1
|
Rao V, Sapse I, Cohn H, Yoo DK, Tong P, Clark J, Bozarth B, Chen Y, Srivastava K, Singh G, Krammer F, Simon V, Wesemann D, Bajic G, Coelho CH. Convergent and clonotype-enriched mutations in the light chain drive affinity maturation of a public antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642041. [PMID: 40161664 PMCID: PMC11952319 DOI: 10.1101/2025.03.07.642041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Public antibodies that recognize conserved epitopes are critical for vaccine development, and identifying somatic hypermutations (SHMs) that enhance antigen affinity in these public responses is key to guiding vaccine design for better protection. We propose that affinity-enhancing SHMs are selectively enriched in public antibody clonotypes, surpassing the background frequency seen in antibodies carrying the same V genes, but with different epitope specificities. Employing a human IGHV4-59/IGKV3-20 public antibody as a model, we compare SHM signatures in antibodies also using these V genes, but recognizing other epitopes. Critically, this comparison identified clonotype-enriched mutations in the light chain. Our analyses also show that these SHMs, in combination, enhance binding to a previously uncharacterized viral epitope, with antibody responses to it increasing after multiple vaccinations. Our findings offer a framework for identifying affinity-enhancing SHMs in public antibodies based on convergence and clonotype-enrichment and can help guide vaccine design aimed to elicit public antibodies.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hallie Cohn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Duck-Kyun Yoo
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Pei Tong
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bailey Bozarth
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuexing Chen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Duane Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Liu T, Wang W, Du J, Liu H, Wu J, Wang C, Tang M, Liu Y, Ju Y, Qu W, Zheng J, Zhao Y, Zhang Y. Aluminum promotes B1 cells to produce IL-10 and impairs adaptive immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125791. [PMID: 39914566 DOI: 10.1016/j.envpol.2025.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Aluminum (Al) is a metal existing in the human body, yet the immunotoxicity of Al remains elusive. To investigate the immunotoxicity of Al, C57BL/6 mice were treated with 200 or 800 ppm Al via drinking water for 3 months, and thereafter the adaptive immune system was evaluated. In addition, mouse splenocytes and human peripheral blood mononuclear cells (PBMC) were treated with Al in vitro to assess the impact of Al in vitro. Treatment with Al reduced the production of IgM and IgG in the serum, and the activation of B cells, CD4 T cells and CD8 T cells in the spleen of mice; treatment with Al in vitro suppressed the production of IgM and IgG, and the activation of B cells, CD4 T cells and CD8 T cells in mouse splenocytes and human PBMC. In vitro co-culture assays suggested that the suppressed adaptive immunity was due to B cells modified by Al. In terms of mechanism, a direct action of Al on B1 cells induced the B1 cells to be IL-10-producing cells and thereby suppressed the adaptive immune system, which was critically dependent on the Jak1/3-STAT signaling. This study reveals that Al suppresses the adaptive immunity via induction of IL-10-producing B1 cells.
Collapse
Affiliation(s)
- Ting Liu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Hongyue Liu
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Jiaojiao Wu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Chuanxuan Wang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - MengKe Tang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yalin Liu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yingzi Ju
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Weidong Qu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jianheng Zheng
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China.
| | - Yifan Zhao
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| | - Yubin Zhang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Farnia M, Tahiri N. New generalized metric based on branch length distance to compare B cell lineage trees. Algorithms Mol Biol 2024; 19:22. [PMID: 39369262 PMCID: PMC11453055 DOI: 10.1186/s13015-024-00267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The B cell lineage tree encapsulates the successive phases of B cell differentiation and maturation, transitioning from hematopoietic stem cells to mature, antibody-secreting cells within the immune system. Mathematically, this lineage can be conceptualized as an evolutionary tree, where each node represents a distinct stage in B cell development, and the edges reflect the differentiation pathways. To compare these lineage trees, a rigorous mathematical metric is essential. Analyzing B cell lineage trees mathematically and quantifying changes in lineage attributes over time necessitates a comparison methodology capable of accurately assessing and measuring these changes. Addressing the intricacies of multiple B cell lineage tree comparisons, this study introduces a novel metric that enhances the precision of comparative analysis. This metric is formulated on principles of metric theory and evolutionary biology, quantifying the dissimilarities between lineage trees by measuring branch length distance and weight. By providing a framework for systematically classifying lineage trees, this metric facilitates the development of predictive models that are crucial for the creation of targeted immunotherapy and vaccines. To validate the effectiveness of this new metric, synthetic datasets that mimic the complexity and variability of real B cell lineage structures are employed. We demonstrated the ability of the new metric method to accurately capture the evolutionary nuances of B cell lineages.
Collapse
Affiliation(s)
- Mahsa Farnia
- Department of Computer Science, University of Sherbrooke, 2500, boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Nadia Tahiri
- Department of Computer Science, University of Sherbrooke, 2500, boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
4
|
Alhassan AM, Shirure VS, Luo J, Nguyen BB, Rollins ZA, Shergill BS, Zhu X, Baumgarth N, George SC. A Microfluidic Strategy to Capture Antigen‐Specific High‐Affinity B Cells. ADVANCED NANOBIOMED RESEARCH 2024; 4. [DOI: 10.1002/anbr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Assessing B cell affinity to pathogen‐specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen‐specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time‐consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR‐antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen‐specific BCR binding affinity of five hemagglutinin‐specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen‐specific high‐affinity B cells. The affinity of the membrane‐bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR‐antigen‐binding properties and identify antigen‐specific high‐affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost‐effective way of identifying individual B cells as antibody sources for a range of clinical applications.
Collapse
Affiliation(s)
- Ahmed M. Alhassan
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Venktesh S. Shirure
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Jean Luo
- Department of Pathology, Microbiology, and Immunology University of California Davis CA 95616 USA
| | - Bryan B. Nguyen
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Zachary A. Rollins
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | | | - Xiangdong Zhu
- Department of Physics and Astronomy University of California Davis CA 95616 USA
| | - Nicole Baumgarth
- Department of Pathology, Microbiology, and Immunology University of California Davis CA 95616 USA
- Department of Molecular Microbiology and Immunology Bloomberg School of Public Health and Department of Molecular and Comparative Pathobiology School of Medicine Johns Hopkins University Baltimore MD 21205 USA
| | - Steven C. George
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| |
Collapse
|
5
|
Harwardt J, Geyer FK, Schoenfeld K, Baumstark D, Molkenthin V, Kolmar H. Balancing the Affinity and Tumor Cell Binding of a Two-in-One Antibody Simultaneously Targeting EGFR and PD-L1. Antibodies (Basel) 2024; 13:36. [PMID: 38804304 PMCID: PMC11130809 DOI: 10.3390/antib13020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
The optimization of the affinity of monoclonal antibodies is crucial for the development of drug candidates, as it can impact the efficacy of the drug and, thus, the dose and dosing regimen, limit adverse effects, and reduce therapy costs. Here, we present the affinity maturation of an EGFR×PD-L1 Two-in-One antibody for EGFR binding utilizing site-directed mutagenesis and yeast surface display. The isolated antibody variants target EGFR with a 60-fold-improved affinity due to the replacement of a single amino acid in the CDR3 region of the light chain. The binding properties of the Two-in-One variants were confirmed using various methods, including BLI measurements, real-time antigen binding measurements on surfaces with a mixture of both recombinant proteins and cellular binding experiments using flow cytometry as well as real-time interaction cytometry. An AlphaFold-based model predicted that the amino acid exchange of tyrosine to glutamic acid enables the formation of a salt bridge to an arginine at EGFR position 165. This easily adaptable approach provides a strategy for the affinity maturation of bispecific antibodies with respect to the binding of one of the two antigens.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | | | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
van Weijsten MJ, Venrooij KR, Lelieveldt L, Kissel T, van Buijtenen E, van Dalen FJ, Verdoes M, Toes R, Bonger KM. Effect of Antigen Valency on Autoreactive B-Cell Targeting. Mol Pharm 2024; 21:481-490. [PMID: 37862070 PMCID: PMC10848265 DOI: 10.1021/acs.molpharmaceut.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Many autoimmune diseases are characterized by B cells that mistakenly recognize autoantigens and produce antibodies toward self-proteins. Current therapies aim to suppress the immune system, which is associated with adverse effects. An attractive and more specific approach is to target the autoreactive B cells selectively through their unique B-cell receptor (BCR) using an autoantigen coupled to an effector molecule able to modulate the B-cell activity. The cellular response upon antigen binding, such as receptor internalization, impacts the choice of effector molecule. In this study, we systematically investigated how a panel of well-defined mono-, di-, tetra-, and octavalent peptide antigens affects the binding, activation, and internalization of the BCR. To test our constructs, we used a B-cell line expressing a BCR against citrullinated antigens, the main autoimmune epitope in rheumatoid arthritis. We found that the dimeric antigen construct has superior targeting properties compared to those of its monomeric and multimeric counterparts, indicating that it can serve as a basis for future antigen-specific targeting studies for the treatment of RA.
Collapse
Affiliation(s)
- M. J. van Weijsten
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - K. R. Venrooij
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - L.P.W.M. Lelieveldt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - T. Kissel
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - E. van Buijtenen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - F. J. van Dalen
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - M. Verdoes
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - R.E.M. Toes
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - K. M. Bonger
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Alhassan AM, Shirure VS, Luo J, Nguyen BB, Rollins ZA, Shergill BS, Zhu X, Baumgarth N, George SC. A microfluidic strategy to capture antigen-specific high affinity B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548739. [PMID: 37503139 PMCID: PMC10369944 DOI: 10.1101/2023.07.12.548739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero-force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Here, we designed a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas under 65- to 650-pN force range. Our results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen binding properties and identify antigen-specific high affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.
