1
|
Folarin BT, Poma G, Yin S, Altamirano JC, Cleys P, Oluseyi T, Covaci A. Source identification and human exposure assessment of organophosphate flame retardants and plasticisers in soil and outdoor dust from Nigerian e-waste dismantling and dumpsites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124998. [PMID: 39313125 DOI: 10.1016/j.envpol.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are major sources of organophosphate flame retardant and plasticiser emissions and may pose potentially adverse effects on environment and human health. In 20 outdoor dust and 49 soil samples collected from four e-waste dismantling and three e-waste dumpsites in two States of Nigeria (Lagos and Ogun), we identified 13 alternative plasticisers (APs), 7 legacy phthalate plasticisers (LPs), and 17 organophosphorus flame retardants (OPFRs) for the first time in African e-waste streams. In the samples from dismantling sites, the range (median) concentrations of ∑13APs, ∑7LPs, and ∑17OPFRs were 11-2747 μg/g (144 μg/g), 11-396 μg/g (125 μg/g), and 0.2-68 μg/g (5.5 μg), in dust respectively and 1.8-297 μg/g (55 μg/g), 1.3-274 μg/g (48.5 μg/g), and 1.6-62 μg/g (1.6 μg/g), in soil respectively. Results for soil samples from e-waste dumpsites were (6.6-195 μg/g (23.7 μg/g), 6.0-295 μg/g (54.8), and 0.4-42.3 μg/g (9.0 μg/g) for ∑13APs, ∑7LPs, and ∑17OPFRs respectively. Overall, concentrations of APs were significantly higher at the dismantling sites (p = 0.005) compared to dumpsites, levels of LPs were higher at dismantling sites but not significant, while OPFR concentrations were significantly higher in dumpsite samples (p = 0.005). Plasticisers were found to be major contributors to pollution at e-waste dismantling sites, while OPFRs were associated with both automobile dismantling and e-waste dumpsite processes. Following particle size fractionation of selected soil samples, higher concentrations of targeted compounds were observed in the smaller mesh (180 μm) soil sieve fraction. For dust, the total median estimated daily intake via ingestion and dermal adsorption (EDIing and EDIderm) ranged from 43 to 74 ng/kg bw/day and 0.4-0.7 ng/kg bw/day, respectively. Correspondingly, 4.6-45 ng/kg bw/day and 0.015-0.57 ng/kg bw/day were the values found for soil, respectively. According to these results, the targeted chemicals do not appear to pose a non-carcinogenic risk to e-waste workers through ingestion or dermal contact of bio-accessible fractions of the chemicals. Human biomonitoring campaigns are recommended in the Nigerian e-waste environment considering the elevated concentration levels found for the majority of targeted compounds and that risk parameters required for exposure assessment were only available for a limited number of compounds.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, 5500, Mendoza, Argentina
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
2
|
Iwegbue CMA, Ossai CJ, Ogwu IF, Olisah C, Ujam OT, Nwajei GE, Martincigh BS. Organochlorine pesticide contamination of soils and dust from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:172959. [PMID: 38705302 DOI: 10.1016/j.scitotenv.2024.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The concentrations, sources, and risk of twenty organochlorine pesticides (OCPs) in soils and dusts from a typical urban setting in the Niger Delta of Nigeria were examined. The Σ20 OCP concentrations (ng g-1) varied from 4.49 to 150 with an average value of 32.6 for soil, 4.67 to 21.5 with an average of 11.7 for indoor dust, and 1.6 to 96.7 with an average value of 23.5 for outdoor dust. The Σ20 OCP concentrations in these media were in the order: soil > outdoor dust > indoor dust, which was in contrast with the order of the detection frequency, i.e., indoor dust (95 to 100 %) > soil (60 to 90 %) > outdoor dust (30 to 80 %). The concentrations of the different OCP classes in these media followed the order: aldrin + dieldrin + endrin and its isomers (Drins) > chlordanes > dichlorodiphenyltrichloroethane (DDTs) > hexachlorocyclohexane (HCHs) > endosulfans for outdoor dust and soil, while that of the indoor dust followed the order: Drins > chlordanes > endosulfans > DDTs > HCHs. The cancer risk values for human exposure to OCPs in these sites exceeded 10-6 which indicates possible carcinogenic risks. The sources of OCPs in these media reflected both past use and recent inputs.
Collapse
Affiliation(s)
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Ijeoma F Ogwu
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa
| | - Oguejiofo T Ujam
- Department of Pure and Applied Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
3
|
Naseem S, Tabinda AB, Baqar M, Khan MA, Zia-Ur-Rehman M. Occurrence, spatial distribution and ecological risk assessment of Organophosphate Esters in surface water and sediments from the Ravi River and its tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174828. [PMID: 39025139 DOI: 10.1016/j.scitotenv.2024.174828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used as substitutes for brominated flame retardants and characterized as emerging contaminants. Due to their toxicity and persistent nature, OPEs are becoming a matter of greater concern worldwide. However, information about the pollution profile of OPEs and associated ecological risks is still scarce in environmental matrices of the South Asian region, particularly Pakistan. Hence, the current study was conducted to investigate the occurrence, spatial distribution patterns, ecological risks and riverine flux of 10 organophosphate esters in surface water and sediments of Ravi River and its four tributaries. The concentrations of ∑10OPEs were in the range of 19.2 - 105 ng/L, with the dominance of chlorinated-OPEs (51 %) in surface water, whereas in case of sediments, the ∑10OPEs concentrations ranged from 20.7 to 149 ng/g dw, with high abundance of non - chlorinated alkyl-OPEs, which contributed about 56 % to total OPE concentration. The correlation analysis signified a strong positive relation of OPEs with TOC (p < 0.05, R = 0.76) in sediments; and in addition to this, field-based LogKoc values were estimated to be higher than predicted LogKoc. Moreover, a significantly positive correlation (p < 0.05, R = 0.88) was observed between LogKoc and LogKow, implying that hydrophobicity plays a significant role in OPE distribution in different environmental matrices. The global comparison revealed that contamination status of OPEs in the present study was comparatively lower than other regional findings, furthermore, principal component analysis suggested vehicular emissions, industrial discharges, household supplies and atmospheric deposition as main sources of OPEs occurrence in current study region. Furthermore, the riverine flux of ∑10OPEs was estimated to be 0.68 tons/yr and the ecological risk assessment indicated that all OPEs, except EHDPP and TCrP, showed negligible or insignificant ecological risks for aquatic organisms.
