1
|
Adegoke O, Oyinlola K, Adeniyi KO, Achadu OJ, Yang Z, Daeid NN. An organic-inorganic polyacrylamide-based surface imprinted quantum dots for the impedimetric and voltammetric detection of diazepam in saliva with smartphone readout. Talanta 2025; 285:127400. [PMID: 39706031 DOI: 10.1016/j.talanta.2024.127400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO2-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein. Specifically, electrochemical characterization of the QDs/SPCE using cyclic voltammetry (CV) revealed that the QDs exhibit a higher electrode surface area whilst electrochemical impedance spectroscopy (EIS) characterization demonstrated a lower charge transfer resistance (Rct). To fabricate the electrochemical nanosensor, firstly, alloyed AuZnCeSeS QDs were synthesized in the organic phase and thereafter capped with 3-mercaptopropionic acid (MPA) via a ligand exchange reaction. The MPA-AuZnCeSeS QDs were encapsulated in a SiO2 layer to form a SiO2-MPA AuZnCeSeS QDs system. The QDs were drop-casted onto SPCEs to form a SiO2-MPA AuZnCeSeS QDs/SPCE transducer interface. Organic based acrylamide, used as a functional monomer, was electropolymerized via CV on the QDs/SPCE in the presence of the diazepam template with ethylene glycol dimethacrylate as a crosslinker and 2,2'-azobis(2-methylpropionitrile) as an initiator. Under optimum experimental conditions, DZP was detected using EIS and square wave voltammetry (SWV). Using a portable potentiostat and a hand-held smartphone-based potentiostat, DZP was quantitatively detected in saliva using the MIP@QDs/SPCE with a limit of detection (LOD) of 2.3 μM and 2.7 μM, respectively. The LOD for DZP from SWV analysis was 1.0 μM.
Collapse
Affiliation(s)
- Oluwasesan Adegoke
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK.
| | - Kayode Oyinlola
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Kayode Omotayo Adeniyi
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Ojodomo J Achadu
- School of Health and Life Sciences, and National Horizon Centre, Teesside University, TS1 3BA, Middlesbrough, UK
| | - Zhugen Yang
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
2
|
Abou-Khalil BW. Update on Antiseizure Medications 2025. Continuum (Minneap Minn) 2025; 31:125-164. [PMID: 39899099 DOI: 10.1212/con.0000000000001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVE This article is an update from the article on antiseizure medication therapy published in the three previous Continuum issues on epilepsy and is intended to cover the vast majority of agents currently available to neurologists in the management of patients with epilepsy. This article addresses antiseizure medications individually, focusing on key pharmacokinetic characteristics, indications, and modes of use. LATEST DEVELOPMENTS Since the most recent version of this article was published, one new antiseizure medication, ganaxolone, has been approved by the US Food and Drug Administration (FDA), and the indications of some approved medications were expanded. Older antiseizure medications are effective but have tolerability and pharmacokinetic disadvantages. Several newer antiseizure medications have undergone comparative trials demonstrating efficacy equal to and tolerability at least equal to or better than older antiseizure medications as first-line therapy for focal epilepsy. These agents include lamotrigine, oxcarbazepine, levetiracetam, topiramate, zonisamide, and lacosamide. Pregabalin was found to be less effective than lamotrigine. Lacosamide, pregabalin, and eslicarbazepine have undergone successful trials of conversion to monotherapy for focal epilepsy. Other newer antiseizure medications with a variety of mechanisms of action are suitable for adjunctive therapy. ESSENTIAL POINTS Knowledge of antiseizure medication pharmacokinetics, efficacy, and tolerability profiles facilitates the choice of appropriate antiseizure medication therapy for patients with epilepsy. Rational antiseizure medication combinations should avoid antiseizure medications with unfavorable pharmacokinetic interactions or pharmacodynamic interactions related to mechanism of action.
Collapse
|
3
|
Cavalcante RMB, Ferreira MKA, Wlisses da Silva A, Mendes FRDS, Guimarães Lemos C, Bezerra Maciel J, Rocha Cavalcante T, Silva Marinho E, Alencar de Menezes JES, Dos Santos HS. Anxiolytic and Anticonvulsant Potential of Biosynthetic Limonene Derivatives in Adult Zebrafish. Chem Biodivers 2025; 22:e202401663. [PMID: 39352146 DOI: 10.1002/cbdv.202401663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/09/2024]
Abstract
This study investigated the anxiolytic and anticonvulsant effects and safety profile of limonene enantiomers and their oxidized derivatives. The toxicity test was performed by monitoring the animals for 96 hours, with no deaths or significant toxicity observed up to the highest dose, which allowed the determination of the LD50. Doses of 4, 20 and 40 mg/kg were tested, with no toxicity observed up to 96 h (LD50>40 mg/kg). Anxiolytic activity was measured in a preference test for light and dark areas, and the effect of the compounds was evaluated in the presence of serotonergic antagonists. The (S)-(-)-LIM and (R)-(+)-LIM enantiomers showed anxiolytic effects, with (S)-(-)-LIM being effective at all doses. In the anticonvulsant test, the oxidized derivatives, such as perilyl acid (PAC), significantly delayed PTZ-induced seizures, an effect blocked by flumazenil (FMZ). The oxidized derivatives, especially perilyl acid (PAC), showed anxiolytic effects at all doses and significantly delayed the three PTZ-induced seizure events. This effect was blocked by FMZ, suggesting a relationship between PAC and the GABAergic pathway. PAC, being the most oxidized derivative, was the most effective for both anxiety and delaying seizure progression, suggesting that oxidation of limonene compounds may increase their therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Helcio Silva Dos Santos
- Postgraduate Program in Biotechnology - PPGB-Renorbio, State University of Ceara, Fortaleza, CE, Brazil
- State University of Ceara, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, CE, Brazil
| |
Collapse
|
4
|
Cardona-Acosta AM, Meisser N, Vardeleon NI, Steiner H, Bolaños-Guzmán CA. Mother's little helper turned a foe: Alprazolam use, misuse, and abuse. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111137. [PMID: 39260815 DOI: 10.1016/j.pnpbp.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Benzodiazepines are effective in managing anxiety and related disorders when used properly (short-term). Their inappropriate use, however, carries significant risks, involving amnesia, rebound insomnia, rebound anxiety, depression, dependence, abuse, addiction, and an intense and exceedingly prolonged withdrawal, among other complications. Benzodiazepines also amplify the effects of opioids and, consequently, have been implicated in approximately 30 % of opioid overdose deaths. Despite their unfavorable profile, sharp increases in medical and non-medical use of benzodiazepines have been steadily reported worldwide. Alprazolam (Xanax®), a potent, short-acting benzodiazepine, is among the most prescribed and abused anxiolytics in the United States. This medication is commonly co-abused with opioids, increasing the likelihood for oversedation, overdose, and death. Notwithstanding these risks, it is surprising that research investigating how benzodiazepines, such as alprazolam, interact with opioids is severely lacking in clinical and preclinical settings. This review therefore aims to present our current knowledge of benzodiazepine use and misuse, with an emphasis on alprazolam when data is available, and particularly in populations at higher risk for developing substance use disorders. Additionally, the potential mechanism(s) surrounding tolerance, dependence and abuse liability are discussed. Despite their popularity, our understanding of how benzodiazepines and opioids interact is less than adequate. Therefore, it is now more important than ever to understand the short- and long-term consequences of benzodiazepine/alprazolam use.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Noelle Meisser
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Nathan I Vardeleon
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Besag FMC, Vasey MJ, Brown RJ. Promising therapeutic strategies for Lennox-Gastaut syndrome: what's new? Expert Rev Neurother 2025; 25:15-27. [PMID: 39706228 DOI: 10.1080/14737175.2024.2439512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION The seizures in Lennox-Gastaut syndrome are typically resistant to treatment. Seven antiseizure medications (ASMs) in the US (six in the UK/EU) are licensed for the treatment of seizures in LGS: lamotrigine, topiramate, rufinamide, clobazam, felbamate (not licensed in the UK/EU), cannabidiol and fenfluramine. Other options include neurostimulation, corpus callosotomy and dietary therapies, principally the ketogenic diet and its variants. New treatments and therapeutic strategies are needed to improve management of both seizures and cognitive/behavioral comorbidities in LGS. AREAS COVERED Embase and Medline were searched for articles published between 1 January 2014 and 21 August 2024 reporting efficacy data for pharmacological, neurostimulation, surgical and dietary interventions in individuals with LGS focusing on recent advances. Ongoing and prospective studies were identified from the National Library of Medicine register of clinical trials. EXPERT OPINION LGS remains a difficult-to-treat epilepsy. Although no major breakthroughs have been reported, several established and novel ASMs, some surgical strategies and other treatment approaches are of benefit or are showing promise. Progress remains incremental but any improvements in the management of this resistant epilepsy syndrome are worthwhile.
