1
|
Praetzel R, Kepley C. Human Lung Mast Cells as a Possible Reservoir for Coronavirus: A Novel Unrecognized Mechanism for SARS-CoV-2 Immune-Mediated Pathology. Int J Mol Sci 2024; 25:6511. [PMID: 38928216 PMCID: PMC11204339 DOI: 10.3390/ijms25126511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health concern. Cell entry of SARS-CoV-2 depends on viral spike (S) proteins binding to cellular receptors (ACE2) and their subsequent priming by host cell proteases (TMPRSS2). Assessing effects of viral-induced host response factors and determining which cells are used by SARS-CoV-2 for entry might provide insights into viral transmission, add clarity to the virus' pathogenesis, and possibly reveal therapeutic targets. Mast cells (MCs) are ubiquitously expressed tissue cells that act as immune sentinels given their ability to react specifically to pathogens at environmental interfaces, such as in the lung. Several lines of evidence suggest a critical role for MCs in SARS-CoV-2 infections based on patients' mediator profiles, especially the "cytokine storm" responsible for most morbidity and mortality. In this pilot study, we demonstrated that human lung MCs (n = 3 donors) are a source of renin and that they upregulate the membrane receptor for SARS-CoV-2 (ACE2) as well as the protease required for cellular entry (TMPRSS2) under certain conditions. We hypothesized that infection of human MCs with SARS-CoV-2 may be a heretofore-unrecognized mechanism of viral pathogenesis, and further studies are required to assess this question.
Collapse
Affiliation(s)
| | - Chris Kepley
- Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA
| |
Collapse
|
2
|
Wang Y, Liu Z, Zhou W, Wang J, Li R, Peng C, Jiao L, Zhang S, Liu Z, Yu Z, Sun J, Deng Q, Duan S, Tan W, Wang Y, Song L, Guo F, Zhou Z, Wang Y, Zhou L, Jiang H, Yu L. Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction. Basic Res Cardiol 2024; 119:75-91. [PMID: 38172251 DOI: 10.1007/s00395-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wenjie Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liying Jiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Song Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhongyang Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
Murakami K, Tamura R, Ikehara S, Ota H, Ichimiya T, Matsumoto N, Matsubara H, Nishihara S, Ikehara Y, Yamamoto K. Construction of mouse cochlin mutants with different GAG-binding specificities and their use for immunohistochemistry. Biochem J 2023; 480:41-56. [PMID: 36511224 PMCID: PMC9987951 DOI: 10.1042/bcj20220339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycan (GAG) is a polysaccharide present on the cell surface as an extracellular matrix component, and is composed of repeating disaccharide units consisting of an amino sugar and uronic acid except in the case of the keratan sulfate. Sulfated GAGs, such as heparan sulfate, heparin, and chondroitin sulfate mediate signal transduction of growth factors, and their functions vary with the type and degree of sulfated modification. We have previously identified human and mouse cochlins as proteins that bind to sulfated GAGs. Here, we prepared a recombinant cochlin fused to human IgG-Fc or Protein A at the C-terminus as a detection and purification tag and investigated the ligand specificity of cochlin. We found that cochlin can be used as a specific probe for highly sulfated heparan sulfate and chondroitin sulfate E. We then used mutant analysis to identify the mechanism by which cochlin recognizes GAGs and developed a GAG detection system using cochlin. Interestingly, a mutant lacking the vWA2 domain bound to various types of GAGs. The N-terminal amino acid residues of cochlin contributed to its binding to heparin. Pathological specimens from human myocarditis patients were stained with a cochlin-Fc mutant. The results showed that both tryptase-positive and tryptase-negative mast cells were stained with this mutant. The identification of detailed modification patterns of GAGs is an important method to elucidate the molecular mechanisms of various diseases. The method developed for evaluating the expression of highly sulfated GAGs will help understand the biological and pathological importance of sulfated GAGs in the future.
Collapse
Affiliation(s)
- Karin Murakami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryo Tamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Sanae Ikehara
- Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Hayato Ota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Tomomi Ichimiya
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- Glycan and Life System Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Yuzuru Ikehara
- Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
4
|
Nuñez-Borque E, Fernandez-Bravo S, Yuste-Montalvo A, Esteban V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front Immunol 2022; 13:836222. [PMID: 35371072 PMCID: PMC8965328 DOI: 10.3389/fimmu.2022.836222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Anaphylaxis is a systemic hypersensitivity reaction that can be life threatening. Mechanistically, it results from the immune activation and release of a variety of mediators that give rise to the signs and symptoms of this pathological event. For years, most of the research in anaphylaxis has focused on the contribution of the immune component. However, approaches that shed light on the participation of other cellular and molecular agents are necessary. Among them, the vascular niche receives the various signals (e.g., histamine) that elicit the range of anaphylactic events. Cardiovascular manifestations such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and cardiac alterations are crucial in the pathophysiology of anaphylaxis and are highly involved to the development of the most severe cases. Specifically, the endothelium, vascular smooth muscle cells, and their molecular signaling outcomes play an essential role downstream of the immune reaction. Therefore, in this review, we synthesized the vascular changes observed during anaphylaxis as well as its cellular and molecular components. As the risk of anaphylaxis exists both in clinical procedures and in routine life, increasing our knowledge of the vascular physiology and their molecular mechanism will enable us to improve the clinical management and how to treat or prevent anaphylaxis. Key Message Anaphylaxis, the most severe allergic reaction, involves a variety of immune and non-immune molecular signals that give rise to its pathophysiological manifestations. Importantly, the vascular system is engaged in processes relevant to anaphylactic events such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and decreased cardiac output. The novelty of this review focuses on the fact that new studies will greatly improve the understanding of anaphylaxis when viewed from a vascular molecular angle and specifically from the endothelium. This knowledge will improve therapeutic options to treat or prevent anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alma Yuste-Montalvo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
5
|
Maleszewski JJ, Lai CK, Nair V, Veinot JP. Anatomic considerations and examination of cardiovascular specimens (excluding devices). Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Han Y, Xia K, Su T. Exploration of the Important Role of Microfibril-Associated Protein 4 Gene in Oral Squamous Cell Carcinoma. Med Sci Monit 2021; 27:e931238. [PMID: 34210950 PMCID: PMC8259352 DOI: 10.12659/msm.931238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common tumor of the head and neck. Its treatment usually requires multiple modalities. Currently, there are no molecular biomarkers to guide these treatment strategies. Studies have shown that microfibril-associated protein 4 (MFAP4) is potentially useful for non-invasive assessment of various diseases; however, its biological function in tumors is still unknown. In this study, we propose that MFAP4 is a new prognostic target for OSCC. Material/Methods First, we collected OSCC data (GSE25099 and GSE30784 datasets) from the Gene Expression Omnibus (GEO) database and compared the differential expression of MFAP4 gene between the patients (tumor) and normal (control) groups. The comparison was done with University of California Santa Cruz Xena (https://xenabrowser.net/Datapages/), and we calculated the difference in MFAP4 gene expression between normal and tumor tissues in a pan-cancer analysis. Then, we compared the 2 groups with high and low expression of MFAP4 gene in terms of tumor mutation burden (TMB), miRNA regulation, and immune cell infiltration. Results We found that the expression of MFAP4 gene was significantly decreased in tumors. Our research also showed that high expression of MFAP4 was related to better prognosis of patients and may be related to tumor gene mutation, miRNA regulation, and infiltration of different immune cells. Conclusions Our work provides evidence that expression of MFAP4 can be used as a prognostic biomarker for risk stratification of OSCC patients and elaborates on its relation with the regulation of TMB, miRNAs, and immune cell infiltration.