Collapse
Affiliation(s)
- Samra Naseem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mehroze Ahmad Khan
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| |
Collapse
|
4
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Ali N. Dust dynamics: distribution patterns of semi-volatile organic chemicals across particle sizes in varied indoor microenvironments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35429-35441. [PMID: 38727973 DOI: 10.1007/s11356-024-33508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200 μm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3 µg/g and 43.2 µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985 µg/g and 846 µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Folarin BT, Poma G, Yin S, Altamirano JC, Oluseyi T, Badru G, Covaci A. Assessment of legacy and alternative halogenated organic pollutants in outdoor dust and soil from e-waste sites in Nigeria: Concentrations, patterns, and implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123032. [PMID: 38036088 DOI: 10.1016/j.envpol.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
E-waste is often processed informally, particularly in developing countries, resulting in the release of harmful chemicals into the environment. This study investigated the co-occurrence of selected persistent organic pollutants (POPs), including legacy and alternative halogenated flame retardants (10 polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), syn and anti-dechlorane plus (DP)), 32 polychlorinated biphenyls (PCBs) and 12 organochlorine pesticides (OCPs), in 20 outdoor dust and 49 soil samples from 7 e-waste sites in Nigeria. This study provides the first report on alternative flame retardants (DBDPE and DP) in Nigeria. The total concentration range of the selected classes of compounds was in the order: ∑10PBDEs (44-12300 ng/g) > DBDPE (4.9-3032 ng/g) > ∑2DP (0.7-278 ng/g) > ∑32PCBs (4.9-148 ng/g) > ∑12OCPs (1.9-25 ng/g) for dust, and DBDPE (4.9-9647 ng/g) > ∑10PBDEs (90.3-7548 ng/g) > ∑32PCBs (6.1-5025 ng/g) > ∑12OCPs (1.9-250 ng/g) > ∑2DP (2.1-142 ng/g) for soil. PBDEs were the major contributors to POP pollution at e-waste dismantling sites, while PCBs were the most significant contributors at e-waste dumpsites. DBDPE was found to be significantly associated with pollution at both e-waste dismantling and dumpsites. Estimated daily intake (EDI) via dust and soil ingestion and dermal adsorption routes ranged from 1.3 to 2.8 ng/kg bw/day and 0.2-2.9 ng/kg bw/day, respectively. In the worst-case scenario, EDI ranged from 2.9 to 10 ng/kg bw/day and 0.8-5.8 ng/kg bw/day for dust and soil, respectively. The obtained intake levels posed no non-carcinogenic risk, but could increase the incidence of cancer at some of the studied e-waste sites, with values exceeding the USEPA cancer risk lower limit (1.0 × 10-6). Overall, our results suggest that e-waste sites act as emission point sources of POPs.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, (5500), Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, (5500), Mendoza, Argentina
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria
| | - Gbolahan Badru
- Department of Geographical and Environmental Education, Lagos State University of Education, Oto-Ijanikin, Lagos State, Nigeria
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
7
|
Sun Y, Gao P, Tariq S, Shahzad H, Mehmood U, Ul Haq Z. Analysis of aerosol optical depth and relation to covariates during pre-monsoon season (2002-2019) over Pakistan using ARIMAX model and cross-wavelet analysis. ENVIRONMENTAL RESEARCH 2023; 233:116436. [PMID: 37356525 DOI: 10.1016/j.envres.2023.116436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
The pre-monsoon season heavily influences the precipitation amount in Pakistan. When hydrometeorological parameters interact with aerosols from multiple sources, a radiative climatic response is observed. In this study, aerosol optical depth (AOD) space-time dynamics were analyzed in relation to meteorological factors and surface parameters during the pre-monsoon season in the years 2002-2019 over Pakistan. Level-3 (L3) monthly datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging Spectroradiometer (MISR) were used. Tropical Rainfall Measuring Mission (TRMM) derived monthly precipitation, Atmospheric Infrared Sounder (AIRS) derived air temperature, after moist relative humidity (RH) from Modern-Era Retrospective analysis for Research and Applications, Version-2 (MERRA-2), near-surface wind speed, and soil moisture data derived from Global Land Data Assimilation System (GLDAS) were also used on a monthly time scale. For AOD trend analysis, Mann-Kendall (MK) trend test was applied. Moreover, Autoregressive Integrated Moving Average with Explanatory variable (ARIMAX) technique was applied to observe the actual and predicted AOD trend, as well as test the multicollinearity of AOD with covariates. The periodicities of AOD were analyzed using continuous wavelet transformation (CWT) and the cross relationships of AOD with prevailing covariates on a time-frequency scale were analyzed by wavelet coherence analysis. A high variation of aerosols was observed in the spatiotemporal domain. The MK test showed a decreasing trend in AOD which was most significant in Baluchistan and Punjab, and the overall trend differs between MODIS and MISR datasets. ARIMAX model shows the correlation of AOD with varying meteorological and soil parameters. Wavelet analysis provides the abundance of periodicities in the 2-8 months periodic cycles. The coherency nature of the AOD time series along with other covariates manifests leading and lagging effects in the periodicities. Through this, a notable difference was concluded in space-time patterns between MODIS and MISR datasets. These findings may prove useful for short-term and long-term studies including oscillating features of AOD and covariates.
