1
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
2
|
Chakraborty R, Darido C, Chien A, Tay A, Vickery K, Hu H, Liu F, Ranganathan S. Preclinical 3D-model supports an invisibility cloak for adenoid cystic carcinoma. Sci Rep 2023; 13:17033. [PMID: 37813936 PMCID: PMC10562364 DOI: 10.1038/s41598-023-44329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
The tumour-cell based initiation of immune evasion project evaluated the role of Gipie in adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (A-253), from ninety-six 3D-ACC and A-253-immune co-culture models using natural killer cells (NK), and Jurkat cells (JK). Abnormal ACC morphology was observed in 3D-ACC immune co-culture models. Gipie-silencing conferred a "lymphoblast-like" morphology to ACC cells, a six-fold increase in apoptotic cells (compared to unaltered ACC cells, P ≤ 0.0001), a two-fold decrease in T regulatory cells (FoxP3+/IL-2Rα+/CD25+) (P ≤ 0.0001), and a three-fold increase in activated NK cells (NKp30+/IFN-γ+) (P ≤ 0.0001) with significantly higher release of granzyme (P ≤ 0.001) and perforin (P ≤ 0.0001).
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Arthur Chien
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Aidan Tay
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Karen Vickery
- Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Honghua Hu
- Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fei Liu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shoba Ranganathan
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
4
|
Pan-Cancer Analysis on the Oncogenic Role of Programmed Cell Death 10. JOURNAL OF ONCOLOGY 2022; 2022:1242658. [PMID: 36276268 PMCID: PMC9584704 DOI: 10.1155/2022/1242658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Purpose Programmed cell death factor 10 (PDCD10) is associated with intercellular junction, cytoskeleton organization, cell proliferation, apoptosis, exocytosis, and angiogenesis. However, the role of PDCD10 in human cancer is unclear. This study aims to explore the role of PDCD10 in various tumors and its possible mechanism through bioinformatics analysis. Methods We verified the expression of the PDCD10 gene based on data from the ONCOMINE, TIMER2.0, and TISDB databases. The correlation of PDCD10 with prognosis of patients with different tumors was analyzed using data from the GEPIA2 database. Proteins bound to PDCD10 were analyzed from the STRING database. PDCD10, PDCD10-binding proteins, and associated candidate genes were analyzed in DAVID for functional and pathway analyses. We also evaluated the immunological, clinical, and genetic aspects of distinct cancers by using TIMER2.0 and the connection between PDCD10 expression and tumor immune subtypes by using TISDB. Single-cell sequencing data from the CancerSEA database were used to characterize cancer cell functional states and generate heat maps. Results PDCD10 overexpression is linked to certain molecular subtypes of human cancer. Low PDCD10 expression in patients with bladder urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), kidney chromophobe carcinoma (KICH), brain lower grade glioma (LGG), pancreatic adenocarcinoma (PAAD), uterine corpus endometrial carcinoma (UCEC), oral squamous cell carcinoma (OSCC), and esophageal adenocarcinoma (ESAD) was correlated with favorable OS, whereas high PDCD10 expression in patients with LUSC, KIRC, READ, SKCM, and THYM was correlated with good prognosis. STRING network prediction results showed that 20 proteins, namely, paxillin (PXN), CCM2 scaffold protein (CCM2), TRAF3 interacting protein 3 (TRAF3IP3), FGFR1 oncogene partner 2 (FGFR1OP2), chromosome 4 open reading frame 19 (C4orf19), suppressor of IKBKE 1 (SIKE1), serine/threonine kinase 25 (STK25), striatin (STRN), protein phosphatase 2 catalytic subunit alpha (PPP2CA), mammalian sterile-20-like kinase 4 (MST4), MOB family member 4 (MOB4), protein phosphatase 2 scaffold subunit Abeta (PPP2R1B), sarcolemma-associated protein (SLMAP), serine/threonine kinase 24 (STK24), striatin 4 (STRN4), STRN3, protein phosphatase 2 scaffold subunit A alpha (PPP2R1A), striatin interacting protein 1 (STRIP1), CTTNBP2 N-terminal like (CTTNBP2NL), and cortactin binding protein 2 (CTTNBP2), can bind to PDCD10. Gene enrichment analysis suggested that PDCD10 is involved in the occurrence of different tumors through the Hippo signalling pathway, RNA transport, mRNA monitoring pathway, endocytosis, and T cell receptor signalling pathway. An inverse relationship was found between PDCD10 expression and cancer-associated fibroblasts in LUSC and TGCT, and PDCD10 expression was strongly connected with immunological subtypes, such as C1 (wound healing), C2 (interferon-gamma dominant), C3 (inflammation), C4 (lymphocyte depletion), C5 (immune silenced), and C6 (TGF-beta dominant). Finally, analysis of single-cell sequencing data revealed that PDCD10 expression is linked to epigenetic reprogramming, DNA repair, cell cycle progression, cell differentiation, inflammation, cell proliferation, cell differentiation, cell invasion, and angiogenesis. Conclusion The results of our investigation demonstrate that PDCD10 has an oncogenic function in many cancer types. This study provides a reference for future research on antitumor therapeutic targets.
Collapse
|
5
|
Liu J, Wang J, Tian W, Xu Y, Li R, Zhao K, You C, Zhu Y, Bartsch JW, Niu H, Zhang H, Shu K, Lei T. PDCD10 promotes the aggressive behaviors of pituitary adenomas by up-regulating CXCR2 and activating downstream AKT/ERK signaling. Aging (Albany NY) 2022; 14:6066-6080. [PMID: 35963638 PMCID: PMC9417224 DOI: 10.18632/aging.204206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
As the second most common primary intracranial neoplasms, about 40% of pituitary adenomas (PAs) exhibit aggressive behaviors and resulting in poor patient prognosis. The molecular mechanisms underlying the aggressive behaviors of PAs are not yet fully understood. Biochemical studies have reported that programmed cell death 10 (PDCD10) is a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex and plays a dual role in cancers in a tissue- or disease-specific manner. In the present study, we report for the first time that the role of PDCD10 in PAs. Cell proliferation, migration and invasion were either enhanced by overexpressing or inhibited by silencing PDCD10 in PA cells. Moreover, PDCD10 significantly promoted epithelial–mesenchymal transition (EMT) of pituitary adenoma cells. Mechanistically, we showed that the expression of CXCR2, together with phosphorylation levels of AKT and ERK1/2 were regulated by PDCD10. Activation of CXCR2 inversed inactivation of AKT/ERK signal pathways and the tumor-suppressive effects induced by PDCD10 silencing. Finally, the pro-oncogenic effect of PDCD10 was confirmed by in vivo tumor grafting. Taken together, we demonstrate for the first time that PDCD10 can induce aggressive behaviors of PAs by promoting cellular proliferation, migration, invasion and EMT through CXCR2-AKT/ERK signaling axis.
