1
|
Yao XC, Wu JJ, Yuan ST, Yuan FL. Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 2025; 55:53. [PMID: 39886977 PMCID: PMC11781520 DOI: 10.3892/ijmm.2025.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
Collapse
Affiliation(s)
- Xing-Chen Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| | - Sheng-Tao Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
2
|
Alam MR, Akinyemi AO, Wang J, Howlader M, Farahani ME, Nur M, Zhang M, Gu L, Li Z. CD4 +CD8 + double-positive T cells in immune disorders and cancer: Prospects and hurdles in immunotherapy. Autoimmun Rev 2025; 24:103757. [PMID: 39855286 DOI: 10.1016/j.autrev.2025.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
CD4+ and CD8+ T cells play critical roles in both innate and adaptive immune responses, managing and modulating cellular immunity during immune diseases and cancer. Their well-established functions have led to significant clinical benefits. CD4+CD8+ double-positive (DP) T cells, a subset of the T cell population, have been identified in the blood and peripheral lymphoid tissues across various species. They have gained interest due to their involvement in immune disorders, inflammation, and cancer. Although mature DP T cells are present in healthy individuals and contribute to disease contexts, their molecular characteristics and pathophysiological roles remain debated. Notably, the number of DP T cells in the blood is higher in older adults compared to younger individuals, and these cells can stimulate inflammation and viral infections through increased secretion of interleukin (IL)-10, interferon gamma (IFN-γ), and transforming growth factor beta (TGF-β). In cancer, DP T cells have been observed to infiltrate cutaneous T cell lymphomas and are found in greater numbers in nodular lymphocyte predominant Hodgkin lymphoma, melanoma, hepatocellular carcinoma, and breast cancer. The higher prevalence of DP T cells in advanced cancers, coupled with their strong lytic activity and distinct cytokine profile, suggests that these cells may play a crucial role in modulating immune responses to cancer. This insight offers a potential new approach for enhancing the identification and selection of antigen-reactive T cells in immune-based treatments. This review provides a comprehensive overview of the origin, distribution, transcriptional regulation during developmental stages, and functions of DP T cells. A deeper understanding of the diversity and roles of DP T cells may pave the way for their development as a promising tool for immunotherapy in the management of immune disorders and metastatic cancers.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos Olalekan Akinyemi
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mithu Howlader
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mohammad Esfini Farahani
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Maria Nur
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lixiang Gu
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
3
|
Kady N, Abdelrahman S, Rauf AM, Burgess A, Weiss J, Gunasekara H, Ramseier N, Maine IP, Zevallos-Morales A, Perez-Silos V, Wolfe A, Hristov AC, Brown NA, Inamdar K, Sverdlov M, Hu YS, Murga-Zamalloa C, Wang C, Wilcox RA. The GATA-3-dependent transcriptome and tumor microenvironment are regulated by eIF4E and XPO1 in T-cell lymphomas. Blood 2025; 145:597-611. [PMID: 39652777 PMCID: PMC11811937 DOI: 10.1182/blood.2024025484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/15/2024] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT The transcription factor GATA-binding protein 3 (GATA-3) and the transcriptional program it regulates have emerged as oncogenic drivers across diverse T-cell lymphomas (TCLs), many of which are resistant to conventional chemotherapeutic agents and characterized by recurrent losses of key tumor suppressor genes, including TP53 and PTEN, both of which are clients of the nuclear export protein XPO1. Here, we demonstrated that XPO1 is highly expressed by malignant T cells expressing GATA-3 and by lymphoma-associated macrophages (LAMs) within their tumor microenvironment (TME). Using complementary genetically engineered mouse models, we demonstrated that TP53- and/or phosphate and tensin homolog (PTEN)-deficient TCLs, and LAMs within their TME, are sensitive to the selective exportin-1 (XPO1) antagonist selinexor. In an effort to identify TP53- and PTEN-independent mechanisms, we used complementary and orthogonal approaches to investigate the role of eIF4E and XPO1-dependent messenger RNA nuclear export in these TCLs. We identified a novel role for eIF4E/XPO1 in exporting GATA-3 and GATA-3-dependent transcripts from the nucleus in TCLs, and in the export of therapeutically relevant transcripts, including colony-stimulating factor-1 receptor, from LAMs. Therefore, XPO1 antagonism, by impairing oncogenic transcriptional programs in TCLs and depleting LAMs from their TME, is a novel approach to target 2 independent dependencies in a group of therapeutically challenging TCLs.
Collapse
Affiliation(s)
- Nermin Kady
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suhaib Abdelrahman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ahmar M. Rauf
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Jonathan Weiss
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Neal Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ira P. Maine
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | | | - Ashley Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Noah A. Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Maria Sverdlov
- Research Resources Center and Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | | | - Chenguang Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ryan A. Wilcox
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Iguchi T, Toma-Hirano M, Takanashi M, Masai H, Miyatake S. Loss of a single Zn finger, but not that of two Zn fingers, of GATA3 drives skin inflammation. Genes Cells 2024. [PMID: 39435584 DOI: 10.1111/gtc.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Transcription factor GATA3 is essential for the developmental processes of T cells. Recently, the silencer of a cytokine IFNγ gene was identified, the inhibitory activity of which requires GATA3. GATA3 has 2 Zn fingers and the commonly used GATA3 deficient mice lack both fingers (D2). We have established a mouse line that lacks only one Zn finger close to the C terminus (D1). The D1 mice line developed dermatitis, which was not observed in D2 mice. The expression of S100a8/S100a9 was elevated in D1 to a level higher than in D2, suggesting their roles in dermatitis development. CD8 T cells of both D1 and D2 lines expressed inhibitory receptors associated with the exhausted state. In the absence of MHC class II, the skin inflammation was exacerbated in both lines. The gene expression pattern of CD8 T cells became similar to that of effector T cells. Blocking Ab against LAG3 upregulated the expression of the effector molecules of T cells. These results suggest that the disfunction of GATA3 can lead to the spontaneous activation of CD8 T cells that causes skin inflammation, and that suppressive activity of MHC class II - LAG3 interaction ameliorates dermatitis development.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Itabashi, Japan
| | - Masakatsu Takanashi
- Department of Pathology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Shoichiro Miyatake
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
- Department of Immunology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
5
|
Abunimye DA, Okafor IM, Okorowo H, Obeagu EI. The role of GATA family transcriptional factors in haematological malignancies: A review. Medicine (Baltimore) 2024; 103:e37487. [PMID: 38518015 PMCID: PMC10956995 DOI: 10.1097/md.0000000000037487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Collapse
Affiliation(s)
- Dennis Akongfe Abunimye
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Ifeyinwa Maryanne Okafor
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Henshew Okorowo
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
6
|
Geng X, Wang C, Abdelrahman S, Perera T, Saed B, Hu YS, Wolfe A, Reneau J, Murga-Zamalloa C, Wilcox RA. GATA-3-dependent Gene Transcription is Impaired upon HDAC Inhibition. Clin Cancer Res 2024; 30:1054-1066. [PMID: 38165708 PMCID: PMC10922852 DOI: 10.1158/1078-0432.ccr-23-1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Many peripheral and cutaneous T-cell lymphoma (CTCL) subtypes are poorly responsive to conventional chemotherapeutic agents and associated with dismal outcomes. The zinc finger transcription factor GATA-3 and the transcriptional program it instigates are oncogenic and highly expressed in various T-cell neoplasms. Posttranslational acetylation regulates GATA-3 DNA binding and target gene expression. Given the widespread use of histone deacetylase inhibitors (HDACi) in relapsed/refractory CTCL, we sought to examine the extent to which these agents attenuate the transcriptional landscape in these lymphomas. EXPERIMENTAL DESIGN Integrated GATA-3 chromatin immunoprecipitation sequencing and RNA sequencing analyses were performed in complementary cell line models and primary CTCL specimens treated with clinically available HDACi. RESULTS We observed that exposure to clinically available HDACi led to significant transcriptional reprogramming and increased GATA-3 acetylation. HDACi-dependent GATA-3 acetylation significantly impaired both its ability to bind DNA and transcriptionally regulate its target genes, thus leading to significant transcriptional reprogramming in HDACi-treated CTCL. CONCLUSIONS Beyond shedding new light on the mechanism of action associated with HDACi in CTCL, these findings have significant implications for their use, both as single agents and in combination with other novel agents, in GATA-3-driven lymphoproliferative neoplasms.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Dinoi E, Pierotti L, Mazoni L, Citro F, Della Valentina S, Sardella C, Borsari S, Michelucci A, Caligo MA, Marcocci C, Cetani F. Clinical and molecular characteristics of two Italian kindreds with hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome. J Endocrinol Invest 2024; 47:469-478. [PMID: 37561279 DOI: 10.1007/s40618-023-02171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome, also known as Barakat syndrome, is a rare autosomal dominant disease characterized by the triad of hypoparathyroidism, deafness, and renal abnormalities. The disorder is caused by the haploinsufficiency of the zinc finger transcription factor GATA3 and exhibits a great clinical variability with an age-dependent penetrance of each feature. We report two unrelated kindreds whose probands were referred to our outpatient clinic for further evaluation of hypoparathyroidism. METHODS The proband of family 1, a 17-year-old boy, was referred for severe hypocalcemia (5.9 mg/dL) incidentally detected at routine blood tests. Abdomen ultrasound showed bilateral renal cysts. The audiometric evaluation revealed the presence of bilateral moderate hearing loss although the patient could communicate without any problem. Conversely, the proband of family 2, a 19-year-old man, had severe symptomatic hypocalcemia complicated by epileptic seizure at the age of 14 years; his past medical history was remarkable for right nephrectomy at the age of 4 months due to multicystic renal disease and bilateral hearing loss diagnosed at the age of 18 years. RESULTS Based on clinical, biochemical, and radiologic data, HDR syndrome was suspected and genetic analysis of the GATA3 gene revealed the presence of two pathogenetic variants in exon 3, c.404dupC and c.431dupG, in the proband of family 1 and 2, respectively. CONCLUSION HDR syndrome is a rare cause of hypoparathyroidism and must be excluded in all patients with apparently idiopathic hypoparathyroidism. A correct diagnosis is of great importance for early detection of other HDR-related features and genetic counseling.