Collapse
Affiliation(s)
- Yunpeng Sun
- School of Economics, Tianjin University of Commerce, China.
| | - Pengpeng Gao
- School of Economics, Tianjin University of Commerce, China
| | - Salman Tariq
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, New Campus, Lahore, Pakistan; Department of Space Science, University of the Punjab, New Campus, Lahore, Pakistan
| | - Hafsa Shahzad
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, New Campus, Lahore, Pakistan
| | - Usman Mehmood
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, New Campus, Lahore, Pakistan; University of Management and Technology, Lahore, Pakistan
| | - Zia Ul Haq
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, New Campus, Lahore, Pakistan; Department of Space Science, University of the Punjab, New Campus, Lahore, Pakistan
| |
Collapse
|
8
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
9
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Spatial characteristics, sources and exposure risk of polychlorinated biphenyls in dusts and soils from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163513. [PMID: 37061053 DOI: 10.1016/j.scitotenv.2023.163513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated organic compounds, such as polychlorinated biphenyls (PCBs), are a threat to both humans and the environment because of their toxicity, persistence, and capacity for long-range atmospheric transport. The concentrations of 28 PCB congeners, including 12 dioxin-like and seven indicator PCBs, were investigated in soils, and indoor and outdoor dusts from Port Harcourt city, Nigeria, in order to evaluate the characteristic distribution patterns in these media, their sources, and possible risk. The PCB concentrations varied from 4.59 to 116 ng g-1 for soils, and from 1.80 to 23.0 ng g-1 and 2.73 to 57.4 ng g-1 for indoor and outdoor dusts respectively. The sequence of PCB concentrations in these matrices was soil > outdoor dust > indoor dust. The composition of PCBs in these matrices indicated the prevalence of lower chlorinated PCBs in indoor and outdoor dusts, while the higher chlorinated congeners were dominant in soils. Di-PCBs were the predominant homologues in indoor dusts, while deca-PCBs were the most prevalent homologues in outdoor dusts and soils. The TEQ values of dioxin-like PCBs in 60 % of the soils, 100 % of the indoor dust, and 30 % of the outdoor dust were above the indicative value of 4 pg TEQ g-1 established by the Canadian authority. The hazard index (HI) values for exposure of adults and children to PCBs in these media were mostly greater than one, while the total cancer risk (TCR) values exceeded the acceptable risk value of 10-6, which indicate probable non-carcinogenic and carcinogenic risks resulting from exposure to PCBs in these media. Source analysis for PCBs in these matrices shows that they originated from diverse sources.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | | | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
10
|
Lv Z, Dong F, Li H, Zhou L, Zhang W, Zheng F, Wang Q, Liu M, Huo T, Zhao Y. Outdoor Atmospheric Micro-/Nanomineral-Mediated Organochlorine Pesticides in Sichuan Basin, China: Adsorption, Occurrence, and Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:594-604. [PMID: 36582152 DOI: 10.1002/etc.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Atmospheric micro-/nanominerals play an important role in the adsorption, enrichment, and migration of organochlorine pesticides (OCPs). In the present study, the correlations between OCPs and minerals in outdoor atmospheric dustfall were investigated, and the correlations were used to speculate the source of p,p'-(dicofol+dichlorobenzophenone [DBP]), which is the sum of p,p'-dicofol and p,p'-DBP. Atmospheric dustfall samples were collected from 53 sites in the Chengdu-Deyang-Mianyang economic region in the Sichuan basin. In this region, 24 OCPs were analyzed by gas chromatography-tandem mass spectrometry. The average concentration of 24 OCPs was 51.2 ± 27.4 ng/g. The results showed that the concentration of Σ24 OCPs in urban areas was higher than that in suburban areas (p < 0.05). Minerals in atmospheric dustfall were semiquantitatively analyzed by X-ray diffraction. The primary minerals were quartz, calcite, and gypsum. A Spearman correlation analysis of OCPs and minerals showed that low-volatility OCPs could be adsorbed by minerals in atmospheric dustfall. A density functional theory simulation verified that p,p'-(dicofol+DBP) in atmospheric dustfall was primarily derived from the p,p'-dicofol adsorbed by gypsum. Isomeric ratio results suggested that the samples had weathered lindane and chlordane profiles and confirmed that residents in the Sichuan basin used technical dichlorodiphenyltrichloroethane. Finally, the OCPs were evaluated to determine the potential risk of cancer in adults and children from OCP exposure. Exposure to OCPs via atmospheric dustfall was safe for adults. The cancer risk for children exposed to OCPs was slightly lower than the threshold value (10-6 ) under a high dust ingestion rate, which poses a concern. Environ Toxicol Chem 2023;42:594-604. © 2022 SETAC.
Collapse
Affiliation(s)
- Zhenzhen Lv
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, China
| | - Hailong Li
- College of Sciences, Shihezi University, Shihezi, China
| | - Lin Zhou
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Wen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Fei Zheng
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Qiming Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Mingxue Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Yulian Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
11
|
Chi ZH, Goodyer CG, Hales BF, Bayen S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. ENVIRONMENT INTERNATIONAL 2023; 171:107717. [PMID: 36630790 DOI: 10.1016/j.envint.2022.107717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Hundreds of xenobiotics, with very diverse origins, have been detected in human milk, including contaminants of emerging concern, personal care products and other current-use substances reflecting lifestyle. The routes of exposure to these chemicals include dermal absorption, ingestion and inhalation. Specific families of chemicals are dominant among human milk monitoring studies (e.g., organochlorine pesticides, bisphenol A, dioxins), even though other understudied families may be equally toxicologically relevant (e.g., food-processing chemicals, current-use plasticizers and flame retardants, mycotoxins). Importantly, the lack of reliable human milk monitoring data for some individual chemicals and, especially, for complex mixtures, is a major factor hindering risk assessment. Non-targeted screening can be used as an effective tool to identify unknown contaminants of concern in human milk. This approach, in combination with novel methods to conduct risk assessments on the chemical mixtures detected in human milk, will assist in elucidating exposures that may have adverse effects on the development of breastfeeding infants.