Collapse
Affiliation(s)
- Jingdian Liu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Tian
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | | - Hongquan Niu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
7
|
Zhao X, Huang Q, Koller M, Linssen MD, Hooghiemstra WTR, de Jongh SJ, van Vugt MATM, Fehrmann RSN, Li E, Nagengast WB. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int J Mol Sci 2021; 22:9270. [PMID: 34502178 PMCID: PMC8431213 DOI: 10.3390/ijms22179270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Qingfeng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Matthijs D. Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| |
Collapse
|
8
|
Bozinovic G, Shea D, Feng Z, Hinton D, Sit T, Oleksiak MF. PAH-pollution effects on sensitive and resistant embryos: Integrating structure and function with gene expression. PLoS One 2021; 16:e0249432. [PMID: 33822796 PMCID: PMC8023486 DOI: 10.1371/journal.pone.0249432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread natural and anthropogenic pollutants, and some PAHs are proven developmental toxicants. We chemically characterized clean and heavily polluted sites and exposed fish embryos to PAH polluted sediment extracts during four critical developmental stages. Embryos were collected from Fundulus heteroclitus populations inhabiting the clean and heavily polluted Superfund estuary. Embryos of parents from the clean sites are sensitive to PAH pollutants while those of parents from the heavily polluted site are resistant. Chemical analysis of embryos suggests PAH accumulation and pollution-induced toxicity among sensitive embryos during development that ultimately kills all sensitive embryos before hatching, while remarkably, the resistant embryos develop normally. The adverse effects on sensitive embryos are manifested as developmental delays, reduced heart rates, and severe heart, liver, and kidney morphological abnormalities. Gene expression analysis of early somitogenesis, heartbeat initiation, late organogenesis, and pre-hatching developmental stages reveals genes whose expression significantly differs between sensitive and resistant embryo populations and helps to explain mechanisms of sensitivity and resistance to polluted environments during vertebrate animal development.
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Boz Life Science Research and Teaching Institute, San Diego, California, United States of America
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, California, United States of America
| | - David Hinton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Tim Sit
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Marjorie F. Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
9
|
Dong C, Fan B, Ren Z, Liu B, Wang Y. CircSMARCA5 Facilitates the Progression of Prostate Cancer Through miR-432/PDCD10 Axis. Cancer Biother Radiopharm 2020; 36:70-83. [PMID: 32407167 DOI: 10.1089/cbr.2019.3490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Circular RNAs (circRNAs) have been reported to be implicated in the pathogenesis of prostate cancer (PCa). Herein, the authors explore the role and molecular mechanism of circRNA SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (circSMARCA5) in PCa. Materials and Methods: The levels of circSMARCA5, SMARCA5, miR-432, and programmed cell death 10 (PDCD10) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The circular structure and stability of circSMARCA5 were validated by qRT-PCR using Oligo dT primer, transcriptional inhibitor actinomycin D, or RNase R treatment, respectively. Cell proliferation, migration, invasion, epithelial/mesenchymal transition (EMT), and glycolysis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration and invasion assays, Western blot assay, and Glucose or Lactate Detection Kit, respectively. The target relationship between miR-432 and circSMARCA5 or PDCD10 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Western blot was performed to detect the protein expression of PDCD10 in PCa cells. Results: CircSMARCA5 was aberrantly upregulated, and was a circular and stable RNA in PCa cells. CircSMARCA5 accelerated the proliferation, metastasis, and glycolysis of PCa cells. MiR-432 was a direct target of circSMARCA5, and circSMARCA5 accelerated the development of PCa through miR-432 in PCa cells. PDCD10 was a direct target of miR-432, and PDCD10 addition reversed the inhibitory effects of miR-432 accumulation on the proliferation, metastasis, and glycolysis of PCa cells. CircSMARCA5 upregulated the expression of PDCD10 through sponging miR-432 in PCa cells. Conclusion: CircSMARCA5 deteriorated PCa through the miR-432/PDCD10 axis. CircSMARCA5/miR-432/PDCD10 axis might be an underlying therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Chunhui Dong
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Fan
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongtao Ren
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Liu
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanchao Wang
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 2019; 10:2761. [PMID: 31235698 PMCID: PMC6591323 DOI: 10.1038/s41467-019-10707-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular familial or sporadic disease that is characterised by capillary-venous cavernomas, and is due to loss-of-function mutations to any one of three CCM genes. Familial CCM follows a two-hit mechanism similar to that of tumour suppressor genes, while in sporadic cavernomas only a small fraction of endothelial cells shows mutated CCM genes. We reported that in mouse models and in human patients, endothelial cells lining the lesions have different features from the surrounding endothelium, as they express mesenchymal/stem-cell markers. Here we show that cavernomas originate from clonal expansion of few Ccm3-null endothelial cells that express mesenchymal/stem-cell markers. These cells then attract surrounding wild-type endothelial cells, inducing them to express mesenchymal/stem-cell markers and to contribute to cavernoma growth. These characteristics of Ccm3-null cells are reminiscent of the tumour-initiating cells that are responsible for tumour growth. Our data support the concept that CCM has benign tumour characteristics. Cerebral cavernous malformation is a vascular disease characterized by capillary-venous cavernomas in the central nervous system. Here the authors show that cavernomas display benign tumor characteristics and originate from the clonal expansion of mutated endothelial progenitors which can attract surrounding wild-type cells, inducing their mesenchymal transition and leading to growth of the cavernoma.
