RNA extraction protocol from large animal models enhances transparency and reproducibility in transcriptomic studies of optic nerve and other WM tissues.
Collapse
Affiliation(s)
- Zhonghao Yu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Guan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tian Xia
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Li
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mingyue Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yujia Huo
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuowei Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhirong Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuting Luo
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wentao Yan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lanfang Sun
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Baoguo Shen
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yikui Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Choudhary S, Kumar V, Sharma K, Gour A, Sahrawat A, Jotshi A, Manhas D, Nandi U, Bharate SB, Ahmed Z, Kumar A. Crocetin Delays Brain and Body Aging by Increasing Cellular Energy Levels in Aged C57BL/6J Mice. ACS Pharmacol Transl Sci 2024; 7:3017-3033. [PMID: 39416964 PMCID: PMC11475333 DOI: 10.1021/acsptsci.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Aging is usually accompanied by mitochondrial dysfunction, reduced energy levels, and cell death in the brain and other tissues. Mitochondria play a crucial role in maintaining cellular energy through oxidative phosphorylation (OXPHOS). However, OXPHOS is impaired as the mitochondrial oxygen supply decreases with age. We explored whether pharmacologically increased oxygen diffusion by crocetin can restore OXPHOS and help delay the aging of the brain and other vital organs. We found that aged mice treated with crocetin for four months displayed significantly improved memory behavior, neuromuscular coordination, and ATP and NAD+ levels in the brain and other vital organs, leading to an increased median life span. The transcriptomic analysis of hippocampi from crocetin-treated mice revealed that enhanced brain energy level was caused by the upregulation of genes linked to OXPHOS, and their expression was close to that in young mice. The chronic treatment of aged astrocytes also showed improved mitochondrial membrane potential and energy state of the cells. Moreover, chronic treatment with crocetin did not cause any oxidative stress. Our data suggest that restoring OXPHOS and the normal energy state of the cell can delay aging and enhance longevity. Therefore, molecules such as crocetin should be further explored to treat age-related diseases.
Collapse
Affiliation(s)
- Sushil Choudhary
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vishnu Kumar
- Institute
of Anatomy and Cell Biology, Justus Liebig
University of Giessen, Giessen 35390, Germany
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ashish Sahrawat
- Molecular
Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Anshika Jotshi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Bose
Institute, Unified Academic Campus, Kolkata 700091, India
| | - Sandip B. Bharate
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Natural Product
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
17
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
18
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
19
|
Peng H, Li H, Ma B, Sun X, Chen B. DJ-1 regulates mitochondrial function and promotes retinal ganglion cell survival under high glucose-induced oxidative stress. Front Pharmacol 2024; 15:1455439. [PMID: 39323632 PMCID: PMC11422208 DOI: 10.3389/fphar.2024.1455439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose This study aimed to investigate the antioxidative and neuroprotective effects of DJ-1 in mitigating retinal ganglion cell (RGC) damage induced by high glucose (HG). Methods A diabetic mouse model and an HG-induced R28 cell model were employed for loss- and gain-of-function experiments. The expression levels of apoptosis and oxidative stress-related factors, including Bax, Bcl-2, caspase3, Catalase, MnSOD, GCLC, Cyto c, and GPx-1/2, were assessed in both animal and cell models using Western blotting. Retinal structure and function were evaluated through HE staining, electroretinogram, and RGC counting. Mitochondrial function and apoptosis were determined using JC-1 and TUNEL staining, and reactive oxygen species (ROS) measurement. Results In the mouse model, hyperglycemia resulted in reduced retinal DJ-1 expression, retinal structural and functional damage, disrupted redox protein profiles, and mitochondrial dysfunction. Elevated glucose levels induced mitochondrial impairment, ROS generation, abnormal protein expression, and apoptosis in R28 cells. Augmenting DJ-1 expression demonstrated a restoration of mitochondrial homeostasis and alleviated diabetes-induced morphological and functional impairments both in vivo and in vitro. Conclusion This study provides novel insights into the regulatory role of DJ-1 in mitochondrial dynamics, suggesting a potential avenue for enhancing RGC survival in diabetic retinopathy.