Collapse
Affiliation(s)
- Ying Han
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland).,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China (mainland).,Research Center of Oral and Maxillofacial Tumors, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
7
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
8
|
Chumasov EI, Petrova ES, Kolos EA, Korzhevskii DE. Study of the Nerve Apparatus and Mast Cells in the Hearts of Old Rats. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021010355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Burns SS, Kapur R. Putative Mechanisms Underlying Cardiovascular Disease Associated with Clonal Hematopoiesis of Indeterminate Potential. Stem Cell Reports 2020; 15:292-306. [PMID: 32735822 PMCID: PMC7419714 DOI: 10.1016/j.stemcr.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Characterized by the expansion of somatic mutations in the hematopoietic lineages of aging individuals, clonal hematopoiesis of indeterminate potential (CHIP) is a common condition that increases the risk of developing hematological malignancies and cardiovascular disease (CVD). The presence of CHIP-associated mutations in hematopoietic stem and progenitor cells (HSPCs) suggests that these mutations may alter the functions of the diverse hematopoietic lineages, many of which influence the pathogenesis of CVD. Inflammation may be a potential pathogenic mechanism, linking both CVD and hematological malignancy. However, it remains unknown whether CHIP-associated CVD and hematological malignancy are features of a common disease spectrum. The contributions of CHIP-associated mutations to both CVD and hematological malignancy underscore the importance of stem cell biology in pathogenesis and treatment. This review discusses possible mechanisms underlying the contributions of multiple hematopoietic lineages to CHIP-associated CVD and the putative pathogenic links between CHIP-associated CVD and hematological malignancy.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Akgul A, Turkyilmaz S, Turkyilmaz G, Toz H. Acute Aortic Dissection Surgery in a Patient With COVID-19. Ann Thorac Surg 2020; 111:e1-e3. [PMID: 32562625 PMCID: PMC7298472 DOI: 10.1016/j.athoracsur.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Acute aortic dissection is one of the most common life-threatening diseases that affects the aortic vessel. We present a case of acute Stanford type A aortic dissection in a patient with coronavirus disease 2019 (COVID-19) under treatment with angiotensin-converting enzyme inhibitors. A 68-year-old woman complaining of acute chest pain and dyspnea was admitted to the emergency clinic of our hospital on May 6, 2020. She had history of diabetes and hypertension. This is one of the first acute aortic surgery cases among patients with COVID-19.
Collapse
Affiliation(s)
- Ahmet Akgul
- Division of Gerontology, Istanbul University-Cerrahpasa, Faculty of Health Sciences, Istanbul, Turkey.
| | - Saygin Turkyilmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Gulsum Turkyilmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Hasan Toz
- Department of Cardiovascular Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Konstantinou GN, Konstantinou GN. Psychological Stress and Chronic Urticaria: A Neuro-immuno-cutaneous Crosstalk. A Systematic Review of the Existing Evidence. Clin Ther 2020; 42:771-782. [PMID: 32360096 DOI: 10.1016/j.clinthera.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE It has been observed that certain patients with chronic spontaneous or idiopathic urticaria (CSU/CIU) have a personal history of a significant stressor before urticaria onset, while the prevalence of any psychopathology among these patients is significantly higher than in healthy individuals. Research has confirmed that skin is both an immediate stress perceiver and a target of stress responses. These complex interactions between stress, skin, and the nervous system may contribute to the onset of chronic urticaria. This systematic review investigated the association between CSU/CIU and neuroimmune inflammation with or without evidence of co-existing psychological stress from in vivo and ex vivo studies in human beings. METHODS PubMed and Scopus were searched to September 2019 for reports in human beings describing neuroimmune inflammation, stress, and CSU/CIU. A comprehensive search strategy was used that included all the relevant synonyms for the central concept. FINDINGS A total of 674 potentially relevant articles were identified. Only 13 satisfied the predefined inclusion criteria and were included in the systematic review. Five of these 13 studies evaluated the correlation between CSU/CIU, stress, and neuro-immune-cutaneous factors, while the remaining 8 focused on the association between CSU/CIU and these factors without examining any evidence of stress. IMPLICATIONS The complex neuro-immune-cutaneous model that involves numerous neuropeptides and neurokinins, inflammatory mediators and cells, hypothalamic-pituitary-adrenal axis hormones, and the skin may better explain the underlying pathophysiological mechanisms involved in the onset of urticaria. In addition, the elevated psychological stress level that has been closely related to CSU/CIU could be attributed to the imbalance or irregularity of this neuro-immune-cutaneous circuit. It is still unclear and must be further investigated whether any psychological stress results in or triggers CSU/CIU onset on top of a preexisting neuroimmune dysregulation. Nevertheless, new psycho-phenotypic or neuro-endotypic CSU/CIU subsets should be considered as the era of personalized treatment strategies emerges. A better understanding of CSU/CIU pathophysiology and consideration of the patient as a whole is vital for identifying targets for new potential treatment options.