Collapse
Affiliation(s)
- Ahmed M. Alhassan
- Department of Biomedical Engineering, University of California, Davis
| | | | - Jean Luo
- Department of Pathology, Microbiology, and Immunology, University of California, Davis
| | - Bryan B. Nguyen
- Department of Biomedical Engineering, University of California, Davis
| | | | | | - Xiangdong Zhu
- Department of Physics and Astronomy, University of California, Davis
| | - Nicole Baumgarth
- Department of Pathology, Microbiology, and Immunology, University of California, Davis
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health and Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Davis
| |
Collapse
|
8
|
Koike T, Fujii K, Kometani K, Butler NS, Funakoshi K, Yari S, Kikuta J, Ishii M, Kurosaki T, Ise W. Progressive differentiation toward the long-lived plasma cell compartment in the bone marrow. J Exp Med 2023; 220:213750. [PMID: 36515679 PMCID: PMC9754767 DOI: 10.1084/jem.20221717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The longevity of plasma cells is dependent on their ability to access and reside in so-called niches that are predominantly located in the bone marrow. Here, by employing a traceable method to label recently generated plasma cells, we showed that homeostatic plasma cells in the bone marrow and spleen were continuously replenished by newly generated B220hiMHC-IIhi populations that progressively differentiated into B220loMHC-IIlo long-lived plasma cell (LLPC) populations. We also found that, in the bone marrow, germinal center (GC)-independent and GC-dependent plasma cells decayed similarly upon NP-CGG engagement, and both entered the B220loMHC-IIlo LLPC pool. Compared with NP+B220hiMHC-IIhi plasma cells, NP+B220loMHC-IIlo cells were more immobilized in the bone marrow niches and showed better survival potential. Thus, our results suggest that the adhesion status of bone marrow plasma cells is dynamically altered during their differentiation and is associated with provision of survival signals.
Collapse
Affiliation(s)
- Takuya Koike
- Regulation of Host Defense Team, Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Kentaro Fujii
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
| | - Kenji Funakoshi
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory of Immunology and Cell Biology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory of Immunology and Cell Biology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Wataru Ise
- Regulation of Host Defense Team, Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Immunotherapeutic and immunomodulatory potentials of Antigen-Antibody complex vaccines. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2022.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Morales-Núñez JJ, García-Chagollán M, Muñoz-Valle JF, Díaz-Pérez SA, Torres-Hernández PC, Rodríguez-Reyes SC, Santoscoy-Ascencio G, Sierra García de Quevedo JJ, Hernández-Bello J. Differences in B-Cell Immunophenotypes and Neutralizing Antibodies Against SARS-CoV-2 After Administration of BNT162b2 (Pfizer-BioNTech) Vaccine in Individuals with and without Prior COVID-19 - A Prospective Cohort Study. J Inflamm Res 2022; 15:4449-4466. [PMID: 35958186 PMCID: PMC9361858 DOI: 10.2147/jir.s374304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose Understanding the humoral immune response dynamics carried out by B cells in COVID-19 vaccination is little explored; therefore, we analyze the changes induced in the different cellular subpopulations of B cells after vaccination with BNT162b2 (Pfizer-BioNTech). Methods This prospective cohort study evaluated thirty-nine immunized health workers (22 with prior COVID-19 and 17 without prior COVID-19) and ten subjects not vaccinated against SARS-CoV-2 (control group). B cell subpopulations (transitional, mature, naïve, memory, plasmablasts, early plasmablast, and double-negative B cells) and neutralizing antibody levels were analyzed and quantified by flow cytometry and ELISA, respectively. Results The dynamics of the B cells subpopulations after vaccination showed the following pattern: the percentage of transitional B cells was higher in the prior COVID-19 group (p < 0.05), whereas virgin B cells were more prevalent in the group without prior COVID-19 (p < 0.05), mature B cells predominated in both vaccinated groups (p < 0.01), and memory B cells, plasmablasts, early plasmablasts, and double-negative B cells were higher in the not vaccinated group (p < 0.05). Conclusion BNT162b2 vaccine induces changes in B cell subpopulations, especially generating plasma cells and producing neutralizing antibodies against SARS-CoV-2. However, the previous infection with SARS-CoV-2 does not significantly alter the dynamics of these subpopulations but induces more rapid and optimal antibody production.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Saraí Citlalic Rodríguez-Reyes
- Institute of Translational Nutrigenetics and Nutrigenomics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, Mexico
- Correspondence: Jorge Hernández-Bello,s Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Jalisco, 44340, Mexico, Tel +52 3334509355, Email
| |
Collapse
|
11
|
Hossain MA, Anasti K, Watts B, Cronin K, Derking R, Groschel B, Kane AP, Edwards R, Easterhoff D, Zhang J, Rountree W, Ortiz Y, Saunders K, Schief WR, Sanders RW, Verkoczy L, Reth M, Alam SM. B cells expressing IgM B cell receptors of HIV-1 neutralizing antibodies discriminate antigen affinities by sensing binding association rates. Cell Rep 2022; 39:111021. [PMID: 35767950 PMCID: PMC9837990 DOI: 10.1016/j.celrep.2022.111021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023] Open
Abstract
HIV-1 envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant [KD]) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding KD and whether B cells discriminate among proteins of similar affinities that bind with different kinetic rates. Here, we use a panel of Env proteins and Ramos B cell lines expressing immunoglobulin M (IgM) B cell receptors (BCRs) with specificity for CD4-binding-site broadly neutralizing antibodies to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation. Our results support a kinetic model for B cell activation in which Env protein affinity discrimination is based not on overall KD but on sensing of association rate and a threshold antigen-BCR half-life.
Collapse
Affiliation(s)
- Md. Alamgir Hossain
- Human Vaccine Institute, Duke University, Durham, NC, USA,These authors contributed equally
| | - Kara Anasti
- Human Vaccine Institute, Duke University, Durham, NC, USA,These authors contributed equally
| | - Brian Watts
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kenneth Cronin
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Ronald Derking
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Bettina Groschel
- Department of Immunology & Microbiology and Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | | | - R.J. Edwards
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - David Easterhoff
- Human Vaccine Institute, Duke University, Durham, NC, USA,Present address: Moderna, Inc., Cambridge, MA, USA
| | - Jinsong Zhang
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Wes Rountree
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Yaneth Ortiz
- Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kevin Saunders
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - William R. Schief
- Department of Immunology & Microbiology and Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | | | - Michael Reth
- Signaling Research Centers BIOSS and CIBSS, Freiburg, Germany,Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - S. Munir Alam
- Human Vaccine Institute, Duke University, Durham, NC, USA,Department of Medicine & Pathology, Duke University, Durham, NC, USA,Lead contact,Correspondence:
| |
Collapse
|
12
|
Seeley-Fallen MK, Lazzaro M, Liu C, Li QZ, Upadhyaya A, Song W. Non-Muscle Myosin II Is Essential for the Negative Regulation of B-Cell Receptor Signaling and B-Cell Activation. Front Immunol 2022; 13:842605. [PMID: 35493485 PMCID: PMC9047714 DOI: 10.3389/fimmu.2022.842605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Antigen (Ag)-triggered B-cell receptor (BCR) signaling initiates antibody responses. However, prolonged or uncontrolled BCR signaling is associated with the development of self-reactive B-cells and autoimmune diseases. We previously showed that actin-mediated B-cell contraction on Ag-presenting surfaces negatively regulates BCR signaling. Non-muscle myosin II (NMII), an actin motor, is involved in B-cell development and antibody responses by mediating B-cell migration, cytokinesis, and Ag extraction from Ag-presenting cells. However, whether and how NMII regulates humoral responses through BCR signaling remains elusive. Utilizing a B-cell-specific, partial NMIIA knockout (cIIAKO) mouse model and NMII inhibitors, this study examined the role of NMII in BCR signaling. Upon BCR binding to antibody-coated planar lipid bilayers (PLB), NMIIA was recruited to the B-cell contact membrane and formed a ring-like structure during B-cell contraction. NMII recruitment depended on phosphatidylinositol 5-phosphatase (SHIP1), an inhibitory signaling molecule. NMII inhibition by cIIAKO did not affect B-cell spreading on PLB but delayed B-cell contraction and altered BCR clustering. Surface BCR “cap” formation induced by soluble stimulation was enhanced in cIIAKO B-cells. Notably, NMII inhibition by cIIAKO and inhibitors up-regulated BCR signaling in response to both surface-associated and soluble stimulation, increasing phosphorylated tyrosine, CD79a, BLNK, and Erk and decreasing phosphorylated SHIP1. While cIIAKO did not affect B-cell development, the number of germinal center B-cells was significantly increased in unimmunized cIIAKO mice, compared to control mice. While cIIAKO mice mounted similar antibody responses when compared to control mice upon immunization, the percentages of high-affinity antibodies, Ag-specific germinal center B-cells and isotype switched B-cells were significantly lower in cIIAKO mice than in control mice. Furthermore, autoantibody levels were elevated in cIIAKO mice, compared to control mice. Collectively, our results reveal that NMII exerts a B-cell-intrinsic inhibition on BCR signaling by regulating B-cell membrane contraction and surface BCR clustering, which curtails the activation of non-specific and self-reactive B-cells.