Collapse
Affiliation(s)
- Hanhan Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Benteng Ma
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Xinyue Sun
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| |
Collapse
|
20
|
Jeong J, Choi Y, Kim N, Lee H, Yoon EJ, Park D. Effects of Human Neural Stem Cells Overexpressing Neuroligin and Neurexin in a Spinal Cord Injury Model. Int J Mol Sci 2024; 25:8744. [PMID: 39201431 PMCID: PMC11354780 DOI: 10.3390/ijms25168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key role in therapy of neurodegenerative disorders. Neurexins (NRXNs) and neuroligins (NLGNs) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses, mediate trans-synaptic signaling, and shape neural network properties by specifying synaptic functions. In this study, we investigated the synaptic regeneration effect of human neural stem cells (NSCs) overexpressing NRXNs (F3.NRXN) and NLGNs (F3.NLGN) in a spinal cord injury model. Overexpression of NRXNs and NLGNs in the neural stem cells upregulated the expression of synaptophysin, PSD95, VAMP2, and synapsin, which are synaptic markers. The BMS scores indicated that the transplantation of F3.NRXN and F3.NLGN enhanced the recovery of locomotor function in adult rodents following spinal cord injury. Transplanted F3.NRXN and F3.NLGN differentiated into neurons and formed a synapse with the host cells in the spinal cord injury mouse model. In addition, F3.NRXN and F3.NLGN cells restored growth factors (GFs) and neurotrophic factors (NFs) and induced the proliferation of host cells. This study suggested that NSCs overexpressing NRXNs and NLGNs could be candidates for cell therapy in spinal cord injuries by facilitating synaptic regeneration.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (J.J.); (N.K.); (H.L.)
| | - Yunseo Choi
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (J.J.); (N.K.); (H.L.)
| | - Narae Kim
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (J.J.); (N.K.); (H.L.)
| | - Haneul Lee
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (J.J.); (N.K.); (H.L.)
| | - Eun-Jung Yoon
- Department of Life Sports Educator, Kongju National University, Kongju 32588, Chungnam, Republic of Korea;
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea; (J.J.); (N.K.); (H.L.)
| |
Collapse
|
21
|
Zhang X, Fan L, Yang L, Jin X, Liu H, Lei H, Song X, Zhang Z, Zhang F, Song J. DAPK1 mediates cognitive dysfunction and neuronal apoptosis in PSD rats through the ERK/CREB/BDNF signaling pathway. Behav Brain Res 2024; 471:115064. [PMID: 38777261 DOI: 10.1016/j.bbr.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Lifei Fan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Lina Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China
| | - Xuejiao Jin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Hao Lei
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Xiaojia Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| |
Collapse
|
22
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 PMCID: PMC11787906 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Courtney K. Walker
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology; Queen Square, London, WC1N 3BG, UK
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School; Charlestown, Massachusetts, 02129, USA
| | - David M. Holtzman
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer's disease. Arch Biochem Biophys 2024; 758:110065. [PMID: 38906311 DOI: 10.1016/j.abb.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
One of important characteristics of Alzheimer's disease is a persistent oxidative/nitrosative stress caused by pro-oxidant properties of amyloid-beta peptide (Aβ) and chronic inflammation in the brain. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is easily oxidized under oxidative stress. Numerous data indicate that oxidative modifications of GAPDH in vitro and in cell cultures stimulate GAPDH denaturation and aggregation, and the catalytic cysteine residue Cys152 is important for these processes. Both intracellular and extracellular GAPDH aggregates are toxic for the cells. Interaction of denatured GAPDH with soluble Aβ results in mixed insoluble aggregates with increased toxicity. The above-described properties of GAPDH (sensitivity to oxidation and propensity to form aggregates, including mixed aggregates with Aβ) determine its role in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| | - M V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| |
Collapse
|
24
|
Sharallah OA, Poddar NK, Alwadan OA. Delineation of the role of G6PD in Alzheimer's disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Res Rev 2024; 99:102394. [PMID: 38950868 DOI: 10.1016/j.arr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aβ deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.