Collapse
|
11
|
Guan X, Lu J, Sun F, Li Q, Pang Y. The Molecular Evolution and Functional Divergence of Lamprey Programmed Cell Death Genes. Front Immunol 2019; 10:1382. [PMID: 31281315 PMCID: PMC6596451 DOI: 10.3389/fimmu.2019.01382] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
The programmed cell death (PDCD) family plays a significant role in the regulation of cell survival and apoptotic cell death. However, the evolution, distribution and role of the PDCD family in lampreys have not been revealed. Thus, we identified the PDCD gene family in the lamprey genome and classified the genes into five subfamilies based on orthologs of the genes, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. The distribution of the lamprey PDCD family and the immune response of the PDCD family in lampreys stimulated by different pathogens were also demonstrated. In addition, we investigated the molecular function of lamprey PDCD2, PDCD5, and PDCD10. Our studies showed that the recombinant lamprey PDCD5 protein and transfection of the L-PDCD5 gene induced cell apoptosis, upregulated the expression of the associated X protein (BAX) and TP53 and downregulated the expression of B cell lymphoma 2 (BCL-2) independent of Caspase 3. In contrast, lamprey PDCD10 suppressed apoptosis in response to cis-diaminedichloro-platinum (II) stimuli. Our phylogenetic and functional data not only provide a better understanding of the evolution of lamprey PDCD genes but also reveal the conservation of PDCD genes in apoptosis. Overall, our results provide a novel perspective on lamprey immune regulation mediated by the PDCD family.
Collapse
Affiliation(s)
- Xin Guan
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
12
|
Cohen CT, Bergstrom KL, Xiao R, Elghetany MT, Iacobas I, Sasa G. First case of neutropenia and thrombocytopenia in the setting of cerebral cavernous malformation 3. Int J Hematol 2019; 110:95-101. [PMID: 30904992 DOI: 10.1007/s12185-019-02626-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
Cerebral cavernous malformation 3 (CCM3) is a vascular malformation disorder causing brain slow-flow vascular parenchymal lesions. These lesions are the result of variants in the Programmed Cell Death Protein 10 (PDCD10) gene, located on 3q26.1. We report an 8-month-old patient who was presented with seizures and intracranial abscesses and was found to have a variant of PDCD10 on whole exome sequencing, representing, to our knowledge, the youngest case of CCM3 described in the literature. Her clinical course was complicated by the development of neutropenia, requiring granulocyte colony-stimulating factor, and thrombocytopenia, requiring intermittent platelet transfusions, with later development of B acute lymphoblastic leukemia 2 years after initial presentation. This case represents the first description in the literature of hematologic complications in the setting of CCM3. We hypothesize that these hematological manifestations are the result of alterations in the actin and microtubule cytoskeleton, affecting the process of hematopoiesis in a similar fashion to the documented effect of the PDCD10 variant on neuronal migration.
Collapse
Affiliation(s)
- Clay Travis Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA.
| | - Katie Lee Bergstrom
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mohamed Tarek Elghetany
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Ionela Iacobas
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| | - Ghadir Sasa
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Schwefel K, Spiegler S, Ameling S, Much CD, Pilz RA, Otto O, Völker U, Felbor U, Rath M. Biallelic CCM3 mutations cause a clonogenic survival advantage and endothelial cell stiffening. J Cell Mol Med 2018; 23:1771-1783. [PMID: 30549232 PMCID: PMC6378188 DOI: 10.1111/jcmm.14075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
CCM3, originally described as PDCD10, regulates blood‐brain barrier integrity and vascular maturation in vivo. CCM3 loss‐of‐function variants predispose to cerebral cavernous malformations (CCM). Using CRISPR/Cas9 genome editing, we here present a model which mimics complete CCM3 inactivation in cavernous endothelial cells (ECs) of heterozygous mutation carriers. Notably, we established a viral‐ and plasmid‐free crRNA:tracrRNA:Cas9 ribonucleoprotein approach to introduce homozygous or compound heterozygous loss‐of‐function CCM3 variants into human ECs and studied the molecular and functional effects of long‐term CCM3 inactivation. Induction of apoptosis, sprouting, migration, network and spheroid formation were significantly impaired upon prolonged CCM3 deficiency. Real‐time deformability cytometry demonstrated that loss of CCM3 induces profound changes in cell morphology and mechanics: CCM3‐deficient ECs have an increased cell area and elastic modulus. Small RNA profiling disclosed that CCM3 modulates the expression of miRNAs that are associated with endothelial ageing. In conclusion, the use of CRISPR/Cas9 genome editing provides new insight into the consequences of long‐term CCM3 inactivation in human ECs and supports the hypothesis that clonal expansion of CCM3‐deficient dysfunctional ECs contributes to CCM formation.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Robin A Pilz
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Nickel AC, Wan XY, Saban DV, Weng YL, Zhang S, Keyvani K, Sure U, Zhu Y. Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma. J Neurooncol 2018; 141:31-41. [PMID: 30392087 DOI: 10.1007/s11060-018-03017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma (GBM) is one of the most aggressive and incurable primary brain tumors. Identification of novel therapeutic targets is an urgent priority. Programmed cell death 10 (PDCD10), a ubiquitously expressed apoptotic protein, has shown a dual function in different types of cancers and in chemo-resistance. Recently, we reported that PDCD10 was downregulated in human GBM. The aim of this study was to explore the function of PDCD10 in GBM cells. METHODS PDCD10 was knocked down in three GBM cell lines (U87, T98g and LN229) by lentiviral-mediated shRNA transduction. U87 and T98g transduced cells were used for phenotype study and LN229 and T98g cells were used for apoptosis study. The role of PDCD10 in apoptosis and chemo-resistance was investigated after treatment with staurosporine and temozolomide. A GBM xenograft mouse model was used to confirm the function of PDCD10 in vivo. A protein array was performed in PDCD10-knockdown and control GBM cells. RESULTS Knockdown of PDCD10 in GBM cells promoted cell proliferation, adhesion, migration, invasion, and inhibited apoptosis and caspase-3 activation. PDCD10-knockdown accelerated tumor growth and increased tumor mass by 2.1-fold and led to a chemo-resistance of mice treated with temozolomide. Immunostaining revealed extensive Ki67-positive cells and less activation of caspase-3 in PDCD10-knockdown tumors. The protein array demonstrated an increased release of multiple growth factors from PDCD10-knockdown GBM cells. CONCLUSIONS Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in GBM, suggesting PDCD10 as a potential target for GBM therapy.