Collapse
Affiliation(s)
- Margaret K. Seeley-Fallen
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Michelle Lazzaro
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
- *Correspondence: Wenxia Song,
| |
Collapse
|
13
|
Boothby MR, Brookens SK, Raybuck AL, Cho SH. Supplying the trip to antibody production-nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol Immunol 2022; 19:352-369. [PMID: 34782762 PMCID: PMC8591438 DOI: 10.1038/s41423-021-00782-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID pandemic has refreshed and expanded recognition of the vital role that sustained antibody (Ab) secretion plays in our immune defenses against microbes and of the importance of vaccines that elicit Ab protection against infection. With this backdrop, it is especially timely to review aspects of the molecular programming that govern how the cells that secrete Abs arise, persist, and meet the challenge of secreting vast amounts of these glycoproteins. Whereas plasmablasts and plasma cells (PCs) are the primary sources of secreted Abs, the process leading to the existence of these cell types starts with naive B lymphocytes that proliferate and differentiate toward several potential fates. At each step, cells reside in specific microenvironments in which they not only receive signals from cytokines and other cell surface receptors but also draw on the interstitium for nutrients. Nutrients in turn influence flux through intermediary metabolism and sensor enzymes that regulate gene transcription, translation, and metabolism. This review will focus on nutrient supply and how sensor mechanisms influence distinct cellular stages that lead to PCs and their adaptations as factories dedicated to Ab secretion. Salient findings of this group and others, sometimes exhibiting differences, will be summarized with regard to the journey to a distinctive metabolic program in PCs.
Collapse
Affiliation(s)
- Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Rheumatology & Immunology Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA.
| | - Shawna K Brookens
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA
| |
Collapse
|
14
|
Schulz E, Hodl I, Forstner P, Hatzl S, Sareban N, Moritz M, Fessler J, Dreo B, Uhl B, Url C, Grisold AJ, Khalil M, Kleinhappl B, Enzinger C, Stradner MH, Greinix HT, Schlenke P, Steinmetz I. CD19+IgD+CD27- Naïve B Cells as Predictors of Humoral Response to COVID 19 mRNA Vaccination in Immunocompromised Patients. Front Immunol 2021; 12:803742. [PMID: 34950155 PMCID: PMC8688243 DOI: 10.3389/fimmu.2021.803742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Immunocompromised patients are considered high-risk and prioritized for vaccination against COVID-19. We aimed to analyze B-cell subsets in these patients to identify potential predictors of humoral vaccination response. Patients (n=120) suffering from hematologic malignancies or other causes of immunodeficiency and healthy controls (n=79) received a full vaccination series with an mRNA vaccine. B-cell subsets were analyzed prior to vaccination. Two independent anti-SARS-CoV-2 immunoassays targeting the receptor-binding domain (RBD) or trimeric S protein (TSP) were performed three to four weeks after the second vaccination. Seroconversion occurred in 100% of healthy controls, in contrast to 67% (RBD) and 82% (TSP) of immunocompromised patients, while only 32% (RBD) and 22% (TSP) achieved antibody levels comparable to those of healthy controls. The number of circulating CD19+IgD+CD27- naïve B cells was strongly associated with antibody levels (ρ=0.761, P<0.001) and the only independent predictor for achieving antibody levels comparable to healthy controls (OR 1.07 per 10-µL increase, 95%CI 1.02-1.12, P=0.009). Receiver operating characteristic analysis identified a cut-off at ≥61 naïve B cells per µl to discriminate between patients with and without an optimal antibody response. Consequently, measuring of naïve B cells in immunocompromised hematologic patients could be useful in predicting their humoral vaccination response.
Collapse
Affiliation(s)
- Eduard Schulz
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Isabel Hodl
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nazanin Sareban
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Martina Moritz
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Fessler
- Institute of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Barbara Dreo
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Claudia Url
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Andrea J. Grisold
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Barbara Kleinhappl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | | | - Martin H. Stradner
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hildegard T. Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Salinas E, Boisvert M, Upadhyay AA, Bédard N, Nelson SA, Bruneau J, Derdeyn CA, Marcotrigiano J, Evans MJ, Bosinger SE, Shoukry NH, Grakoui A. Early T follicular helper cell activity accelerates hepatitis C virus-specific B cell expansion. J Clin Invest 2021; 131:140590. [PMID: 33463551 DOI: 10.1172/jci140590] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Early appearance of neutralizing antibodies during acute hepatitis C virus (HCV) infection is associated with spontaneous viral clearance. However, the longitudinal changes in antigen-specific memory B cell (MBCs) associated with divergent HCV infection outcomes remain undefined. We characterized longitudinal changes in E2 glycoprotein-specific MBCs from subjects who either spontaneously resolved acute HCV infection or progressed to chronic infection, using single-cell RNA-seq and functional assays. HCV-specific antibodies in plasma from chronically infected subjects recognized multiple E2 genotypes, while those from spontaneous resolvers exhibited variable cross-reactivity to heterotypic E2. E2-specific MBCs from spontaneous resolvers peaked early after infection (4-6 months), following expansion of activated circulating T follicular helper cells (cTfh) expressing interleukin 21. In contrast, E2-specific MBCs from chronically infected subjects, enriched in VH1-69, expanded during persistent infection (> 1 year), in the absence of significantly activated cTfh expansion. Early E2-specific MBCs from spontaneous resolvers produced monoclonal antibodies (mAbs) with fewer somatic hypermutations and lower E2 binding but similar neutralization as mAbs from late E2-specific MBCs of chronically infected subjects. These findings indicate that early cTfh activity accelerates expansion of E2-specific MBCs during acute infection, which might contribute to spontaneous clearance of HCV.
Collapse
Affiliation(s)
- Eduardo Salinas
- Division of Infectious diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Amit A Upadhyay
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Sydney A Nelson
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine Familiale et de Médecine D'Urgence, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Cynthia A Derdeyn
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA.,Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Arash Grakoui
- Division of Infectious diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Budroni S, Buricchi F, Cavallone A, Volpini G, Mariani A, Lo Surdo P, Blohmke CJ, Del Giudice G, Medini D, Finco O. Computational modeling of microfluidic data provides high-throughput affinity estimates for monoclonal antibodies. Comput Struct Biotechnol J 2021; 19:3664-3672. [PMID: 34257845 PMCID: PMC8255181 DOI: 10.1016/j.csbj.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/27/2022] Open
Abstract
Affinity measurement is a fundamental step in the discovery of monoclonal antibodies (mAbs) and of antigens suitable for vaccine development. Innovative affinity assays are needed due to the low throughput and/or limited dynamic range of available technologies. We combined microfluidic technology with quantum-mechanical scattering theory, in order to develop a high-throughput, broad-range methodology to measure affinity. Fluorescence intensity profiles were generated for out-of-equilibrium solutions of labelled mAbs and their antigen-binding fragments migrating along micro-columns with immobilized cognate antigen. Affinity quantification was performed by computational data analysis based on the Landau probability distribution. Experiments using a wide array of human or murine antibodies against bacterial or viral, protein or polysaccharide antigens, showed that all the antibody-antigen capture profiles (n = 841) generated at different concentrations were accurately described by the Landau distribution. A scale parameter W, proportional to the full-width-at-half-maximum of the capture profile, was shown to be independent of the antibody concentration. The W parameter correlated significantly (Pearson's r [p-value]: 0.89 [3 × 10-8]) with the equilibrium dissociation constant KD, a gold-standard affinity measure. Our method showed good intermediate precision (median coefficient of variation: 5%) and a dynamic range corresponding to KD values spanning from ~10-7 to ~10-11 Molar. Relative to assays relying on antibody-antigen equilibrium in solution, even when they are microfluidic-based, the method's turnaround times were decreased from 2 days to 2 h. The described computational modelling of antibody capture profiles represents a fast, reproducible, high-throughput methodology to accurately measure a broad range of antibody affinities in very low volumes of solution.
Collapse
|
17
|
Li Y, Bhanja A, Upadhyaya A, Zhao X, Song W. WASp Is Crucial for the Unique Architecture of the Immunological Synapse in Germinal Center B-Cells. Front Cell Dev Biol 2021; 9:646077. [PMID: 34195186 PMCID: PMC8236648 DOI: 10.3389/fcell.2021.646077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.
Collapse
Affiliation(s)
- Yanan Li
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, College Park, MD, United States
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
18
|
Merino Tejero E, Lashgari D, García-Valiente R, Gao X, Crauste F, Robert PA, Meyer-Hermann M, Martínez MR, van Ham SM, Guikema JEJ, Hoefsloot H, van Kampen AHC. Multiscale Modeling of Germinal Center Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help. Front Immunol 2021; 11:620716. [PMID: 33613551 PMCID: PMC7892951 DOI: 10.3389/fimmu.2020.620716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.