Collapse
Affiliation(s)
- Omnya A Sharallah
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Omnia A Alwadan
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
25
|
Bernardes CP, Lopes Pinheiro E, Ferreira IG, de Oliveira IS, dos Santos NAG, Sampaio SV, Arantes EC, dos Santos AC. Fraction of C. d. collilineatus venom containing crotapotin protects PC12 cells against MPP + toxicity by activating the NGF-signaling pathway. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230056. [PMID: 38915449 PMCID: PMC11194915 DOI: 10.1590/1678-9199-jvatitd-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
Collapse
Affiliation(s)
- Carolina Petri Bernardes
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isabela Gobbo Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Neife Aparecida Guinaim dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
28
|
Ahmadi S, Taghizadieh M, Mehdizadehfar E, Hasani A, Khalili Fard J, Feizi H, Hamishehkar H, Ansarin M, Yekani M, Memar MY. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed Pharmacother 2024; 174:116487. [PMID: 38518598 DOI: 10.1016/j.biopha.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Department of Neurosciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hammed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Ansarin
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Zhao S, Mo G, Wang Q, Xu J, Yu S, Huang Z, Liu W, Zhang W. Role of RB1 in neurodegenerative diseases: inhibition of post-mitotic neuronal apoptosis via Kmt5b. Cell Death Discov 2024; 10:182. [PMID: 38637503 PMCID: PMC11026443 DOI: 10.1038/s41420-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
During the development of the vertebrate nervous system, 50% of the nerve cells undergo apoptosis shortly after formation. This process is important for sculpting tissue during morphogenesis and removing transiently functional cells that are no longer needed, ensuring the appropriate number of neurons in each region. Dysregulation of neuronal apoptosis can lead to neurodegenerative diseases. However, the molecular events involved in activating and regulating the neuronal apoptosis program are not fully understood. In this study, we identified several RB1 mutations in patients with neurodegenerative diseases. Then, we used a zebrafish model to investigate the role of Rb1 in neuronal apoptosis. We showed that Rb1-deficient mutants exhibit a significant hindbrain neuronal apoptosis, resulting in increased microglia infiltration. We further revealed that the apoptotic neurons in Rb1-deficient zebrafish were post-mitotic neurons, and Rb1 inhibits the apoptosis of these neurons by regulating bcl2/caspase through binding to Kmt5b. Moreover, using this zebrafish mutant, we verified the pathogenicity of the R621S and L819V mutations of human RB1 in neuronal apoptosis. Collectively, our data indicate that the Rb1-Kmt5b-caspase/bcl2 axis is crucial for protecting post-mitotic neurons from apoptosis and provides an explanation for the pathogenesis of clinically relevant mutations.
Collapse
Affiliation(s)
- Shuang Zhao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Guiling Mo
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Qiang Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shihui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Cao X, Zhang Y, Shi Y, Li Y, Gao L, Wang X, Sun L. Identification of critical mitochondrial hub gene for facial nerve regeneration. Biochem Cell Biol 2024; 102:179-193. [PMID: 38086039 DOI: 10.1139/bcb-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Mitochondria play a critical role in nerve regeneration, yet the impact of gene expression changes related to mitochondria in facial nerve regeneration remains unknown. To address this knowledge gap, we analyzed the expression profile of the facial motor nucleus (FMN) using data obtained from the Gene Expression Omnibus (GEO) database (GSE162977). By comparing different time points in the data, we identified differentially expressed genes (DEGs). Additionally, we collected mitochondria-related genes from the Gene Ontology (GO) database and intersected them with the DEGs, resulting in the identification of mitochondria-related DEGs (MIT-DEGs). To gain further insights, we performed functional enrichment and pathway analysis of the MIT-DEGs. To explore the interactions among these MIT-DEGs, we constructed a protein-protein interaction (PPI) network using the STRING database and identified hub genes using the Degree algorithm of Cytoscape software. To validate the relevance of these genes to nerve regeneration, we established a rat facial nerve injury (FNI) model and conducted a series of experiments. Through these experiments, we confirmed three MIT-DEGs (Myc, Lyn, and Cdk1) associated with facial nerve regeneration. Our findings provide valuable insights into the transcriptional changes of mitochondria-related genes in the FMN following FNI, which can contribute to the development of new treatment strategies for FNI.