Collapse
Affiliation(s)
- Frank M C Besag
- Child and Adolescent Mental Health Services, East London NHS Foundation Trust, Bedford, UK
- School of Pharmacy, University College London, London, UK
- Department of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michael J Vasey
- Child and Adolescent Mental Health Services, East London NHS Foundation Trust, Bedford, UK
| | - Richard J Brown
- Department of Paediatrics, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
6
|
Islam MT, Bhuia MS, Mostakim MS, Chowdhury R, Hasan R, Sheikh S, Ansari SA, Ansari IA, Eity TA, Islam MT. Synergistic Anxiolytic Effects of Linalool and Sesamol Co-Treatment on Swiss Albino Mice: A Potential GABAergic Intervention. Synapse 2025; 79:e70003. [PMID: 39729049 DOI: 10.1002/syn.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Sesamol (SES) and linalool (LIN) are aromatic compounds that have neuroprotective effects. The main purpose of this study is to evaluate the anxiolytic activity of LIN and SES co-treatment on Swiss albino mice and analyze its possible mechanism through in silico study. In this sense, the mice were given the gamma-aminobutyric acid type A receptors (GABAA) agonist diazepam (DZP; 3 mg/kg, p.o.) as a positive control. A vehicle (10 mL/kg) was served as control. The tested chemicals, single-dose LIN (50 mg/kg) and SES (50 mg/kg), as well as a combination (LIN + SES) and (DZP + LIN + SES), were administered orally in order to conduct several behavioral tests, including open-field, swings box, hole-crossing, and dark-resident time tests. Further, molecular docking studies of LIN, SES, and DZP were carried out through different software. The results showed that LIN and SES individually have significant anxiolytic-like activity in mice. Further, when LIN was combined with SES and with (SES + DZP), it exhibited a relatively lower locomotor activity in mice compared to individual treatment groups, indicating a synergistic action. In addition, the molecular docking analysis revealed that LIN and SES have a moderate binding affinity (-5.0 and -5.1 kcal/mol) toward the GABAA receptor α3 subunit. In conclusion, our findings suggest that LIN and SES exerted synergistic anxiolytic activity on Swiss albino mice, possibly through the GABAergic interaction pathways.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Shadin Mostakim
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Salehin Sheikh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Tanzila Akter Eity
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tohidul Islam
- Department of Biochemistry & Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
7
|
Ku RY, Bansal A, Dutta DJ, Yamashita S, Peloquin J, Vu DN, Shen Y, Uchida T, Torii M, Hashimoto-Torii K. Evaluating chemical effects on human neural cells through calcium imaging and deep learning. iScience 2024; 27:111298. [PMID: 39634567 PMCID: PMC11616611 DOI: 10.1016/j.isci.2024.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
New substances intended for human consumption must undergo extensive preclinical safety pharmacology testing prior to approval. These tests encompass the evaluation of effects on the central nervous system, which is highly sensitive to chemical substances. With the growing understanding of the species-specific characteristics of human neural cells and advancements in machine learning technology, the development of effective and efficient methods for the initial screening of chemical effects on human neural function using machine learning platforms is anticipated. In this study, we employed a deep learning model to analyze calcium dynamics in human-induced pluripotent stem cell-derived neural progenitor cells, which were exposed to various concentrations of four representative chemicals. We report that this approach offers a reliable and concise method for quantitatively classifying the effects of chemical exposures and predicting potential harm to human neural cells.
Collapse
Affiliation(s)
- Ray Yueh Ku
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Dipankar J. Dutta
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - John Peloquin
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Diana N. Vu
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yubing Shen
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Tomoki Uchida
- Novel Business Development Department, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
8
|
Gorecki L, Pejchal J, Torruellas C, Korabecny J, Soukup O. Midazolam - A diazepam replacement for the management of nerve agent-induced seizures. Neuropharmacology 2024; 261:110171. [PMID: 39362626 DOI: 10.1016/j.neuropharm.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
A benzodiazepine, diazepam, has been the leading antidote for seizures caused by nerve agents, the most toxic chemical weapons of mass destruction, since the 1960s. However, its limitations have often brought questions about its usefulness. Extensive effort has been devoted into exploring alternatives, such as other benzodiazepines, anticholinergics, or glutamate antagonists. However, only few showed clear clinical benefit. The only two options to ultimately reach clinical milestones are Avizafone, a water-soluble prodrug of diazepam adopted by the French and UK armed forces, and intramuscular midazolam, adopted by the US Army. The recently FDA-approved new intramuscular application of midazolam brought several advantages, such as rapid onset of action, short duration with predictable pharmacokinetics, increased water solubility for aqueous injectable solutions, and prolonged storage stability. Herein, we discuss the pitfalls and prospects of using midazolam as a substitute in anticonvulsant therapy with a particular focus on military purposes in combat casualty care. We have also considered and discussed several other alternatives that are currently at the experimental level. Recent studies have shown the superiority of midazolam over other benzodiazepines in the medical management of poisoned casualties. While its use in emergency care is straightforward, the proper dose for soldiers under battlefield conditions is questionable due to its sedative effects.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Carilyn Torruellas
- U. S. Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, 21010-5424, USA
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Dai J, Shen HL, Li J, Zhou Y, Dong ZX, Zhu XY. Gastrodin Attenuates Neuroinflammation and Injury in Young Rats with LiCl/Pilocarpine-Induced Status Epilepticus. Biochem Genet 2024:10.1007/s10528-024-10971-7. [PMID: 39570508 DOI: 10.1007/s10528-024-10971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024]
Abstract
Status epilepticus is a severe neurological emergency that often leads to long-term neuronal damage and functional impairment. Gastrodin is a compound widely used in traditional Chinese medicine with potential neuroprotective effects. This study aims to investigate the effects of GAS on neuroinflammation and injury caused by LiCl/pilocarpine-induced SE in young rats. SE in rats was induced using the LiCl/pilocarpine model. Morris water maze and Y-maze experiments were used for the behavioral test of rats. Enzyme-linked immunosorbent assay was utilized to quantify the levels of interleukin (IL)-1β, IL-6, and IL-8 levels, and biochemical kits assessed the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase (GSH-px) in hippocampus tissues. Additionally, Western blot analysis was performed to evaluate the protein expression levels of p-p65, p65, p-IκBα and IκBα, which are key factors of the nuclear factor kappa B (NF-κB) signaling pathway. Compared to the control group, the SE group rats exhibited reduced learning and memory abilities. Markedly elevated levels of inflammatory factors (IL-1β, IL-6, and IL-8). The expression levels of p-p65 and p-IκBα were significantly upregulated, while IκBα levels were notably decreased. Following GAS treatment, the latency of seizure onset was significantly shortened, the incidence of SE was significantly reduced and the severity of nerve injury was alleviated. Additionally, both the inflammation levels and the oxidative stress were significantly decreased, primarily through inhibition NF-κB signaling pathway. These findings suggest that GAS may be a potential therapeutic agent for treating SE.
Collapse
Affiliation(s)
- Jie Dai
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China
| | - Hai-Lin Shen
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China
| | - Jia Li
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China
| | - Yong Zhou
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China
| | - Zheng-Xie Dong
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China
| | - Xiang-Yang Zhu
- Department of Neurology, Nantong First People's Hospital, Nantong, 226014, Jiangsu, China.
| |
Collapse
|
10
|
Muenks A, Farrell DP, Zhou G, DiMaio F. Automated identification of small molecules in cryo-electron microscopy data with density- and energy-guided evaluation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.623795. [PMID: 39605546 PMCID: PMC11601544 DOI: 10.1101/2024.11.20.623795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Methodological improvements in cryo-electron microscopy (cryoEM) have made it a useful tool in ligand-bound structure determination for biology and drug design. However, determining the conformation and identity of bound ligands is still challenging at the resolutions typical for cryoEM. Automated methods can aid in ligand conformational modeling, but current ligand identification tools - developed for X-ray crystallography data - perform poorly at resolutions common for cryoEM. Here, we present EMERALD-ID, a method capable of docking and evaluating small molecule conformations for ligand identification. EMERALD-ID identifies 43% of common ligands exactly and identifies closely related ligands in 66% of cases. We then use this tool to discover possible ligand identification errors, as well as previously unidentified ligands. Furthermore, we show EMERALD-ID is capable of identifying ligands from custom ligand libraries of various small molecule types, including human metabolites and drug fragments. Our method provides a valuable addition to cryoEM modeling tools to improve small molecule model accuracy and quality.
Collapse
Affiliation(s)
- Andrew Muenks
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Daniel P. Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
11
|
Džodić J, Marković M, Milenković D, Dimić D. Molecular Aspects of the Interactions between Selected Benzodiazepines and Common Adulterants/Diluents: Forensic Application of Theoretical Chemistry Methods. Int J Mol Sci 2024; 25:10087. [PMID: 39337573 PMCID: PMC11432270 DOI: 10.3390/ijms251810087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Benzodiazepines are frequently encountered in crime scenes, often mixed with adulterants and diluents, complicating their analysis. This study investigates the interactions between two benzodiazepines, lorazepam (LOR) and alprazolam (ALP), with common adulterants/diluents (paracetamol, caffeine, glucose, and lactose) using infrared (IR) spectroscopy and quantum chemical methods. The crystallographic structures of LOR and ALP were optimized using several functionals (B3LYP, B3LYP-D3BJ, B3PW91, CAM-B3LYP, M05-2X, and M06-2X) combined with the 6-311++G(d,p) basis set. M05-2X was the most accurate when comparing experimental and theoretical bond lengths and angles. Vibrational and 13C NMR spectra were calculated to validate the functional's applicability. The differences between LOR's experimental and theoretical IR spectra were attributed to intramolecular interactions between LOR monomers, examined through density functional theory (DFT) optimization and quantum theory of atoms in molecules (QTAIM) analysis. Molecular dynamics simulations modeled benzodiazepine-adulterant/diluent systems, predicting the most stable structures, which were further analyzed using QTAIM. The strongest interactions and their effects on IR spectra were identified. Comparisons between experimental and theoretical spectra confirmed spectral changes due to interactions. This study demonstrates the potential of quantum chemical methods in analyzing complex mixtures, elucidating spectral changes, and assessing the structural stability of benzodiazepines in forensic samples.