Collapse
Affiliation(s)
- Elena Merino Tejero
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Danial Lashgari
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rodrigo García-Valiente
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | | | - Philippe A Robert
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Gassen RB, Fazolo T, Nascimento de Freitas D, Borges TJ, Lima K, Antunes GL, Maito F, Bueno Mendes DA, Báfica A, Rodrigues LC, Stein R, Duarte de Souza AP, Bonorino C. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol 2020; 99:309-322. [PMID: 33068449 DOI: 10.1111/imcb.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children under 1 year. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain fail to develop protective responses. Although RSV-specific antibodies can be detected upon infection, these have limited neutralizing capacity. Follicular helper T (Tfh) cells are specialized in providing signals to B cells and help the production and affinity maturation of antibodies, mainly via interleukin (IL) 21 secretion. In this study, we evaluated whether RSV could inhibit Tfh responses. We observed that Tfh cells fail to upregulate IL-21 production upon RSV infection. In the lungs, RSV infection downregulated the expression of IL-21/interleukin-21 receptor (IL-21R) in Tfh cells and upregulated programmed death-ligand 1 (PD-L1) expression in dendritic cells (DCs) and B cells. PD-L1 blockade during infection recovered IL-21R expression in Tfh cells and increased the secretion of IL-21 in a DC-dependent manner. IL-21 treatment decreased RSV viral load and lung inflammation, inducing the formation of tertiary lymphoid organs in the lung. It also decreased regulatory follicular T cells, and increased Tfh cells, B cells, antibody avidity and neutralization capacity, leading to an overall improved anti-RSV humoral response in infected mice. Passive immunization with purified immunoglobulin G from IL-21-treated RSV-infected mice protected against RSV infection. Our results unveil a pathway by which RSV affects Tfh cells by increasing PD-L1 expression on antigen-presenting cells, highlighting the importance of an IL-21-PD-L1 axis for the generation of protective responses to RSV infection.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Nascimento de Freitas
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago J Borges
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karina Lima
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Géssica L Antunes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Maito
- Laboratório de Histologia, Faculdade de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Ag Bueno Mendes
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Renato Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Rapid Affinity Maturation of Novel Anti-PD-L1 Antibodies by a Fast Drop of the Antigen Concentration and FACS Selection of Yeast Libraries. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6051870. [PMID: 31976323 PMCID: PMC6959147 DOI: 10.1155/2019/6051870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
The affinity engineering is a key step to increase the efficacy of therapeutic monoclonal antibodies and yeast surface display is the most widely used and powerful affinity maturation approach, achieving picomolar binding affinities. In this study, we provide an optimization of the yeast surface display methodology, applied to the generation of potentially therapeutic high affinity antibodies targeting the immune checkpoint PD-L1. In this approach, we coupled a 10-cycle error-prone mutagenesis of heavy chain complementarity determining region 3 of an anti‐PD-L1 scFv, previously identified by phage display, with high-throughput sequencing, to generate scFv-yeast libraries with high mutant frequency and diversity. In addition, we set up a novel, faster and effective selection scheme by fluorescence-activated cell sorting, based on a fast drop of the antigen concentration between the first and the last selection cycles, unlike the gradual decrease typical of current selection protocols. In this way we isolated 6 enriched mutated scFv-yeast clones overall, showing an affinity improvement for soluble PD-L1 protein compared to the parental scFv. As a proof of the potency of the novel approach, we confirmed that the antibodies converted from all the mutated scFvs retained the affinity improvement. Remarkably, the best PD-L1 binder among them also bound with a higher affinity to PD-L1 expressed in its native conformation on human-activated lymphocytes, and it was able to stimulate lymphocyte proliferation in vitro more efficiently than its parental antibody. This optimized technology, besides the identification of a new potential checkpoint inhibitor, provides a tool for the quick isolation of high affinity binders.
Collapse
|
22
|
Chen J, Li N, Yin Y, Zheng N, Min M, Lin B, Zhang L, Long X, Zhang Y, Cai Z, Zhai S, Qin J, Wang X. Methyltransferase Nsd2 Ensures Germinal Center Selection by Promoting Adhesive Interactions between B Cells and Follicular Dendritic Cells. Cell Rep 2019; 25:3393-3404.e6. [PMID: 30566865 DOI: 10.1016/j.celrep.2018.11.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 11/28/2018] [Indexed: 01/23/2023] Open
Abstract
Antibody affinity maturation, which is an antigen-based selection process for B cells, occurs in germinal centers (GCs). GCB cells must efficiently recognize, acquire, and present antigens from follicular dendritic cells (FDCs) to receive positive selection signals from T helper cells. Previous studies showed that GCB cells undergo adhesive interactions with FDCs, but the regulatory mechanisms underlying the cell adhesions and their functional relevance remain unclear. Here, we identified H3K36me2 methyltransferase Nsd2 as a critical regulator of GCB cell-FDC adhesion. Nsd2 deletion modestly reduced GC responses but strongly impaired B cell affinity maturation. Mechanistically, Nsd2 directly regulated expression of multiple actin polymerization-related genes in GCB cells. Nsd2 loss reduced B cell adhesion to FDC-expressed adhesion molecules, thus affecting both B cell receptor (BCR) signaling and antigen acquisition. Overall, Nsd2 coordinates GCB positive selection by enhancing both BCR signaling and T cell help.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Nan Zheng
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Min Min
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Bichun Lin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Yang Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Zhenming Cai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
23
|
Molecular modelling of epitopes recognized by neoplastic B lymphocytes in Chronic Lymphocytic Leukemia. Eur J Med Chem 2019; 185:111838. [PMID: 31718942 DOI: 10.1016/j.ejmech.2019.111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Identification of epitopes recognized by tumour B cells could provide insights into the molecular mechanisms of B cell tumorigenesis through aberrant B cell receptor (BCR) signalling. Here, we analysed the structure of eleven peptides binders of BCRs expressed in Chronic Lymphocytic Leukemia (CLL) patients in order to identify the chemical features required for cross-reactive binding to different CLL clonotypes. Four cross-reactive (CR) and seven no-cross-reactive (NCR) peptides were analysed by means of GRID molecular interaction fields, ligand-based pharmacophore and 3D-QSAR approaches. Based on pharmacophore model, two peptides were generated by specific amino acids substitutions of the parental NCR peptides; these new peptides resumed the common chemical features of CR peptides and bound the CLL BCR clonotypes recognized by CR peptides and parental NCR peptides. Thus, our computational approach guided the pharmacophore modelling of CR peptides. In perspective, peptide binders of CLL BCR clonotypes could represent a powerful tool for computational modelling of epitopes recognized by tumour B cells clones.
Collapse
|
24
|
Hoffmanová I, Sánchez D, Szczepanková A, Tlaskalová-Hogenová H. The Pros and Cons of Using Oat in a Gluten-Free Diet for Celiac Patients. Nutrients 2019; 11:nu11102345. [PMID: 31581722 PMCID: PMC6835965 DOI: 10.3390/nu11102345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A therapeutic gluten-free diet often has nutritional limitations. Nutritional qualities such as high protein content, the presence of biologically active and beneficial substances (fiber, beta-glucans, polyunsaturated fatty acids, essential amino acids, antioxidants, vitamins, and minerals), and tolerance by the majority of celiac patients make oat popular for use in gluten-free diet. The health risk of long-time consumption of oat by celiac patients is a matter of debate. The introduction of oat into the diet is only recommended for celiac patients in remission. Furthermore, not every variety of oat is also appropriate for a gluten-free diet. The risk of sensitization and an adverse immunologically mediated reaction is a real threat in some celiac patients. Several unsolved issues still exist which include the following: (1) determination of the susceptibility markers for the subgroup of celiac patients who are at risk because they do not tolerate dietary oat, (2) identification of suitable varieties of oat and estimating the safe dose of oat for the diet, and (3) optimization of methods for detecting the gliadin contamination in raw oat used in a gluten-free diet.
Collapse
Affiliation(s)
- Iva Hoffmanová
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Ruská 87, 10000 Prague, Czech Republic.
| | - Daniel Sánchez
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Adéla Szczepanková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague, Czech Republic.
| | - Helena Tlaskalová-Hogenová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
25
|
Schrade A, Bujotzek A, Spick C, Wagner M, Goerl J, Wezler X, Georges G, Kontermann RE, Brinkmann U. Back-to-Germline (B2G) Procedure for Antibody Devolution. Antibodies (Basel) 2019; 8:antib8030045. [PMID: 31544851 PMCID: PMC6784197 DOI: 10.3390/antib8030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Bispecific antibodies (bsAbs) with avidity-enhanced specificity can be used to address target cells with increased specificity, ideally binding efficiently to cells that express two cognate antigens, yet not to cells that express only one of those. Building blocks required to generate such bsAbs are binders that recognize the two antigens with high specificity yet with various (including very low monovalent) affinities. The herein described ‘back-to-germline’ (B2G) procedure defines such derivatives. It converts parent antibodies with high specificity to derivatives that retain specificity but modulate affinity. The approach defines mutations to be introduced into antibody complementarity-determining regions (CDRs) regions without requiring structures of antibody-antigen complexes. Instead, it reverses the B-cell maturation process that increases affinities, with preference on CDR residues with high antigen contact probability. Placing germline residues at those positions generates VH and VL domains and Fv-combinations thereof that retain specificities but are ‘de-matured’ to different degrees. De-maturation influences on-rates and off-rates, and can produce entities with extremely low affinity for which binding can only be detected in bivalent formats. A comparison with alanine replacement in CDRs (so far, the most frequently applied technology) indicates that B2G may be more reliable/predictable without introduction of stickiness or poly-reactivity. The applicability for generating sets of affinity-modulated monospecific variants is exemplarily shown for antibodies that bind CD138, Her2/neu, and EGFR.