Collapse
Affiliation(s)
- Xiaofang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Li Gao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Pak V, Adewale Q, Bzdok D, Dadar M, Zeighami Y, Iturria-Medina Y. Distinctive whole-brain cell types predict tissue damage patterns in thirteen neurodegenerative conditions. eLife 2024; 12:RP89368. [PMID: 38512130 PMCID: PMC10957173 DOI: 10.7554/elife.89368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
For over a century, brain research narrative has mainly centered on neuron cells. Accordingly, most neurodegenerative studies focus on neuronal dysfunction and their selective vulnerability, while we lack comprehensive analyses of other major cell types' contribution. By unifying spatial gene expression, structural MRI, and cell deconvolution, here we describe how the human brain distribution of canonical cell types extensively predicts tissue damage in 13 neurodegenerative conditions, including early- and late-onset Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, amyotrophic lateral sclerosis, mutations in presenilin-1, and 3 clinical variants of frontotemporal lobar degeneration (behavioral variant, semantic and non-fluent primary progressive aphasia) along with associated three-repeat and four-repeat tauopathies and TDP43 proteinopathies types A and C. We reconstructed comprehensive whole-brain reference maps of cellular abundance for six major cell types and identified characteristic axes of spatial overlapping with atrophy. Our results support the strong mediating role of non-neuronal cells, primarily microglia and astrocytes, in spatial vulnerability to tissue loss in neurodegeneration, with distinct and shared across-disorder pathomechanisms. These observations provide critical insights into the multicellular pathophysiology underlying spatiotemporal advance in neurodegeneration. Notably, they also emphasize the need to exceed the current neuro-centric view of brain diseases, supporting the imperative for cell-specific therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
- Veronika Pak
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
- School of Computer Science, McGill UniversityMontrealCanada
- Mila – Quebec Artificial Intelligence InstituteMontrealCanada
| | | | | | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
- McGill Centre for Studies in AgingMontrealCanada
| |
Collapse
|
32
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
33
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
34
|
Saima, Latha S, Sharma R, Kumar A. Role of Network Pharmacology in Prediction of Mechanism of Neuroprotective Compounds. Methods Mol Biol 2024; 2761:159-179. [PMID: 38427237 DOI: 10.1007/978-1-0716-3662-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Network pharmacology is an emerging pioneering approach in the drug discovery process, which is used to predict the therapeutic mechanism of compounds using various bioinformatic tools and databases. Emerging studies have indicated the use of network pharmacological approaches in various research fields, particularly in the identification of possible mechanisms of herbal compounds/ayurvedic formulations in the management of various diseases. These techniques could also play an important role in the prediction of the possible mechanisms of neuroprotective compounds. The first part of the chapter includes an introduction on neuroprotective compounds based on literature. Further, network pharmacological approaches are briefly discussed. The use of network pharmacology in the prediction of the neuroprotective mechanism of compounds is discussed in detail with suitable examples. Finally, the chapter concludes with the current challenges and future prospectives.