Collapse
Affiliation(s)
- Ann-Christin Nickel
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Xue-Yan Wan
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dino-Vitali Saban
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yin-Lun Weng
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Zhang
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
15
|
Urfali-Mamatoglu C, Kazan HH, Gündüz U. Dual function of programmed cell death 10 (PDCD10) in drug resistance. Biomed Pharmacother 2018; 101:129-136. [PMID: 29482058 DOI: 10.1016/j.biopha.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Drug resistance, a major challenge in cancer chemotherapy, is a result of several mechanistic alterations including resistance to apoptosis. Apoptosis is a well-controlled cell death mechanism which is regulated by several signaling pathways. Alterations in structure, function, and expression pattern of the proteins involved in the regulation of apoptosis have been linked to drug resistance. Programmed Cell Death 10 (PDCD10) protein is recently associated with the regulation of cell survival and apoptosis. However, the role of PDCD10 in drug resistance has not been clearly established. Here, we aimed to figure out the role of PDCD10 in resistance to anti-cancer agents in different cell lines. We found that PDCD10 expression was cell- and anti-cancer agent-specific; down-regulated in doxorubicin- and docetaxel-resistant MCF7 cells while up-regulated in doxorubicin-resistant HeLa cells. Down-regulation of PDCD10 expression by siRNA in parental MCF7 cells increased the resistance while it increased sensitivity in doxorubicin-resistant HeLa cells. Similarly, over-expression of PDCD10 in parental HeLa cells increased the resistance to doxorubicin while it re-sensitized doxorubicin-resistant MCF7 cells. Moreover, the alterations in PDCD10 expression led to changes in caspase 3/7 activity and the levels of apoptosis-related genes. Our results point out a possible dual role of PDCD10 in drug resistance for the first time in the literature and emphasize PDCD10 as a novel target for reversal of drug resistance in cancer.
Collapse
Affiliation(s)
| | - Hasan Hüseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
16
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
17
|
Bagdonaite I, Wandall HH, Litvinov IV, Nastasi C, Becker JC, Dabelsteen S, Geisler C, Bonefeld CM, Zhang Q, Wasik MA, Zhou Y, Sasseville D, Ødum N, Woetmann A. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget 2016; 6:14374-84. [PMID: 25957418 PMCID: PMC4546473 DOI: 10.18632/oncotarget.3720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22âN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22âN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22âN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22âN and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Claudia Nastasi
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C Becker
- General Dermatology, Medical University of Graz, Graz, Austria
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Fu X, Zhang W, Su Y, Lu L, Wang D, Wang H. MicroRNA-103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer. Prostate 2016; 76:543-51. [PMID: 26771762 DOI: 10.1002/pros.23143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND It is known that microRNAs (miRNAs) are a class of small, non-coding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms involving miRNAs in prostate cancer remain largely unknown. Here, we found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. Our objective was to explore the role of the miR-103 in prostate cancer. METHODS In this study, we measured miR-103 level using real-time polymerase chain reaction in the human prostate cancer cell lines, including PC-3, LNCap, 22Rv1, DU145, and the normal prostate epithelium cell line RWPE-1, a total of 25 pairs of primary prostate cancer tissues and adjacent non-cancerous tissues (NCTs) were measured also. In addition, over-expression of miR-103 in prostate cancer cell lines to determine the role of miR-103 in prostate cancer. RESULTS We found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. In addition, over-expression of miR-103 apparently inhibits prostate cancer cell proliferation and migration in vitro. Gain-of-function in vitro experiments further show that miR-103 mimics significantly inhibited prostate cancer cell proliferation, invasion and increase the cell cycle in G1 phase, while promoted cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene PDCD10 as direct target of miR-103. CONCLUSIONS Therefore, our data collectively demonstrate that miR-103 is a proto-oncogene miRNA that can suppress prostate cancer proliferation and migration by down-regulating the oncogene PDCD10, indicating that miR-103 may represent a new potential diagnostic and therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Xiaoliang Fu
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yansheng Su
- The Chinese People's Liberation Army 323 hospital, Xi'an, China
| | - Lu Lu
- Armed Police Hospital of Shaanxi, Xi'an, China
| | - Dong Wang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - He Wang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Lauenborg B, Christensen L, Ralfkiaer U, Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum LMR, Zhang Q, Wasik MA, Ralfkiaer E, Ødum N, Woetmann A. Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget 2016; 6:15235-49. [PMID: 25915535 PMCID: PMC4558148 DOI: 10.18632/oncotarget.3837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022] Open
Abstract
Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes to internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating expression of IL-6 in the malignant cells. LTα and IL-6, together with VEGF promote angiogenesis by inducing endothelial cell sprouting and tube formation. Thus, we propose that LTα plays a role in malignant angiogenesis and disease progression in CTCL and may serve as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Britt Lauenborg
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Ralfkiaer
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Ralfkiaer
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Lambertz N, El Hindy N, Kreitschmann-Andermahr I, Stein KP, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y. Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma. BMC Cancer 2015; 15:759. [PMID: 26490252 PMCID: PMC4618952 DOI: 10.1186/s12885-015-1709-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Background Neovascularization and peritumoral edema are hallmarks of glioblastoma (GBM). Programmed cell death 10 (PDCD10) plays a pivotal role in regulating apoptosis, neoangiogenesis and vessel permeability and is implicated in certain tumor signaling pathways. However, little is known about PDCD10 in GBM. We aimed to investigate the expression pattern of PDCD10 and to identify the association of its expression with some molecular and clinical parameters in human GBM. Methods mRNA and protein expression of PDCD10 were examined respectively by real-time RT-PCR and Western blotting in GBM (n = 27), astrocytoma grade II (n = 13) and control (n = 11). The protein level of p-Akt and GFAP was detected by Western blot. Double-imunofluorecent staining was performed to reveal the cellular expression profile of PDCD10. Brain edema and microvascular density (MVD) were respectively analyzed based on pre-operative MRI and after laminin immnostaining. MGMT promoter methylation was detected by methylation specific PCR. Results mRNA and protein levels of PDCD10 were significantly downregulated in GBM, concomitantly accompanied by the activation of Akt. PDCD10 immunoreactivity was absent in proliferating tumor cells, endothelial cells and GFAP-positive cells, but exclusively present in the hypoxic pseudopalisading cells which underwent apoptosis. Moreover, loss of PDCD10 was associated with a higher MVD and a more severe peritumoral edema but not with MGMT promoter methylation in GBM. Conclusion We report for the first time that PDCD10 expression is downregulated in GBM, which is associated with the activation of Akt signaling protein. PDCD10 is potentially implicated in tumor proliferation and apoptosis, hyperangiogenesis and peritumoral edema in GBM.