Collapse
Affiliation(s)
- Anja Schrade
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Christian Spick
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Martina Wagner
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Johannes Goerl
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Xenia Wezler
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Roland E Kontermann
- Institute of Cell Biology & Immunology, Stuttgart University, 70569 Stuttgart, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, 82377 Penzberg, Germany.
| |
Collapse
|
26
|
Abstract
Specific IgM, administered together with the antigen it recognizes, enhances primary antibody responses, formation of germinal centers, and priming for secondary antibody responses. The response to all epitopes on the antigen to which IgM binds is usually enhanced. IgM preferentially enhances responses to large antigens such as erythrocytes, malaria parasites, and keyhole limpet hemocyanine. In order for an effect to be seen, antigens must be administered in suboptimal concentrations and in close temporal relationship to the IgM. Enhancement is dependent on the ability of IgM to activate complement, but the lytic pathway is not required. Enhancement does not take place in mice lacking complement receptors 1 and 2 (CR1/2) suggesting that the role of IgM is to generate C3 split products, i.e., the ligands for CR1/2. In mice, these receptors are expressed on follicular dendritic cells (FDCs) and B cells. Optimal IgM-mediated enhancement requires that both cell types express CR1/2, but intermediate enhancement is seen when only FDCs express the receptors and low enhancement when only B cells express them. These observations imply that IgM-mediated enhancement works through several, non-mutually exclusive, pathways. Marginal zone B cells can transport IgM-antigen-complement complexes, bound to CR1/2, from the marginal zone and deposit them onto FDCs. In addition, co-crosslinking of the BCR and the CR2/CD19/CD81 co-receptor complex may enhance signaling to specific B cells, a mechanism likely to be involved in induction of early extrafollicular antibody responses.
Collapse
Affiliation(s)
- Anna Sörman
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE 751 23, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE 751 23, Uppsala, Sweden.
| |
Collapse
|
27
|
Alsughayyir J, Chhabra M, Qureshi MS, Mallik M, Ali JM, Gamper I, Moseley EL, Peacock S, Kosmoliaptsis V, Goddard MJ, Linterman MA, Motallebzadeh R, Pettigrew GJ. Relative Frequencies of Alloantigen-Specific Helper CD4 T Cells and B Cells Determine Mode of Antibody-Mediated Allograft Rejection. Front Immunol 2019; 9:3039. [PMID: 30740108 PMCID: PMC6357941 DOI: 10.3389/fimmu.2018.03039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/07/2018] [Indexed: 02/02/2023] Open
Abstract
Humoral alloimmunity is now recognized as a major determinant of transplant outcome. MHC glycoprotein is considered a typical T-dependent antigen, but the nature of the T cell alloresponse that underpins alloantibody generation remains poorly understood. Here, we examine how the relative frequencies of alloantigen-specific B cells and helper CD4 T cells influence the humoral alloimmune response and how this relates to antibody-mediated rejection (AMR). An MHC-mismatched murine model of cardiac AMR was developed, in which T cell help for alloantibody responses in T cell deficient (Tcrbd-/-) C57BL/6 recipients against donor H-2Kd MHC class I alloantigen was provided by adoptively transferred "TCR75" CD4 T cells that recognize processed H-2Kd allopeptide via the indirect-pathway. Transfer of large numbers (5 × 105) of TCR75 CD4 T cells was associated with rapid development of robust class-switched anti-H-2Kd humoral alloimmunity and BALB/c heart grafts were rejected promptly (MST 9 days). Grafts were not rejected in T and B cell deficient Rag2-/- recipients that were reconstituted with TCR75 CD4 T cells or in control (non-reconstituted) Tcrbd-/- recipients, suggesting that the transferred TCR75 CD4 T cells were mediating graft rejection principally by providing help for effector alloantibody responses. In support, acutely rejecting BALB/c heart grafts exhibited hallmark features of acute AMR, with widespread complement C4d deposition, whereas cellular rejection was not evident. In addition, passive transfer of immune serum from rejecting mice to Rag2-/- recipients resulted in eventual BALB/c heart allograft rejection (MST 20 days). Despite being long-lived, the alloantibody responses observed at rejection of the BALB/c heart grafts were predominantly generated by extrafollicular foci: splenic germinal center (GC) activity had not yet developed; IgG secreting cells were confined to the splenic red pulp and bridging channels; and, most convincingly, rapid graft rejection still occurred when recipients were reconstituted with similar numbers of Sh2d1a-/- TCR75 CD4 T cells that are genetically incapable of providing T follicular helper cell function for generating GC alloimmunity. Similarly, alloantibody responses generated in Tcrbd-/- recipients reconstituted with smaller number of wild-type TCR75 CD4 T cells (103), although long-lasting, did not have a discernible extrafollicular component, and grafts were rejected much more slowly (MST 50 days). By modeling antibody responses to Hen Egg Lysozyme protein, we confirm that a high ratio of antigen-specific helper T cells to B cells favors development of the extrafollicular response, whereas GC activity is favored by a relatively high ratio of B cells. In summary, a relative abundance of helper CD4 T cells favors development of strong extrafollicular alloantibody responses that mediate acute humoral rejection, without requirement for GC activity. This work is composed of two parts, of which this is Part I. Please read also Part II: Chhabra et al., 2019.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manu Chhabra
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Saeed Qureshi
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mekhola Mallik
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jason M. Ali
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivonne Gamper
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ellen L. Moseley
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Sarah Peacock
- Histocompatibility and Immunogenetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Martin J. Goddard
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Michelle A. Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Centre for Transplantation, Department of Renal Medicine, University College London, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Gavin J. Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Abstract
In recent years, therapeutic monoclonal antibodies have made impressive progress, providing great benefit by successfully treating malignant and chronic inflammatory diseases. Monoclonal antibodies with broadly neutralizing effects against specific antigens, or that target specific immune regulators, manifest therapeutic effects via their Fab fragment specificities. Subsequently therapeutic efficacy is mediated mostly by interactions of the Fc fragments of the antibodies with their receptors (FcR) displayed on cells of the immune system. These interactions can trigger a series of immunoregulatory responses, involving both innate and adaptive immune systems and including cross-presentation of antigens, activation of CD8+ T cells and CD4+ T cells, phagocytosis, complement-mediated antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The nature of the triggered effector functions of the antibodies is markedly affected by the glycosylation patterns of the Fc fragments. These can cause differences in the conformation of the heavy chains of antibodies, with resultant changes in antibody binding affinity and activation of the complement system. Studies of the Fc glycosylation profiles together with the associated Fc effector functions and FcR/CR interactions promoted interest and progress in engineering therapeutic antibodies. Furthermore, because antigen–antibody immune complexes (ICs) have shown similar actions, in addition to certain novel immunoregulatory mechanisms that also reshape immune responses, the properties of ICs are being explored in new approaches for prevention and therapy of diseases. In this review, both basic studies and experimental/clinical applications of ICs leading to the development of preventive and therapeutic vaccines are presented.
Collapse
|
29
|
Takatsuka S, Yamada H, Haniuda K, Saruwatari H, Ichihashi M, Renauld JC, Kitamura D. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat Immunol 2018; 19:1025-1034. [PMID: 30082831 DOI: 10.1038/s41590-018-0177-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Memory B cells (Bmem cells) are the basis of long-lasting humoral immunity. They respond to re-encountered antigens by rapidly producing specific antibodies and forming germinal centers (GCs), a recall response that has been known for decades but remains poorly understood. We found that the receptor for the cytokine IL-9 (IL-9R) was induced selectively on Bmem cells after primary immunization and that IL-9R-deficient mice exhibited a normal primary antibody response but impaired recall antibody responses, with attenuated population expansion and plasma-cell differentiation of Bmem cells. In contrast, there was augmented GC formation, possibly due to defective downregulation of the ligand for the co-stimulatory receptor ICOS on Bmem cells. A fraction of Bmem cells produced IL-9. These findings indicate that IL-9R signaling in Bmem cells regulates humoral recall responses.
Collapse
Affiliation(s)
- Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.,Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiroshi Saruwatari
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Marina Ichihashi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Universite catholique de Louvain, Brussels, Belgium
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|
30
|
Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Sci Rep 2018; 8:7807. [PMID: 29773829 PMCID: PMC5958130 DOI: 10.1038/s41598-018-25960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are correlated with passive HIV/SHIV protection and are desirable components of a HIV protective immunity. In the current study, we have designed a sequential-immunization strategy with a panel of envelope glycoprotein (Env)-enriched virus-like particles (VLPs) from various HIV-1 clades (A-E) to elicit bnAbs with high breadth and potency of neutralization in rabbits. We have compared this regimen with repetitive immunizations of individual Env (subtype B) VLPs or a mixture of various Env VLPs. Our results demonstrate that the sequential immunization group of animals induced significantly higher IgG endpoint titers against respective HIV Env (autologous) antigen than other control groups. Animals vaccinated sequentially showed an increase in the antibody endpoint titers and IgG antibody secreting cells (ASCs) against Con-S Env protein. Sequential immunizations with various Env VLPs promoted antibody avidity indices and enhanced bnAb responses against a panel of HIV pseudotyped virions including some of the tier 3 pseudostrains. Sequential immunizations with various VLPs displaying "native-like" HIV-1 Envs elicited bnAb responses with increased breadth and potency of neutralization.