Collapse
Affiliation(s)
- Jelica Džodić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milica Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Hampton CE, Kleine SA, Smith JS, Mulon PY, Smith CK, Shanks GA, Vanecek LR, Seddighi R, Cox S. Pharmacokinetics of oral clonazepam in growing commercial pigs (Sus scrofa domestica). J Vet Pharmacol Ther 2024; 47:365-371. [PMID: 38706125 DOI: 10.1111/jvp.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Clonazepam causes sedation and psychomotor impairment in people. Due to similarities between people and swine in response to benzodiazepines, clonazepam may represent a viable option to produce mild-to-moderate tranquillization in pigs. The objective of this study was to determine the pharmacokinetic profile of a single oral dose (0.5 mg/kg) of clonazepam in eight healthy, growing commercial cross pigs. Serial plasma samples were collected at baseline and up to 96 h after administration. Plasma concentrations were quantified using reverse-phase high-performance liquid chromatography, and compartment models were fit to time-concentration data. A one-compartment first-order model best fits the data. Maximum plasma concentration was 99.5 ng/mL, and time to maximum concentration was 3.4 h. Elimination half-life was 7.3 h, mean residence time 7.4 h, and apparent volume of distribution 5.7 L/kg. Achieved plasma concentrations exceeded those associated with psychomotor impairment in people although pharmacodynamic effects have not been investigated in pigs. A simulated oral regimen consisting of 0.35 mg/kg administered every 8 h to pigs would achieve plasma concentrations above 32 ng/mL which are shown to produce psychomotor impairment in people. Further studies to test the clinical efficacy of these dosages in commercial and miniature pigs are warranted.
Collapse
Affiliation(s)
- Chiara E Hampton
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephanie A Kleine
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Joe S Smith
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Pierre-Yves Mulon
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Christopher K Smith
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A Shanks
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Reza Seddighi
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Sherry Cox
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Colmard M, Rivier F, de Barry G, Roubertie A, Urtiaga-Valle S, Mercedes-Alvarez B, Combes C, Cambonie G, Milesi C, Meyer P. Efficacy of intravenous clonazepam for paediatric convulsive status epilepticus. Dev Med Child Neurol 2024; 66:1053-1061. [PMID: 38263722 DOI: 10.1111/dmcn.15859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
AIM To compare the efficacy of intravenous clonazepam (CLZ) for the initial management of convulsive status epilepticus (CSE) in children as a function of the first-line in-hospital dose used. METHOD This monocentric retrospective study included children who received a first dose of CLZ for CSE at Montpellier University Hospital, France, between January 2016 and June 2019. Data from medical records (clinical, treatment, course) were collected and compared as a function of the first CLZ dose used. RESULTS Among the 310 children treated for CSE, 105 received at least one CLZ dose (median age 3 years; quartile 1-quartile 3 [Q1-Q3] = 1 years 2 months-6 years 6 months). Among these 105 patients, 24 (22%) received a dose less than 0.03 mg/kg (low dose) and 69 (65%) received a dose of at least 0.03 mg/kg (high dose). Seizure cessation rate was not different between the low- and high-dose groups (62.5% vs 76%; odds ratio 0.53, 95% confidence interval [CI] 0.19-1.44, p = 0.29). The administration of a second dose of CLZ was more frequent in the low- than the high-dose group (37.5% vs 16%; odds ratio 3.2, 95% CI 1.1-9.1, p = 0.04). INTERPRETATION Our study did not find any difference in seizure termination rate as a function of CLZ dose in children with CSE. However, a second CLZ dose was more frequently needed in the group receiving low (less than 0.03 mg/kg) CLZ.
Collapse
Affiliation(s)
- Maxime Colmard
- Département de Neuropédiatrie, CHU de Montpellier, Montpellier, France
| | - François Rivier
- Département de Neuropédiatrie, CHU de Montpellier, Montpellier, France
- PhyMedExp, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Gaëlle de Barry
- Département de Pharmacie clinique, CHU de Montpellier, Montpellier, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU de Montpellier, Montpellier, France
- INM, INSERM U1298, Université de Montpellier, Montpellier, France
| | | | | | - Clementine Combes
- Département de Réanimation Pédiatrique, CHU de Montpellier, Montpellier, France
| | - Gilles Cambonie
- Département de Réanimation Pédiatrique, CHU de Montpellier, Montpellier, France
| | - Christophe Milesi
- Département de Réanimation Pédiatrique, CHU de Montpellier, Montpellier, France
| | - Pierre Meyer
- Département de Neuropédiatrie, CHU de Montpellier, Montpellier, France
- PhyMedExp, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Shakhawat AMD, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. eLife 2024; 12:RP92543. [PMID: 38953282 PMCID: PMC11219043 DOI: 10.7554/elife.92543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin MD Shakhawat
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | | - Adam B Nance
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Jaydev Bhateja
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | |
Collapse
|
15
|
Harrington EG, Kissack P, Terry JR, Woldman W, Junges L. Treatment effects in epilepsy: a mathematical framework for understanding response over time. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1308501. [PMID: 38988793 PMCID: PMC11233745 DOI: 10.3389/fnetp.2024.1308501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, affecting over 65 million people worldwide. Treatment typically commences with the use of anti-seizure medications, including both mono- and poly-therapy. Should these fail, more invasive therapies such as surgery, electrical stimulation and focal drug delivery are often considered in an attempt to render the person seizure free. Although a significant portion ultimately benefit from these treatment options, treatment responses often fluctuate over time. The physiological mechanisms underlying these temporal variations are poorly understood, making prognosis a significant challenge when treating epilepsy. Here we use a dynamic network model of seizure transition to understand how seizure propensity may vary over time as a consequence of changes in excitability. Through computer simulations, we explore the relationship between the impact of treatment on dynamic network properties and their vulnerability over time that permit a return to states of high seizure propensity. For small networks we show vulnerability can be fully characterised by the size of the first transitive component (FTC). For larger networks, we find measures of network efficiency, incoherence and heterogeneity (degree variance) correlate with robustness of networks to increasing excitability. These results provide a set of potential prognostic markers for therapeutic interventions in epilepsy. Such markers could be used to support the development of personalized treatment strategies, ultimately contributing to understanding of long-term seizure freedom.
Collapse
Affiliation(s)
- Elanor G. Harrington
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Peter Kissack
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Wang B, Li M, Haihambo N, Qiu Z, Sun M, Guo M, Zhao X, Han C. Characterizing Major Depressive Disorder (MDD) using alpha-band activity in resting-state electroencephalogram (EEG) combined with MATRICS Consensus Cognitive Battery (MCCB). J Affect Disord 2024; 355:254-264. [PMID: 38561155 DOI: 10.1016/j.jad.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear. METHODS In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone. CONCLUSIONS Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Bin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Zihan Qiu
- Avenues the World School Shenzhen Campus, Shenzhen 518000, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mingrou Guo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
17
|
Widmann M, Lieb A, Fogli B, Steck A, Mutti A, Schwarzer C. Characterization of the intrahippocampal kainic acid model in female mice with a special focus on seizure suppression by antiseizure medications. Exp Neurol 2024; 376:114749. [PMID: 38467356 PMCID: PMC7615823 DOI: 10.1016/j.expneurol.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Despite special challenges in the medical treatment of women with epilepsy, in particular preclinical animal studies were focused on males for decades and females have only recently moved into the focus of scientific interest. The intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy (TLE) is one of the most studied models in males reproducing electroencephalographic (EEG) and histopathological features of human TLE. Hippocampal paroxysmal discharges (HPDs) were described as drug resistant focal seizures in males. Here, we investigated the IHKA model in female mice, in particular drug-resistance of HPDs and the influence of antiseizure medications (ASMs) on the power spectrum. After injecting kainic acid (KA) unilaterally into the hippocampus of female mice, we monitored the development of epileptiform activity by local field potential (LFP) recordings. Subsequently, we evaluated the effect of the commonly prescribed ASMs lamotrigine (LTG), oxcarbazepine (OXC) and levetiracetam (LEV), as well as the benzodiazepine diazepam (DZP) with a focus on HPDs and power spectral analysis and assessed neuropathological alterations of the hippocampus. In the IHKA model, female mice replicated key features of human TLE as previously described in males. Importantly, HPDs in female mice did not respond to commonly prescribed ASMs in line with the drug-resistance in males, thus representing a suitable model of drug-resistant seizures. Intriguingly, we observed an increased occurrence of generalized seizures after LTG. Power spectral analysis revealed a pronounced increase in the delta frequency range after the higher dose of 30 mg/kg LTG. DZP abolished HPDs and caused a marked reduction over a wide frequency range (delta, theta, and alpha) of the power spectrum. By characterizing the IHKA model of TLE in female mice we address an important gap in basic research. Considering the special challenges complicating the therapeutic management of epilepsy in women, inclusion of females in preclinical studies is imperative. A well-characterized female model is a prerequisite for the development of novel therapeutic strategies tailored to sex-specific needs and for studies on the effect of epilepsy and ASMs during pregnancy.