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Cindy Gates Goodyer
- Department of Pediatrics, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
12
|
Reynolds KJ, Zagho MM, Robertson M, Qiang Z, Nazarenko S. Environmental, Health, and Legislation Considerations for Rational Design of Nonreactive Flame-Retardant Additives for Polymeric Materials: Future Perspectives. Macromol Rapid Commun 2022; 43:e2200472. [PMID: 35835732 DOI: 10.1002/marc.202200472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Increasing polymer usage has demanded functional additives that decrease fire hazards for end users. While traditional flame-retardant (FR) additives, such as halogenated, phosphorus, and metal hydroxides, greatly reduce flammability and associated fire hazards, research has continually exposed a litany of health and environmental safety concerns. This perspective aims to identify the key components of a successful FR additive and address material, environmental, and health concerns of existing additives. Legislation surrounding FRs and persistent organic pollutants is also discussed to highlight political perception that has resulted in the increased chemical regulations and subsequent banning of FR additives. Finally, future directions of this field regarding nonreactive additives, focusing on the use of bioinspired materials and transition metal chemistries to produce alternatives for polymers with efficacies surpassing traditional additives are presented.
Collapse
Affiliation(s)
- Karina J Reynolds
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Moustafa M Zagho
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergei Nazarenko
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
13
|
Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137905. [PMID: 35805563 PMCID: PMC9265302 DOI: 10.3390/ijerph19137905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Assessment of indoor air quality is especially important, since people spend substantial amounts of time indoors, either at home or at work. This study analyzes concentrations of selected heavy metals in 40 indoor dust samples obtained from houses in the highly-industrialized Asaluyeh city, south Iran in spring and summer seasons (20 samples each). Furthermore, the health risk due to exposure to indoor air pollution is investigated for both children and adults, in a city with several oil refineries and petrochemical industries. The chemical analysis revealed that in both seasons the concentrations of heavy metals followed the order of Cr > Ni > Pb > As > Co > Cd. A significant difference was observed in the concentrations of potential toxic elements (PTEs) such as Cr, As and Ni, since the mean (±stdev) summer levels were at 60.2 ± 9.1 mg kg−1, 5.6 ± 2.7 mg kg−1 and 16.4 ± 1.9 mg kg−1, respectively, while the concentrations were significantly lower in spring (17.6 ± 9.7 mg kg−1, 3.0 ± 1.7 mg kg−1 and 13.5 ± 2.4 mg kg−1 for Cr, As and Ni, respectively). Although the hazard index (HI) values, which denote the possibility of non-carcinogenic risk due to exposure to household heavy metals, were generally low for both children and adults (HI < 1), the carcinogenic risks of arsenic and chromium were found to be above the safe limit of 1 × 10−4 for children through the ingestion pathway, indicating a high cancer risk due to household dust in Asaluyeh, especially in summer.
Collapse
|
14
|
Gunathilake TMSU, Ching YC, Kadokami K. An overview of organic contaminants in indoor dust, their health impact, geographical distribution and recent extraction/analysis methods. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:677-713. [PMID: 34170457 DOI: 10.1007/s10653-021-01013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 05/16/2023]
Abstract
People spend a substantial proportion of their time indoors; therefore, exposure to contaminants in indoor dust is persistent and profuse. According to the findings of recent studies, contaminants such as flame retardants (FRs), organochlorines (OCs), and phthalate esters (PAEs) are more prevalent in indoor dust. The discrepancy in the geographical distribution of these chemicals indicates country-specific applications. However, many studies have revealed that chlorophosphates, polychlorinated biphenyls (PCBs) and di-2-ethylhexyl phthalate are frequently detected in indoor dust throughout the world. Although some chemicals (e.g., OCs) were banned/severely restricted decades ago, they have still been detected in indoor dust. These organic contaminants have shown clear evidence of carcinogenic, neurotoxic, immunogenic, and estrogenic activities. Recent extraction methods have shown their advantages, such as high recoveries, less solvent consumption, less extraction time and simplicity of use. The latest separation techniques such as two-dimensional gas/liquid chromatography, latest ionization techniques (e.g., matrix-assisted laser desorption/ionization (MALDI)), and modern techniques of mass spectrometry (e.g., tandem mass spectrometry (MS/MS), time-of-flight (TOF) and high-resolution mass spectrometry (HRMS)) improve the detection limits, accuracy, reproducibility and simultaneous detection of organic contaminants. For future perspectives, it is suggested that the importance of the study of dust morphology for comprehensive risk analysis, introducing standard reference materials to strengthen the analytical methods, adopt common guidelines for comparison of research findings and the importance of dust analysis in the developing world since lack of records on the production and usage of hazardous substances. Such measures will help to evaluate the effectiveness of prevailing legislations and to set up new regulations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Hibikino 1-1, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
15
|
Besis A, Botsaropoulou E, Balla D, Voutsa D, Samara C. Toxic organic pollutants in Greek house dust: Implications for human exposure and health risk. CHEMOSPHERE 2021; 284:131318. [PMID: 34192665 DOI: 10.1016/j.chemosphere.2021.131318] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Organic contaminants often documented in house dust include mainly chemicals released from construction materials and consumer products and compounds emitted from indoor combustion activities. The occurrence of major chemical classes of toxic organic pollutants, included polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs), was for the first time investigated in house dust in Greece. The mean concentrations of ∑16PAHs, ∑20PBDEs, ∑7NPAHs and∑15PCBs in house dust were 4650 ng g-1, 564 ng g-1, 7.52 ng g-1, and 6.29 ng g-1, respectively. Exposure to dust organic contaminants via ingestion, inhalation and dermal absorption was estimated for two age classes (adults and children) and carcinogenic and non-carcinogenic risks were assessed. The hazard index (HI) for adults and children for PBDEs, PCBs, PAHs and NPAHs in all samples was less than 1 suggesting a very low level of concern for all human age group due to exposure to those chemicals. Total carcinogenic risk via the three exposure pathways (ingestion, inhalation and dermal contact) was within the safe range of 10-6 to 10-4.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece.