Collapse
Affiliation(s)
- E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Mazoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Citro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Della Valentina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Sardella
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - S Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - M A Caligo
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - C Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
8
|
Li D, Yao H, Han X, Cao X, Du X, Meng F, Bu G, Kong F, Song T, Zeng X. Active immunization against gonadotropin-releasing hormone affects thymic T cell production, migration, and colonization in male rat lymphoid tissue. J Reprod Immunol 2023; 159:104132. [PMID: 37591181 DOI: 10.1016/j.jri.2023.104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Active immunization against gonadotropin-releasing hormone (GnRH) inhibits animal reproduction and has become a friendly alternative to surgical castration, which has been reported to affect the proportion of thymic T cell subpopulations. The effects of active immunization against GnRH on T cell migration from the thymus to the periphery and T cell distribution in lymphoid tissues remain unclear. Here, we showed that active immunization against GnRH increased thymic size and weight, enlarged the number of thymocytes, and enhanced CD4+ recent thymic emigrants (RTEs) and CD8+ RTEs migration to the blood and spleen. Active immunization against GnRH had no significant effect on naïve CD4+, naïve CD8+, CD4+ memory/activated, or CD8+ memory/activated T cells. In addition, active immunization against GnRH increased the proportion of CD3+ T cells in the spleen and lymph nodes. The percentages of CD3+CD4+ and CD3+CD8+ T cells in the blood, spleen, and lymph nodes were not significantly affected by GnRH immunization. Overall, these results enhance our understanding of thymic T cell production, migration, and colonization in rat lymphoid tissues affected by GnRH immunization.
Collapse
Affiliation(s)
- Dong Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Huan Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Xinfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Tianzeng Song
- Institute of animal science, Tibet academy of Agricultural and Animal Husbandry Science, Lhasa 850009, Xizang, PR China.
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China.
| |
Collapse
|
9
|
Popov H, Ghenev P, Stoyanov GS. Role of GATA3 in Early-Stage Urothelial Bladder Carcinoma Local Recurrence. Cureus 2023; 15:e44998. [PMID: 37829946 PMCID: PMC10565122 DOI: 10.7759/cureus.44998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
Background One of the most characteristic features of non-invasive urothelial carcinoma (UC) is its high recurrence rate. Guanine-adenine-thymine-adenine nucleotide sequence-binding protein 3 (GATA3), as a transcription factor, correlates with urothelial differentiation and has been reported with poor prognosis in high-grade UC and recurrence in breast malignancies. As such, we set out to study the specifics of GATA3 in non-invasive UC, emphasizing on prediction for recurrence. Methods The cohort comprised 163 patients, with a follow-up period of five years, including 109 pTa cases and 54 pT1 cases. Immunohistochemical expression of GATA3 was assessed using a histo score (H-score). Kaplan-Meier test was conducted for the time to recurrence, according to the level of expression of GATA3 and the indicators studied. Receiver operating characteristic (ROC) curve analysis was done to determine the role of accuracy and specificity of predictability of the indicators. Results Recurrence within the follow-up period was noted in 41.72% of cases. No recurrence relationship was established for age and gender. GATA3 expression showed a varying H-score. Using ROC curve analysis, a cut-off value of 155 divided UC expression levels into low and high, with a sensitivity of 72.7% and specificity of 78.7% (area under the curve=0.800, 95% confidence interval: 0.696-0.904, p<0.001), further showing an association between high levels of nuclear expression and risk of local recurrence (p<0.0001). Conclusion Herein we have described the sensitivity of high GATA3 expression in non-invasive UC of the urinary bladder and its relation to local recurrence, independent of gender, age, tumor differentiation, and stage.
Collapse
Affiliation(s)
- Hristo Popov
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Peter Ghenev
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | | |
Collapse
|
10
|
Neyra JS, Medrano S, Goes Martini AD, Sequeira-Lopez MLS, Gomez RA. The role of Gata3 in renin cell identity. Am J Physiol Renal Physiol 2023; 325:F188-F198. [PMID: 37345845 PMCID: PMC10396225 DOI: 10.1152/ajprenal.00098.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Renin cells are precursors for other cell types in the kidney and show high plasticity in postnatal life in response to challenges to homeostasis. Our previous single-cell RNA-sequencing studies revealed that the dual zinc-finger transcription factor Gata3, which is important for cell lineage commitment and differentiation, is expressed in mouse renin cells under normal conditions and homeostatic threats. We identified a potential Gata3-binding site upstream of the renin gene leading us to hypothesize that Gata3 is essential for renin cell identity. We studied adult mice with conditional deletion of Gata3 in renin cells: Gata3fl/fl;Ren1dCre/+ (Gata3-cKO) and control Gata3fl/fl;Ren1d+/+ counterparts. Gata3 immunostaining revealed that Gata3-cKO mice had significantly reduced Gata3 expression in juxtaglomerular, mesangial, and smooth muscle cells, indicating a high degree of deletion of Gata3 in renin lineage cells. Gata3-cKO mice exhibited a significant increase in blood urea nitrogen, suggesting hypovolemia and/or compromised renal function. By immunostaining, renin-expressing cells appeared very thin compared with their normal plump shape in control mice. Renin cells were ectopically localized to Bowman's capsule in some glomeruli, and there was aberrant expression of actin-α2 signals in the mesangium, interstitium, and Bowman's capsule in Gata3-cKO mice. Distal tubules showed dilated morphology with visible intraluminal casts. Under physiological threat, Gata3-cKO mice exhibited a lower increase in mRNA levels than controls. Hematoxylin-eosin, periodic acid-Schiff, and Masson's trichrome staining showed increased glomerular fusion, absent cubical epithelial cells in Bowman's capsule, intraglomerular aneurysms, and tubular dilation. In conclusion, our results indicate that Gata3 is crucial to the identity of cells of the renin lineage.NEW & NOTEWORTHY Gata3, a dual zinc-finger transcription factor, is responsible for the identity and localization of renin cells in the kidney. Mice with a conditional deletion of Gata3 in renin lineage cells have abnormal kidneys with juxtaglomerular cells that lose their characteristic location and are misplaced outside and around arterioles and glomeruli. The fundamental role of Gata3 in renin cell development offers a new model to understand how transcription factors control cell location, function, and pathology.