Collapse
Affiliation(s)
| | - George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece.
| |
Collapse
|
12
|
Vaina S, Chrysohoou C, Bonfanti L, Kounis NG, Cervellin G, Georgiopoulos G, Tousoulis D. Anaphylactic cardiovascular collapse manifesting as myocardial infarction following salad consumption. A case of Kounis variant type I syndrome. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:134-138. [PMID: 32191668 PMCID: PMC7569581 DOI: 10.23750/abm.v91i1.8176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022]
Abstract
Anaphylactic cardiovascular events constitute an underrated cause of medical emergencies in hospitalized patients. Coronary arteries and myocardium are targeted by anaphylactic mediators leading to acute coronary syndrome and imminent cardiovascular collapse. Early diagnosis and high clinical suspicion are required to secure prompt life-saving treatment in these cases. However, physicians of both Cardiology and Internal Medicine Departments are not familiar with this condition. Recently, we diagnosed and treated a case of anaphylactic cardiovascular collapse manifesting as acute myocardial infarction following salad consumption. Notably, Kounis anaphylaxis-associated acute coronary syndrome is a rare cause of ST segment elevation myocardial infarction with normal or diseased coronary arteries. We recommend that Kounis syndrome and its variants should be taken into consideration in the differential diagnosis of ischemic heart disease in patients with signs of allergic reaction and/or medical history of previous allergic reactions, who experience acute coronary syndrome after exposure to certain environmental stimuli. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Sophia Vaina
- first Department of Cardiology, Hippokration Hospital, Athens medical School, Athens, Greece.
| | - Christina Chrysohoou
- first Department of Cardiology, Hippokration Hospital, Athens medical School, Athens, Greece.
| | - Laura Bonfanti
- Emergency Department. Academic Hospital of Parma, Italy.
| | | | | | - Georgios Georgiopoulos
- first Department of Cardiology, Hippokration Hospital, Athens medical School, Athens, Greece.
| | - Dimitris Tousoulis
- first Department of Cardiology, Hippokration Hospital, Athens medical School, Athens, Greece.
| |
Collapse
|
13
|
Yamashita T, Ahmad S, Wright KN, Roberts DJ, VonCannon JL, Wang H, Groban L, Dell’Italia LJ, Ferrario CM. Noncanonical Mechanisms for Direct Bone Marrow Generating Ang II (Angiotensin II) Predominate in CD68 Positive Myeloid Lineage Cells. Hypertension 2020; 75:500-509. [PMID: 31813348 PMCID: PMC6949383 DOI: 10.1161/hypertensionaha.119.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Bone marrow (BM) Ang II (angiotensin II) is a major participant in the regulation of hematopoiesis and immunity. The novel tissue substrate Ang-(1-12) [angiotensin-(1-12)] and its cleaving enzyme chymase are an essential source of Ang II production in cardiac tissue. We hypothesized this noncanonical chymase-mediated Ang II-producing mechanism exists in the BM tissue. Immunohistostaining and flow cytometry confirmed the presence of Ang-(1-12) immunoreaction in the BM of SD (Sprague Dawley) rats. Chymase-mediated Ang II-producing activity in BM was ≈1000-fold higher than ACE (angiotensin-converting enzyme)-mediated Ang II-producing activity (4531±137 and 4.2±0.3 fmol/min per mg, respectively; n=6; P<0.001) and 280-fold higher than chymase activity in the left ventricle of 16.3±1.7 fmol/min per mg (P<0.001). Adding a selective chymase inhibitor, TEI-F00806, eliminated almost all 125I-Ang II production. Flow cytometry demonstrated that delta median fluorescence intensity of chymase in cluster of differentiation 68 positive cells was significantly higher than that in cluster of differentiation 68 negative cells (1546±157 and 222±48 arbitrary units, respectively; P=0.0021). Cluster of differentiation 68 positive and side scatter low subsets, considered to be myeloid progenitors, express the highest chymase fluorescence intensity in rat BM. Chymase activity and cellular expression was similar in both male and female rats. In conclusion, myeloid lineage cells, especially myeloid progenitors, have an extraordinary Ang II-producing activity by chymase in the BM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Wang
- Department of Anesthesiology
- Department of Internal Medicine-Molecular Medicine
| | - Leanne Groban
- Department of Anesthesiology
- Department of Internal Medicine-Molecular Medicine
| | - Louis J. Dell’Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, AL
| | - Carlos M. Ferrario
- Department of Surgery
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
14
|
Xiong J, Cao X, Qiao S, Yu S, Li L, Yu Y, Fu C, Jiang F, Dong B, Su Q. (Pro)renin Receptor is Involved in Myocardial Damage in Alcoholic Cardiomyopathy. Alcohol Clin Exp Res 2019; 43:2344-2353. [PMID: 31498445 DOI: 10.1111/acer.14188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND (Pro)renin receptor (PRR), a novel member of the renin-angiotensin system, participates in various cardiovascular diseases. However, the role of PRR in alcoholic cardiomyopathy (ACM), which is caused by alcohol intake and manifests as myocardial damage and cardiac dysfunction, remains unclear. METHODS PRR gene silencing was achieved by transfecting recombinant adenovirus expressing anti-PRR short hairpin RNA (PRR-shRNA). In vitro, primary rat cardiac fibroblasts (CFs) were cultured with the stimulation of alcohol (200 mM), with or without PRR-shRNA and PD98059. Immunofluorescence, RT-PCR, and Western blot were used to measure the protein and messenger (mRNA) expression of PRR, fibrotic factors, and members of related signaling pathways. In vivo, Wistar rats were fed a diet containing 9% (v/v) alcohol or a normal diet for 3 months, with or without PRR-shRNA. Sirius Red staining, immunohistochemical staining, and toluidine blue staining were used to evaluate myocardial fibrosis, oxidative stress, and inflammation response. RESULTS Alcohol markedly increased PRR mRNA and protein expression in a time- and concentration-dependent manner in CFs. The increased expression of fibrotic factors induced by alcohol was prevented by PRR-shRNA and PD98059. Moreover, PRR-shRNA decreased the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 in CFs. Furthermore, PRR-shRNA decreased cardiac fibrosis, reduced oxidative stress, and alleviated inflammation response in the myocardial tissue. CONCLUSIONS Our results show that PRR-ERK1/2 signaling was involved in the development of ACM and that PRR could be a new target for the treatment of ACM.