Collapse
Affiliation(s)
- Melanie Widmann
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Andreas Lieb
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Barbara Fogli
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Steck
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Anna Mutti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
18
|
Zhao P, Ding X, Li L, Jiang G. A review of cell-type specific circuit mechanisms underlying epilepsy. ACTA EPILEPTOLOGICA 2024; 6:18. [PMID: 40217549 PMCID: PMC11960342 DOI: 10.1186/s42494-024-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a prevalent neurological disorder, yet its underlying mechanisms remain incompletely understood. Accumulated studies have indicated that epilepsy is characterized by abnormal neural circuits. Understanding the circuit mechanisms is crucial for comprehending the pathogenesis of epilepsy. With advances in tracing and modulating tools for neural circuits, some epileptic circuits have been uncovered. This comprehensive review focuses on the circuit mechanisms underlying epilepsy in various neuronal subtypes, elucidating their distinct roles. Epileptic seizures are primarily characterized by the hyperactivity of glutamatergic neurons and inhibition of GABAergic neurons. However, specific activated GABAergic neurons and suppressed glutamatergic neurons exacerbate epilepsy through preferentially regulating the activity of GABAergic neurons within epileptic circuits. Distinct subtypes of GABAergic neurons contribute differently to epileptic activities, potentially due to their diverse connection patterns. Moreover, identical GABAergic neurons may assume distinct roles in different stages of epilepsy. Both GABAergic neurons and glutamatergic neurons with long-range projecting fibers innervate multiple nuclei; nevertheless, not all of these circuits contribute to epileptic activities. Epileptic circuits originating from the same nuclei may display diverse contributions to epileptic activities, and certain glutamatergic circuits from the same nuclei may even exert opposing effects on epilepsy. Neuromodulatory neurons, including cholinergic, serotonergic, dopaminergic, and noradrenergic neurons, are also implicated in epilepsy, although the underlying circuit mechanisms remain poorly understood. These studies suggest that epileptic nuclei establish intricate connections through cell-type-specific circuits and play pivotal roles in epilepsy. However, there are still limitations in knowledge and methods, and further understanding of epileptic circuits is crucial, particularly in the context of refractory epilepsy.
Collapse
Affiliation(s)
- Peilin Zhao
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiaomi Ding
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lini Li
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Guohui Jiang
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
- Department of Neurology, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
| |
Collapse
|
19
|
Shakhawat AM, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561013. [PMID: 37873217 PMCID: PMC10592955 DOI: 10.1101/2023.10.05.561013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2Db (MH-CI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin Md Shakhawat
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jacqueline G Foltz
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | | | - Jaydev Bhateja
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| |
Collapse
|
20
|
Liddiard GT, Suryavanshi PS, Glykys J. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex. J Neurosci 2024; 44:e1342232023. [PMID: 38176909 PMCID: PMC10869160 DOI: 10.1523/jneurosci.1342-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.
Collapse
Affiliation(s)
- G T Liddiard
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
| | - P S Suryavanshi
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
| | - J Glykys
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
- Department of Neurology, The University of Iowa, Iowa City 52242, Iowa
| |
Collapse
|
21
|
Xiao F, Ding X, Shi Y, Wang D, Wang Y, Cui C, Zhu T, Chen K, Xiang P, Luo X. Application of ensemble learning for predicting GABA A receptor agonists. Comput Biol Med 2024; 169:107958. [PMID: 38194778 DOI: 10.1016/j.compbiomed.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Over the past few decades, agonists binding to the benzodiazepine site of the GABAA receptor have been successfully developed as clinical drugs. Different modulators (agonist, antagonist, and reverse agonist) bound to benzodiazepine sites exhibit different or even opposite pharmacological effects, however, their structures are so similar that it is difficult to distinguish them based solely on molecular skeleton. This study aims to develop classification models for predicting the agonists. METHODS 306 agonists or non-agonists were collected from literature. Six machine learning algorithms including RF, XGBoost, AdaBoost, GBoost, SVM, and ANN algorithms were employed for model development. Using six descriptors including 1D/2D Descriptors, ECFP4, 2D-Pharmacophore, MACCS, PubChem, and Estate fingerprint to characterize chemical structures. The model interpretability was explored by SHAP method. RESULTS The best model demonstrated an AUC value of 0.905 and an MCC value of 0.808 for the test set. The PubMac-based model (PubMac-GB) achieved best AUC values of 0.935 for test set. The SHAP analysis results emphasized that MaccsFP62, ECFP_624, ECFP_724, and PubchemFP213 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. The PubMac-GB model was applied to virtual screening for potential GABAA agonists and the top 100 compounds were given. CONCLUSION Overall, our ensemble learning-based model (PubMac-GB) achieved comparable performance and would be helpful in effectively identifying agonists of GABAA receptors.
Collapse
Affiliation(s)
- Fu Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yan Shi
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chen Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tingfei Zhu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| | - Xiaomin Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
22
|
Dantas LMS, Ogata N. Veterinary Psychopharmacology. Vet Clin North Am Small Anim Pract 2024; 54:195-205. [PMID: 37648610 DOI: 10.1016/j.cvsm.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The stress response affects the central nervous system and multiple other systems in the body. Chronic mental and behavioral pathologies are associated with inflammation, dysfunctions in the immune response and an increased risk for other chronic inflammatory and metabolic diseases. Psychiatric treatments alleviate fear, stress and anxiety, increase the qualify of life and lifespan for dogs and cats. Multiple safe psychoactive medications that can be used in association are available to help veterinary patients. Clinicians should understand the function of neurotransmitters and hormones on emotional processing, cognition and behavior, and drug mechanism of action so medication selection is appropriate for each individual patient.
Collapse
Affiliation(s)
- Leticia M S Dantas
- American College of Veterinary Behaviorists, Certified Fear Free Professional; Department of Biomedical Sciences, Behavioral Medicine Service, University of Georgia Veterinary Teaching Hospital, 501 D.W. Brooks Drive, Athens, GA 30602, USA.
| | - Niwako Ogata
- American College of Veterinary Behaviorists, Certified Fear Free Professional; Department of Clinical Sciences, Veterinary Behavior Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Embuldeniya S, Goralski KB. Unlocking the Goldenseal Reveals the Complexities of Natural Product-Drug Interactions. J Pharmacol Exp Ther 2023; 387:249-251. [PMID: 37967895 DOI: 10.1124/jpet.123.001863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Shanukie Embuldeniya
- Department of Biology (S.E.), College of Pharmacy (S.E., K.B.G.), and Department of Pharmacology (K.B.G.), Dalhousie University, Halifax, NS, Canada and Department of Pediatrics, IWK Health Centre (K.B.G.) and Senior Scientist, Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Biology (S.E.), College of Pharmacy (S.E., K.B.G.), and Department of Pharmacology (K.B.G.), Dalhousie University, Halifax, NS, Canada and Department of Pediatrics, IWK Health Centre (K.B.G.) and Senior Scientist, Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
24
|
Mathew SJ, Jean-Lys S, Phull R, Yarasani R. Characterization of Extended-Release Lorazepam: Pharmacokinetic Results Across Phase 1 Clinical Studies. J Clin Psychopharmacol 2023; Publish Ahead of Print:00004714-990000000-00147. [PMID: 37335199 DOI: 10.1097/jcp.0000000000001715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE/BACKGROUND Once-daily extended-release (ER) lorazepam was developed to reduce fluctuations in plasma levels compared with lorazepam immediate-release (IR) for short-term anxiety relief. Here we report a series of phase 1 randomized, open-label, multiperiod crossover studies characterizing ER lorazepam pharmacokinetics and safety in healthy adults. METHODS/PROCEDURES These phase 1 studies assessed the pharmacokinetics of ER lorazepam administered: (study 1) 3 mg once daily versus IR lorazepam 1 mg 3 times a day (TID; every 8 hours), (study 2) with or without food, and (study 3) intact versus sprinkled onto food. Study 3 further evaluated the proportionality of 1 × 4- versus 4 × 1-mg doses. Safety was also monitored. FINDINGS/RESULTS There were 43, 27, and 29 subjects who completed studies 1, 2, and 3, respectively. The 90% confidence intervals for Cmax,SS, Cmin, and AUCTAU,SS of once-daily ER lorazepam compared with IR given TID were within 80% to 125% limits establishing steady-state bioequivalence. Maximum mean lorazepam concentrations were achieved at 11 hours compared with 1 hour after dosing for ER versus IR lorazepam, respectively. Pharmacokinetic parameters (Cmax, AUClast or AUC0-t, AUCinf or AUC0-inf) of ER lorazepam were bioequivalent whether taken with or without food, administered intact or sprinkled onto food, or administered as intact 1 × 4- versus 4 × 1-mg capsules. No serious safety concerns were found. IMPLICATIONS/CONCLUSIONS Once-daily ER lorazepam provided a pharmacokinetic profile bioequivalent to IR lorazepam given TID and was well tolerated in healthy adults across all phase 1 studies. These data suggest that ER lorazepam could be an alternative for patients currently treated with IR lorazepam.