Collapse
|
31
|
Sánchez D, Štěpánová Honzová S, Hospodková M, Hoffmanová I, Hábová V, Halada P, Tlaskalová-Hogenová H, Tučková L. Occurrence of serum antibodies against wheat alpha-amylase inhibitor 0.19 in celiac disease. Physiol Res 2018; 67:613-622. [PMID: 29750882 DOI: 10.33549/physiolres.933876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The alcohol-soluble fraction of wheat gluten (gliadins) induces in genetically susceptible individuals immunologically mediated celiac disease (CLD). However, gliadins and related cereal proteins are not unique foodstuff targets of CLD patients´ immune system. Non-gluten wheat alpha-amylase inhibitor 0.19 (AAI 0.19) has been found to be capable of activating human monocyte-derived dendritic cells and inducing pro-inflammatory status in intestinal mucosa of patients with celiac disease (CLD). The possible contribution of this reactivity in incomplete remission of CLD patients on a gluten-free diet (GFD) is matter of contention. In an attempt to characterize the antigenicity of AAI 0.19 in patients with active CLD, patients on a GFD and healthy controls we developed ELISA employing wheat recombinant AAI 0.19. Using this test we revealed a significant (P<0.001) elevation of IgA anti-AAI 0.19 antibodies (Ab) in patients with active CLD (12 out of 30 patients were seropositive) but also in CLD patients on a GFD (15/46), in contrast to healthy controls (2/59). Anti-AAI 0.19 IgG Ab levels were increased (P<0.001) only in patients with active CLD (14/30) in contrast to the controls. Interestingly, the levels of anti-AAI 0.19 IgG Ab were decreased in CLD patients on a GFD (P<0.001, 1/46) compared to the controls (1/59). Notably, 20 out of 30 patients with active CLD were positive either for IgA or for IgG anti-AAI 0.19 Ab. Thus, the majority of CLD patients developed a robust IgA and IgG Ab response against AAI 0.19. These findings may contribute to the broadening of the knowledge about CLD pathogenesis.
Collapse
Affiliation(s)
- D Sánchez
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pandya KD, Palomo-Caturla I, Walker JA, K Sandilya V, Zhong Z, Alugupalli KR. An Unmutated IgM Response to the Vi Polysaccharide of Salmonella Typhi Contributes to Protective Immunity in a Murine Model of Typhoid. THE JOURNAL OF IMMUNOLOGY 2018; 200:4078-4084. [PMID: 29743315 DOI: 10.4049/jimmunol.1701348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations. Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and Ig isotype switching in humans and mice. To test the extent to which unmutated polysaccharide-specific IgM confers protective immunity, we immunized wildtype and AID-/- mice with either heat-killed Salmonella enterica serovar Typhi (S. Typhi) or purified Vi polysaccharide (ViPS). We found that wildtype and AID-/- mice immunized with heat-killed S. Typhi generated similar anti-ViPS IgM responses. As expected, wildtype, but not AID-/- mice generated ViPS-specific IgG. However, the differences in the Ab-dependent killing of S. Typhi mediated by the classical pathway of complement activation were not statistically significant. In ViPS-immunized wildtype and AID-/- mice, the ViPS-specific IgM levels and S. Typhi bactericidal Ab titers at 7 but not at 28 d postimmunization were also comparable. To test the protective immunity conferred by these immunizations, mice were challenged with a chimeric S. Typhimurium strain expressing ViPS. Compared with their naive counterparts, immunized wildtype and AID-/- mice exhibited significantly reduced bacterial burden regardless of the route of infection. These data indicate that an unmutated IgM response to ViPS contributes to protective immunity to S. Typhi.
Collapse
Affiliation(s)
- Kalgi D Pandya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Isabel Palomo-Caturla
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Vijay K Sandilya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
33
|
Hao F, Tian M, Feng Y, Quan C, Chen Y, Chen S, Wei M. Abrogation of Lupus Nephritis in Somatic Hypermutation-Deficient MRL/lpr Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:3905-3912. [PMID: 29728506 DOI: 10.4049/jimmunol.1800115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/31/2018] [Indexed: 01/31/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease posing threats to multiple organs in the human body. As a typical manifestation of SLE, lupus nephritis is characterized by a series of pathological changes in glomerulus as well as accumulation of pathogenic autoreactive IgG with complement in the kidney that dramatically disrupts renal functions. Activation-induced deaminase (AID), which governs both somatic hypermutation (SHM) and class-switch recombination (CSR), has been shown to be essential for the regulation of SLE. However, the relative contributions of SHM and CSR to SLE pathology have not been determined. Based on the available AIDG23S mice, we successfully established an AIDG23S MRL/lpr mouse model, in which SHM is specifically abolished, although CSR is largely unaffected. We found that the abrogation of SHM effectively alleviated SLE-associated histopathological alterations, such as expansion of the mesangial matrix and thickening of the basement membrane of Bowman's capsule as well as infiltration of inflammatory cells. Compared with SLE mice, AIDG23S MRL/lpr mice exhibited decreased proteinuria, blood urea nitrogen, and creatinine, indicating that the loss of SHM contributed to the recovery of renal functions. As a consequence, the life span of those SHM-deficient MRL/lpr mice was extended. Together, we provide direct evidence pinpointing a vital role of SHM in the control of SLE development.
Collapse
Affiliation(s)
- Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China; and
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chao Quan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061, People's Republic of China
| | - Yixi Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuai Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061, People's Republic of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China;
| |
Collapse
|
34
|
Chen C, Zhai S, Zhang L, Chen J, Long X, Qin J, Li J, Huo R, Wang X. Uhrf1 regulates germinal center B cell expansion and affinity maturation to control viral infection. J Exp Med 2018; 215:1437-1448. [PMID: 29618490 PMCID: PMC5940267 DOI: 10.1084/jem.20171815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The production of high-affinity antibody is essential for pathogen clearance. Antibody affinity is increased through germinal center (GC) affinity maturation, which relies on BCR somatic hypermutation (SHM) followed by antigen-based selection. GC B cell proliferation is essentially involved in these processes; it provides enough templates for SHM and also serves as a critical mechanism of positive selection. In this study, we show that expression of epigenetic regulator ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) was markedly up-regulated by c-Myc-AP4 in GC B cells, and it was required for GC response. Uhrf1 regulates cell proliferation-associated genes including cdkn1a, slfn1, and slfn2 by DNA methylation, and its deficiency inhibited the GC B cell cycle at G1-S phase. Subsequently, GC B cell SHM and affinity maturation were impaired, and Uhrf1 GC B knockout mice were unable to control chronic virus infection. Collectively, our data suggest that Uhrf1 regulates GC B cell proliferation and affinity maturation, and its expression in GC B cells is required for virus clearance.
Collapse
Affiliation(s)
- Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Qin
- Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Zhang Y, Tech L, George LA, Acs A, Durrett RE, Hess H, Walker LSK, Tarlinton DM, Fletcher AL, Hauser AE, Toellner KM. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med 2018; 215:1227-1243. [PMID: 29549115 PMCID: PMC5881458 DOI: 10.1084/jem.20160832] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/22/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Plasmablasts generated in germinal centers (GC) emerge at the GC–T zone interface (GTI). Zhang et al. demonstrate two major regulators of this process: Tfh-derived IL-21 and APRIL produced by CD157high fibroblastic reticular cells located in the GTI. Germinal centers (GCs) are the sites where B cells undergo affinity maturation. The regulation of cellular output from the GC is not well understood. Here, we show that from the earliest stages of the GC response, plasmablasts emerge at the GC–T zone interface (GTI). We define two main factors that regulate this process: Tfh-derived IL-21, which supports production of plasmablasts from the GC, and TNFSF13 (APRIL), which is produced by a population of podoplanin+ CD157high fibroblastic reticular cells located in the GTI that are also rich in message for IL-6 and chemokines CXCL12, CCL19, and CCL21. Plasmablasts in the GTI express the APRIL receptor TNFRSF13B (TACI), and blocking TACI interactions specifically reduces the numbers of plasmablasts appearing in the GTI. Plasma cells generated in the GTI may provide an early source of affinity-matured antibodies that may neutralize pathogens or provide feedback regulating GC B cell selection.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Laura Tech
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Laura A George
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Andreas Acs
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Russell E Durrett
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Henry Hess
- Translational Innovation Platform, Immunology, Merck KGaA, Darmstadt, Germany
| | - Lucy S K Walker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, England, UK
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Anne L Fletcher
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Anja Erika Hauser
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
36
|
Chen WC, Murawsky CM. Strategies for Generating Diverse Antibody Repertoires Using Transgenic Animals Expressing Human Antibodies. Front Immunol 2018; 9:460. [PMID: 29563917 PMCID: PMC5845867 DOI: 10.3389/fimmu.2018.00460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Therapeutic molecules derived from antibodies have become a dominant class of drugs used to treat human disease. Increasingly, therapeutic antibodies are discovered using transgenic animal systems that have been engineered to express human antibodies. While the engineering details differ, these platforms share the ability to raise an immune response that is comprised of antibodies with fully human idiotypes. Although the predominant transgenic host species has been mouse, the genomes of rats, rabbits, chickens, and cows have also been modified to express human antibodies. The creation of transgenic animal platforms expressing human antibody repertoires has revolutionized therapeutic antibody drug discovery. The observation that the immune systems of these animals are able to recognize and respond to a wide range of therapeutically relevant human targets has led to a surge in antibody-derived drugs in current development. While the clinical success of fully human monoclonal antibodies derived from transgenic animals is well established, recent trends have seen increasingly stringent functional design goals and a shift in difficulty as the industry attempts to tackle the next generation of disease-associated targets. These challenges have been met with a number of novel approaches focused on the generation of large, high-quality, and diverse antibody repertoires. In this perspective, we describe some of the strategies and considerations we use for manipulating the immune systems of transgenic animal platforms (such as XenoMouse®) with a focus on maximizing the diversity of the primary response and steering the ensuing antibody repertoire toward a desired outcome.