Collapse
Affiliation(s)
- Jie Xiong
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinran Cao
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shiyuan Qiao
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shiran Yu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Li
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yalin Yu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Changning Fu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- School of Basic Medicine, Shandong University, Jinan, China
| | - Bo Dong
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Su
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
|
16
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
18
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
19
|
Ingason AB, Mechmet F, Atacho DAM, Steingrímsson E, Petersen PH. Distribution of mast cells within the mouse heart and its dependency on Mitf. Mol Immunol 2019; 105:9-15. [DOI: 10.1016/j.molimm.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
20
|
Eosinophilic inflammation in spontaneous coronary artery dissection: A potential therapeutic target? Med Hypotheses 2018; 121:91-94. [DOI: 10.1016/j.mehy.2018.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022]
|
21
|
Marino A, Sakamoto T, Tang XH, Gudas LJ, Levi R. A Retinoic Acid β2-Receptor Agonist Exerts Cardioprotective Effects. J Pharmacol Exp Ther 2018; 366:314-321. [PMID: 29907698 PMCID: PMC6041952 DOI: 10.1124/jpet.118.250605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
We previously discovered that oral treatment with AC261066, a synthetic selective agonist for the retinoic acid β2-receptor, decreases oxidative stress in the liver, pancreas, and kidney of mice fed a high-fat diet (HFD). Since hyperlipidemic states are causally associated with myocardial ischemia and oxidative stress, we have now investigated the effects of AC261066 in an ex vivo ischemia/reperfusion (I/R) injury model in hearts of two prototypic dysmetabolic mice. We found that a 6-week oral treatment with AC261066 in both genetically hypercholesterolemic (ApoE-/-) and obese (HFD-fed) wild-type mice exerts protective effects when their hearts are subsequently subjected to I/R ex vivo in the absence of added drug. In ApoE-/- mice this cardioprotection ensued without hyperlipidemic changes. Cardioprotection consisted of attenuation of infarct size, diminution of norepinephrine (NE) spillover, and alleviation of reperfusion arrhythmias. This cardioprotection was associated with a reduction in oxidative stress and mast cell (MC) degranulation. We suggest that the reduction in myocardial injury and adrenergic activation, and the antiarrhythmic effects, result from decreased formation of oxygen radicals and toxic aldehydes known to elicit the release of MC-derived renin, promoting the activation of the local renin-angiotensin system leading to enhanced NE release and reperfusion arrhythmias. Because these beneficial effects of AC261066 occurred at the ex vivo level following oral drug treatment, our data suggest that AC261066 could be viewed as a therapeutic means to reduce I/R injury of the heart, and potentially also be considered in the treatment of other cardiovascular ailments such as chronic arrhythmias and cardiac failure.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Takuya Sakamoto
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
22
|
Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines. Int J Cardiol 2018; 269:259-264. [PMID: 30072157 DOI: 10.1016/j.ijcard.2018.07.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Leptin is an adipocytokine predominantly secreted by adipose tissue that participates in immune modulation. Mast cells are important immune cells that are related to altered sympathetic activity. Previous study has shown that leptin promotes activation of the left stellate ganglion (LSG) directly via the leptin receptor. This study aims to investigate whether mast cells play a key role in indirect activation. METHODS Twenty-eight canines were randomly divided into 3 groups: the control group (saline, n = 8), leptin group (leptin, n = 9), and DSCG group (disodium cromoglycate plus leptin, n = 11). Drugs were locally microinjected into the LSG. The function and neural activity of the LSG were evaluated to investigate LSG activation. Tryptase was adopted to identify activated mast cells in the LSG. RESULTS Compared with the control group, leptin injection (18 μg) markedly increased the function and neural activity of the LSG. Leptin also upregulated c-fos, nerve growth factor (NGF), and tryptase expression in the LSG. However, these effects of leptin were attenuated by pre-injection of DSCG (25 mg). Additionally, the immunofluorescence analysis revealed that many mast cells were present in the LSG and that those cells were located close to sympathetic neurons. The presence of leptin receptors on the mast cells was verified. CONCLUSIONS Immune mast cells play an important supplementary role in the pathogenesis of leptin-induced LSG activation.
Collapse
|
23
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Li J, Zheng J, Zhou Y, Liu X, Peng W. Acute coronary syndrome secondary to allergic coronary vasospasm (Kounis Syndrome): a case series, follow-up and literature review. BMC Cardiovasc Disord 2018; 18:42. [PMID: 29486712 PMCID: PMC6389040 DOI: 10.1186/s12872-018-0781-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/23/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Kounis syndrome (KS) is the concurrence of acute coronary syndrome associated with mast-cell and platelet activation in the setting of hypersensitivity and allergic or anaphylactic insults. Many drugs and environmental exposures had been reported as inducers, but various inducers and the mechanism of KS remained unknown till now. The widely used traditional Chinese medicine (TCM) as a potential sensitizer were scarcely reported to induce allergic vasospasm due to the ignorance of the linkage between traditional medicine allergy and vasospasm. CASE PRESENTATION We described 5 rare cases of KS including unreported triggers of TCM and abortion, reported the treatment strategy and 1~4 years' follow-up results, and tried to probe into the etiology of KS. Case 1 and case 2 for the first time reported acute ST-segment elevation myocardial infarction (STEMI) caused by Chinese herbs related allergic coronary vasospasm. Case 3 reported recurrent angina following allergen contact and wheezing, indicating the internal linkage of coronary vasospasm and allergic asthma. Case 4 described a childbearing-age woman suffered refractory ischemic chest pain due to coronary vasospasm in a special period of post-abortion, the attacks suddenly disappeared when her menopause recovered. Case 5 described an isolated episode of allergic coronary vasospasm under exposure of smoking and stress, which was successfully prevented by avoiding the exposures. CONCLUSION Kounis syndrome is not rare but rarely recognized and under-diagnosed. It is necessary to recognize KS and various inducers, especially for the patients suffering refractory vasospastic cardiac attacks concentrating in special periods. Blood test of eosinophil might contribute to diagnose KS and anti-allergic agents might be helpful for controlling KS attacks.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, China-Japan Friendship Hospital, No. 2, Yinghua Road, Beijing, 100029, China.