| | - Elisavet Botsaropoulou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Dimitra Balla
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| |
Collapse
|
16
|
Aslam I, Baqar M, Qadir A, Mumtaz M, Li J, Zhang G. Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. INDOOR AIR 2021; 31:1417-1426. [PMID: 33459414 DOI: 10.1111/ina.12788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study is the pioneer assessment of the PCBs in indoor dust particles (from air conditioners) of an urbanized megacity from South Asian. The ∑35 PCB concentration ranged from 0.27 to 152.9 ng/g (mean: 24.84 ± 22.10 ng/g). The tri- and tetra-PCBs were dominant homologues, contributing 57.36% of the total PCB concentrations. The mean levels of Σ8 -dioxin-like (DL), Σ6 -indicator PCBs and WHO2005 -TEQ for DL-PCBs were 2.22 ± 2.55 ng/g, 9.49 ± 8.04 ng/g and 4.77 ± 4.89 pg/g, respectively. The multiple linear regression indicated a significant correlation of dusting frequency (p = 1.06 × 10-04) and age of the house (p = 1.02 × 10-06) with PCB concentrations in indoor environment. The spatial variation of PCB profile revealed relatively higher concentrations from sites near to illegal waste burning spots, electrical locomotive workshops, and grid stations. Human health risk assessment of PCBs for adults and toddlers through all three exposure routes (ie, inhalation, ingestion, and dermal contact) demonstrated that toddlers were vulnerable to high cancer risk (4.32 × 10-04 ), while adults were susceptible from low to moderate levels of risk (3.16 × 10-05 ). Therefore, comprehensive investigations for PCBs in the indoor settings, focusing particularly on the sensitive populations with relationship to the electronic devices, transformers, and illegal waste burning sites, are recommended.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Vishnu Sreejith M, Aradhana KS, Varsha M, Cyrus MK, Aravindakumar CT, Aravind UK. ATR-FTIR and LC-Q-ToF-MS analysis of indoor dust from different micro-environments located in a tropical metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147066. [PMID: 34088116 DOI: 10.1016/j.scitotenv.2021.147066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Indoor dust is an important matrix that exposes humans to a broad spectrum of chemicals. The information on the occurrence of contaminants of emerging concern (CECs), their metabolites, and re-emerging contaminants in indoor dust is rather limited. As the indoor environment is exposed to various chemicals from personal care products, furniture, building materials, machineries and cooking/cleaning products, there is a high chance of the presence of hazardous contaminants in indoor dust. In the present study, dust samples were collected from four different micro indoor environments (photocopying centres, residential houses, classrooms, and ATM cabins) located in an urban environment located in India's southwestern part. The collected samples were subjected to ATR - FTIR and LC-Q-ToF-MS analyses. The ATR - FTIR analysis indicated the presence of aldehydes, anhydrides, carboxylic acids, esters, sulphonic acids, and asbestos - a re-emerging contaminant. A total of 19 compounds were identified from the LC-Q-ToF-MS analysis. These compounds belonged to various classes such as plasticisers, plasticiser metabolites, photoinitiators, personal care products, pharmaceutical intermediates, surfactants, and pesticides. To the best of our knowledge, this is the first report regarding the presence of CECs in indoor environments in Kerala and also the suspected occurrence of pesticides (metaldehyde and ethofumesate) in classroom dust in India. Another important highlight of this work is the demonstration of ATR-FTIR as a complementary technique for LC-Q-ToF-MS in the analysis of indoor pollution while dealing with totally unknown pollutants. These results further highlight the occurrence of probable chemically modified metabolites in the tropical climatic conditions in a microenvironment.
Collapse
Affiliation(s)
- M Vishnu Sreejith
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - K S Aradhana
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M Varsha
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M K Cyrus
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - C T Aravindakumar
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India..
| |
Collapse
|
18
|
Hoang MTT, Anh HQ, Kadokami K, Duong HT, Hoang HM, Van Nguyen T, Takahashi S, Le GT, Trinh HT. Contamination status, emission sources, and human health risk of brominated flame retardants in urban indoor dust from Hanoi, Vietnam: the replacement of legacy polybrominated diphenyl ether mixtures by alternative formulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43885-43896. [PMID: 33837942 DOI: 10.1007/s11356-021-13822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the occurrence, distribution of several additive brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and some novel brominated flame retardants (NBFRs) in urban indoor dust collected from ten inner districts of Hanoi, Vietnam to assess the contamination status, emission sources, as well as their associated human exposure through indoor dust ingestion and health risks. Total concentrations of PBDEs and NBFRs in indoor dust samples ranged from 43 to 480 ng g-1 (median 170 ng g-1) and from 56 to 2200 ng g-1 (median 180 ng g-1), respectively. The most abundant PBDE congener in these dust samples was BDE-209 with concentrations ranging from 29 to 360 ng g-1, accounting for 62.6-86.5% of total PBDE levels. Among the NBFRs analyzed, decabromodiphenyl ethane (DBDPE) was the predominant compound with a mean contribution of 98.6% total NBFR amounts. Significant concentrations of DBDPE were detected in all dust samples (median 180 ng g-1, range 54-2200 ng g-1), due to DBDPE as a substitute for deca-BDE. Other NBFRs such as 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB) and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) were found at very low levels. Based on the measured BFR concentrations, daily intake doses (IDs) of PBDEs and NBFRs via dust ingestion at exposure scenarios using the median and 95th percentile levels for both adults and children were calculated for risk assessment. The results showed that the daily exposure doses via dust ingestion of all compounds, even in the high-exposure scenarios were also lower than their reference dose (RfD) values. The lifetime cancer risks (LTCR) were much lower than the threshold level (10-6), which indicated the acceptable health risks resulting from indoor BFRs exposure for urban residents in Hanoi.