Collapse
Affiliation(s)
- Jesus S Neyra
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Alexandre De Goes Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
11
|
Scott MA, Woolums AR, Swiderski CE, Finley A, Perkins AD, Nanduri B, Karisch BB. Hematological and gene co-expression network analyses of high-risk beef cattle defines immunological mechanisms and biological complexes involved in bovine respiratory disease and weight gain. PLoS One 2022; 17:e0277033. [PMID: 36327246 PMCID: PMC9632787 DOI: 10.1371/journal.pone.0277033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine respiratory disease (BRD), the leading disease complex in beef cattle production systems, remains highly elusive regarding diagnostics and disease prediction. Previous research has employed cellular and molecular techniques to describe hematological and gene expression variation that coincides with BRD development. Here, we utilized weighted gene co-expression network analysis (WGCNA) to leverage total gene expression patterns from cattle at arrival and generate hematological and clinical trait associations to describe mechanisms that may predict BRD development. Gene expression counts of previously published RNA-Seq data from 23 cattle (2017; n = 11 Healthy, n = 12 BRD) were used to construct gene co-expression modules and correlation patterns with complete blood count (CBC) and clinical datasets. Modules were further evaluated for cross-populational preservation of expression with RNA-Seq data from 24 cattle in an independent population (2019; n = 12 Healthy, n = 12 BRD). Genes within well-preserved modules were subject to functional enrichment analysis for significant Gene Ontology terms and pathways. Genes which possessed high module membership and association with BRD development, regardless of module preservation (“hub genes”), were utilized for protein-protein physical interaction network and clustering analyses. Five well-preserved modules of co-expressed genes were identified. One module (“steelblue”), involved in alpha-beta T-cell complexes and Th2-type immunity, possessed significant correlation with increased erythrocytes, platelets, and BRD development. One module (“purple”), involved in mitochondrial metabolism and rRNA maturation, possessed significant correlation with increased eosinophils, fecal egg count per gram, and weight gain over time. Fifty-two interacting hub genes, stratified into 11 clusters, may possess transient function involved in BRD development not previously described in literature. This study identifies co-expressed genes and coordinated mechanisms associated with BRD, which necessitates further investigation in BRD-prediction research.
Collapse
Affiliation(s)
- Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States of America
- * E-mail:
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Cyprianna E. Swiderski
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Abigail Finley
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States of America
| | - Andy D. Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, United States of America
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
12
|
Gao X, Wang C, Abdelrahman S, Kady N, Murga-Zamalloa C, Gann P, Sverdlov M, Wolfe A, Polk A, Brown N, Bailey NG, Inamdar K, Casavilca S, Montes J, Barrionuevo C, Taxa L, Reneau J, Siebel CW, Maillard I, Wilcox RA. Notch Signaling Promotes Mature T-Cell Lymphomagenesis. Cancer Res 2022; 82:3763-3773. [PMID: 36006995 PMCID: PMC9588752 DOI: 10.1158/0008-5472.can-22-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Peripheral T-cell lymphomas (PTCL) are agressive lymphomas that develop from mature T cells. The most common PTCLs are genetically, molecularly, and clinically diverse and are generally associated with dismal outcomes. While Notch signaling plays a critically important role in both the development of immature T cells and their malignant transformation, its role in PTCL is poorly understood, despite the increasingly appreciated function of Notch in regulating the proliferation and differentiation of mature T cells. Here, we demonstrate that Notch receptors and their Delta-like family ligands (DLL1/DLL4) play a pathogenic role in PTCL. Notch1 activation was observed in common PTCL subtypes, including PTCL-not otherwise specified (NOS). In a large cohort of PTCL-NOS biopsies, Notch1 activation was significantly associated with surrogate markers of proliferation. Complementary genetically engineered mouse models and spontaneous PTCL models were used to functionally examine the role of Notch signaling, and Notch1/Notch2 blockade and pan-Notch blockade using dominant-negative MAML significantly impaired the proliferation of malignant T cells and PTCL progression in these models. Treatment with DLL1/DLL4 blocking antibodies established that Notch signaling is ligand-dependent. Together, these findings reveal a role for ligand-dependent Notch signaling in driving peripheral T-cell lymphomagenesis. SIGNIFICANCE This work demonstrates that ligand-dependent Notch activation promotes the growth and proliferation of mature T-cell lymphomas, providing new therapeutic strategies for this group of aggressive lymphomas.
Collapse
Affiliation(s)
- Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Nermin Kady
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Peter Gann
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ivan Maillard
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
GATA3 Exerts Distinct Transcriptional Functions to Regulate Radiation Resistance in A549 and H1299 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9174111. [PMID: 35993027 PMCID: PMC9385326 DOI: 10.1155/2022/9174111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Background Radiation resistance of lung cancer cells is a vital factor affecting the curative effect of lung cancer. Transcription factor GATA3 is involved in cell proliferation, invasion, and migration and is significantly expressed in a variety of malignancies. However, the molecular mechanism governing GATA3 regulation in lung cancer cells' radiation resistance is unknown. Methods Radiation-resistant cell models (A549-RR and H1299-RR) were made using fractionated high-dose irradiation. Use clone formation, CCK-8, F-actin staining, cell cycle detection, and other experiments to verify whether the model is successfully constructed. Cells were transiently transfected with knockdown or overexpression plasmid. To explore the relationship between GATA3/H3K4me3 and target genes, we used ChIP-qPCR, ChIP-seq, and dual luciferase reporter gene experiments. Xenograft tumor models were used to evaluate the effect of GATA3 depletion on the tumorigenic behavior of lung cancer cells. Results We report that transcription factors GATA3 and H3K4me3 coactivate NRP1 gene transcription when A549 cells develop radiation resistance. However, the mechanism of radiation resistance in H1299 cells is that GATA3 acts as a transcription inhibitor. The decrease of GATA3 will promote the increase of NRP1 transcription, in which H3K4me3 does not play a leading role. Conclusions GATA3, an upstream transcriptional regulator of NRP1 gene, regulates the radioresistance of A549 and H1299 cells by opposite mechanisms, which provides a new target for radiotherapy of lung cancer.
Collapse
|
14
|
Bao X, Qin Y, Lu L, Zheng M. Transcriptional Regulation of Early T-Lymphocyte Development in Thymus. Front Immunol 2022; 13:884569. [PMID: 35432347 PMCID: PMC9008359 DOI: 10.3389/fimmu.2022.884569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against various pathogenic microorganisms and establishing self-antigen tolerance. They will go through several stages and checkpoints in the thymus from progenitors to mature T cells, from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of the thymus and further differentiate into distinct subsets under different environment signals to perform specific functions. Each step is regulated by various transcriptional regulators downstream of T cell receptors (TCRs) that have been extensively studied both in vivo and vitro via multiple mouse models and advanced techniques, such as single cell RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). This review will summarize the transcriptional regulators participating in the early stage of T cell development reported in the past decade, trying to figure out cascade networks in each process and provide possible research directions in the future.
Collapse
Affiliation(s)
- Xueyang Bao
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Linrong Lu
- Shanghai Immune Therapy Institute, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China.,Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Wang M, Guo X, Yang M, Zhang Y, Meng F, Chen Y, Chen M, Qiu T, Li J, Li Z, Zhang Q, Xu F, Zhang H, Wang W. Synergistic antitumor activity of 5-fluorouracil and atosiban against microsatellite stable colorectal cancer through restoring GATA3. Biochem Pharmacol 2022; 199:115025. [PMID: 35367196 DOI: 10.1016/j.bcp.2022.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Clinically, 5-fluorouracil (5-Fu) is a first-line drug for the treatment of patients with colorectal cancer (CRC). However, chemoresistance to 5-Fu-based chemotherapy is a leading obstacle in achieving effective treatment for CRC, especially microsatellite stable (MSS) CRC. Since the cytotoxicity of 5-Fu is negatively correlated with oxytocin receptor (OXTR) expression in MSS CRC cell lines, our current study aimed to investigate the synergistic antitumor activity of 5-Fu combined with atosiban, an antagonist of OXTR. Our results suggested that atosiban remarkably potentiated the inhibitory effect of 5-Fu on the growth of MSS-type CRC cells in vitro and in vivo. Moreover, 5-Fu induced GATA3 in MSS CRC cells and tumors, which were eradicated by atosiban. Further investigation showed that atosiban strengthened the antitumor activity of 5-Fu through eradiation of 5-Fu-induced GATA3 in MSS-type CRC cells. Taken together, our findings suggest that atosiban potentiates the antitumor effect of 5-Fu by abolishing 5-Fu-induced GATA3, which provides a novel therapeutic strategy for MSS-type CRC via the combination of atosiban and 5-Fu.