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, No. 2, Yinghua Road, Beijing, 100029, China
| | - Yifeng Zhou
- Department of Cardiology, China-Japan Friendship Hospital, No. 2, Yinghua Road, Beijing, 100029, China
| | - Xiaofei Liu
- Department of Cardiology, China-Japan Friendship Hospital, No. 2, Yinghua Road, Beijing, 100029, China
| | - Wenhua Peng
- Department of Cardiology, China-Japan Friendship Hospital, No. 2, Yinghua Road, Beijing, 100029, China
| |
Collapse
|
25
|
Šteiner I, Stejskal V, Žáček P. Mast cells in calcific aortic stenosis. Pathol Res Pract 2018; 214:163-168. [DOI: 10.1016/j.prp.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/26/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
26
|
Chakrabarty A, Liao Z, Mu Y, Smith PG. Inflammatory Renin-Angiotensin System Disruption Attenuates Sensory Hyperinnervation and Mechanical Hypersensitivity in a Rat Model of Provoked Vestibulodynia. THE JOURNAL OF PAIN 2017; 19:264-277. [PMID: 29155208 DOI: 10.1016/j.jpain.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Vestibulodynia is characterized by perivaginal mechanical hypersensitivity, hyperinnervation, and abundant inflammatory cells expressing renin-angiotensin system proteins. We developed a tractable rat model of vestibulodynia to further assess the contributions of the renin-angiotensin system. Complete Freund's adjuvant injected into the posterior vestibule induced marked vestibular hypersensitivity throughout a 7-day test period. Numbers of axons immunoreactive for PGP9.5, calcitonin gene-related peptide, and GFRα2 were increased. Numbers of macrophages and T cells were also increased whereas B cells were not. Renin-angiotensin-associated proteins were abundant, with T cells as well as macrophages contributing to increased renin and angiotensinogen. Media conditioned with inflamed vestibular tissue promoted neurite sprouting by rat dorsal root ganglion neurons in vitro, and this was blocked by the angiotensin II receptor type 2 receptor antagonist PD123319 or by an angiotensin II function blocking antibody. Sensory axon sprouting induced by inflamed tissue was dependent on activity of angiotensin-converting enzyme or chymase, but not cathepsin G. Thus, vestibular Complete Freund's adjuvant injection substantially recapitulates changes seen in patients with provoked vestibulodynia, and shows that manipulation of the local inflammatory renin-angiotensin system may be a useful therapeutic strategy. PERSPECTIVE This study provides evidence that inflammation of the rat vestibule induces a phenotype recapitulating behavioral and cytological features of human vestibulodynia. The model confirms a crucial role of the local inflammatory renin-angiotensin system in hypersensitivity and hyperinnervation. Targeting this system holds promise for developing new nonopioid analgesic treatment strategies.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
27
|
Marino A, Sakamoto T, Robador PA, Tomita K, Levi R. S1P receptor 1-Mediated Anti-Renin-Angiotensin System Cardioprotection: Pivotal Role of Mast Cell Aldehyde Dehydrogenase Type 2. J Pharmacol Exp Ther 2017; 362:230-242. [PMID: 28500264 PMCID: PMC5502378 DOI: 10.1124/jpet.117.241976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
In the ischemic-reperfused (I/R) heart, renin-containing mast cells (MC) release enzymatically active renin, activating a local renin-angiotensin system (RAS), causing excessive norepinephrine release and arrhythmic dysfunction. Activation of Gi-receptors on MC and/or ischemic preconditioning (IPC) prevent renin release, thus providing anti-RAS cardioprotection. We questioned whether sphingosine-1-phosphate (S1P), a sphingolipid produced in the I/R heart, might afford anti-RAS cardioprotection by activating Gi-coupled S1P1 receptors (S1P1R) on MC. We report that activation of Gi-coupled S1P1R in cardiac MC confers IPC-like anti-RAS cardioprotection due to S1P1R-mediated inhibition of I/R-induced cardiac MC degranulation and renin release. This results from an initial translocation of protein kinase C subtype-ε and subsequent activation of aldehyde dehydrogenase type 2 (ALDH2), culminating in the elimination of the MC-degranulating effects of acetaldehyde and other toxic species produced during I/R. Inhibition of toxic aldehydes-induced MC-renin release prevents local RAS activation, reduces infarct size, and alleviates arrhythmias. Notably, these cardioprotective effects are lacking in hearts and MC from gene-targeted knock-in mice (ALDH2*2) in which ALDH2 enzymatic activity is maximally reduced. Thus, ALDH2 appears to play a pivotal role in this protective process. Our findings suggest that MC S1P1R may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Takuya Sakamoto
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Pablo A Robador
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Kengo Tomita
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
28
|
Liao Z, Chakrabarty A, Mu Y, Bhattacherjee A, Goestch M, Leclair CM, Smith PG. A Local Inflammatory Renin-Angiotensin System Drives Sensory Axon Sprouting in Provoked Vestibulodynia. THE JOURNAL OF PAIN 2017; 18:511-525. [PMID: 28062309 PMCID: PMC6261484 DOI: 10.1016/j.jpain.2016.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Vestibulodynia is a form of provoked vulvodynia characterized by profound tenderness, hyperinnervation, and frequently inflammation within well-defined areas of the human vestibule. Previous experiments in animal models show that inflammatory hypersensitivity and hyperinnervation occur in concert with establishment of a local renin-angiotensin system (RAS). Moreover, mechanical hypersensitivity and sensory axon sprouting are prevented by blocking effects of angiotensin II on angiotensin II receptor type 2 (AT2) receptors. This case-control study assessed whether a RAS contributes to hyperinnervation observed in human vestibulodynia. Vestibular biopsies from asymptomatic controls or patients' nontender areas showed moderate innervation and small numbers of inflammatory cells. In women with vestibulodynia, tender areas contained increased numbers of mechanoreceptive nociceptor axons, T-cells, macrophages, and B-cells, whereas mast cells were unchanged. RAS proteins were increased because of greater numbers of T cells and B cells expressing angiotensinogen, and increased renin-expressing T cells and macrophages. Chymase, which converts angiotensin I to angiotensin II, was present in constant numbers of mast cells. To determine if tender vestibular tissue generates angiotensin II that promotes axon sprouting, we conditioned culture medium with vestibular tissue. Rat sensory neurons cultured in control-conditioned medium showed normal axon outgrowth, whereas those in tender tissue-conditioned medium showed enhanced sprouting that was prevented by adding an AT2 antagonist or angiotensin II neutralizing antibody. Hypersensitivity in provoked vestibulodynia is therefore characterized by abnormal mechanonociceptor axon proliferation, which is attributable to inflammatory cell-derived angiotensin II (or a closely related peptide) acting on neuronal AT2 receptors. Accordingly, reducing inflammation or blocking AT2 represent rational strategies to mitigate this common pain syndrome. PERSPECTIVE This study provides evidence that local inflammation leads to angiotensin II formation, which acts on the AT2 to induce nociceptor axon sprouting in vulvodynia. Preventing inflammation and blocking AT2 therefore present potential pharmacological strategies for reducing vestibular pain.