Collapse
Affiliation(s)
- Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Hoang Quoc Anh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Kiwao Kadokami
- The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Ha Mai Hoang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam.
| |
Collapse
|
19
|
Aslam I, Mumtaz M, Qadir A, Jamil N, Baqar M, Mahmood A, Ahmad SR, Zhang G. Organochlorine pesticides (OCPs) in air-conditioner filter dust of indoor urban setting: Implication for health risk in a developing country. INDOOR AIR 2021; 31:807-817. [PMID: 33247439 DOI: 10.1111/ina.12772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
This preliminary investigation highlights the occurrence of organochlorine pesticides (OCPs) in the indoor environment of a megacity, Lahore, Pakistan using the dust ensnared by air-conditioner filters. The Σ16 OCPs concentration ranged from 7.53 to 1272.87 ng/g with the highest percent contribution by ΣDDT (dichlorodiphenyltrichloroethane; 87.21%) and aldrin (6.58%). The spatial variation of OCPs profile revealed relatively higher concentration from homes near to agricultural and abandoned DDT manufacturing sites. Calculated isomer ratios revealed historic sources of hexachlorocyclohexanes (HCHs) and the fresh input of technical DDT and chlordane by the dwellers. The air conditioner dust was helpful to better understand the health risk in the indoor environment. So far a high lifetime cancer risk (10-3 ) was predicted for toddlers via accidental ingestion, inhalation, and dermal exposure. Similarly, the non-carcinogenic risk-based hazard quotient was found to be high for toddlers (6.94) and within the permissible limit (<1) for adults.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Nadia Jamil
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College for Women University, Sialkot, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Hou M, Shi Y, Na G, Cai Y. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106261. [PMID: 33395927 DOI: 10.1016/j.envint.2020.106261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/14/2023]
Abstract
The ubiquity of organophosphate esters (OPEs) in various environmental matrices inevitably pose human exposure risks. Numerous studies have investigated human exposure pathways to OPEs, including air inhalation, dust ingestion, dermal contact, and dietary and drinking water intake, and have indicated that indoor dust and indoor air routes are frequently the two main human exposure pathways. This article reviews the literature on OPE contamination in indoor air and dust from various microenvironments and on OPE particle size distributions and bioavailability in dust conducted over the past 10 years. Ways in which sampling strategies are related to the uncertainty of exposure assessment results and comparability among different studies in terms of sampling tools, sampling sites, and sample types are addressed. Also, the associations of OPEs in indoor dust/air with human biological samples were summarized. Studies on two emerging matrices, hand wipes and silicone wristbands, are demonstrated to be more comprehensive and accurate in reflecting personal human exposure to OPEs in microenvironments and are summarized. Given the direct application of some diester OPEs (di-OPEs) in numerous products, research on their existence in indoor dust and food and on their effects on human urine are also discussed. Finally, related research trends and avenues for future research are prospected.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Li D, Zhang Q, Chen J, Zhang S, Song N, Xu H, Guo R. Characterization and health risk assessment of organophosphate esters in indoor dust from urban and rural domestic house and college dormitory in Nanjing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36826-36837. [PMID: 32577965 DOI: 10.1007/s11356-020-09494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Indoor dust is an important route of exposure for organophosphate esters (OPEs), which are associated with adverse health effects. In the present study, the pollution occurrence and potential health risks of 13 OPEs in indoor dust from urban homes, college dormitories, and rural homes in Nanjing were investigated. Most OPEs were detected in the tested samples. College dormitories dust samples showed significantly higher OPEs concentrations (132.31-1.61 × 103 ng/g), followed by that in urban homes (31.42-49.84 ng/g) and rural homes (51.19-309.75 ng/g). The Mann-Whitney U test found no significant difference in the total concentrations of OPEs except for some individual OPEs between urban and rural homes. Tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant compound in all tested areas. Spearman correlation coefficients and principal component analysis indicated that OPEs might originate from different sources in three microenvironments. Estimated exposures for adults and children in all indoor dust were below the relevant reference doses. Additionally, TCPP was the primary contributors to the non-carcinogenic risk, ranging from 1.07 × 10-6 to 2.20 × 10-5. Tris (2,3-dibromopropyl) phosphate was the dominant carcinogenic risk contributor in indoor dust, with a range of 1.33 × 10-11 to 8.74 × 10-10. These results suggested that the health risk of OPEs was within acceptable limits in the tested areas.
Collapse
Affiliation(s)
- Dong Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Nanjing Institute of Environmental, Ministry of Ecology and Environmental, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Qin Zhang
- Nanjing Institute of Environmental, Ministry of Ecology and Environmental, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental, Ministry of Ecology and Environmental, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Ninghui Song
- Nanjing Institute of Environmental, Ministry of Ecology and Environmental, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Huaizhou Xu
- Nanjing Institute of Environmental, Ministry of Ecology and Environmental, No.8 Jiangwangmiao Street, Nanjing, 210042, China.