Collapse
Affiliation(s)
- Sanjay J Mathew
- From the Menninger Department of Psychiatry and Behavioral Sciences at Baylor College of Medicine, Houston, TX
| | - Shedly Jean-Lys
- Almatica Pharma, Department of Clinical Research and Development, Morristown, NJ
| | - Rupinder Phull
- Almatica Pharma, Department of Clinical Research and Development, Morristown, NJ
| | - Rama Yarasani
- Almatica Pharma, Department of Clinical Research and Development, Morristown, NJ
| |
Collapse
|
25
|
Lu C, Zhu X, Feng Y, Ao W, Li J, Gao Z, Luo H, Chen M, Cai F, Zhan S, Li H, Sun W, Hu J. Atypical antipsychotics antagonize GABA A receptors in the ventral tegmental area GABA neurons to relieve psychotic behaviors. Mol Psychiatry 2023; 28:2107-2121. [PMID: 36754983 DOI: 10.1038/s41380-023-01982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Psychosis is an abnormal mental condition that can cause patients to lose contact with reality. It is a common symptom of schizophrenia, bipolar disorder, sleep deprivation, and other mental disorders. Clinically, antipsychotic medications, such as olanzapine and clozapine, are very effective in treatment for psychosis. To investigate the neural circuit mechanism that is affected by antipsychotics and identify more selective therapeutic targets, we employed a strategy by using these effective antipsychotics to identify antipsychotic neural substrates. We observed that local injection of antipsychotics into the ventral tegmental area (VTA) could reverse the sensorimotor gating defects induced by MK-801 injection in mice. Using in vivo fiber photometry, electrophysiological techniques, and chemogenetics, we found that antipsychotics could activate VTA gamma-aminobutyric acid (GABA) neurons by blocking GABAA receptors. Moreover, we found that the VTAGABA nucleus accumbens (NAc) projection was crucially involved in such antipsychotic effects. In summary, our study identifies a novel therapeutic target for the treatment of psychosis and underscores the utility of a 'bedside-to-bench' approach for identifying neural circuits that influence psychotic disorders.
Collapse
Affiliation(s)
- Chen Lu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Weizhen Ao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Zilong Gao
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ming Chen
- Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shulu Zhan
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, 102206, Beijing, China.
- School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
26
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Whitledge JD, Soto P, Glowacki KM, Fox ER, Mazer-Amirshahi M. Shortages of agents used to treat antimuscarinic delirium. Am J Emerg Med 2023; 67:163-167. [PMID: 36893630 DOI: 10.1016/j.ajem.2023.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Antimuscarinic delirium (AD), a potentially life-threatening condition frequently encountered by emergency physicians, results from poisoning with antimuscarinic agents. Treatment with physostigmine and benzodiazepines is the mainstay of pharmacotherapy, and use of dexmedetomidine and non-physostigmine centrally-acting acetylcholinesterase inhibitors (cAChEi) such as rivastigmine has also been described. Unfortunately, these medications are subject to drug shortages which negatively impact the ability to provide appropriate pharmacologic treatment of patients with AD. METHODS Drug shortage data were retrieved from the University of Utah Drug Information Service (UUDIS) database from January 2001 through December 2021. Shortages of first-line agents used to treat AD (physostigmine and parenteral benzodiazepines) and second-line agents (dexmedetomidine and non-physostigmine cAChEi) were examined. Drug class, formulation, route of administration, reason for shortage, shortage duration, generic status, and whether the drug was a single-source product (made by only one manufacturer) were extracted. Shortage overlap and median shortage durations were calculated. RESULTS Twenty-six shortages impacting drugs used to treat AD were reported to UUDIS from January 1, 2001 to December 31, 2021. Median shortage duration for all medication classes was 6.0 months. Four shortages were unresolved at the end of the study period. The single medication most often on shortage was dexmedetomidine, however benzodiazepines were the most common medication class on shortage. Twenty-five shortages involved parenteral formulations, and one shortage involved the transdermal patch formulation of rivastigmine. The majority (88.5%) of shortages involved generic medications, and 50% of products on shortage were single-source. The most common reported reason for shortage was a manufacturing issue (27%). Shortages were often prolonged and, in 92% of cases, overlapped temporally with other shortages. Shortage frequency and duration increased during the second half of the study period. CONCLUSION Shortages of agents used in the treatment of AD were common during the study period and affected all agent classes. Shortages were often prolonged and multiple shortages were ongoing at study period end. Multiple concurrent shortages involving different agents occurred, which could hamper substitution as a means of mitigating shortage. Healthcare stakeholders must develop innovative patient- and institution-specific solutions in times of shortage and work to build resilience into the medical product supply chain to minimize future shortages of drugs used for treatment of AD.
Collapse
Affiliation(s)
- James D Whitledge
- Harvard Medical Toxicology Fellowship, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Boston, MA 02215, USA.
| | - Pelayia Soto
- National Capital Poison Center, 3201 New Mexico Avenue, Suite 310, Washington, DC 20016, USA; Department of Emergency Medicine, The George Washington University School of Medicine, 230 Eye Street, NW, Washington, DC 20037, USA
| | - Kieran M Glowacki
- Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | - Erin R Fox
- Department of Pharmacy Services, University of Utah Health, 50 N. Medical Drive, A-050, Salt Lake City, UT 84132, USA
| | - Maryann Mazer-Amirshahi
- National Capital Poison Center, 3201 New Mexico Avenue, Suite 310, Washington, DC 20016, USA; Department of Emergency Medicine, MedStar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| |
Collapse
|
28
|
Sordyl R, Schroter M, Rosol I, Antkowiak L, Mandera M. Transient improvement of the postoperative pediatric cerebellar mutism syndrome following intravenous midazolam injection. INTERDISCIPLINARY NEUROSURGERY 2023. [DOI: 10.1016/j.inat.2022.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Golub V, Ramakrishnan S, Reddy DS. Isobolographic analysis of adjunct antiseizure activity of the FDA-approved cannabidiol with neurosteroids and benzodiazepines in adult refractory focal onset epilepsy. Exp Neurol 2023; 360:114294. [PMID: 36493860 PMCID: PMC9884179 DOI: 10.1016/j.expneurol.2022.114294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy. Although the exact mechanism is unknown, it is likely to act in a way that is unique to certain GABA-A receptor-modulating drugs, such as neurosteroids and benzodiazepines. In this study, we sought to determine the adjunct antiseizure activity of a clinical CBD product in an adult 6-Hz model of focal refractory epilepsy. CBD was evaluated alone in both a dose-response and time-course manner and in an adjunct combination with two ASMs ganaxolone (neurosteroid) and midazolam (benzodiazepine) against 6-Hz-induced refractory focal onset, generalized seizures. In pharmacological studies, CBD produced dose-dependent protection against seizures (ED50, 53 mg/kg, i.p.) without any side effects. CBD significantly reduced both electrographic activity and behavioral ictal responses with no apparent sex differences. CBD was evaluated in an isobologram design in conjunction with ganaxolone or midazolam at three standard ratios (1:1, 1:3, 3:1). Isobolographic analysis shows the combination regimens of CBD + ganaxolone and CBD + midazolam exerted combination index of 0.313 and 0.164, indicating strong synergism for seizure protection, with little to no toxicity. Together, these results demonstrate the therapeutic potential of CBD monotherapy and as an adjunct therapy for adult focal refractory epilepsy in combination with GABAergic ASMs.