Collapse
Affiliation(s)
- Saima
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - S Latha
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| |
Collapse
|
35
|
Steinberg N, Galleguillos D, Zaidi A, Horkey M, Sipione S. Naïve Huntington's disease microglia mount a normal response to inflammatory stimuli but display a partially impaired development of innate immune tolerance that can be counteracted by ganglioside GM1. J Neuroinflammation 2023; 20:276. [PMID: 37996924 PMCID: PMC10668379 DOI: 10.1186/s12974-023-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Chronic activation and dysfunction of microglia have been implicated in the pathogenesis and progression of many neurodegenerative disorders, including Huntington's disease (HD). HD is a genetic condition caused by a mutation that affects the folding and function of huntingtin (HTT). Signs of microglia activation have been observed in HD patients even before the onset of symptoms. It is unclear, however, whether pro-inflammatory microglia activation in HD results from cell-autonomous expression of mutant HTT, is the response of microglia to a diseased brain environment, or both. In this study, we used primary microglia isolated from HD knock-in (Q140) and wild-type (Q7) mice to investigate their response to inflammatory conditions in vitro in the absence of confounding effects arising from brain pathology. We show that naïve Q140 microglia do not undergo spontaneous pro-inflammatory activation and respond to inflammatory triggers, including stimulation of TLR4 and TLR2 and exposure to necrotic cells, with similar kinetics of pro-inflammatory gene expression as wild-type microglia. Upon termination of the inflammatory insult, the transcription of pro-inflammatory cytokines is tapered off in Q140 and wild-type microglia with similar kinetics. However, the ability of Q140 microglia to develop tolerance in response to repeated inflammatory stimulations is partially impaired in vitro and in vivo, potentially contributing to the establishment of chronic neuroinflammation in HD. We further show that ganglioside GM1, a glycosphingolipid with anti-inflammatory effects on wild-type microglia, not only decreases the production of pro-inflammatory cytokines and nitric oxide in activated Q140 microglia, but also dramatically dampen microglia response to re-stimulation with LPS in an experimental model of tolerance. These effects are independent from the expression of interleukin 1 receptor associated kinase 3 (Irak-3), a strong modulator of LPS signaling involved in the development of innate immune tolerance and previously shown to be upregulated by immune cell treatment with gangliosides. Altogether, our data suggest that external triggers are required for HD microglia activation, but a cell-autonomous dysfunction that affects the ability of HD microglia to acquire tolerance might contribute to the establishment of neuroinflammation in HD. Administration of GM1 might be beneficial to attenuate chronic microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Noam Steinberg
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asifa Zaidi
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | | | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
37
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
38
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
39
|
Baghel K, Niranjan MK, Srivastava R. Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 2023; 22:2205-2218. [PMID: 37266906 DOI: 10.1007/s43630-023-00442-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Light has a very important function in the regulation of the normal physiology including the neuroendocrine system, biological rhythms, cognitive behavior, etc. The variation in photoperiod acts as a stressor due to imbalance in endogenous hormones. Estrogen and its receptors ER alpha and beta play a vital role in the control of stress response in birds. The study investigates the estrogenic effects of a well-known medicinal plant Withania somnifera (WS), mediated by estrogen receptor alpha (ERα) in the hypothalamic pre-optic area (POA) and paraventricular nuclei (PVN). Further the study elucidates its anti-oxidants and anti-apoptotic activities in the brain of Japanese quail. To validate this hypothesis, mature male quails were exposed to long day length for 3 months and then transferred to intermediate day length to become photorefractory (PR) while controls were still continued under long daylength. Supplementation of WS root extract in PR quail increases plasma estrogen and lowers corticosterone. Further, in PR quail the variation in light downregulates immunoreactivity of ERα, oxidative stress and antioxidant enzyme activities i.e. superoxide dismutase and catalase in the brain. Neuronal apoptosis was observed in the POA and PVN of PR quail as indicated by the abundant expression of Caspase-3 and p53 which reduces after the administration of WS root extract. The neuronal population also found to decrease in PR although it increased in WS administered quails. Further, the study concluded that change in photoperiod from 3 months exposure of 16L: 8D to 13.5L: 10.5D directly activates neuronal apoptosis via expression of Caspase3 and p53 expression in the brain and increases neuronal and gonadal oxidative stress while WS root extract reverses them via enhanced estrogen and its receptor ERα expression in the hypothalamic pre-optic and PVN area of Japanese quail.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | | | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