- Shen Shan Smart City Research Institute Co. Ltd., Technology Incubator Base 2#, Chuangfu Road, Ebu Town, Shenshan Special Cooperation Zone, Shenzhen, 516473, China.
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
22
|
Zhang R, Yu K, Li A, Zeng W, Lin T, Wang Y. Occurrence, phase distribution, and bioaccumulation of organophosphate esters (OPEs) in mariculture farms of the Beibu Gulf, China: A health risk assessment through seafood consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114426. [PMID: 32224384 DOI: 10.1016/j.envpol.2020.114426] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
As emerging pollutants, the occurrence and risks of organophosphate esters (OPEs) in mariculture farms should be concerned; however, information is limited. Beibu Gulf is one of the essential mariculture zones in China. This study aimed to investigate the occurrence of OPEs in mariculture farms of the Beibu Gulf, their phase distribution and bioaccumulation among sediment, organisms (shrimp, crab, and oyster), water, and feed. Human exposure to OPEs through seafood consumption was also assessed. The total concentrations of the 11 target OPEs (∑11OPEs) in the water samples ranged 32.9-227 ng L-1. It was significantly higher in water from the culture ponds (mean 122 ng L-1) than in water from the estuaries and nearshore areas (mean 51.1 ng L-1) (nonparametric test, p < 0.05). ∑11OPEs in the feeds averaged 46.0 (range 21.7-84.5) ng g-1 dw, which is similar to the level in the organism samples (mean 55.5, range 21.3-138 ng g-1 dw) and 4.4 times higher than that in the sediment (mean 10.9, range 35-22.1 ng g-1 dw). The ∑11OPEs released from the feeds to the culture ponds was estimated to be 49 μg m-2 per three-month period. In the aquaculture ponds, the sediment-water distribution coefficient (log KOC), and the bioaccumulation factors from the water (log BWAFs) or the feed (log BFAFs) to the organisms, depend linearly on the hydrophobicity (log KOW) of OPEs. The log BWAFs and log BFAFs increased with increasing log KOW within the log KOW range of 1-7. The human exposure to OPEs through consumption of shrimp, crab, and oysters from the mariculture farms does not pose a health risk at present.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, 60612, USA; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, China.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, 60612, USA
| | - Weibin Zeng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
23
|
Lee HK, Kang H, Lee S, Kim S, Choi K, Moon HB. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137386. [PMID: 32112953 DOI: 10.1016/j.scitotenv.2020.137386] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to flame retardants (FRs) in indoor environments is a growing concern. In this study, the concentrations of polybrominated diphenyl ethers (PBDEs) and their alternatives, such as novel brominated flame retardants (NBFRs), dechlorane plus (DP), and organophosphate flame retardants (OPFRs), were measured in dust from indoor environments in Korea to investigate their occurrence, contamination profiles, and health risks. Legacy and emerging FRs were detected in dust samples, indicating widespread contamination of indoor environments. The concentrations of alternative FRs were higher in dust from offices compared with house dust, suggesting that office environments are major consumers of alternative FRs. Similar compositional profiles for indoor dust were found for PBDEs in different microenvironments and regions, while OPFR composition varied widely due to disparate applications. The estimated daily intakes of PBDEs, NBFRs, and OPFRs via dust ingestion were lower than the reference doses proposed by previous studies. A multiple-exposure assessment showed that dust ingestion was a major contributor to total PBDEs for toddlers and adults. However, major exposure pathways of BDEs 47 and 209 differed between toddlers and adults. Our study suggests that multiple exposure pathways should be considered in a comprehensive exposure assessment of PBDEs.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
24
|
Chandra Yadav I, Devi NL, Li J, Zhang G. Polychlorinated biphenyls and organochlorines pesticides in indoor dust: An exploration of sources and health exposure risk in a rural area (Kopawa) of Nepal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110376. [PMID: 32200152 DOI: 10.1016/j.ecoenv.2020.110376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
While contamination of indoor environment with organochlorine compounds (OCs) is well documented worldwide, only a few studies highlighted the problem of indoor pollution in Indian sub-continent, including Nepal. This study insight the contamination level, distribution pattern, and sources of OCs in indoor dust from a rural area of Nepal. Additionally, daily exposure risk through different intake pathways was estimated in order to mark the potential risk of OCs to local residents. Results indicated the predominance of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in dust. Ʃ26OCPs (median 87 ng/g) in dust was about 7-8 times greater than Ʃ30PCBs (median 10.5 ng/g). DDT was the most abundant chemical among Ʃ26OCPs, followed by HCHs and endosulfan, and accounted for 73%, 7%, and 4% of Ʃ26OCPs, respectively. A relatively high level of ƩDDT than other OCPs suggests the existence of DDT source in the Nepalese environment. Among PCB, tetra-CBs were most prevalent, trailed by penta-CBs, hexa-CBs, and hepta-CBs, and comprised 28%, 21%, 17% and 17% of Ʃ30PCBs, respectively. Dioxin like-PCBs (median 3.48 ng/g) was about two times higher than the total indicator-PCB (median 1.63 ng/g). High p,p-DDT/p,p-DDE ratio (median 2.89) suggested fresh application and minimal degradation of DDT in the local environment of Kopawa. While lower α-/γ-HCH ratio (median 0.75) indicated lindane contamination as the primary sources of HCH. Moreover, the low α-/β-endosulfan ratio (median 0.86) specified the fresh use of commercial endosulfan. Among OCPs, only DDT positively related to total organic carbon (TOC) (Rho = 0.55, p < 0.05) but not black carbon (BC), proposing minimal or zero impact of TOC and BC. For PCBs, PCB-126 was moderately and negatively correlated with TOC (Rho = -0.49, p < 0.05), but not BC. The daily risk exposure (DRE) assessment showed that children are more vulnerable to OCs than the adult. The DRE of OCs in this study were 2-4 order of magnitude lower than their corresponding reference dose (RfD), proposing insignificant risk.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo, 1838509, Japan.