Collapse
Affiliation(s)
- Weihsu C Chen
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| | - Christopher M Murawsky
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| |
Collapse
|
37
|
Adler AS, Bedinger D, Adams MS, Asensio MA, Edgar RC, Leong R, Leong J, Mizrahi RA, Spindler MJ, Bandi SR, Huang H, Tawde P, Brams P, Johnson DS. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library. MAbs 2018; 10:431-443. [PMID: 29376776 PMCID: PMC5916548 DOI: 10.1080/19420862.2018.1426422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of “randomly paired” scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.
Collapse
Affiliation(s)
- Adam S Adler
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Daniel Bedinger
- b Carterra Inc. , 825 N 300 W, Suite C309, Salt Lake City , UT USA
| | - Matthew S Adams
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Michael A Asensio
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Robert C Edgar
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Renee Leong
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Jackson Leong
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Rena A Mizrahi
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | - Matthew J Spindler
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| | | | - Haichun Huang
- c Bristol-Myers Squibb , 700 Bay Road, Redwood City , CA USA
| | - Pallavi Tawde
- c Bristol-Myers Squibb , 700 Bay Road, Redwood City , CA USA
| | - Peter Brams
- c Bristol-Myers Squibb , 700 Bay Road, Redwood City , CA USA
| | - David S Johnson
- a GigaGen Inc., One Tower Place , Suite 750, South San Francisco , CA USA
| |
Collapse
|
38
|
Novel function of hydroxychloroquine: Down regulation of T follicular helper cells in collagen-induced arthritis. Biomed Pharmacother 2017; 97:838-843. [PMID: 29136759 DOI: 10.1016/j.biopha.2017.10.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 01/26/2023] Open
Abstract
Hydroxychloroquine (HCQ) is an immunosuppressive agent widely used in rheumatoid arthritis (RA). T follicular helper (Tfh) cells play a vital role in the pathogenesis of RA. However, whether HCQ suppresses arthritis development through interfering with Tfh cells have never been reported. To address this issue, we investigated the percent of Tfh cells in newly diagnosed RA patients and found that they were up-regulated in peripheral blood. Importantly, in ex vivo experiments of peripheral blood mononuclear cells (PBMCs) from healthy volunteers, we proved that the percentage of Tfh cells in PBMCs and purified CD4+ T cells were decreased after HCQ treatment. In in vivo experiments of collagen-induced arthritis (CIA) model, we discovered that HCQ suppressed the incidence and score of arthritis, reduced the secretion of proinflammatory cytokines in serum. Similar to ex vivo study, the ratio of Tfh cells in HCQ treated CIA mice declined to the level of vehicle-treated group. Further research demonstrated that HCQ inhibited the generation of Tfh cells stimulated by IL-12 and IL-21. In conclusion, our study indicates a previously unrecognized mechanism of HCQ in RA, that HCQ directly suppresses the generation of Tfh cells by blocking IL-12 and IL-21 signaling pathways probably.
Collapse
|
39
|
Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation 2017; 101:2277-2287. [PMID: 28376037 DOI: 10.1097/tp.0000000000001757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular therapy with CD4FOXP3 T regulatory (Treg) cells is a promising strategy to induce tolerance after solid-organ transplantation or prevent graft-versus-host disease after transfer of hematopoietic stem cells. Treg cells currently used in clinical trials are either polyclonal, donor- or antigen-specific. Aside from variations in isolation and expansion protocols, however, most therapeutic Treg cell-based products are much alike. Ongoing basic science work has provided considerable new insight into multiple facets of Treg cell biology, including their stability, homing, and functional specialization; integrating these basic science discoveries with clinical efforts will support the development of next-generation therapeutic Treg cells with enhanced efficacy. In this review, we summarize recent advances in knowledge of how Treg cells home to lymphoid and peripheral tissues, and control antibody production and tissue repair. We also discuss newly appreciated pathways that modulate context-specific Treg cell function and stability. Strategies to improve and tailor Treg cells for cell therapy to induce transplantation tolerance are highlighted.
Collapse
|
40
|
Di Palma F, Tramontano A. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding. FEBS Lett 2017; 591:2936-2950. [PMID: 28771696 DOI: 10.1002/1873-3468.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody-antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Collapse
Affiliation(s)
| | - Anna Tramontano
- Department of Physics, Sapienza - Università di Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW It has been demonstrated that extensive virus diversification and antibody coevolution are necessary to give rise to broadly neutralizing antibodies targeting the envelope protein of HIV-1. Here, we discuss recent progress of vaccine design approaches aiming on strategies to initiate and guide B-cell development toward this outcome, as well as their evaluation in mouse models engineered to express human antibodies. RECENT FINDINGS Several specially tailored transgenic mouse strains have been developed to test the concept of engaging and guiding B-cell development by sequential immunizations. Currently available models display prerearranged or nonrearranged germline or mature VDJH and VJL loci of CD4-binding-site-specific (VRC01, 3BNC60) and high-mannose-patch-specific (PGT121) broadly neutralizing antibodies, or even the complete human V(D)J segments. Data generated in these knock-in mouse models elegantly prove the feasibility of the concept when using a carefully selected panel of engineered envelope proteins. SUMMARY Recent studies in knock-in transgenic mouse models provide a proof-of-concept that germline B-cell receptor targeting followed by sequential immunization can engage the respective naïve precursor B cells and guide B-cell receptor development toward broadly neutralizing reactivity.
Collapse
|
42
|
Li MH, Zong H, Leroueil PR, Choi SK, Baker JR. Ligand Characteristics Important to Avidity Interactions of Multivalent Nanoparticles. Bioconjug Chem 2017; 28:1649-1657. [PMID: 28398751 DOI: 10.1021/acs.bioconjchem.7b00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent interactions involve the engagement of multiple ligand-receptor pairs and are important in synthetic biology as design paradigms for targeted nanoparticles (NPs). However, little is known about the specific ligand parameters important to multivalent interactions. We employed a series of oligonucleotides as ligands conjugated to dendrimers as nanoparticles, and used complementary oligonucleotides on a functionalized SPR surface to measure binding. We compared the effect of ligand affinity to ligand number on the avidity characteristics of functionalized NPs. Changing the ligand affinity, either by changing the temperature of the system or by substitution noncomplementary base pairs into the oligonucleotides, had little effect on multivalent interaction; the overall avidity, number of ligands required for avidity per particle, and the number of particles showing avidity did not significantly change. We then made NP conjugates with the same oligonucleotide using an efficient copper-free click chemistry that resulted in essentially all of the NPs in the population exceeding the threshold ligand value. The particles exceeding the threshold ligand number again demonstrated high avidity interactions. This work validates the concept of a threshold ligand valence and suggests that the number of ligands per nanoparticle is the defining factor in achieving high avidity interactions.
Collapse
Affiliation(s)
- Ming-Hsin Li
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hong Zong
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Pascale R Leroueil
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - James R Baker
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Krishnamurty AT, Thouvenel CD, Portugal S, Keitany GJ, Kim KS, Holder A, Crompton PD, Rawlings DJ, Pepper M. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity 2016; 45:402-14. [PMID: 27473412 PMCID: PMC5118370 DOI: 10.1016/j.immuni.2016.06.014] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 05/31/2016] [Indexed: 10/31/2022]
Abstract
Humoral immunity consists of pre-existing antibodies expressed by long-lived plasma cells and rapidly reactive memory B cells (MBC). Recent studies of MBC development and function after protein immunization have uncovered significant MBC heterogeneity. To clarify functional roles for distinct MBC subsets during malaria infection, we generated tetramers that identify Plasmodium-specific MBCs in both humans and mice. Long-lived murine Plasmodium-specific MBCs consisted of three populations: somatically hypermutated immunoglobulin M(+) (IgM(+)) and IgG(+) MBC subsets and an unmutated IgD(+) MBC population. Rechallenge experiments revealed that high affinity, somatically hypermutated Plasmodium-specific IgM(+) MBCs proliferated and gave rise to antibody-secreting cells that dominated the early secondary response to parasite rechallenge. IgM(+) MBCs also gave rise to T cell-dependent IgM(+) and IgG(+)B220(+)CD138(+) plasmablasts or T cell-independent B220(-)CD138(+) IgM(+) plasma cells. Thus, even in competition with IgG(+) MBCs, IgM(+) MBCs are rapid, plastic, early responders to a secondary Plasmodium rechallenge and should be targeted by vaccine strategies.
Collapse
Affiliation(s)
- Akshay T Krishnamurty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Gladys J Keitany
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Karen S Kim
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Anthony Holder
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Spensieri F, Siena E, Borgogni E, Zedda L, Cantisani R, Chiappini N, Schiavetti F, Rosa D, Castellino F, Montomoli E, Bodinham CL, Lewis DJ, Medini D, Bertholet S, Del Giudice G. Early Rise of Blood T Follicular Helper Cell Subsets and Baseline Immunity as Predictors of Persisting Late Functional Antibody Responses to Vaccination in Humans. PLoS One 2016; 11:e0157066. [PMID: 27336786 PMCID: PMC4918887 DOI: 10.1371/journal.pone.0157066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
CD4+ T follicular helper cells (TFH) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4+IL-21+ICOS1+ T helper (TH) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59®-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4+ TFH1 ICOS+ TFH cells and H1N1-specific CD4+IL-21+ICOS+ CXCR5+ TFH and CXCR5- TH cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4+ T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these TFH cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4+ TFH1 ICOS+ cells and of H1N1-specific CD4+IL-21+ICOS+ CXCR5+, measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4+ TFH subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity.