40
|
Maurya CK, Tapadia MG. Expanded polyQ aggregates interact with sarco-endoplasmic reticulum calcium ATPase and Drosophila inhibitor of apoptosis protein1 to regulate polyQ mediated neurodegeneration in Drosophila. Mol Cell Neurosci 2023; 126:103886. [PMID: 37567489 DOI: 10.1016/j.mcn.2023.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Polyglutamine (polyQ) induced neurodegeneration is one of the leading causes of progressive neurodegenerative disorders characterized clinically by deteriorating movement defects, psychiatric disability, and dementia. Calcium [Ca2+] homeostasis, which is essential for the functioning of neuronal cells, is disrupted under these pathological conditions. In this paper, we simulated Huntington's disease phenotype in the neuronal cells of the Drosophila eye and identified [Ca2+] pump, sarco-endoplasmic reticulum calcium ATPase (SERCA), as one of the genetic modifiers of the neurodegenerative phenotype. This paper shows genetic and molecular interaction between polyglutamine (polyQ) aggregates, SERCA and DIAP1. We present evidence that polyQ aggregates interact with SERCA and alter its dynamics, resulting in a decrease in cytosolic [Ca2+] and an increase in ER [Ca2+], and thus toxicity. Downregulating SERCA lowers the enhanced calcium levels in the ER and rescues, morphological and functional defects caused due to expanded polyQ repeats. Cell proliferation markers such as Yorkie (Yki), Scalloped (Sd), and phosphatidylinositol 3 kinases/protein kinase B (PI3K/Akt), also respond to varying levels of calcium due to genetic manipulations, adding to the amelioration of degeneration. These results imply that neurodegeneration due to expanded polyQ repeats is sensitive to SERCA activity, and its manipulation can be an important step toward its therapeutic measures.
Collapse
Affiliation(s)
- Chandan Kumar Maurya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
41
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
42
|
Kerrebijn I, Wainberg M, Zhukovsky P, Chen Y, Davie M, Felsky D, Tripathy SJ. Case-control virtual histology elucidates cell types associated with cortical thickness differences in Alzheimer's disease. Neuroimage 2023; 276:120177. [PMID: 37211192 DOI: 10.1016/j.neuroimage.2023.120177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Many neuropsychiatric disorders are characterised by altered cortical thickness, but the cell types underlying these changes remain largely unknown. Virtual histology (VH) approaches map regional patterns of gene expression with regional patterns of MRI-derived phenotypes, such as cortical thickness, to identify cell types associated with case-control differences in those MRI measures. However, this method does not incorporate valuable information of case-control differences in cell type abundance. We developed a novel method, termed case-control virtual histology (CCVH), and applied it to Alzheimer's disease (AD) and dementia cohorts. Leveraging a multi-region gene expression dataset of AD cases (n = 40) and controls (n = 20), we quantified AD case-control differential expression of cell type-specific markers across 13 brain regions. We then correlated these expression effects with MRI-derived AD case-control cortical thickness differences across the same regions. Cell types with spatially concordant AD-related effects were identified through resampling marker correlation coefficients. Among regions thinner in AD, gene expression patterns identified by CCVH suggested fewer excitatory and inhibitory neurons, and greater proportions of astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in AD cases vs. controls. In contrast, original VH identified expression patterns suggesting that excitatory but not inhibitory neuron abundance was associated with thinner cortex in AD, despite the fact that both types of neurons are known to be lost in the disorder. Compared to original VH, cell types identified through CCVH are more likely to directly underlie cortical thickness differences in AD. Sensitivity analyses suggest our results are largely robust to specific analysis choices, like numbers of cell type-specific marker genes used and background gene sets used to construct null models. As more multi-region brain expression datasets become available, CCVH will be useful for identifying the cellular correlates of cortical thickness across neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Isabel Kerrebijn
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Zhukovsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuxiao Chen
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melanie Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Rivai B, Umar AK. Neuroprotective compounds from marine invertebrates. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:71. [DOI: 10.1186/s43088-023-00407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Neuroinflammation is a key pathological feature of a wide variety of neurological disorders, including Parkinson’s, multiple sclerosis, Alzheimer’s, and Huntington’s disease. While current treatments for these disorders are primarily symptomatic, there is a growing interest in developing new therapeutics that target the underlying neuroinflammatory processes.