Collapse
Affiliation(s)
- Victoria Golub
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
30
|
Valenti S, Cazorla C, Romanini M, Tamarit JL, Macovez R. Eutectic Mixture Formation and Relaxation Dynamics of Coamorphous Mixtures of Two Benzodiazepine Drugs. Pharmaceutics 2023; 15:pharmaceutics15010196. [PMID: 36678825 PMCID: PMC9861849 DOI: 10.3390/pharmaceutics15010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The formation of coamorphous mixtures of pharmaceuticals is an interesting strategy to improve the solubility and bioavailability of drugs, while at the same time enhancing the kinetic stability of the resulting binary glass and allowing the simultaneous administration of two active principles. In this contribution, we describe kinetically stable amorphous binary mixtures of two commercial active pharmaceutical ingredients, diazepam and nordazepam, of which the latter, besides being administered as a drug on its own, is also the main active metabolite of the other in the human body. We report the eutectic equilibrium-phase diagram of the binary mixture, which is found to be characterized by an experimental eutectic composition of 0.18 molar fraction of nordazepam, with a eutectic melting point of Te = 395.4 ± 1.2 K. The two compounds are barely miscible in the crystalline phase. The mechanically obtained mixtures were melted and supercooled to study the glass-transition and molecular-relaxation dynamics of amorphous mixtures at the corresponding concentration. The glass-transition temperature was always higher than room temperature and varied linearly with composition. The Te was lower than the onset of thermal decomposition of either compound (pure nordazepam decomposes upon melting and pure diazepam well above its melting point), thus implying that the eutectic liquid and glass can be obtained without any degradation of the drugs. The eutectic glass was kinetically stable against crystallization for at least a few months. The relaxation processes of the amorphous mixtures were studied by dielectric spectroscopy, which provided evidence for a single structural (α) relaxation, a single Johari-Goldstein (β) relaxation, and a ring-inversion conformational relaxation of the diazepinic ring, occurring on the same timescale in both drugs. We further characterized both the binary mixtures and pure compounds by FTIR spectroscopy and first-principles density functional theory (DFT) simulations to analyze intermolecular interactions. The DFT calculations confirm the presence of strong attractive forces within the heteromolecular dimer, leading to large dimer interaction energies of the order of -0.1 eV.
Collapse
|
31
|
Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures. Exp Neurol 2023; 359:114240. [PMID: 36216124 DOI: 10.1016/j.expneurol.2022.114240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures. In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs. The two primary outcome measures were disease modification and suppression of generalized seizures. In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity. In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification. In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.). In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response. In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments. These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.
Collapse
|
32
|
Corôa MCP, Mendes PFS, Baia-da-Silva DC, Souza-Monteiro D, Ferreira MKM, Braga GLC, Damasceno TV, Perdigão JM, Lima RR. What Is Known about Midazolam? A Bibliometric Approach of the Literature. Healthcare (Basel) 2022; 11:96. [PMID: 36611556 PMCID: PMC9819597 DOI: 10.3390/healthcare11010096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022] Open
Abstract
Midazolam is a drug with actions towards the central nervous system producing sedative and anticonvulsants effects, used for sedation and seizures treatments. A better understanding about its effects in the different scenarios presented in the literature could be helpful to gather information regarding its clinical indications, pharmacological interactions, and adverse events. From this perspective, the aim of this study was to analyze the global research about midazolam mapping, specifically the knowledge of the 100 most-cited papers about this research field. For this, a search was executed on the Web of Science-Core Collection database using bibliometric methodological tools. The search strategy retrieved 34,799 articles. A total of 170 articles were evaluated, with 70 articles being excluded for not meeting the inclusion criteria. The 100 most-cited articles rendered 42,480 citations on WoS-CC, ranging from 253 to 1744. Non-systematic review was the most published study type, mainly from North America, during the period of 1992 to 2002. The most frequent keywords were midazolam and pharmacokinetics. Regarding the authors, Thummel and Kunze were the ones with the greatest number of papers included. Our findings showed the global research trends about midazolam, mainly related to its different effects and uses throughout the time.
Collapse
Affiliation(s)
- Maria Claudia Pinheiro Corôa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Glenda Luciana Costa Braga
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Taissa Viana Damasceno
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - José Messias Perdigão
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
33
|
Masram LB, Salim SS, Gadkari YU, Bhadke PB, Telvekar VN. β-cyclodextrin: Green catalyst for the efficient and expeditious synthesis of benzodiazepines under aqueous conditions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2129389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Liklesha B. Masram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Simren S. Salim
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Yatin U. Gadkari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Priyanka B. Bhadke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vikas N. Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
34
|
Faught E. Economic aspects of treating seizure clusters. Epilepsia 2022; 63 Suppl 1:S45-S54. [PMID: 35999172 DOI: 10.1111/epi.17340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Seizure clusters may initiate a chain of events that have economic as well as clinical consequences. The potential economic consequences of seizure clusters must be weighed against the cost of medication to attenuate them. This is true both for individual patients and for society. Data needed for economic analyses include the chance that a cluster will progress to an adverse outcome, such as a need for emergency care, the costs of such an outcome, the cost of a rescue medication (RM), and the effectiveness of the RM. Indirect costs, such as lost employment for patients and caregivers, must also be considered. Several types of economic analyses can be used to determine costs and benefits of a medical intervention. There are studies comparing different RMs from an economic perspective, but there is little direct information on the costs of using an RM versus allowing clusters to run their course. However, the high expense of consequences of seizure clusters makes it likely that effective RMs will make economic as well as medical sense for many patients.
Collapse
Affiliation(s)
- Edward Faught
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Edinoff AN, Nix CA, Odisho AS, Babin CP, Derouen AG, Lutfallah SC, Cornett EM, Murnane KS, Kaye AM, Kaye AD. Novel Designer Benzodiazepines: Comprehensive Review of Evolving Clinical and Adverse Effects. Neurol Int 2022; 14:648-663. [PMID: 35997362 PMCID: PMC9397074 DOI: 10.3390/neurolint14030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
As tranquilizers, benzodiazepines have a wide range of clinical uses. Recently, there has been a significant rise in the number of novel psychoactive substances, including designer benzodiazepines. Flubromazolam(8-bromo-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazeZpine) is a triazolo-analogue of flubromazepam. The most common effects noted by recreational users include heavy hypnosis and sedation, long-lasting amnesia, and rapid development of tolerance. Other effects included anxiolysis, muscle-relaxing effects, euphoria, loss of control, and severe withdrawals. Clonazolam, or 6-(2-chlorophenyl)-1-methyl-8-nitro-4H-[1,2,4]triazolo[4,3-α]-[1,4]-benzodiazepine, is a triazolo-analog of clonazepam. It is reported to be over twice as potent as alprazolam. Deschloroetizolam (2-Ethyl-9-methyl-4-phenyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine) is part of the thienodiazepine drug class, which, like benzodiazepines, stimulates GABA-A receptors. Meclonazepam ((3S)-5-(2-chlorophenyl)-3-methyl-7-nitro-1,3-dihydro-1,4-benzodiazepin-2-one) is a designer benzodiazepine with additional anti-parasitic effects. Although it has proven to be an efficacious therapy for schistosomiasis, its sedative side effects have prevented it from being marketed as a therapeutic agent. The use of DBZs has been a subject of multiple recent clinical studies, likely related to increasing presence and availability on the internet drug market and lack of regulation. Many studies have aimed to identify the prevalence of DBZs and their effects on those using them. This review discussed these designer benzodiazepines and the dangers and adverse effects that the clinician should know.
Collapse
Affiliation(s)
- Amber N. Edinoff
- Department of Psychiatry, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA 71103, USA
- Correspondence: ; Tel.: +1-(617)-726-2000
| | - Catherine A. Nix
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA 71103, USA
| | - Amira S. Odisho
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Caroline P. Babin
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Alyssa G. Derouen
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Salim C. Lutfallah
- School of Medicine, Louisiana State University New Orleans, New Orleans, LA 70112, USA
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA
| | - Kevin S. Murnane
- Department of Psychiatry, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA
- Louisiana Addiction Research Center, Shreveport, LA 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Adam M. Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, Department of Pharmacy Practice, University of the Pacific, Stockton, CA 95211, USA
| | - Alan D. Kaye
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
36
|
Song M, Zhao W, Zhu Y, Liu W, Deng X, Huang Y. Design, Synthesis, and Evaluation of Anticonvulsant Activities of New Triazolopyrimidine Derivatives. Front Chem 2022; 10:925281. [PMID: 35815216 PMCID: PMC9260081 DOI: 10.3389/fchem.2022.925281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Epilepsy, a severe brain disease affecting a large population, is treated mainly by antiepileptic drugs (AEDs). However, toxicity, intolerance, and low efficiency of the available AEDs have prompted the continual attempts in the discovery of new AEDs. In this study, we discovered a skeleton of triazolopyrimidine for the development of new AEDs. The design, synthesis, in vivo anticonvulsant activity evaluation of triazolopyrimidines (3a–3i and 6a–6e), and pyrazolopyrimidines (4a–4i) are reported. We found that most triazolopyrimidines showed anticonvulsive activity in the maximal electroshock (MES) and pentetrazol (PTZ)-induced seizure models. On the contrary, pyrazolopyrimidines (4a–4i) showed weak or no protective effects. Among the tested derivatives, compound 6d, holding a median effective dose (ED50) of 15.8 and 14.1 mg/kg against MES and PTZ-induced seizures, respectively, was found to be the most potent one. Moreover, the protection index (PI) value of 6d was significantly higher than that of the available AEDs such as valproate, carbamazepine, and diazepam. The antiepileptic efficacy of compound 6d was also observed in the 3-mercaptopropionic acid and bicuculline-induced seizure models. Antagonistic effects of flumazenil and 3-MP for the anticonvulsive activity of 6d and also the radioligand-binding assay confirmed the involvement of GABA receptors, at least benzodiazepine (BZD) receptor, in the anticonvulsant activity of compound 6d. The docking study of compounds 4e and 6d with GABAA receptor confirmed and explained their affinity to the BZD receptors.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
| | - Wennan Zhao
- Medical College, Jinggangshan University, Jiʼan, China
| | - Yangnv Zhu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Wenli Liu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Xianqing Deng
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| |
Collapse
|
37
|
Vahidifar M, Es’haghi Z. Magnetic Nanoparticle-Reinforced Dual-Template Molecularly Imprinted Polymer for the Simultaneous Determination of Oxazepam and Diazepam Using an Electrochemical Approach. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Gholami A, Dehghan G, Rashtbari S, Jouyban A. Exploring the interaction of clonazepam and diazepam with tau protein: Multispectral and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat Rev Neurol 2022; 18:428-441. [PMID: 35538233 DOI: 10.1038/s41582-022-00664-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a life-threatening neurological emergency that affects both adults and children. Approximately 36% of episodes of status epilepticus do not respond to the current preferred first-line treatment, benzodiazepines. The proportion of episodes that are refractory to benzodiazepines is higher in low-income and middle-income countries (LMICs) than in high-income countries (HICs). Evidence suggests that longer episodes of status epilepticus alter brain physiology, thereby contributing to the emergence of benzodiazepine resistance. Such changes include alterations in GABAA receptor function and in the transmembrane gradient for chloride, both of which erode the ability of benzodiazepines to enhance inhibitory synaptic signalling. Often, current management guidelines for status epilepticus do not account for these duration-related changes in pathophysiology, which might differentially impact individuals in LMICs, where the average time taken to reach medical attention is longer than in HICs. In this Perspective article, we aim to combine clinical insights and the latest evidence from basic science to inspire a new, context-specific approach to efficiently managing status epilepticus.