Collapse
Affiliation(s)
- Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Aritra Bhattacherjee
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Martha Goestch
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Leclair
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
29
|
Affiliation(s)
- Tianxin Yang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City; and Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Marino A, Martelli A, Citi V, Fu M, Wang R, Calderone V, Levi R. The novel H 2 S donor 4-carboxy-phenyl isothiocyanate inhibits mast cell degranulation and renin release by decreasing intracellular calcium. Br J Pharmacol 2016; 173:3222-3234. [PMID: 27548075 DOI: 10.1111/bph.13583] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) modulates many pathophysiological processes, including inflammation and allergic reactions, in which mast cells act as major effector cells. IgE receptor (FcεRI) cross linking leads to an increase in intracellular calcium ([Ca+2 ]i ), a critical step in mast cell degranulation. The aim of this study was to investigate the role of H2 S in [Ca+2 ]i -dependent mast cell activation. EXPERIMENTAL APPROACH We investigated the effects of H2 S, either endogenously produced or released by the slow H2 S donor 4-carboxy-phenyl isothiocyanate (PhNCS-COOH), on antigenic- and non-antigenic degranulation of native murine mast cells, and human and rat (RBL-2H3) mast cell lines. We measured the release of specific mast cell degranulation markers (β-hexosaminidase and renin), as well as changes in [Ca+2 ]i and phosphorylation of proteins downstream of FcεRI activation. KEY RESULTS Endogenously produced H2 S inhibited antigen-induced degranulation in RBL-2H3. Similarly, H2 S released by PhNCS-COOH (10-300 μM) reduced, in a concentration-dependent manner, antigenic and non-antigenic degranulation and renin release in all mast cell types. Notably, PhNCS-COOH also prevented in a concentration-dependent mode the increase in [Ca+2 ]i elicited by Ca+2 ionophore, thapsigargin and FcεRI activation. Moreover, PhNCS-COOH attenuated the phosphorylation of Syk, cPLA-2 and PLCγ1 in antigen-stimulated RBL-2H3 cells. CONCLUSION AND IMPLICATIONS Collectively, our results demonstrate that, by attenuating the phosphorylation of proteins downstream of FcεRI cross-linking on mast cells, H2 S diminishes [Ca+2 ]i availability and thus mast cell degranulation and renin release. These findings suggest that PhNCS-COOH could be a strategic therapeutic tool in mast cell-mediated allergic conditions.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Ming Fu
- Cardiovascular and Metabolic Research Unit, Laurentian University, ON, P3E 2C6, Canada
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, ON, P3E 2C6, Canada
| | | | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Kolck UW, Haenisch B, Molderings GJ. Cardiovascular symptoms in patients with systemic mast cell activation disease. Transl Res 2016; 174:23-32.e1. [PMID: 26775802 DOI: 10.1016/j.trsl.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022]
Abstract
Traditionally, mast cell activation disease (MCAD) has been considered as just one rare (neoplastic) disease, mastocytosis, focused on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, the MC activation syndrome, has been recognized featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. Increasing expertise and appreciation has been established for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic theme. We describe the pathogenesis of MCAD with a particular focus on clinical cardiovascular symptoms and the therapeutic options for MC mediator-induced cardiovascular symptoms.
Collapse
Affiliation(s)
- Ulrich W Kolck
- Johanniter-Kliniken Bonn, Waldkrankenhaus, Innere Medizin II, Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
32
|
Lieberman P, Nicklas RA, Randolph C, Oppenheimer J, Bernstein D, Bernstein J, Ellis A, Golden DBK, Greenberger P, Kemp S, Khan D, Ledford D, Lieberman J, Metcalfe D, Nowak-Wegrzyn A, Sicherer S, Wallace D, Blessing-Moore J, Lang D, Portnoy JM, Schuller D, Spector S, Tilles SA. Anaphylaxis--a practice parameter update 2015. Ann Allergy Asthma Immunol 2016; 115:341-84. [PMID: 26505932 DOI: 10.1016/j.anai.2015.07.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 12/12/2022]
|
33
|
A case of sudden cardiac death due to eosinophilic coronary periarteritis: possible significance of coexisting atherosclerosis and eosinophilic inflammation of the esophagus. Cardiovasc Pathol 2016; 25:67-71. [DOI: 10.1016/j.carpath.2015.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
|
34
|
Hattori Y, Hattori K, Matsuda N. Regulation of the Cardiovascular System by Histamine. Handb Exp Pharmacol 2016; 241:239-258. [PMID: 27838850 DOI: 10.1007/164_2016_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1- and H2-receptors has become recognized adequately. Besides the recognized H1- and H2-receptor-mediated cardiovascular responses, novel roles of H3- and H4-receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H3- and H4-receptors, their potential mechanisms of action, and their pathological significance.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Maleszewski J, Lai C, Veinot J. Anatomic Considerations and Examination of Cardiovascular Specimens (Excluding Devices). Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00001-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Anandan PK, Hanumanthappa NB, Bhatt P, Cholenahally MN. Allergic angina following wasp sting: Kounis syndrome. Oxf Med Case Reports 2015; 2015:306-8. [PMID: 26421155 PMCID: PMC4584504 DOI: 10.1093/omcr/omv044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022] Open
Abstract
Kounis syndrome is defined as an acute coronary syndrome triggered by the release of inflammatory mediators following an allergic insult characterized by acute onset of breathlessness, palpitations, diaphoresis and chest tightness (Gázquez V, Dalmau G, Gaig P, Gómez C, Navarro S, Mercé J. Kounis syndrome: report of 5 cases. J Investig Allergol Clin Immunol 2010;20:162–5). We report a 20-year-male patient who presented with acute myocardial infarction following a wasp sting at our institute. ECG showed non-ST-elevation myocardial infarction. Symptoms settled with hydrocortisone and adrenaline. Coronary angiogram revealed normal epicardial coronaries.
Collapse
Affiliation(s)
- Prem Krishna Anandan
- Department of Cardiology , Sri Jayadeva Institute of Cardiovascular Research and Sciences , Bangalore, Karnataka , India
| | - Natesh B Hanumanthappa
- Department of Cardiology , Sri Jayadeva Institute of Cardiovascular Research and Sciences , Bangalore, Karnataka , India
| | - Prabhavathi Bhatt
- Department of Cardiology , Sri Jayadeva Institute of Cardiovascular Research and Sciences , Bangalore, Karnataka , India
| | | |
Collapse
|
37
|
Gonipeta B, Para R, He Y, Srkalovic I, Ortiz T, Kim E, Parvataneni S, Gangur V. Cardiac mMCP-4+ mast cell expansion and elevation of IL-6, and CCR1/3 and CXCR2 signaling chemokines in an adjuvant-free mouse model of tree nut allergy. Immunobiology 2014; 220:663-72. [PMID: 25499102 DOI: 10.1016/j.imbio.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nut allergy is a growing and potentially fatal public health problem. We have previously reported a novel mouse model of near-fatal hazelnut (HN) allergy that involves transdermal sensitization followed by oral elicitation of allergic reactions. Here we studied the cardiac mast cell and cardiac tissue responses during oral nut induced allergic reaction in this mouse model. METHODS Groups of mice were sensitized with HN and specific and total IgE were measured by ELISA. Oral allergic reaction was quantified by rectal thermometry and plasma mouse mast cell protease (mMCP)-1 by ELISA. Cardiovascular functions were determined by a non-invasive tail cuff method. Mucosal mast cells (MMC) and intestinal connective tissue MC (CTMC) were studied by immunohistochemistry (IHC) for mMCP-1 and mMCP-4 protein expression respectively. Cardiac MC were studied by toluidine blue (TB) as well as by the above IHC methods. Cytokines and chemokines in the tissues were quantified by a multiplex protein array method. RESULTS Oral allergen challenge (OAC) of transdermal sensitized mice results in hypothermia, hypotension, tachycardia and rapid elevation of circulating mMCP-1. The IHC analysis of small intestine found significant expansion of mMCP-1+ MMCs and mMCP-4+ CTMCs. The TB analysis of cardiac tissues showed degranulation of majority of cardiac MCs. The IHC analysis of cardiac tissues showed very little mMCP-1 expression, but marked mMCP-4 expression. Furthermore, repeated OAC resulted in significant expansion of mMCP-4+ cardiac MCs in both the pericardium and the myocardium. Protein array analysis revealed significant elevation of cardiac IL-6 and CCR1/3 and CXCR2 signaling chemokines upon oral elicitation compared to sensitization alone. CONCLUSION These results demonstrate that: (i) besides the intestine, cardiac mast cells and the cardiac tissue respond during oral nut induced allergic reaction; and (ii) repeated oral elicitation of reaction is associated with cardiac mMCP-4+ mast cell expansion and elevation of cardiac IL-6, and CCR1/3 and CXCR2 signaling chemokines.