Collapse
Affiliation(s)
- Nicole Lambertz
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Nicolai El Hindy
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | | | - Klaus Peter Stein
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Present Address: Department of Neurosurgery, KRH Klinikum Nordstadt, Haltenhoffstr. 41, 30167, Hannover, Germany.
| | - Philipp Dammann
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Neriman Oezkan
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Oliver Mueller
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulrich Sure
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Yuan Zhu
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
21
|
Feng ZM, Qiu J, Chen XW, Liao RX, Liao XY, Zhang LP, Chen X, Li Y, Chen ZT, Sun JG. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer 2015; 15:645. [PMID: 26400441 PMCID: PMC4581477 DOI: 10.1186/s12885-015-1655-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy. Specifically, the distinct miRNome data of BCSCs and MaSCs need to be analyzed to find out the key miRNAs and reveal their roles in regulating the stemness of BCSCs. Methods MUC1−ESA+ cells were isolated from normal mammary epithelial cell line MCF-10A by fluorescence-activated cell sorting (FACS) and tested for stemness by clonogenic assay and multi-potential differentiation experiments. The miRNA profiles of MaSCs, BCSCs and breast cancer MCF-7 cells were compared to obtain the candidate miRNAs that may regulate breast tumorigenesis. An miRNA consecutively upregulated from MaSCs to BCSCs to MCF-7 cells, miR-200c, was chosen to determine its role in regulating the stemness of BCSCs and MaSCs in vitro and in vivo. Based on bioinformatics, the targets of miR-200c were validated by dual-luciferase report system, western blot and rescue experiments. Results In a 2-D clonogenic assay, MUC1−ESA+ cells gave rise to multiple morphological colonies, including luminal colonies, myoepithelial colonies and mixed colonies. The clonogenic potential of MUC1−ESA+ (61.5 ± 3.87 %) was significantly higher than that of non-stem MCF-10A cells (53.5 ± 3.42 %) (P < 0.05). In a 3-D matrigel culture, MUC1−ESA+ cells grew into mammospheres with duct-like structures. A total of 12 miRNAs of interest were identified, 8 of which were upregulated and 4 downregulated in BCSCs compared with MaSCs. In gain- and lost-of-function assays, miR-200c was sufficient to inhibit the self-renewal of BCSCs and MaSCs in vitro and the growth of BCSCs in vivo. Furthermore, miR-200c negatively regulated programmed cell death 10 (PDCD10) in BCSCs and MaSCs. PDCD10 could rescue the tumorigenesis inhibited by miR-200c in BCSCs. Discussion Accumulating evidence shows that there is a milignant transformation from MaSCs into BCSCs. The underlying mechanism remains unclear. In present study, miRNA profiles between MaSCs and BCSCs were obtained. Then miRNA-200c, downregulated in both MaSCs and BCSCs, were verified as anti-oncogene, and played essential role in regulating self-renewal of both kinds of stem-like cells. These findings reveal a novel insights of breast tumorigenesis. Conclusions PDCD10 is a target gene of miR-200c and also a possible mechanism by which miR-200c plays a role in regulating the stemness of BCSCs and MaSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1655-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong-Ming Feng
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Jun Qiu
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Xie-Wan Chen
- Department of Medical English, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Rong-Xia Liao
- Department of Medical English, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Xing-Yun Liao
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Lu-Ping Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Xu Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Yan Li
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| |
Collapse
|
22
|
Abstract
TOX is a nuclear factor essential for the development of CD4(+) T cells in the thymus. It is normally expressed in low amounts in mature CD4(+) T cells of the skin and the peripheral blood. We have recently discovered that the transcript levels of TOX were significantly increased in mycosis fungoides, the most common type of cutaneous T-cell lymphoma (CTCL), as compared to normal skin or benign inflammatory dermatoses. However, its involvement in advanced CTCL and its biological effects on CTCL pathogenesis have not been explored. In this study, we demonstrate that TOX expression is also enhanced significantly in primary CD4(+)CD7(-) cells from patients with Sézary syndrome, a leukemic variant of CTCL, and that high TOX transcript levels correlate with increased disease-specific mortality. Stable knockdown of TOX in CTCL cells promoted apoptosis and reduced cell cycle progression, leading to less cell viability and colony-forming ability in vitro and to reduced tumor growth in vivo. Furthermore, TOX knockdown significantly increased 2 cyclin-dependent kinase (CDK) inhibitors, CDKN1B and CDKN1C. Lastly, blocking CDKN1B and CDKN1C reversed growth inhibition of TOX knockdown. Collectively, these findings provide strong evidence that aberrant TOX activation is a critical oncogenic event for CTCL.