Collapse
|
40
|
Burkat PM. Physiologically-Based Pharmacokinetic and Pharmacodynamic Modeling of Diazepam: Unbound Interstitial Brain Concentrations Correspond to Clinical Endpoints. J Clin Pharmacol 2022; 62:1297-1309. [PMID: 35533144 DOI: 10.1002/jcph.2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/07/2022]
Abstract
Benzodiazepines induce a series of clinical effects by modulating subtypes of GABAA receptors in the central nervous system. The brain concentration-time profiles of diazepam that correspond to these effects are unknown, but can be estimated with physiologically-based pharmacokinetic (PBPK) modeling. In this study, a PBPK model for the 1,4-benzodiazepines diazepam and nordiazepam was developed from plasma concentration time-courses with PK-Sim® software to predict brain concentrations. The PBPK model simulations accurately parallel plasma concentrations from both an internal model training data set and an external data set for both intravenous and peroral diazepam administrations. It was determined that the unbound interstitial brain concentration-time profiles correlated with diazepam pharmacodynamic endpoints. With a 30 mg intravenous diazepam dose, the peak unbound interstitial brain concentration from this model is 160 nM at 2 minutes and 28.9 nM at 120 minutes. Peak potentiation of recombinant GABAA receptors composed of α1β2γ2s, α2β2γ2s, and α5β2γ2s subunit combinations that are involved in diazepam clinical endpoints is 108%, 139% and 186%, respectively, with this intravenous dose. With 10 mg peroral administrations of diazepam delivered every 24 hours, steady-state peak and trough unbound interstitial brain diazepam concentrations are 22.3 ± 7.5 nM and 9.3 ± 3.5 nM. Nordiazepam unbound interstitial brain concentration is 36.1 nM at equilibrium with this diazepam dosing schedule. Pharmacodynamic models coupled to the diazepam unbound interstitial brain concentrations from the PBPK analysis account for electroencephalographic drug effect, change in 13-30 Hz electroencephalographic activity, amnesia incidence, and sedation score time-courses from human subjects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- P M Burkat
- Department of Psychiatry, Crozer Health, Upland, PA, 19013
| |
Collapse
|
41
|
Chen CJ, Jiang C, Yuan J, Chen M, Cuyler J, Xie XQ, Feng Z. How Do Modulators Affect the Orthosteric and Allosteric Binding Pockets? ACS Chem Neurosci 2022; 13:959-977. [PMID: 35298129 PMCID: PMC10496248 DOI: 10.1021/acschemneuro.1c00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Allosteric modulators (AMs) that bind allosteric sites can exhibit greater selectivity than the orthosteric ligands and can either enhance agonist-induced receptor activity (termed positive allosteric modulator or PAM), inhibit agonist-induced activity (negative AM or NAM), or have no effect on activity (silent AM or SAM). Until now, it is not clear what the exact effects of AMs are on the orthosteric active site or the allosteric binding pocket(s). In the present work, we collected both the three-dimensional (3D) structures of receptor-orthosteric ligand and receptor-orthosteric ligand-AM complexes of a specific target protein. Using our novel algorithm toolset, molecular complex characterizing system (MCCS), we were able to quantify the key residues in both the orthosteric and allosteric binding sites along with potential changes of the binding pockets. After analyzing 21 pairs of 3D crystal or cryo-electron microscopy (cryo-EM) complexes, including 4 pairs of GPCRs, 5 pairs of ion channels, 11 pairs of enzymes, and 1 pair of transcription factors, we found that the binding of AMs had little impact on both the orthosteric and allosteric binding pockets. In return, given the accurately predicted allosteric binding pocket(s) of a drug target of medicinal interest, we can confidently conduct the virtual screening or lead optimization without concern that the huge conformational change of the pocket could lead to the low accuracy of virtual screening.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Chen Jiang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiayi Yuan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
42
|
Abstract
EDITORS NOTE The article "Update on Antiseizure Medications 2022" by Dr Abou-Khalil was first published in the February 2016 Epilepsy issue of Continuum: Lifelong Learning in Neurology as "Antiepileptic Drugs," and at the request of the Editor-in-Chief was updated by Dr Abou-Khalil for the 2019 issue and again for this issue.
Collapse
|
43
|
Pale S, Neteydji S, Taiwe GS, Kouemou Emegam N, Bum EN. Anticonvulsant effects of Cymbopogon giganteus extracts with possible effects on fully kindled seizures and anxiety in experimental rodent model of mesio-temporal epilepsy induced by pilocarpine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114863. [PMID: 34838617 DOI: 10.1016/j.jep.2021.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder of the brain characterized by periodic and unpredictable occurrence of a transient behavior alteration due to the rhythmic, synchronous and disordered firing of brain neuron. Worldwide, approximately 50 million people currently live with epilepsy and close to 80% of people with epilepsy live in poor countries. However, it was noticed in many countries worldwide that people with epilepsy and their families suffer from stigma and discrimination and that situation exposes them to high psychological conditions such as depression and anxiety as well as more physical problems including bruising and fractures from injuries related to seizures. However, several plants-based products used for epilepsy and anxiety treatments in different system of folk medicine have exhibited a significant anti-epileptic and antianxiety activities using animal models with fewer side effects. AIM OF THE STUDY The study aimed at evaluating the antiepileptic, status post-epilepticus and anxiolytic effects of Cymbopogon giganteus decoction in rat model induced by pilocarpine. MATERIALS AND METHODS A total of 90 rats were partitioned into 7 groups and treated as follow: animals of groups I (normal control) and II (considered the negative control) received distilled water (10 mL/kg); while groups III, IV, V, and VI were treated with the C. giganteus extract at 34, 85, 170 and 340 mg/kg p.o, respectively; and the group VII (considered positive control) received sodium valproate at 300 mg/kg, i.p. After 40 min post-treatment, a single dose of n-methyl-scopolamine (1 mg/kg, i.p) was administered to animals of groups (II, III, IV, V, VI, VII) followed by pilocarpine (360 mg/kg, i.p). Animal of group I (normal group) received distilled water. Rats were further observed for 6 h to evaluate the severity and the duration of the acute seizures of epilepsy according to Racine scale. Anxious behavior status post-epilepticus was also assessed in the same rats used above in the Elevated Plus Maze and number of entries into the open or closed arms and the time spent on either open or closed arms of the platform were recorded. Animals were also evaluated on Open Field Test and the number of rearing, crossing, grooming, defecation and center time were registered. RESULTS C. giganteus decoction significantly (P < 0.05) reduced the animal mortality, the number and duration of convulsions and effectively increased the latency of convulsions. The plant extract significantly (P < 0.05) improved GSH level and SOD activity, reduced MDA and CAT activity, increased GABA level and decreased GABA-t activity in hippocampus. The anxiety induced by pilocarpine was also significantly (P < 0.05) inhibited by the extract of the plant. CONCLUSIONS Thus, C. giganteus has demonstrated its antiepileptic and anxiolytic activities in rat model and may be used as preventive measure for patients suffering from epilepsy seizures and anxiety.