Main body
Marine invertebrates, such as coral, sea urchins, starfish, sponges, and sea cucumbers, have been found to contain a wide variety of biologically active compounds that have demonstrated potential therapeutic properties. These compounds are known to target various key proteins and pathways in neuroinflammation, including 6-hydroxydopamine (OHDH), caspase-3 and caspase-9, p-Akt, p-ERK, p-P38, acetylcholinesterase (AChE), amyloid-β (Aβ), HSF-1, α-synuclein, cellular prion protein, advanced glycation end products (AGEs), paraquat (PQ), and mitochondria DJ-1.
Short conclusion
This review focuses on the current state of research on the neuroprotective effects of compounds found in marine invertebrates and the potential therapeutic implications of these findings for treating neuroinflammatory disorders. We also discussed the challenges and limitations of using marine-based compounds as therapeutics, such as sourcing and sustainability concerns, and the need for more preclinical and clinical studies to establish their efficacy and safety.
Graphical abstract
Collapse
|
44
|
Fodder K, de Silva R, Warner TT, Bettencourt C. The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration. Acta Neuropathol Commun 2023; 11:106. [PMID: 37386505 PMCID: PMC10311741 DOI: 10.1186/s40478-023-01607-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rohan de Silva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
45
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
46
|
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Friend or foe: role of pathological tau in neuronal death. Mol Psychiatry 2023; 28:2215-2227. [PMID: 36918705 DOI: 10.1038/s41380-023-02024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Bing Bao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Dongling Li
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China.
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
47
|
Sun Z, Kwon JS, Ren Y, Chen S, Cates K, Lu X, Walker CK, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Endogenous recapitulation of Alzheimer's disease neuropathology through human 3D direct neuronal reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542155. [PMID: 37292658 PMCID: PMC10245934 DOI: 10.1101/2023.05.24.542155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-β (Aβ) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aβ deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with β- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aβ deposit formation significantly lowered Aβ deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aβ deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aβ accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.
Collapse
|
48
|
Kim SW, Lee JH, Kim B, Yang G, Kim JU. Natural Products as the Potential to Improve Alzheimer's and Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24108827. [PMID: 37240173 DOI: 10.3390/ijms24108827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases in the world, and their incidence rates are increasing as our society ages. This creates a significant social and economic burden. Although the exact cause and treatment methods for these diseases are not yet known, research suggests that Alzheimer's disease is caused by amyloid precursor protein, while α-synuclein acts as a causative agent in Parkinson's disease. The accumulation of abnormal proteins such as these can lead to symptoms such as loss of protein homeostasis, mitochondrial dysfunction, and neuroinflammation, which ultimately result in the death of nerve cells and the progression of neurodegenerative diseases. The medications currently available for these diseases only delay their progression and have many adverse effects, which has led to increased interest in developing natural products with fewer adverse effects. In this study, we selected specific keywords and thesis content to investigate natural products that are effective in treating Alzheimer's and Parkinson's diseases. We reviewed 16 papers on natural products and found that they showed promising mechanisms of action such as antioxidant, anti-inflammatory, and mitochondrial function improvement. Other natural products with similar properties could also be considered potential treatments for neurodegenerative diseases, and they can be consumed as part of a healthy diet rather than as medicine.
Collapse
Affiliation(s)
- Sung Wook Kim
- College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea
| | - Jun Ho Lee
- College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si 54986, Republic of Korea
| | - Bumjung Kim
- Department of Oriental Health Management, Kyung Hee Cyber University, Seoul 02447, Republic of Korea
| | - Gabsik Yang
- College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea
| | - Jong Uk Kim
- College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea
| |
Collapse
|
49
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
50
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|