Collapse
|
23
|
Yang YJ, Liu ZS, Lu SY, Li C, Hu P, Li YS, Liu NN, Tang F, Xu YM, Zhang JH, Li ZH, Feng XL, Zhou Y, Ren HL. Molecular cloning, expression and characterization of programmed cell death 10 from sheep (Ovis aries). Gene 2014; 558:65-74. [PMID: 25541025 DOI: 10.1016/j.gene.2014.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/27/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Programmed cell death 10 (PDCD10) is a highly conserved adaptor protein. Its mutations result in cerebral cavernous malformations (CCMs). In this study, PDCD10 cDNA from the buffy coat of Small Tail Han sheep (Ovis aries) was cloned from a suppression subtractive hybridization cDNA library, named OaPDCD10. The full-length cDNA of OaPDCD10 was 1343bp with a 639bp open reading frame (ORF) encoding 212 amino acid residues. Tissue distribution of OaPDCD10 mRNA determined that it was ubiquitously expressed in all tested tissue samples, and the highest expression was observed in the heart. The differential expression of OaPDCD10 between infected sheep (challenged with Brucella melitensis) and vaccinated sheep (vaccinated with Brucella suis S2) was also investigated. The results revealed that, compared to the control group, the expression of OaPDCD10 from infected and vaccinated sheep was both significantly up-regulated (p<0.05). Moreover, the expression levels of OaPDCD10 from the vaccinated sheep were significantly higher than the infected sheep (p<0.05) after 30days post-inoculation. The recombinant OaPDCD10 (rOaPDCD10) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rOaPDCD10 protein was demonstrated to induce apoptosis and promote cell proliferation. Our studies are intended to discover potential diagnostic biomarkers of brucellosis to discern infected sheep from vaccinated sheep, and OaPDCD10 could be considered as a potential diagnostic biomarker of brucellosis.
Collapse
Affiliation(s)
- Yong-Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chuang Li
- Department of Food Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan-Nan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121001, China
| | - Yun-Ming Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China
| | - Jun-Hui Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhao-Hui Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Li Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
24
|
Şahin B, Fife J, Parmar MB, Valencia-Serna J, Gul-Uludağ H, Jiang X, Weinfeld M, Lavasanifar A, Uludağ H. siRNA therapy in cutaneous T-cell lymphoma cells using polymeric carriers. Biomaterials 2014; 35:9382-94. [DOI: 10.1016/j.biomaterials.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
|
25
|
Zhang H, Ma X, Peng S, Nan X, Zhao H. Differential expression of MST4, STK25 and PDCD10 between benign prostatic hyperplasia and prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8105-8111. [PMID: 25550858 PMCID: PMC4270628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Both benign prostatic hyperplasia (BPH) and prostate cancer (PC) are common diseases for men around the world. Both serine/threonine protein kinase MST4 (MST4) and serine/threonine kinase 25 (STK25) belong to the Ste20-like kinases and interact with programmed cell death 10 (PDCD10) which is closely linked to cancer diseases. To clarify the roles of MST4, STK25 and PDCD10 in prostate carcinogenesis, we examined MST4, STK25 and PDCD10 expression in tissue microarray blocks containing 110 cores of BPH and 160 cores of PC immunohistochemically and evaluated their correlation with clinicopathological findings. MST4 was not expressed in all the BPH cases and expressed in 38.7% of PC cases (P < 0.0001). STK25 expression was found in 77.3% of BPH cases and 93.1% of PC cases (P < 0.0001). PDCD10 staining was considered weak in 82 (74.5%) and strong in 28 (25.5%) of BPH cases. However, in prostate cancer cases, PDCD10 staining was weak in 95 (59.4%) and strong in 65 (40.6%) (P < 0.05). PDCD10 and STK25 immunostaining were associated with age in prostatic hyperplasia cases (P < 0.05). The staining intensity for STK25 was significantly greater in Gleason grades 3-5 (47.1% of such cases staining strongly) compared with other grades of prostate cancer (only 26.5% of these cases staining strongly; P < 0.05). Our results suggest that MST4, STK25 and PDCD10 are unregulated in prostate cancer and may play roles in prostate tumorigenesis. MST4 may be a helpful marker for identifying prostate cancer.
Collapse
Affiliation(s)
- Heyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityNo. 38 Xueyuan Road, Beijing, PR China
- Human Disease Genomics Center, Peking University38 Xueyuan Road, Beijing, PR China
- Central Laboratory, Peking University School of Stomatology22 South Zhongguancun Road, Beijing, PR China
| | - Xi Ma
- State Key Lab of Animal Nutrition, China Agricultural University2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Saihui Peng
- Department of Immunology, School of Basic Medical Sciences, Peking UniversityNo. 38 Xueyuan Road, Beijing, PR China
- Human Disease Genomics Center, Peking University38 Xueyuan Road, Beijing, PR China
| | - Xu Nan
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University38 Xueyuan Road, Beijing, PR China
- Human Disease Genomics Center, Peking University38 Xueyuan Road, Beijing, PR China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University38 Xueyuan Road, Beijing, PR China
- Human Disease Genomics Center, Peking University38 Xueyuan Road, Beijing, PR China
| |
Collapse
|
26
|
A proteomics analysis to evaluate cytotoxicity in NRK-52E cells caused by unmodified Nano-Fe₃O₄. ScientificWorldJournal 2014; 2014:754721. [PMID: 25197711 PMCID: PMC4150542 DOI: 10.1155/2014/754721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/05/2014] [Indexed: 01/12/2023] Open
Abstract
We synthesized unmodified Fe3O4 nanoparticles (NPs) with particles size from 10 nm to 100 nm. We cultured NRK-52E cell lines (rat, kidney) and treated with Fe3O4 NPs to investigate and evaluate the cytotoxicity of NPs for NRK-52E cells. Through global proteomics analysis using dimethyl labeling techniques and liquid phase chromatography coupled with a tandem mass spectrometer (LC-MS/MS), we characterized 435 proteins including the programmed cell death related proteins, ras-related proteins, glutathione related proteins, and the chaperone proteins such as heat shock proteins, serpin H1, protein disulfide-isomerase A4, endoplasmin, and endoplasmic reticulum resident proteins. From the statistical data of identified proteins, we believed that NPs treatment causes cell death and promotes expression of ras-related proteins. In order to avoid apoptosis, NRK-52E cell lines induce a series of protective effects such as glutathione related proteins to reduce reactive oxygen species (ROS), and chaperone proteins to recycle damaged proteins. We suggested that, in the indigenous cellular environment, Fe3O4 NPs treatment induced an antagonistic effect for cell lines to go to which avoids apoptosis.