Collapse
Affiliation(s)
- Simon Pale
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon.
| | - Sidiki Neteydji
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Nadège Kouemou Emegam
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, Cameroon
| |
Collapse
|
44
|
Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Bioorg Chem 2022; 122:105722. [PMID: 35303622 DOI: 10.1016/j.bioorg.2022.105722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
Abstract
Disruption of the dynamic equilibrium of microtubules can induce cell cycle arrest in G2/M phase and apoptosis. Hence, discovery of novel tubulin polymerization inhibitors is very necessary and an important task in drug research and development for treatment of various tumors. In this investigation, 50 compounds were screened as microtubule stabilizers targeting the taxane site by combination of molecular docking methods. Among these hits, hits 19 and 38 with novel scaffolds exhibited the highest anti-proliferative activity with IC50 ranging from 9.50 to 13.81 μM in four cancer cell lines. The molecular dynamics simulations confirmed that tubulin and two hits could form stable systems. Meanwhile, the mechanism of the interactions between tubulin and two hits at simulated physiological conditions were probed. The in vitro tubulin polymerization assay revealed hits 19 and 38 were able to promote tubulin polymerization in a dose-dependent manner. Further, the immunofluorescence assay suggested that hits 19 and 38 could accelerate microtubule assembly in A549 and HeLa cells. Finally, studies on antitumor activity indicated that hits 19 and 38 induced G2/M phase cell cycle arrest and apoptosis, and inhibited cancer cell motility and migration in A549 and HeLa cells. Importantly, hit38 exhibited better anti-tubulin and anti-cancer activity than hit19 in A549 and HeLa cells. Therefore, these results suggest that hit38 represents a promising microtubule stabilizer for treating cancer and deserves further investigation.
Collapse
|
45
|
Jensen AG, Knudsen SS, Bech BH. Prenatal exposure to benzodiazepines and the development of the offspring – a systematic review. Neurotoxicol Teratol 2022; 91:107078. [DOI: 10.1016/j.ntt.2022.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
|
46
|
CLB add-on treatment in patients with epileptic encephalopathy: a single center experience with long-term follow-up. Acta Neurol Belg 2022; 122:51-57. [PMID: 33782854 DOI: 10.1007/s13760-021-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 10/21/2022]
Abstract
Clobazam (CLB) is an effective anticonvulsant used as an adjunctive treatment for several seizures and epilepsy syndromes. Data are limited on efficacy and safety of CLB as add-on therapy for epileptic encephalopaties (EEs) other than Lennox-Gastaut syndrome (LGS). This retrospective study aimed to assess efficacy and safety of long-term CLB add-on therapy for various EE syndromes. Data on CLB add-on therapy were assessed in 74 children (60.8% male) after 3 months (early) and 12 months (late) follow-up as well as in 57 (77%) patients who had been on CLB therapy longer than 12 months (mean:39.11 ± 30.29; range:12-129 months) (very late) were reported. Data on CLB add-on therapy were assessed in 74 children (60.8% male) after 3 months (early) and 12 months (late) follow-up as well as in 57 (77%) patients who had been on CLB therapy longer than 12 months (mean:39.11 ± 30.29; range:12-129 months) (very late) were reported. Good response rate (> 50%) for seizures was achieved in 24% at early follow-up, 30% at late follow-up, and 35% during very late follow-up. Complete seizure remission was achieved for 15% seizures; 72.7% occurred at very late follow-up. Myoclonic seizures were the most responsive (35%); this response increased during late follow-up (46%), whereas 27.3% of myoclonic-atonic/atonic seizures had good response at early and very late follow-up. At late follow-up, comparison of mean effective doses of CLB did not show significant difference among types of seizures with good response. Adverse effects reported in 15% of patients did not require stopping CLB therapy. Generalized epileptogenic potentials significantly decreased while focal epileptogenic potentials significantly increased at first year of treatment in comparison to basal EEG findings (p < 0.001). CLB should be considered as an optional antiepileptic that is well tolerated, particularly in EEs with myoclonic and myoclonic-atonic/atonic seizures.
Collapse
|
47
|
Stenstrom K, Voss HU, Tokarev K, Phan ML, Hauber ME. The Direction of response selectivity between conspecific and heterospecific auditory stimuli varies with response metric. Behav Brain Res 2022; 416:113534. [PMID: 34416300 DOI: 10.1016/j.bbr.2021.113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Species recognition is an essential behavioral outcome of social discrimination, flocking, mobbing, mating, and/or parental care. In songbirds, auditory species recognition cues are processed through specialized forebrain circuits dedicated to acoustic discrimination. Here we addressed the direction of behavioral and neural metrics of zebra finches' (Taeniopygia guttata) responses to acoustic cues of unfamiliar conspecifics vs. heterospecifics. Behaviorally, vocal response rates were greater for conspecific male zebra finch songs over heterospecific Pin-tailed Whydah (Vidua macroura) songs, which paralleled greater multiunit spike rates in the auditory forebrain in response to the same type of conspecific over heterospecific auditory stimuli. In contrast, forebrain activation levels were reversed to species-specific song playbacks during two functional magnetic resonance imaging experiments: we detected consistently greater responses to whydah songs over finch songs and did so independently of whether subjects had been co-housed or not with heterospecifics. These results imply that the directionality of behavioral and neural response selectivity metrics are not always consistent and appear to be experience-independent in this set of stimulus-and-subject experimental paradigms.
Collapse
Affiliation(s)
- K Stenstrom
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, Champaign, USA.
| | - H U Voss
- Cornell MRI Facility, College of Human Ecology, Cornell University, Ithaca, USA
| | - K Tokarev
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, USA
| | - M L Phan
- Department of Psychology, Rutgers - The State University of New Jersey, New Brunswick, USA
| | - M E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, Champaign, USA; Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, USA
| |
Collapse
|
48
|
Ildiz GO, Tabanez AM, Nunes A, Roque JP, Justino LL, Ramos ML, Fausto R. Molecular structure, spectroscopy and photochemistry of alprazolam. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Hammouda MM, Elattar KM. Recent progress in the chemistry of β-aminoketones. RSC Adv 2022; 12:24681-24712. [PMID: 36128366 PMCID: PMC9428906 DOI: 10.1039/d2ra03864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
The current study highlighted the significance of β-aminoketones as privileged biologically active molecules, recent synthetic strategies, and synthetic applications.
Collapse
Affiliation(s)
- Mohamed M. Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
50
|
Le Roux C, Destère A, Hervy S, Lloret-Linares C, Reignier J, Caillet P, Jolliet P, Mégarbane B, Boels D. Potential drug-drug interactions when managing status epilepticus patients in intensive care: A cohort study. Br J Clin Pharmacol 2021; 88:2408-2418. [PMID: 34907586 DOI: 10.1111/bcp.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS The risk for drug-drug interactions (DDIs) associated with antiseizure drugs (ASDs) used to manage status epilepticus (SE) patients in the intensive care unit (ICU) has been poorly investigated. We aimed to quantify and describe those potential DDIs and determine SE patient risk profiles. METHODS We conducted an observational bi-centric cohort study including all SE patients admitted to the ICU in the period 2016-2020. RESULTS Overall, 431 SE patients were included and 5504 potential DDIs were identified including 1772 DDIs (33%) between ASDs, 2610 DDIs (47%) between ASDs and previous usual treatments (PUTs), and 1067 DDIs (20%) between ASDs and ICU treatments (ICUTs). DDIs were moderate (n = 4871), major (n = 562) or severe (n = 16). All patients exhibited potential DDIs, which were major-to-severe DDIs in 47% of the cases. DDIs were pharmacokinetic (n = 1972, 36%), mostly involving cytochrome P450 modulators, and pharmacodynamic (n = 3477, 64%), mainly leading to increased sedation. ASD/PUT DDIs were the most frequent and severe. Age, PUT and ASD drug numbers and length of ICU stay were significantly associated with increased DDI number. We identified four SE patient profiles with different DDI risks and outcomes including (1) epileptic or brain trauma patients, (2) withdrawal syndrome patients, (3) older patients with comorbidities and (4) self-poisoned patients with psychiatric disorders and/or past epilepsy. CONCLUSION SE patients are subject to potential DDIs between ASDs, ASD/PUT and ASD/ICUT. Major-to-severe DDIs mostly occur between ASDs and PUTs. Physicians should pay attention to SE patient characteristics and history to limit DDI numbers and prevent their consequences.
Collapse
Affiliation(s)
- Clémentine Le Roux
- Inserm UMRS 1144, University of Paris, France.,Clinical Toxicology Unit, Pharmacology Department, Nantes University Hospital, Nantes, France
| | | | - Sarah Hervy
- SPIN Unit, Public Health Department, Nantes University Hospital, Nantes, France
| | - Célia Lloret-Linares
- Inserm UMRS 1144, University of Paris, France.,Department of Nutritional and Metabolic Diseases, Ramsay Générale de Santé, Pays de Savoie Private Hospital, Annemasse, France
| | - Jean Reignier
- Department of Medical Critical Care, Nantes University Hospital, Nantes, France
| | - Pascal Caillet
- SPIN Unit, Public Health Department, Nantes University Hospital, Nantes, France
| | - Pascale Jolliet
- Clinical Toxicology Unit, Pharmacology Department, Nantes University Hospital, Nantes, France
| | - Bruno Mégarbane
- Inserm UMRS 1144, University of Paris, France.,Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris, France
| | - David Boels
- Inserm UMRS 1144, University of Paris, France.,Clinical Toxicology Unit, Pharmacology Department, Nantes University Hospital, Nantes, France.,SPIN Unit, Public Health Department, Nantes University Hospital, Nantes, France
| |
Collapse
|