Collapse
Affiliation(s)
- Mengmeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xuqin Guo
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tian Qiu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiawei Li
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhi Li
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qi Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fang Xu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Tsiomita S, Liveri EM, Vardaka P, Vogiatzi A, Skiadaresis A, Saridis G, Tsigkas I, Michaelidis TM, Mavrothalassitis G, Thyphronitis G. ETS2 repressor factor (ERF) is involved in T lymphocyte maturation acting as regulator of thymocyte lineage commitment. J Leukoc Biol 2022; 112:641-657. [PMID: 35258130 DOI: 10.1002/jlb.1a0720-439r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRβ+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.
Collapse
Affiliation(s)
- Spyridoula Tsiomita
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Effrosyni Maria Liveri
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Vardaka
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Angeliki Vogiatzi
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Argyris Skiadaresis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - George Saridis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - George Mavrothalassitis
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Yao Y, Uddin MN, Manley K, Lawrence DA. Constitutive activation of Notch signalling and T cell activation characterize a mouse model of autism. Cell Biochem Funct 2022; 40:150-162. [PMID: 34978084 DOI: 10.1002/cbf.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Gene and protein expression of BTBR T+ Itpr3tf /J (BTBR) mice with autistic-like behaviours were compared with the C57BL/6J strain, which is considered to have normal immunity and behaviour. Notch signalling pathway was constitutively activated in the immune system and liver of BTBR T+ Itpr3tf /J (BTBR) mice. Notch ligand 4 (Dll4), Notch receptors (Notch1 Notch2 and Notch3) and recombination signal binding protein for immunoglobulin κ j region (RBPJ) were increased both at gene and protein levels in BTBR spleens and thymi. Notch downstream transcriptional factors, Tbx21, Gata3, Rorc and FoxP3 were increased in BTBR spleens, Gata3 and FoxP3 were increased in BTBR thymi and BTBR mice have a high blood CD4/CD8 T cell ratio. Reduced nucleotide excision repair ability in BTBR spleens was associated with increased 8-oxoguanine, Ogg1 inhibition, an enhanced level of apoptotic thymocytes and higher expression of GATA-3. Ogg1 inhibition and enhanced GATA-3 expression also were detected in BTBR brain. Notch signal promoted mitochondrial dynamics switching to enhanced fission with an increased number and mass of mitochondria in immune cells of BTBR mice, but not in livers and brains. Constitutive influences on mitochondria exist in this mouse model of autism spectrum disorder; similar outcomes from environmental exposures might occur perinatally in susceptible individuals to affect the development of autism.
Collapse
Affiliation(s)
- Yunyi Yao
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Kevin Manley
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.,Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
19
|
Severity Biomarkers in Puumala Hantavirus Infection. Viruses 2021; 14:v14010045. [PMID: 35062248 PMCID: PMC8778356 DOI: 10.3390/v14010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Annually, over 10,000 cases of hemorrhagic fever with renal syndrome (HFRS) are diagnosed in Europe. Puumala hantavirus (PUUV) causes most of the European HFRS cases. PUUV causes usually a relatively mild disease, which is rarely fatal. However, the severity of the infection varies greatly, and factors affecting the severity are mostly unrevealed. Host genes are known to have an effect. The typical clinical features in PUUV infection include acute kidney injury, thrombocytopenia, and increased vascular permeability. The primary target of hantavirus is the endothelium of the vessels of different organs. Although PUUV does not cause direct cytopathology of the endothelial cells, remarkable changes in both the barrier function of the endothelium and the function of the infected endothelial cells occur. Host immune or inflammatory mechanisms are probably important in the development of the capillary leakage. Several immunoinflammatory biomarkers have been studied in the context of assessing the severity of HFRS caused by PUUV. Most of them are not used in clinical practice, but the increasing knowledge about the biomarkers has elucidated the pathogenesis of PUUV infection.
Collapse
|
20
|
Torres-Montaner A. The telomere complex and the origin of the cancer stem cell. Biomark Res 2021; 9:81. [PMID: 34736527 PMCID: PMC8567692 DOI: 10.1186/s40364-021-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022] Open
Abstract
Exquisite regulation of telomere length is essential for the preservation of the lifetime function and self-renewal of stem cells. However, multiple oncogenic pathways converge on induction of telomere attrition or telomerase overexpression and these events can by themselves trigger malignant transformation. Activation of NFκB, the outcome of telomere complex damage, is present in leukemia stem cells but absent in normal stem cells and can activate DOT1L which has been linked to MLL-fusion leukemias. Tumors that arise from cells of early and late developmental stages appear to follow two different oncogenic routes in which the role of telomere and telomerase signaling might be differentially involved. In contrast, direct malignant transformation of stem cells appears to be extremely rare. This suggests an inherent resistance of stem cells to cancer transformation which could be linked to a stem cell’specific mechanism of telomere maintenance. However, tumor protection of normal stem cells could also be conferred by cell extrinsic mechanisms.
Collapse
Affiliation(s)
- A Torres-Montaner
- Department of Pathology, Queen's Hospital, Rom Valley Way, London, Romford, RM7 OAG, UK. .,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
21
|
Khalyfa AA, Punatar S, Aslam R, Yarbrough A. Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases 2021; 9:79. [PMID: 34842660 PMCID: PMC8628792 DOI: 10.3390/diseases9040079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed cancers worldwide. Traditionally, mechanisms of colorectal cancer formation have focused on genetic alterations including chromosomal damage and microsatellite instability. In recent years, there has been a growing body of evidence supporting the role of inflammation in colorectal cancer formation. Multiple cytokines, immune cells such T cells and macrophages, and other immune mediators have been identified in pathways leading to the initiation, growth, and metastasis of colorectal cancer. Outside the previously explored mechanisms and pathways leading to colorectal cancer, initiatives have been shifted to further study the role of inflammation in pathogenesis. Inflammatory pathways have also been linked to some traditional risk factors of colorectal cancer such as obesity, smoking and diabetes, as well as more novel associations such as the gut microbiome, the gut mycobiome and exosomes. In this review, we will explore the roles of obesity and diet, smoking, diabetes, the microbiome, the mycobiome and exosomes in colorectal cancer, with a specific focus on the underlying inflammatory and metabolic pathways involved. We will also investigate how the study of colon cancer from an inflammatory background not only creates a more holistic and inclusive understanding of this disease, but also creates unique opportunities for prevention, early diagnosis and therapy.
Collapse
Affiliation(s)
- Ahamed A Khalyfa
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA; (S.P.); (R.A.)
| | | | | | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA; (S.P.); (R.A.)
| |
Collapse
|
22
|
GATA3 improves the protective effects of bone marrow-derived mesenchymal stem cells against ischemic stroke induced injury by regulating autophagy through CREG. Brain Res Bull 2021; 176:151-160. [PMID: 34500038 DOI: 10.1016/j.brainresbull.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been demonstrated to benefit functional recovery after ischemic stroke, however, the low survival rate of BMSCs in ischemic microenvironment largely limits its use. METHODS Rat BMSCs (rBMSCs) were isolated from SD rats and treated with oxygen glucose deprivation/reoxygenation (OGD) to mimic ischemic microenvironment in vitro. Expression of mRNAs and proteins were assessed by qRT-PCR and western blot, respectively. Cell viability was detected using MTT. ROS level was evaluated by DCFH-DA Assay Kit. TUNEL and flow cytometry analysis were adopted to detect cell apoptosis. Immunofluorescence analysis was used to examine LC3 expression. Dual-luciferase reporter and ChIP assays were employed to determine the interaction between CREG and GATA3. Middle cerebral artery occlusion (MCAO) model was established to mimic ischemic stroke in vivo. TTC staining was used to measure the infarcts area in the brain of MCAO rats. Nissl staining was used to examine the quantity of neurons, and mNSS test was applied to compare behavioral functions of animals. RESULTS The rBMSCs were successfully isolated from SD rats. OGD exposure decreased the expression of GATA3 in rBMSCs, GATA3 overexpression alleviated OGD-induced cell injury and enhanced autophagy. Treatment with autophagy inhibitor (3-MA) abolished the protective effects of GATA3 against OGD-induced cell injury. GATA3 targeted the promoter of CREG and positively regulated its expression. The protective effect of GATA3 overexpression on autophagy during OGD exposure was reversed by CREG knockdown. Moreover, GATA3 overexpression improved the therapeutic effects of BMSCs transplantation on ischemic stroke in vivo. CONCLUSION Our results indicated that GATA3 overexpression improved the therapeutic effects of rBMSCs transplantation against ischemic stroke induced injury by regulating autophagy through CREG.