Collapse
|
27
|
Abstract
Patients with cutaneous T-cell lymphoma (CTCL) are frequently colonized with Staphylococcus aureus (SA). Eradication of SA is, importantly, associated with significant clinical improvement, suggesting that SA promotes the disease activity, but the underlying mechanisms remain poorly characterized. Here, we show that SA isolates from involved skin express staphylococcal enterotoxins (SEs) that induce crosstalk between malignant and benign T cells leading to Stat3-mediated interleukin-10 (IL-10) production by the malignant T cells. The SEs did not stimulate the malignant T cells directly. Instead, SEs triggered a cascade of events involving cell-cell and asymmetric cytokine interactions between malignant and benign T cells, which stimulated the malignant T cells to express high levels of IL-10. Much evidence supports that malignant activation of the Stat3/IL-10 axis plays a key role in driving the immune dysregulation and severe immunodeficiency that characteristically develops in CTCL patients. The present findings thereby establish a novel link between SEs and immune dysregulation in CTCL, strengthening the rationale for antibiotic treatment of colonized patients with severe or progressive disease.
Collapse
|
28
|
Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, Zhang Q, Bonefeld CM, Wasik MA, Geisler C, Zhou Y, Woetmann A, Sasseville D, Krejsgaard T, Odum N. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle 2014; 13:1306-12. [PMID: 24621498 DOI: 10.4161/cc.28256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Skin lesions from mycosis fungoides (MF) patients display an increased expression of interleukin-15 (IL-15), IL-17F, and other cytokines implicated in inflammation and malignant cell proliferation in cutaneous T-cell lymphoma (CTCL). In the leukemic variant of CTCL, Sézary syndrome (SS), IL-2 and IL-15 trigger activation of the Jak-3/STAT3 pathway and transcription of IL17A gene, whereas it is unknown what causes IL-15 expression, Jak3/STAT3 activation, and production of IL-17F in MF. Here, we studied the expression and regulation of IL-15 and its relation to IL-17F in MF cell lines and skin lesions from 60 MF patients. We show that: (1) the spontaneous IL-15 mRNA expression is resistant to Jak3 and STAT3 inhibitors at concentrations that profoundly inhibit STAT3 activation and IL-17F mRNA expression; (2) anti-IL-15 antibody blocks STAT3 activation induced by exogenous IL-15 in non-malignant MF T cells, whereas the spontaneous STAT3 activation and IL-17F expression in malignant T cells is not inhibited; (3) patients display heterogeneous IL-15/IL-17F mRNA expression patterns in skin lesions; and (4) IL-15 expression (in contrast to IL-17F) is not associated with progressive disease. Taken together, these findings indicate that IL-15 and IL-17F are differentially regulated and expressed in MF. We propose that IL-15 and IL-17F are markers for different inflammatory environments and play distinct roles in the development and progression of MF.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Simon M Fredholm
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - David L Petersen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Nina A Sibbesen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology; Copenhagen University Hospital; Bispebjerg, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Charlotte M Bonefeld
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Carsten Geisler
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Youwen Zhou
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver, British Columbia, Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Niels Odum
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
29
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Persson JL. miRNA in mycosis fungoides and skin inflammation. APMIS 2013; 121:1017-9. [DOI: 10.1111/apm.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jenny Liao Persson
- Division of Experimental Cancer Research; Department of Laboratory Medicine; Lund University; Clinical Research Center; Malmö Sweden
| |
Collapse
|
31
|
Kopp KL, Ralfkiaer U, Nielsen BS, Gniadecki R, Woetmann A, Ødum N, Ralfkiaer E. Expression of miR-155 and miR-126 in situ in cutaneous T-cell lymphoma. APMIS 2013; 121:1020-4. [PMID: 24033365 DOI: 10.1111/apm.12162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/29/2022]
Abstract
Recently, miR-155 has been implicated in cutaneous T-cell lymphoma (CTCL). Thus, elevated levels of miR-155 were observed in skin lesions from CTCL patients as judged from qPCR and micro-array analysis and aberrant, high miR-155 expression was associated with severe disease. Moreover, miR-155 promoted proliferation of malignant T cells in vitro. Little is, however, known about which cell types express miR-155 in vivo in CTCL skin lesions. Here, we study miR-155 expression using in situ hybridization (ISH) with a miR-155 probe, a negative control (scrambled), and a miR-126 probe as a positive control in nine patients with mycosis fungoides, the most frequent subtype of CTCL. We provide evidence that both malignant and non-malignant T cells stain weakly to moderately positive with the miR-155 probe, but generally negative with the miR-126 and negative control probes. Reversely, endothelial cells stain positive for miR-126 and negative for miR-155 and the control probe. Solitary T cells with a malignant morphology display brighter staining with the miR-155 probe. Taken together, our findings suggest that both malignant and non-malignant T cells express miR-155 in situ in CTCL. Moreover, they indicate heterogeneity in miR-155 expression among malignant T cells.