Collapse
Affiliation(s)
| | - Emilio Siena
- Novartis Vaccines & Diagnostics S.r.l., Siena, Italy
| | | | | | | | | | | | - Domenico Rosa
- Novartis Vaccines & Diagnostics S.r.l., Siena, Italy
| | | | - Emanuele Montomoli
- Departement of Molecular and Developmental Medicine, University of Siena, & VisMederi S.r.l., Siena, Italy
| | - Caroline L. Bodinham
- Surrey Clinical Research Center, University of Surrey, Guildford, United Kingdom
| | - David J. Lewis
- Surrey Clinical Research Center, University of Surrey, Guildford, United Kingdom
| | - Duccio Medini
- Novartis Vaccines & Diagnostics S.r.l., Siena, Italy
| | | | | |
Collapse
|
45
|
Abstract
The generation of antigen-specific neutralizing antibodies and memory B cells is one of the most important immune protections of the host and is the basis for successful vaccination strategies. The protective antibodies, secreted by preexisting long-lived plasma cells and reactivated antigen-experienced memory B cells, constitute the main humoral immune defense. Distinct from the primary antibody response, the humoral memory response is generated much faster and with greater magnitude, and it produces antibodies with higher affinity and variable isotypes. Humoral immunity is critically dependent on the germinal center where high-affinity memory B cells and plasma cells are generated. In this chapter, we focus on recent advances in our understanding of the molecular mechanisms that govern fate decision for memory B cells and plasma cells and the mechanisms that maintain the long-lived plasma-cell pool, with emphasis on how the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1) helps regulate the above-mentioned immunoregulatory steps to ensure the production and maintenance of antibody-secreting plasma cells as well as how it directs memory cell vs plasma-cell fate. We also discuss the molecular basis of Blimp-1 action and how its expression is regulated.
Collapse
|
46
|
Aloulou M, Carr EJ, Gador M, Bignon A, Liblau RS, Fazilleau N, Linterman MA. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun 2016; 7:10579. [PMID: 26818004 PMCID: PMC4738360 DOI: 10.1038/ncomms10579] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
T follicular regulatory (Tfr) cells are a subset of Foxp3(+) regulatory T (Treg) cells that form in response to immunization or infection, which localize to the germinal centre where they control the magnitude of the response. Despite an increased interest in the role of Tfr cells in humoral immunity, many fundamental aspects of their biology remain unknown, including whether they recognize self- or foreign antigen. Here we show that Tfr cells can be specific for the immunizing antigen, irrespective of whether it is a self- or foreign antigen. We show that, in addition to developing from thymic derived Treg cells, Tfr cells can also arise from Foxp3(-) precursors in a PD-L1-dependent manner, if the adjuvant used is one that supports T-cell plasticity. These findings have important implications for Tfr cell biology and for improving vaccine efficacy by formulating vaccines that modify the Tfr:Tfh cell ratio.
Collapse
Affiliation(s)
- Meryem Aloulou
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Edward J Carr
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mylène Gador
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Alexandre Bignon
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Roland S Liblau
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
47
|
Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells. Immunity 2016; 44:116-130. [PMID: 26795247 DOI: 10.1016/j.immuni.2015.12.004] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/15/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
There is little insight into or agreement about the signals that control differentiation of memory B cells (MBCs) and long-lived plasma cells (LLPCs). By performing BrdU pulse-labeling studies, we found that MBC formation preceded the formation of LLPCs in an adoptive transfer immunization system, which allowed for a synchronized Ag-specific response with homogeneous Ag-receptor, yet at natural precursor frequencies. We confirmed these observations in wild-type (WT) mice and extended them with germinal center (GC) disruption experiments and variable region gene sequencing. We thus show that the GC response undergoes a temporal switch in its output as it matures, revealing that the reaction engenders both MBC subsets with different immune effector function and, ultimately, LLPCs at largely separate points in time. These data demonstrate the kinetics of the formation of the cells that provide stable humoral immunity and therefore have implications for autoimmunity, for vaccine development, and for understanding long-term pathogen resistance.
Collapse
Affiliation(s)
- Florian J Weisel
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Mark J Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Chen Z, Elos MT, Viboolsittiseri SS, Gowan K, Leach SM, Rice M, Eder MD, Jones K, Wang JH. Combined deletion of Xrcc4 and Trp53 in mouse germinal center B cells leads to novel B cell lymphomas with clonal heterogeneity. J Hematol Oncol 2016; 9:2. [PMID: 26740101 PMCID: PMC4704435 DOI: 10.1186/s13045-015-0230-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Activated B lymphocytes harbor programmed DNA double-strand breaks (DSBs) initiated by activation-induced deaminase (AID) and repaired by non-homologous end-joining (NHEJ). While it has been proposed that these DSBs during secondary antibody gene diversification are the primary source of chromosomal translocations in germinal center (GC)-derived B cell lymphomas, this point has not been directly addressed due to the lack of proper mouse models. Methods In the current study, we establish a unique mouse model by specifically deleting a NHEJ gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in GC B cells, which results in the spontaneous development of B cell lymphomas that possess features of GC B cells. Results We show that these NHEJ deficient lymphomas harbor translocations frequently targeting immunoglobulin (Ig) loci. Furthermore, we found that Ig translocations were associated with distinct mechanisms, probably caused by AID- or RAG-induced DSBs. Intriguingly, the AID-associated Ig loci translocations target either c-myc or Pvt-1 locus whereas the partners of RAG-associated Ig translocations scattered randomly in the genome. Lastly, these NHEJ deficient lymphomas harbor complicated genomes including segmental translocations and exhibit a high level of ongoing DNA damage and clonal heterogeneity. Conclusions We propose that combined NHEJ and p53 defects may serve as an underlying mechanism for a high level of genomic complexity and clonal heterogeneity in cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.,Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Michael Rice
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Kenneth Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
49
|
Increased exposure to Plasmodium chabaudi antigens sustains cross-reactivity and avidity of antibodies binding Nippostrongylus brasiliensis: dissecting cross-phylum cross-reactivity in a rodent model. Parasitology 2015; 142:1703-14. [DOI: 10.1017/s0031182015001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYMounting an antibody response capable of discriminating amongst and appropriately targeting different parasites is crucial in host defence. However, cross-reactive antibodies that recognize (bind to) multiple parasite species are well documented. We aimed to determine if a higher inoculating dose of one species, and thus exposure to larger amounts of antigen over a longer period of time, would fine-tune responses to that species and reduce cross-reactivity. Using the Plasmodium chabaudi chabaudi (Pcc)–Nippostrongylus brasiliensis (Nb) co-infection model in BALB/c mice, in which we previously documented cross-reactive antibodies, we manipulated the inoculating dose of Pcc across 4 orders of magnitude. We investigated antigen-specific and cross-reactive antibody responses against crude and defined recombinant antigens by enzyme linked immunosorbent assay, Western blot and antibody depletion assays. Contrary to our hypothesis that increasing exposure to Pcc would reduce cross-reactivity to Nb, we found evidence for increased avidity of a subpopulation of antibodies that recognized shared antigens. Western blot indicated proteins of apparent monomer molecular mass 28 and 98 kDa in both Nb and Pcc antigen preparations and also an Nb protein of similar size to recombinant Pcc antigen, merozoite surface protein-119. The implications of antibodies binding antigen from such phylogenetically distinct parasites are discussed.
Collapse
|
50
|
Enhanced B-Cell Receptor Recognition of the Autoantigen Transglutaminase 2 by Efficient Catalytic Self-Multimerization. PLoS One 2015; 10:e0134922. [PMID: 26244572 PMCID: PMC4526674 DOI: 10.1371/journal.pone.0134922] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
A hallmark of the gluten-driven enteropathy celiac disease is autoantibody production towards the enzyme transglutaminase 2 (TG2) that catalyzes the formation of covalent protein-protein cross-links. Activation of TG2-specific B cells likely involves gluten-specific CD4 T cells as production of the antibodies is dependent on disease-associated HLA-DQ allotypes and dietary intake of gluten. IgA plasma cells producing TG2 antibodies with few mutations are abundant in the celiac gut lesion. These plasma cells and serum antibodies to TG2 drop rapidly after initiation of a gluten-free diet, suggestive of extrafollicular responses or germinal center reactions of short duration. High antigen avidity is known to promote such responses, and is also important for breakage of self-tolerance. We here inquired whether TG2 avidity could be a feature relevant to celiac disease. Using recombinant enzyme we show by dynamic light scattering and gel electrophoresis that TG2 efficiently utilizes itself as a substrate due to conformation-dependent homotypic association, which involves the C-terminal domains of the enzyme. This leads to the formation of covalently linked TG2 multimers. The presence of exogenous substrate such as gluten peptide does not inhibit TG2 self-cross-linking, but rather results in formation of TG2-TG2-gluten complexes. The celiac disease autoantibody epitopes, clustered in the N-terminal part of TG2, are conserved in the TG2-multimers as determined by mass spectrometry and immunoprecipitation analysis. TG2 multimers are superior to TG2 monomer in activating A20 B cells transduced with TG2-specific B-cell receptor, and uptake of TG2-TG2-gluten multimers leads to efficient activation of gluten-specific T cells. Efficient catalytic self-multimerization of TG2 and generation of multivalent TG2 antigen decorated with gluten peptides suggest a mechanism by which self-reactive B cells are activated to give abundant numbers of plasma cells in celiac disease. Importantly, high avidity of the antigen could explain why TG2-specific plasma cells show signs of an extrafollicular generation pathway.
Collapse
|