Collapse
|
23
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
24
|
Daines JM, Schellhardt L, Wood MD. The Role of the IL-4 Signaling Pathway in Traumatic Nerve Injuries. Neurorehabil Neural Repair 2021; 35:431-443. [PMID: 33754913 DOI: 10.1177/15459683211001026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following traumatic peripheral nerve injury, adequate restoration of function remains an elusive clinical goal. Recent research highlights the complex role that the immune system plays in both nerve injury and regeneration. Pro-regenerative processes in wounded soft tissues appear to be significantly mediated by cytokines of the type 2 immune response, notably interleukin (IL)-4. While IL-4 signaling has been firmly established as a critical element in general tissue regeneration during wound healing, it has also emerged as a critical process in nerve injury and regeneration. In this context of peripheral nerve injury, endogenous IL-4 signaling has recently been confirmed to influence more than leukocytes, but including also neurons, axons, and Schwann cells. Given the role IL-4 plays in nerve injury and regeneration, exogenous IL-4 and/or compounds targeting this signaling pathway have shown encouraging preliminary results to treat nerve injury or other neuropathy in rodent models. In particular, the exogenous stimulation of the IL-4 signaling pathway appears to promote postinjury neuron survival, axonal regeneration, remyelination, and thereby improved functional recovery. These preclinical data strongly suggest that targeting IL-4 signaling pathways is a promising translational therapy to augment treatment approaches of traumatic nerve injury. However, a better understanding of the type 2 immune response and associated signaling networks functioning within the nerve injury microenvironment is still needed to fully develop this promising therapeutic avenue.
Collapse
|
25
|
Moriguchi T. Development and Carcinogenesis: Roles of GATA Factors in the Sympathoadrenal and Urogenital Systems. Biomedicines 2021; 9:biomedicines9030299. [PMID: 33803938 PMCID: PMC8001475 DOI: 10.3390/biomedicines9030299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) that control a variety of physiological and pathological processes. In particular, GATA2 and GATA3 are coexpressed in a number of tissues, including in the urogenital and sympathoadrenal systems, in which both factors participate in the developmental process and tissue maintenance. Furthermore, accumulating studies have demonstrated that GATA2 and GATA3 are involved in distinct types of inherited diseases as well as carcinogenesis in diverse tissues. This review summarizes our current knowledge of how GATA2 and GATA3 participate in the transcriptional regulatory circuitry during the development of the sympathoadrenal and urogenital systems, and how their dysregulation results in the carcinogenesis of neuroblastoma, renal urothelial, and gynecologic cancers.
Collapse
Affiliation(s)
- Takashi Moriguchi
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
26
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
27
|
Zhang Z, Fang X, Xie G, Zhu J. GATA3 is downregulated in HCC and accelerates HCC aggressiveness by transcriptionally inhibiting slug expression. Oncol Lett 2021; 21:231. [PMID: 33613720 PMCID: PMC7856699 DOI: 10.3892/ol.2021.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/30/2020] [Indexed: 11/29/2022] Open
Abstract
Previous studies have reported that GATA3 is downregulated in multiple types of tumours, including gastric cancer and osteosarcoma. The aim of this study was to explore whether GATA3 serves as a tumour suppressor to inhibit hepatocellular carcinoma (HCC) development. Tumour tissue specimens and adjacent normal tissue specimens were obtained from 162 patients diagnosed with HCC in the Affiliated Hospital of Shaoxing University from July 2000 to May 2018. The result of the present study demonstrated that GATA3 was downregulated in HCC tumour tissues compared with that of adjacent normal tissues. The expression of GATA3 was also negatively associated with tumour size, TNM stage and lymph node metastasis. Additionally, analysis of the follow-up data revealed that low GATA3 expression was closely correlated with poor survival. Gain and loss of function analyses revealed that overexpression of GATA3 decreased the ability of proliferation, migration and invasion in HCC cell lines, whereas inhibition of GATA3 promoted the ability of proliferation, migration and invasion. In addition, GATA3 suppressed EMT through the regulation of slug expression. Additionally, slug overexpression attenuated the inhibitory effects of GATA3 overexpression on cancer cell proliferation, migration and invasion. Thus, GATA3 is downregulated in HCC, and suppresses cell proliferation, migration and invasion. Moreover, GATA3 transcriptionally inhibits slug expression, thereby suppressing EMT in HCC.
Collapse
Affiliation(s)
- Zhuoliang Zhang
- Department of General Surgery I, The Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xingliang Fang
- Department of General Surgery I, The Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Guilin Xie
- Department of General Surgery I, The Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jinlong Zhu
- Department of General Surgery I, The Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
28
|
Fischer U, Yang JJ, Ikawa T, Hein D, Vicente-Dueñas C, Borkhardt A, Sánchez-García I. Cell Fate Decisions: The Role of Transcription Factors in Early B-cell Development and Leukemia. Blood Cancer Discov 2020; 1:224-233. [PMID: 33392513 DOI: 10.1158/2643-3230.bcd-20-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
B-cells are an integral part of the adaptive immune system and regulate innate immunity. Derived from hematopoietic stem cells they mature through a series of cell fate decisions. Complex transcriptional circuits form and dissipate dynamically during these lineage restrictions. Genomic aberrations of involved transcription factors underlie various B-cell disorders. Acquired somatic aberrations are associated with cancer, whereas germline variations predispose to both malignant and non-malignant diseases. We review the opposing role of transcription factors during B-cell development in health and disease. We focus on early B-cell leukemia and discuss novel causative gene-environment cooperations and their implications for precision medicine.
Collapse
Affiliation(s)
- Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jun J Yang
- Hematological Malignancies Programme, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tomokatsu Ikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Daniel Hein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Isidro Sánchez-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca
| |
Collapse
|
29
|
Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, Cao Z, Li Y, Peng C. A Review of the Pharmacological Properties of Psoralen. Front Pharmacol 2020; 11:571535. [PMID: 33013413 PMCID: PMC7500444 DOI: 10.3389/fphar.2020.571535] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
Collapse
Affiliation(s)
- Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University, Nanjing, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
30
|
Vatzia E, Pierron A, Hoog AM, Saalmüller A, Mayer E, Gerner W. Deoxynivalenol Has the Capacity to Increase Transcription Factor Expression and Cytokine Production in Porcine T Cells. Front Immunol 2020; 11:2009. [PMID: 32903433 PMCID: PMC7438481 DOI: 10.3389/fimmu.2020.02009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates the feed of farm animals. Pigs with their monogastric digestive system are in particular sensitive to DON-contaminated feed. At high concentrations, DON causes acute toxic effects, whereas lower concentrations lead to more subtle changes in the metabolism. This applies in particular to the immune system, for which immunosuppressive but also immunostimulatory phenomena have been described. Research in human and rodent cell lines indicates that this may be partially explained by a binding of DON to the ribosome and subsequent influences on cell signaling molecules like mitogen-activated protein kinases. However, a detailed understanding of the influence of DON on functional traits of porcine immune cells is still lacking. In this study, we investigated the influence of DON on transcription factor expression and cytokine production within CD4+, CD8+, and γδ T cells in vitro. At a DON concentration, that already negatively affects proliferation after Concanavalin A stimulation (0.8 μM) an increase of T-bet expression in CD4+ and CD8+ T cells was observed. This increase in T-bet expression coincided with elevated levels of IFN-γ and TNF-α producing T-cell populations. Increases in T-bet expression and cytokine production were found in proliferating and non-proliferating T cells, although increases were more prominent in proliferating cell subsets. Differently, IL-17A production by CD4+ T cells was not influenced by DON. In addition, frequencies of regulatory T cells and their expression of Foxp3 were not affected. In γδ T cells, GATA-3 expression was slightly reduced by DON, whereas T-bet levels were only slightly modulated and hence IFN-γ, TNF-α, or IL-17A production were not affected. Our results show for the single-cell level that DON has the capacity to modulate the expression of transcription factors and related cytokines. In particular, they suggest that for CD4+ and CD8+ T cells, DON can drive T-cell differentiation into a pro-inflammatory type-1 direction, probably depending on the already prevailing cytokine milieu. This could have beneficial or detrimental effects in ongoing immune responses to infection or vaccination.