Collapse
Affiliation(s)
- Katharina L Kopp
- Department of International Health, Immunology and Microbiology (UoC), Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
32
|
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, A. Wasik M, B. Koralov S, Geisler C, Kilian M, Iversen L, Woetmann A, Odum N. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel) 2013; 5:1402-21. [PMID: 23949004 PMCID: PMC3760043 DOI: 10.3390/toxins5081402] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/02/2023] Open
Abstract
In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Charlotte Menne Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Sergei B. Koralov
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; E-Mail:
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; E-Mail:
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Niels Odum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-3532-7879
| |
Collapse
|
33
|
Kim HW, Mallick F, Durrani S, Ashraf M, Jiang S, Haider KH. Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 2012; 17:1053-65. [PMID: 22482882 PMCID: PMC3423870 DOI: 10.1089/ars.2012.4518] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS To establish a functional link between microRNA-107 (miR-107) and stem cell survival during ischemic preconditioning (IPC) of stem cells with multiple cycles of brief anoxia/re-oxygenation (10 or 30 min, one to three cycles) and show that the cytoprotective effects were independent of hypoxamir-210. RESULTS We demonstrated the induction of miR-107 in response to the IPC-induced activation of Akt/hypoxia inducible factor-1α (HIF-1α) in preconditioned mesenchymal stem cells ((PC)MSC), which showed improved survival during subsequent exposure to 6 h of lethal anoxia (p<0.05 vs. non-preconditioned MSC[(non-PC)MSC]). In silico analysis and luciferase activity assay confirmed programmed cell death-10 (PDCD10) as a putative target of miR-107 in (PC)MSC, which was significantly reduced during IPC and inversely related to stem cell survival under 6 h of lethal anoxia. Loss-of-function studies with miR-107 antagomir showed a significantly reduced survival of (PC)MSC. A comparison of miR-107 and miR-210 showed that both miRs participated independently via their respective putative target genes Pdcd10 and Casp8ap2. The simultaneous abrogation of Pdcd10 and Casp8ap2 had a stronger effect on (PC)MSC survival under lethal anoxia. The transplantation of (PC)MSC in an acute model of myocardial infarction showed a significantly improved survival of transplanted (PC)MSC with concomitantly enhanced miR-107 expression in (PC)MSC-transplanted animal hearts. INNOVATION Cytoprotection afforded by IPC is regulated by miR-107 induction via Pdcd10 independent of miR-210/Casp8ap2 signaling, and the simultaneous abrogation miR-107/miR-210 has a stronger effect on the loss of (PC)MSC survival. CONCLUSION IPC enhances stem cell survival via the combined participation of hypoxia responsive miRs miR-107 and miR-210 via their respective putative target genes Pdcd10 and Casp8ap2.
Collapse
Affiliation(s)
- Ha Won Kim
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pedersen IH, Willerslev-Olsen A, Vetter-Kauczok C, Krejsgaard T, Lauenborg B, Kopp KL, Geisler C, Bonefeld CM, Zhang Q, Wasik MA, Dabelsteen S, Woetmann A, Becker JC, Odum N. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leuk Lymphoma 2012; 54:819-26. [PMID: 22946664 DOI: 10.3109/10428194.2012.726720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here, we have studied vascular endothelial growth factor receptor-3 (VEGFR-3) expression in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). Immunohistochemistry revealed that in two-thirds of 34 patients, VEGFR-3 was expressed in situ by both tumor and stromal cells irrespective of the disease stage. The natural VEGFR-3 ligand, VEGF-C, partially protected malignant T-cell lines from growth inhibition by the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA). Whereas the malignant T cells did not produce VEGF-C in vitro, its expression was induced during tumor formation in vivo in a xenograft mouse model of MF. In conclusion, malignant and stromal cells express high levels of VEGFR-3 in all stages of MF. Moreover, malignant T cells trigger enhanced VEGF-C expression in fibroblasts, suggesting that cross-talk between tumor and stromal cells plays a role in lymphangiogenesis and possibly disease progression.
Collapse
Affiliation(s)
- Ida Holst Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Germinal center kinases (GCKs) participate in a variety of signaling pathways needed to regulate cellular functions including apoptosis, cell proliferation, polarity and migration. Recent studies have shown that GCKs are participants in both adaptive and innate immune regulation. However, the differential activation and regulatory mechanisms of GCKs, as well as upstream and downstream signaling molecules, remain to be fully defined. It remains unresolved whether and how GCKs may cross-talk with existing signaling pathways. This review stresses the progresses in research of GCKs relevant to the immune system.
Collapse
|
36
|
González-Fernández R, Morales M, Avila J, Martín-Vasallo P. Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy. Oncol Lett 2012; 3:1341-1349. [PMID: 22783446 DOI: 10.3892/ol.2012.669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
In the present study, we studied changes in gene expression induced by chemotherapy (CT) on normal peripheral blood leukocytes (PBLs), at baseline and following three CT cycles, in order to identify which genes were specifically affected and were potentially useful as biomarkers for a personalised prognosis and follow-up. A PBL subtraction cDNA library was constructed from four patients undergoing CT with paclitaxel and carboplatin (PC). mRNA from the PBLs was isolated prior to the patients receiving the first cycle and following the completion of the third cycle. The library was screened and the expression of the identified genes was studied in PBLs obtained from patients suffering from cancer prior to and following three cycles of PC and a reference group of patients undergoing treatment with Adriamycin-cyclophosphamide (AC). From the 1,200 screened colonies, 65 positive clones showed varied expression intensity and were sequenced; 27 of these were mitochondrial DNA and 38 clones (27 different) were coded for cytosolic and nuclear proteins. The genes that were studied in patients undergoing CT were ATM (ataxia-telangiectasia mutated gene), eIF4B (translation initiation factor 4B), MATR3 (Matrin 3), MORC3 (microrchidia 3), PCMTD2 (protein-L-isoaspartate O-methyltransferase), PDCD10 (programmed cell death gene 10), PSMB1 (proteasome subunit type β), RMND5A (required for meiotic nuclear division 5 homologue A), RUNX2 (runt-related transcription factor 2), SACM1L (suppressor of actin mutations 1-like), TMEM66 (transmembrane protein 66) and ZNF644 (zinc finger protein 644). Certain variations were observed in the expression of the genes that are involved in drug resistance mechanisms, some of which may be secondary to non-desirable effects and others of which may cause the undesired effects of CT. The expression of genes with a dynamic cellular role showed a marked positive correlation, indicating that their upregulation may be involved in a specific pattern of cell survival versus apoptosis in response to the cell damage induced by CT. Whether these CT-induced changes are random or directed in a specific selection-evolution manner needs to be elucidated.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratory of Developmental Biology, Department of Biochemistry and Molecular Biology, University of La Laguna, La Laguna 38201
| | | | | | | |
Collapse
|
37
|
Studies on the establishment of a co-culture system of lung stage Schistosoma japonicum with host cells. Parasitol Res 2012; 111:735-48. [DOI: 10.1007/s00436-012-2894-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/12/2012] [Indexed: 11/25/2022]
|