Collapse
Affiliation(s)
- Babu Gonipeta
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Radhakrishna Para
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Yingli He
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Ines Srkalovic
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Tina Ortiz
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Eunjung Kim
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America; Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju, South Korea
| | - Sitaram Parvataneni
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America.
| |
Collapse
|
38
|
Aldi S, Marino A, Tomita K, Corti F, Anand R, Olson KE, Marcus AJ, Levi R. E-NTPDase1/CD39 modulates renin release from heart mast cells during ischemia/reperfusion: a novel cardioprotective role. FASEB J 2014; 29:61-9. [PMID: 25318477 DOI: 10.1096/fj.14-261867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemia/reperfusion (I/R) elicits renin release from cardiac mast cells (MC), thus activating a local renin-angiotensin system (RAS), culminating in ventricular fibrillation. We hypothesized that in I/R, neurogenic ATP could degranulate juxtaposed MC and that ecto-nucleoside triphosphate diphosphohydrolase 1/CD39 (CD39) on MC membrane could modulate ATP-induced renin release. We report that pharmacological inhibition of CD39 in a cultured human mastocytoma cell line (HMC-1) and murine bone marrow-derived MC with ARL67156 (100 µM) increased ATP-induced renin release (≥2-fold), whereas purinergic P2X7 receptors (P2X7R) blockade with A740003 (3 µM) prevented it. Likewise, CD39 RNA silencing in HMC-1 increased ATP-induced renin release (≥2-fold), whereas CD39 overexpression prevented it. Acetaldehyde, an I/R product (300 µM), elicited an 80% increase in ATP release from HMC-1, in turn, causing an autocrine 20% increase in renin release. This effect was inhibited or potentiated when CD39 was overexpressed or silenced, respectively. Moreover, P2X7R silencing prevented ATP- and acetaldehyde-induced renin release. I/R-induced RAS activation in ex vivo murine hearts, characterized by renin and norepinephrine overflow and ventricular fibrillation, was potentiated (∼2-fold) by CD39 inhibition, an effect prevented by P2X7R blockade. Our data indicate that by regulating ATP availability at the MC surface, CD39 modulates local renin release and thus, RAS activation, ultimately exerting a cardioprotective effect.
Collapse
Affiliation(s)
| | | | | | | | - Ranjini Anand
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Kim E Olson
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Aaron J Marcus
- Pathology and Laboratory Medicine and Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | | |
Collapse
|
39
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
40
|
Aldi S, Takano KI, Tomita K, Koda K, Chan NYK, Marino A, Salazar-Rodriguez M, Thurmond RL, Levi R. Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C ε-dependent aldehyde dehydrogenase type-2 activation. J Pharmacol Exp Ther 2014; 349:508-17. [PMID: 24696042 PMCID: PMC4019319 DOI: 10.1124/jpet.114.214122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype-ε (PKCε)-aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow-derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure.
Collapse
Affiliation(s)
- Silvia Aldi
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, (S.A., K.-i.T., K.T., K.K., N.C., A.M., M.S.-R., R.L.); and Department of Immunology, Janssen Research & Development, L.L.C., San Diego, California (R.L.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu YH, Lu M, Xie ZZ, Hua F, Xie L, Gao JH, Koh YH, Bian JS. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid Redox Signal 2014; 20:759-69. [PMID: 23581627 DOI: 10.1089/ars.2012.4888] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS Cardiac local renin-angiotensin system plays an important role in the development of heart failure and left ventricular (LV) remodeling. We previously reported that hydrogen sulfide (H2S), an endogenous gaseous mediator, regulates renin synthesis and release in juxtaglomerular cells. The present study was designed to investigate whether H2S can protect against isoproterenol (ISO)-induced heart failure via inhibition of local renin activity in rat hearts. RESULTS In the present study, we found that an injection of ISO (150 mg/kg) significantly increased plasma lactate dehydrogenase level and hypertrophy index and impaired LV end diastolic pressure. Treatment with NaHS (an H2S donor, 0.056 mg/kg, daily) 3 days before and 2 weeks after the ISO injection attenuated the development of heart failure. Histological staining showed that NaHS decreased ISO-induced collagen deposition. Moreover, NaHS treatment reversed ISO-induced renin elevation in both plasma and LVs. Immunostaining analysis indicated that renin expression co-localized with mast cells in the ventricular tissues. Mast cell counts showed that NaHS treatment decreased the number of degranulated mast cells in cardiac tissue due to down-regulation of leukotriene A4 hydrolase protein expression and leukotriene B4 level. In addition, NaHS treatment also inhibited forskolin-induced renin degranulation from HMC-1.1 mast cells by lowering intracellular cAMP level. INNOVATION This study provides evidence for a new pathway in H2S-induced cardioprotection against heart failure development. CONCLUSIONS For the first time, we demonstrated that H2S might protect heart during heart failure by suppression of local renin level through inhibition of both mast cell infiltration and renin degranulation.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
43
|
Potaczek DP. Links between allergy and cardiovascular or hemostatic system. Int J Cardiol 2013; 170:278-85. [PMID: 24315352 DOI: 10.1016/j.ijcard.2013.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
In addition to a well-known immunologic background of atherosclerosis and influences of inflammation on arterial and venous thrombosis, there is growing evidence for the presence of links between allergy and vascular or thrombotic disorders. In this interpretative review, five pretty well-documented areas of such overlap are described and discussed, including: (1) links between atherosclerosis and immunoglobulin E or atopy, (2) mutual effects of blood lipids and allergy, (3) influence of atopy and related disorders on venous thromboembolism, (4) the role of platelets in allergic diseases, and (5) the functions of protein C system in atopic disorders.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
44
|
Aldi S, Robador PA, Tomita K, Di Lorenzo A, Levi R. IgE receptor-mediated mast-cell renin release. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:376-81. [PMID: 24262755 DOI: 10.1016/j.ajpath.2013.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 11/26/2022]
Abstract
Renin is a newly discovered constituent of mast cells. Given that mast cells play a major role in IgE-mediated allergic hypersensitivity, we investigated whether activation of the high-affinity IgE receptor FcεRI elicits release of mast-cell renin. Cross-linking of FcεRI on the surface of mature bone marrow-derived mast cells elicited release of enzymatically active renin protein. The angiotensin I-forming activity of the renin protein was completely blocked by the selective renin inhibitor BILA 2157, which excludes formation of angiotensin I by proteases other than renin. FcεRI-mediated mast-cell renin release was inhibited by dexamethasone and potentiated by the proinflammatory mediator PGE2. Furthermore, cross-linking of mast-cell FcεRI in ex vivo murine hearts passively sensitized with monoclonal anti-DNP IgE also resulted in mast-cell degranulation and overflow of renin. Our findings indicate that IgE-mediated allergic hypersensitivity provokes release of renin from both cultured and resident cardiac mast cells, a process likely to be exacerbated in a chronic inflammatory background. Given the widespread distribution of mast cells, and the presence of angiotensinogen and angiotensin-converting enzyme in many tissues, renin release in immediate hypersensitivity reactions could result in local angiotensin II generation and multiorgan dysfunctions.