Collapse
Affiliation(s)
- Eleni Vatzia
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alix Pierron
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Maria Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
31
|
Suppression of GATA-3 increases adipogenesis, reduces inflammation and improves insulin sensitivity in 3T3L-1 preadipocytes. Cell Signal 2020; 75:109735. [PMID: 32795510 DOI: 10.1016/j.cellsig.2020.109735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes. Adipose tissue inflammation is a crucial mediator of this process. GATA-3 plays important roles in adipogenesis and inflammation. The aim of this study is to investigate the impact of GATA-3 suppression on improving adipogenesis, lowering inflammation and reversing insulin resistance. GATA-3 levels were measured in subcutaneous (SC) and omental (OM) adipose tissues obtained from insulin sensitive (IS) and insulin resistant (IR) obese individuals during weight reduction surgeries. The effect of GATA-3 suppression on adipogenesis, expression of inflammatory cytokines and insulin resistance biomarkers was performed in 3T3L-1 mouse preadipocytes via transfection with GATA-3-specific DNAzyme. GATA-3 expression was higher in OM compared to SC adipose tissues and in stromal vascular fraction-derived differentiating preadipocytes from IR obese individuals compared to their IS counterparts. Suppression of GATA-3 expression in 3T3L-1 mouse preadipocytes with GATA-3 specific inhibitor reversed 4-hydroxynonenal-induced impaired adipogenesis and triggered changes in the expression of insulin signaling-related genes. GATA-3 inhibition also modulated the expression of IL-6 and IL-10 and lowered the expression of insulin resistance biomarkers (PAI-1 and resistin) and insulin resistance phosphoproteins (p-BAD, p-PTEN and p-GSK3β). Inhibiting GATA-3 improves adipocytes differentiation, modulates the secretion of inflammatory cytokines and improves insulin sensitivity in insulin resistant cells. Suppression of GATA-3 could be a promising tool to improve adipogenesis, restore insulin sensitivity and lower obesity-associated inflammation in insulin resistant individuals.
Collapse
|
32
|
Thakar J, Qian Y, Benoodt L, Roumanes D, Qiu X, Laniewski N, Chu C, Slaunwhite C, Wang L, Mandava A, Chang I, Falsey AR, Caserta MT, Mariani TJ, Scheuermann RH, Walsh EE, Topham DJ. Unbiased analysis of peripheral blood mononuclear cells reveals CD4 T cell response to RSV matrix protein. Vaccine X 2020; 5:100065. [PMID: 32529184 PMCID: PMC7280769 DOI: 10.1016/j.jvacx.2020.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of respiratory tract illness especially in young infants that develop severe disease requiring hospitalization, and accounting for 74,000-126,000 admissions in the United States (Rezaee et al., 2017; Resch, 2017). Observations of neonatal and infant T cells suggest that they may express different immune markers compared to T-cells from older children. Flow cytometry analysis of cellular responses using "conventional" anti-viral markers (IL2, IFN-γ, TNF, IL10 and IL4) upon RSV-peptide stimulation detected an overall low RSV response in peripheral blood. Therefore we sought an unbiased approach to identify RSV-specific immune markers using RNA-sequencing upon stimulation of infant PBMCs with overlapping peptides representing RSV antigens. To understand the cellular response using transcriptional signatures, transcription factors and cell-type specific signatures were used to investigate breadth of response across peptides. Unexpected from the ICS data, M peptide induced a response equivalent to the F-peptide and was characterized by activation of GATA2, 3, STAT3 and IRF1. This along with upregulation of several unconventional T cell signatures was only observed upon M-peptide stimulation. Moreover, signatures of natural RSV infections were identified from the data available in the public domain to investigate similarities between transcriptional signatures from PBMCs and upon peptide stimulation. This analysis also suggested activation of T cell response upon M-peptide stimulation. Hence, based on transcriptional response, markers were chosen to validate the role of M-peptide in activation of T cells. Indeed, CD4+CXCL9+ cells were identified upon M-peptide stimulation by flow cytometry. Future work using additional markers identified in this study could reveal additional unconventional T cells responding to RSV infections in infants. In conclusion, T cell responses to RSV in infants may not follow the canonical Th1/Th2 patterns of effector responses but include additional functions that may be unique to the neonatal period and correlate with clinical outcomes.
Collapse
Affiliation(s)
- Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Yu Qian
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Lauren Benoodt
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Biophysics and Computational Biology Graduate Program, University of Rochester, Rochester, NY, United States
| | - David Roumanes
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Nathan Laniewski
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - ChinYi Chu
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher Slaunwhite
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | | | - Ivan Chang
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Ann R Falsey
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY, United States
| | - Mary T Caserta
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Edward E Walsh
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
33
|
Ji W, Zhang Q, Shi H, Dong R, Ge D, Du X, Ren B, Wang X, Wang Q. The mediatory role of Majie cataplasm on inflammation of allergic asthma through transcription factors related to Th1 and Th2. Chin Med 2020; 15:53. [PMID: 32489402 PMCID: PMC7247251 DOI: 10.1186/s13020-020-00334-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Asthma, a common respiratory disease, is harmful biological effect to our health. As a traditional Chinese medicine for asthma, Majie cataplasm could alleviate the symptoms of asthma and its compositions have immunomodulatory effects. Previous experiments showed that Majie cataplasm was an effective approach to mitigate asthma airway remodeling and had the potential to regulate Th2 cytokines of IL-5 and IL-13. Therefore, our further research focuses on the explanation about the regulatory effect of Majie cataplasm on reshaping Th1/Th2 through their related transcription factors. Methods In this experiment, the launch of asthma model was made by inducing with Ovalbumin (OVA) in C57 mice (n = 40), including 4 groups: the untreated control group (n = 10), the asthma model group (n = 10), the dexamethasone group (n = 10) and the Majie cataplasm group (n = 10). After the intervention, all groups of animals got detected for serum IgE levels, and HE staining of lung tissues was to observe and examine pathological changes. Meanwhile, we analyzed the secretion of IL-4+ T cells and IFN-γ+ T cells in spleen by flow cytometry. The expressions of transcription factor STAT6 mRNA, GATA-3 mRNA and T-bet mRNA in lung tissues was tested by PCR, and western blot had been used to detect levels of JAK2 and STAT3. Results We found that Majie cataplasm eased the content of serum IgE and lung inflammation. It could lower the increased number of IL-4+ T cells and IFN-γ+ T cells (P < 0.0001, P < 0.01) in asthmatic mice and curb the expression of STAT6 mRNA and GATA-3 (P < 0.0001, P < 0.01) mRNA as well as the protein levels of JAK2 (P < 0.001) and the ratio of pSTAT3/STAT3 (P < 0.05). Besides, Majie cataplasm made its mark on T-bet mRNA by improving it (P < 0.0001). Conclusion These data suggest that Majie cataplasm exert an anti-inflammatory effect of Th2 by rebalancing Th1/Th2 through corresponding transcription factor STAT6, GATA-3, STAT3, and T-bet, which providing a strong cornerstone for asthma control.
Collapse
Affiliation(s)
- Wenting Ji
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qianyi Zhang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Hanfen Shi
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ruijuan Dong
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Dongyu Ge
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xin Du
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Beida Ren
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
34
|
Rao TN, Kumar S, Pulikkottil AJ, Oliveri F, Hendriks RW, Beckel F, Fehling HJ. Novel, Non-Gene-Destructive Knock-In Reporter Mice Refute the Concept of Monoallelic Gata3 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2600-2611. [PMID: 32213568 DOI: 10.4049/jimmunol.2000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
Accurately tuned expression levels of the transcription factor GATA-3 are crucial at several stages of T cell and innate lymphoid cell development and differentiation. Moreover, several lines of evidence suggest that Gata3 expression might provide a reliable molecular marker for the identification of elusive progenitor cell subsets at the earliest stages of T lineage commitment. To be able to faithfully monitor Gata3 expression noninvasively at the single-cell level, we have generated a novel strain of knock-in reporter mice, termed GATIR, by inserting an expression cassette encoding a bright fluorescent marker into the 3'-untranslated region of the endogenous Gata3 locus. Importantly, in contrast to three previously published strains of Gata3 reporter mice, GATIR mice preserve physiological Gata3 expression on the targeted allele. In this study, we show that GATIR mice faithfully reflect endogenous Gata3 expression without disturbing the development of GATA-3-dependent lymphoid cell populations. We further show that GATIR mice provide an ideal tool for noninvasive monitoring of Th2 polarization and straightforward identification of innate lymphoid cell 2 progenitor populations. Finally, as our reporter is non-gene-destructive, GATIR mice can be bred to homozygosity, not feasible with previously published strains of Gata3 reporter mice harboring disrupted alleles. The availability of hetero- and homozygous Gata3 reporter mice with an exceptionally bright fluorescent marker, allowed us to visualize allelic Gata3 expression in individual cells simply by flow cytometry. The unambiguous results obtained provide compelling evidence against previously postulated monoallelic Gata3 expression in early T lineage and hematopoietic stem cell subsets.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | | - Franziska Oliveri
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, NL-3000 CA Rotterdam, the Netherlands
| | - Franziska Beckel
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | |
Collapse
|
35
|
Yu S, Chen W, Lu W, Chen C, Ni Y, Duan B, Wang B, Wang H, Xu Z. Novel heterozygous GATA3 and SLC34A3 variants in a 6-year-old boy with Barakat syndrome and hypercalciuria. Mol Genet Genomic Med 2020; 8:e1222. [PMID: 32155322 PMCID: PMC7216807 DOI: 10.1002/mgg3.1222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Barakat syndrome is an autosomal dominant disorder characterized by the triad of hypoparathyroidism, sensorineural deafness, and renal anomalies and is caused by mutations in GATA3 gene. SLC34A3 is the cause gene of hypophosphatemic rickets with hypercalciuria, and heterozygous carriers may have milder clinical symptoms. The aim of this study was to identify the underlying genetic cause of a patient who initially presented with renal failure, hypercalciuria, kidney stone, and bilateral sensorineural deafness. METHODS A 6-year-old boy with complex clinical presentations was investigated. Comprehensive medical evaluations were performed including auditory function tests, endocrine function tests, metabolic studies, and imaging examinations. Molecular diagnoses were analyzed by trio whole-exome sequencing. RESULTS One novel de novo deleterious variant (c. 324del) of the GATA3 gene was identified in the patient. The patient can be diagnosed with Barakat syndrome. In addition, one novel variant (c. 589A>G) of the SLC34A3 gene was detected, which was inherited from the father. This heterozygous variant can explain the hypercalciuria and kidney stone that occurred in both the patient and his father. CONCLUSION This study provides a special case which is phenotype-driven dual diagnoses, and the two novel variants can parsimoniously explain the complex clinical presentations of this patient.
Collapse
Affiliation(s)
- Sha Yu
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
- Center for Molecular MedicinePediatrics Research InstituteChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Wen‐xia Chen
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Wei Lu
- Endocrinology and Inherited Metabolic DiseasesChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Chao Chen
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Yihua Ni
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Bo Duan
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Bin Wang
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Huijun Wang
- Center for Molecular MedicinePediatrics Research InstituteChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Zheng‐min Xu
- Department of Otolaryngology‐Head and Neck SurgeryChildren’s Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
36
|
Wang C, Yang S, Jin L, Dai G, Yao Q, Xiang H, Zhang Y, Liu X, Xue B. Biological and Clinical Significance of GATA3 Detected from TCGA Database and FFPE Sample in Bladder Cancer Patients. Onco Targets Ther 2020; 13:945-958. [PMID: 32099398 PMCID: PMC6999784 DOI: 10.2147/ott.s237099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of the present study was to investigate the biological and clinical significance of GATA binding protein 3 (GATA3) in bladder cancer patients. Patients and Methods For the detection of the correlation between GATA3 expression and bladder cancer, we downloaded the mRNA expression data from the Cancer Genome Atlas (TCGA) database and conducted immunohistochemistry staining on formalin-fixed paraffin-embedded (FFPE) sample tissues. Then, bladder cancer cell lines were utilized to investigate the potential functions of GATA3 by cell apoptosis, proliferation and cycle assays. Results The mRNA data from TCGA database and bladder cancer cell lines suggested that GATA3 mRNA expression was significantly higher compared with normal tissues and cells. Conversely, the Western blot assay revealed that the expression of GATA3 was significantly lower in bladder cancer than normal urothelial cell line. Additionally, we found that over-expression of GATA3 was significantly associated with tumor subtype (P = 0.001 in TCGA; P = 0.004 in FFPE tissues), earlier clinical stage (P < 0.001 in TCGA; P < 0.001 in FFPE) and lower grade tumor (P = 0.057 in TCGA; P = 0.002 in FFPE). Kaplan-Meier analysis and multivariate Cox regression analysis indicated that age (P < 0.001 in both cohort), clinical stage (P = 0.028 in TCGA; P = 0.011 in FFPE), recurrence (P < 0.001) and low GATA3 in TCGA cohort (P = 0.035) but high GATA3 in FFPE cohort (P = 0.033) were independent risk factors for overall survival in patients. The assay to detect potential functions of GATA3 indicated that this biomarker could arrest the cell cycle of G2/M and S phase in T24 cells, and inhibit bladder cancer cells proliferation. Conclusion Collectively, our findings identified that GATA3 served as an important prognosis biomarker for bladder cancer patients. However, the mechanism of GATA3 in bladder cancer deserves further studies.
Collapse
Affiliation(s)
- Chenglu Wang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Shuang Yang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Lu Jin
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Guangcheng Dai
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Qiu Yao
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Han Xiang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Yongsheng Zhang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Xiaolong Liu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Boxin Xue
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
37
|
Cao M, Qiu B, Zhou T, Zhang J. Control strategies for the timing of intracellular events. Phys Rev E 2020; 100:062401. [PMID: 31962487 DOI: 10.1103/physreve.100.062401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 11/07/2022]
Abstract
While the timing of intracellular events is essential for many cellular processes, gene expression inside a single cell can exhibit substantial cell-to-cell variability, raising the question of how cells ensure precision in event timing despite such stochasticity. We address this question by analyzing a biologically reasonable model of gene expression in the context of first passage time (FPT), focusing on two experimentally measurable statistics: mean FPT (MFPT) and timing variability (TV). We show that (1) transcriptional burst size (BS) and burst frequency (BF) can minimize the TV; (2) translational BS monotonically reduces the MFPT to a nonzero low bound; (3) the timescale of promoter kinetics can minimize both the MFPT and the TV, depending on the ratio of the on-switching rate over the off-switching rate; and (4) positive feedback regulation of any form can all minimize the TV, whereas negative feedback regulation of transcriptional BF or BS always enhances the TV. These control strategies can have broad implications for diverse cellular processes relying on precise temporal triggering of events.
Collapse
Affiliation(s)
- Mengfang Cao
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baohua Qiu
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jiajun Zhang
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
38
|
Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JP, Dunlop MG, Campbell H, Timofeeva M, Theodoratou E. Gene-environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer 2019; 145:2315-2329. [PMID: 30536881 PMCID: PMC6767750 DOI: 10.1002/ijc.32057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
The cause of colorectal cancer (CRC) is multifactorial, involving both genetic variants and environmental risk factors. We systematically searched the MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases from inception to December 2016, to identify systematic reviews and meta-analyses of observational studies that investigated gene-environment (G×E) interactions in CRC risk. Then, we critically evaluated the cumulative evidence for the G×E interactions using an extension of the Human Genome Epidemiology Network's Venice criteria. Overall, 15 articles reporting systematic reviews of observational studies on 89 G×E interactions, 20 articles reporting meta-analyses of candidate gene- or single-nucleotide polymorphism-based studies on 521 G×E interactions, and 8 articles reporting 33 genome-wide G×E interaction analyses were identified. On the basis of prior and observed scores, only the interaction between rs6983267 (8q24) and aspirin use was found to have a moderate overall credibility score as well as main genetic and environmental effects. Though 5 other interactions were also found to have moderate evidence, these interaction effects were tenuous due to the lack of main genetic effects and/or environmental effects. We did not find highly convincing evidence for any interactions, but several associations were found to have moderate strength of evidence. Our conclusions are based on application of the Venice criteria which were designed to provide a conservative assessment of G×E interactions and thus do not include an evaluation of biological plausibility of an observed joint effect.