Collapse
Affiliation(s)
- Silvia Aldi
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Pablo A Robador
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Kengo Tomita
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
45
|
Evidence for the Primo Vascular System above the Epicardia of Rat Hearts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:510461. [PMID: 24023576 PMCID: PMC3762136 DOI: 10.1155/2013/510461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
Abstract
We for the first time reported evidence for the existence of a novel network, a PVS, abovethe epicardium of the rat heart. (1) We were consecutively able to visualize the PVs and the PNs above the epicardial spaces of five rats' hearts by using Cr-Hx spraying or injection. (2) Hematoxylin and eosin (H&E) and toluidine blue staining of the PVs and the PNs showed that they consisted of a basophilic matrix; specifically the PNs contained several mast cells, some of which were degranulating into pericardial space. Also, 4′, 6-diamidino-2 phenylindole (DAPI) images of the PVs and the PNs showed that they contained various kinds of cells. (3) Transmission electron microscopic (TEM) longitudinal image of the PVs showed that the sinuses contained many granules with high-electron-density cores in parallel with putative endothelial cells. (4) TEM images of the PNs demonstrated that they consisted of lumen-containing cells surrounded by fibers and that they had mast cells that were degranulating toward the epicardium of the rat heart. The above data suggest that mast-cells-containing novel network exists above the epicardium of the rat heart.
Collapse
|
46
|
Tiwari AK, Tomar GS, Ganguly CS, Kapoor MC. Kounis syndrome resulting from anaphylaxis to diclofenac. Indian J Anaesth 2013; 57:282-4. [PMID: 23983288 PMCID: PMC3748684 DOI: 10.4103/0019-5049.115614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
“Kounis syndrome” refers to acute coronary syndromes of varying degree (myocardial ischaemia to infarction) induced by mast cell activation as a result of allergic and anaphylactic reactions. ST-segment elevated myocardial infarction is a rare complication that can occur even in patients with normal coronary arteries due to anaphylactic reactions. We present a case that developed acute myocardial infarction following a diclofenac sodium-induced anaphylaxis. The patient did not have any previous coronary artery disease, but there was a temporal relationship with development of the anaphylactic reaction due to diclofenac sodium and the cardiac event. The patient was managed conservatively and the recovery was uneventful.
Collapse
|
47
|
McLarty JL, Li J, Levick SP, Janicki JS. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts. J Inflamm Res 2013; 6:99-108. [PMID: 24062614 PMCID: PMC3780290 DOI: 10.2147/jir.s48422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%), macrophages (about 12%), and mast cells (about 12%), was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α) produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α-neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibro-blast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results Inflammatory cells from the untreated group resulted in: 1) an increased fibroblast proliferation, collagen production and matrix metalloproteinase activity; and 2) a loss of β1 integrin protein and a reduced ability to contract collagen gels. In contrast, inflammatory cells from the treated group resulted in: 1) an attenuated fibroblast proliferation; 2) a nonsignificant reduction in collagen production; 3) the prevention of matrix metalloproteinase activation and the loss of β1 integrin by fibroblasts and 4) a preservation of the fibroblasts’ ability to contract collagen gels. The TNF-α neutralizing antibody attenuated or prevented the untreated inflammatory cell-induced fibroblast proliferation, collagen production, matrix metalloproteinase activation and loss of β1 integrin protein as well as preserved fibroblast contractile ability. Incubation with TNF-α yielded changes in the cardiac fibroblast parameters that were directionally similar to the results obtained with untreated inflammatory cells. Conclusion These results and those of our previous in vivo studies suggest that a major mechanism by which estrogen provides cardioprotection is its ability to modulate synthesis of TNF-α by inflammatory cells, thereby preventing inflammatory cell induction of cardiac fibroblast events that contribute to adverse extracellular matrix remodeling.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
48
|
Chen Q, Liu T, Li G. Sustained ventricular tachycardia caused by anaphylactic reaction. Am J Emerg Med 2013; 31:1625.e3-4. [PMID: 23954361 DOI: 10.1016/j.ajem.2013.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022] Open
Abstract
We report a 30-year-old man who developed severe anaphylactic reactions with sustained ventricular tachycardia after eating seafood. This case emphasizes the need for cardiac monitoring in patients with anaphylaxis to identify malignant ventricular arrhythmias early.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | | | | |
Collapse
|
49
|
Shah G, Scadding G, Nguyen-Lu N, Wigmore T, Chenzbraun A, Wechalekar K, Sharma R, Lyon AR. Peri-operative cardiac arrest with ST elevation secondary to gelofusin anaphylaxis - Kounis syndrome in the anaesthetic room. Int J Cardiol 2012; 164:e22-6. [PMID: 23141553 DOI: 10.1016/j.ijcard.2012.09.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
50
|
Salata C, Ferreira-Machado SC, Mencalha AL, de Andrade CBV, de Campos VMA, Mandarim-de-Lacerda CA, deAlmeida CE. Chemotherapy and radiation regimens to breast cancer treatment induce changes in mRNA levels of renin–angiotensin system related genes in cardiac tissue. J Renin Angiotensin Aldosterone Syst 2012; 14:330-6. [DOI: 10.1177/1470320312465218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Camila Salata
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Laboratório de Morfometria e Morfologia Cardiovascular, Instituto de Biologia, UERJ, Rio de Janeiro, Brazil
| | - Samara Cristina Ferreira-Machado
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Departamento de Biologia Geral – GBG, UFF, Niterói, Brazil
| | | | - Cherley Borba Vieira de Andrade
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura e Biologia Tecidual, Departamento de Histologia, UERJ, Rio de Janeiro, Brazil
| | | | | | - Carlos Eduardo deAlmeida
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|