Collapse
Affiliation(s)
- Tian Yang
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Zahra Montazeri
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Julian Little
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - John P.A. Ioannidis
- Stanford Prevention Research Center, Departments of Medicine, of Health Research and Policy, and of Biomedical Data Science, Stanford University School of Medicine, and Department of StatisticsStanford University School of Humanities and SciencesStanfordCaliforniaUSA
- Meta‐Research Innovation Center at Stanford (METRICS)Stanford UniversityStanfordCaliforniaUSA
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
39
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
40
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
41
|
Grigorieva IV, Oszwald A, Grigorieva EF, Schachner H, Neudert B, Ostendorf T, Floege J, Lindenmeyer MT, Cohen CD, Panzer U, Aigner C, Schmidt A, Grosveld F, Thakker RV, Rees AJ, Kain R. A Novel Role for GATA3 in Mesangial Cells in Glomerular Development and Injury. J Am Soc Nephrol 2019; 30:1641-1658. [PMID: 31405951 DOI: 10.1681/asn.2018111143] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.
Collapse
Affiliation(s)
| | | | | | | | | | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Ulf Panzer
- III. Medical Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Frank Grosveld
- Department of Cell Biology, Dr. Molewaterplein 50, Rotterdam, The Netherlands; and
| | - Rajesh V Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
42
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
43
|
Murga-Zamalloa C, Wilcox RA. GATA-3 in T-cell lymphoproliferative disorders. IUBMB Life 2019; 72:170-177. [PMID: 31317631 DOI: 10.1002/iub.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
GATA-3 regulates the differentiation, proliferation, survival, and function of peripheral T cells and their thymic progenitors. Recent findings, reviewed here, not only implicate GATA-3 in the pathogenesis of molecularly, genetically, and clinically distinct T-cell lymphoproliferative disorders, but also have significant diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Katakura F, Nishiya K, Wentzel AS, Hino E, Miyamae J, Okano M, Wiegertjes GF, Moritomo T. Paralogs of Common Carp Granulocyte Colony-Stimulating Factor (G-CSF) Have Different Functions Regarding Development, Trafficking and Activation of Neutrophils. Front Immunol 2019; 10:255. [PMID: 30837998 PMCID: PMC6389648 DOI: 10.3389/fimmu.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023] Open
Abstract
Mammalian granulocyte colony-stimulating factor (G-CSF; CSF3) is a primary cytokine that promotes the development, mobilization, and activation of neutrophils and their precursors. Teleosts have been reported to possess two paralogs as a likely result of the teleost-wide whole genome duplication (WGD) event, but functional divergence of G-CSF paralogs remains poorly understood. Common carp are an allotetraploid species owing to an additional WGD event in the carp lineage and here, we report on genomic synteny, sequence similarity, and phylogeny of four common carp G-CSF paralogs (g-csfa1 and g-csfa2; g-csfb1 and g-csfb2). G-csfa1 and g-csfa2 show differential and relatively high gene expression levels, while g-csfb1 and g-csfb2 show low basal gene expression levels in most tissues. All paralogs are expressed higher in macrophages than in other leukocyte sub-types and are highly up-regulated by treatment of macrophages with mitogens. Recombinant G-CSFa1 and G-CSFb1 both promoted the proliferation of kidney hematopoietic cells, while only G-CSFb1 induced the differentiation of kidney cells along the neutrophil-lineage. Colony-forming unit assays revealed that G-CSFb1 alone stimulates the formation of CFU-G colonies from head- and trunk-kidney whereas the combination of G-CSFa1 and G-CSFb1 stimulates the formation of both CFU-G and CFU-GM colonies. Recombinant G-CSFa1 and G-CSFb1 also exhibit chemotactic activity against kidney neutrophils and up-regulation of cxcr1 mRNA expression was highest in neutrophils after G-CSFb1 stimulation. Furthermore, G-CSFb1 more than G-CSFa1 induced priming of kidney neutrophils through up-regulation of a NADPH-oxidase component p47 phox . In vivo administration of G-CSF paralogs increased the number of circulating blood neutrophils of carp. Our findings demonstrate that gene duplications in teleosts can lead to functional divergence between paralogs and shed light on the sub-functionalization of G-CSF paralogs in cyprinid fish.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Kohei Nishiya
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Annelieke S. Wentzel
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Erika Hino
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Masaharu Okano
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Geert F. Wiegertjes
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Science, Wageningen University & Research, Wageningen, Netherlands
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| |
Collapse
|
45
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
46
|
Onodera A, Kokubo K, Nakayama T. Epigenetic and Transcriptional Regulation in the Induction, Maintenance, Heterogeneity, and Recall-Response of Effector and Memory Th2 Cells. Front Immunol 2018; 9:2929. [PMID: 30619290 PMCID: PMC6299044 DOI: 10.3389/fimmu.2018.02929] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Antigen-primed T cells respond to restimulation much faster than naïve T cells and form the cellular basis of immunological memory. The formation of memory Th2 cells starts when naïve CD4 T cells are transformed into effector Th2 cells and is completed after antigen clearance and a long-term resting phase accompanied by epigenetic changes in the Th2 signature genes. Memory Th2 cells maintain their functions and acquired heterogeneity through epigenetic machinery, on which the recall-response of memory Th2 cells is also dependent. We provide an overview of the epigenetics in the whole Th2 cell cycle, mainly focusing on two different histone lysine methyltransferase complexes: the Polycomb and Trithorax groups. We finally discuss the pathophysiology and potential therapeutic strategies for the treatment of Th2-mediated inflammatory diseases in mice and humans.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institue for Global Prominent Research, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Li P, Leonard WJ. Chromatin Accessibility and Interactions in the Transcriptional Regulation of T Cells. Front Immunol 2018; 9:2738. [PMID: 30524449 PMCID: PMC6262064 DOI: 10.3389/fimmu.2018.02738] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
During T cell differentiation and activation, specific stimuli, and a network of transcription factors (TFs) are involved in orchestrating chromatin accessibility, establishing enhancer-promoter interactions, and regulating gene expression. Over the past few years, there have been new insights into how chromatin interactions coordinate differentiation during T cell development and how regulatory elements are programmed to allow T cells to differentially respond to distinct stimuli. In this review, we discuss recent advances related to the roles of TFs in establishing the regulatory chromatin landscapes that orchestrate T cell development and differentiation. In particular, we focus on the role of TFs (e.g., TCF-1, BCL11B, PU.1, STAT3, STAT5, AP-1, and IRF4) in mediating chromatin accessibility and interactions and in regulating gene expression in T cells, including gene expression that is dependent on IL-2 and IL-21. Furthermore, we discuss the state of knowledge on enhancer-promoter interactions and how autoimmune disease risk variants can be linked to molecular functions of putative target genes.
Collapse
Affiliation(s)
- Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, Christiansen L, DeWitt WS, Lee C, Regalado SG, Read DF, Steemers FJ, Disteche CM, Trapnell C, Shendure J. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility. Cell 2018; 174:1309-1324.e18. [PMID: 30078704 PMCID: PMC6158300 DOI: 10.1016/j.cell.2018.06.052] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in ∼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and ∼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.
Collapse
Affiliation(s)
- Darren A Cusanovich
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Delasa Aghamirzaie
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Hannah A Pliner
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joel B Berletch
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Galina N Filippova
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Computer Science, University of Washington, Seattle, WA 98195, USA
| | | | - William S DeWitt
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David F Read
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
50
|
Li X, Jin J, Yang S, Xu W, Meng X, Deng H, Zhan J, Gao S, Zhang H. GATA3 acetylation at K119 by CBP inhibits cell migration and invasion in lung adenocarcinoma. Biochem Biophys Res Commun 2018; 497:633-638. [PMID: 29453984 DOI: 10.1016/j.bbrc.2018.02.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
GATA3 is a transcriptional factor involved in the development of multiple organs. Post translational modifications of GATA3 are critical to its function. Here, we report that GATA3 interacts with and is acetylated by the acetyltransferase CBP. Class I deacetylases HDAC1, HDAC2 and HDAC3 deacetylate GATA3. The major acetylated site of GATA3 in lung adenocarcinoma cells was determined at lysine 119 (AcK119). Functionally, GATA3-acetylation mimics K119Q mutant was found to inhibit lung adenocarcinoma cell migration and invasion with concomitant downregulation of EMT-controlling transcriptional factors Slug, Zeb1 and Zeb2. Taken together, we demonstrated that GATA3 acetylation at lysine 119 by CBP hinders the migration and invasion of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Xueying Li
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaqi Jin
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Siyuan Yang
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Weizhi Xu
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostic, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|