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
25
|
Ingle ME, Watkins D, Rosario Z, Vélez Vega CM, Huerta-Montanez G, Calafat AM, Ospina M, Cordero JF, Alshawabkeh A, Meeker JD. The association of urinary organophosphate ester metabolites and self-reported personal care and household product use among pregnant women in Puerto Rico. ENVIRONMENTAL RESEARCH 2019; 179:108756. [PMID: 31574449 PMCID: PMC6905189 DOI: 10.1016/j.envres.2019.108756] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are widely detected among U.S. pregnant women. OPEs, some of which are present in nail polish, have been associated with adverse reproductive health outcomes. More research is needed to investigate associations with OPEs and personal care products (PCP) use. METHODS Pregnant women (18-40 years) were recruited from two hospitals and five prenatal clinics in Northern Puerto Rico (n = 148 women) between 2011 and 2015. Concentrations of bis(2-chloroethyl) phosphate (BCEtP), bis(1-chloro-2-propyl) phosphate (BCPP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-n-butyl phosphate (DNBP), di-benzyl phosphate (DBzP), di-cresyl phosphate (DCP), DPHP, and 2,3,4,5-tetrabromobenzoic acid (TBBA) were measured twice during pregnancy. Participants completed questionnaires on PCP and household products (HP) use. Associations among products and metabolite concentrations (n = 296 observations) were assessed using linear mixed models. RESULTS BCEtP, BCPP, BDCPP and DPHP were detected frequently (≥77%). Correlations among metabolites (0.16 ≤ r ≤ 0.35) and Intraclass correlation coefficients (ICCs) (0.03 ≤ ICC≤0.34) were weak-to-moderate. Suntan lotion was associated with a 110% increase in BDCPP. DPHP increased with perfume (51%) and nail polish (49%) use. BCPP increased 46% with pesticide use in home. CONCLUSION Biomarkers of OPEs were often detected among pregnant women. Associations with PCP and HP use suggest OPEs may be used in such products, specifically in perfume and nail polish. Further investigation into these products is warranted.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, USA
| | - Carmen M Vélez Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, USA
| | | | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA, 30341, USA
| | - Maria Ospina
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA, 30341, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, 110 Forsyth St, Boston, MA, 02115, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Velázquez-Gómez M, Lacorte S. Nasal lavages as a tool for monitoring exposure to organic pollutants. ENVIRONMENTAL RESEARCH 2019; 178:108726. [PMID: 31539821 DOI: 10.1016/j.envres.2019.108726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to air and dust pollutants can cause several adverse effects on human health. This study proposes the use of nasal lavages as a non-invasive sampling technique to determine in a direct way pollutant intake through inhalation. We evaluate the occurrence of compounds widely used in domestic products and construction materials (organophosphorus flame retardants (OPFR), phthalates, alkylphenols and bisphenol A), applied for pest control in cities (pesticides) and emitted through car exhausts (polycyclic aromatic hydrocarbons, PAHs) or smoking (nicotine). Contaminants were liquid-liquid extracted from nasal lavages and analysed using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). All 29 individuals inhabiting in Barcelona city had phthalates and bisphenol A at concentrations up to 31,300 ng mL-1 for diethylhexyl phthalate (DEHP) and 118 ng mL-1 for BPA. Individual PAHs, OPFR and alkylphenols had median values below their MQLs except for 2-ethylhexyldiphenyl phosphate (EHDPhP) with a median of 1.47 ng mL-1. Nicotine was detected at the highest concentrations in all active smokers (median 2.16 ng mL-1). Contrarily, pesticides were sporadically detected. Nasal lavages revealed to be an appropriate indicator likely to reflect exposure to dust and air contaminants.
Collapse
Affiliation(s)
- Miguel Velázquez-Gómez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
27
|
Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, Sáňka O, Klánová J, Palkovičová Murínová Ľ, Richterová D, Rašplová V, Trnovec T. Linking past uses of legacy SVOCs with today's indoor levels and human exposure. ENVIRONMENT INTERNATIONAL 2019; 127:653-663. [PMID: 30991221 DOI: 10.1016/j.envint.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) emitted from consumer products, building materials, and indoor and outdoor activities can be highly persistent in indoor environments. Human exposure to and environmental contamination with polychlorinated biphenyls (PCBs) was previously reported in a region near a former PCB production facility in Slovakia. However, we found that the indoor residential PCB levels did not correlate with the distance from the facility. Rather, indoor levels in this region and those reported in the literature were related to the historic PCB use on a national scale and the inferred presence of primary sources of PCBs in the homes. Other SVOCs had levels linked with either the activities in the home, e.g., polycyclic aromatic hydrocarbons (PAHs) with wood heating; or outdoor activities, e.g., organochlorine pesticides (OCPs) with agricultural land use and building age. We propose a classification framework to prioritize SVOCs for monitoring in indoor environments and to evaluate risks from indoor SVOC exposures. Application of this framework to 88 measured SVOCs identified several PCB congeners (CB-11, -28, -52), hexachlorobenzene (HCB), benzo(a)pyrene, and γ-HCH as priority compounds based on high exposure and toxicity assessed by means of toxicity reference values (TRVs). Application of the framework to many emerging compounds such as novel flame retardants was not possible because of either no or outdated TRVs. Concurrent identification of seven SVOC groups in indoor environments provided information on their comparative levels and distributions, their sources, and informed our assessment of associated risks.
Collapse
Affiliation(s)
- Hale Demirtepe
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| | - Miriam L Diamond
- Department of Earth Sciences, and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lola Bajard
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Šimon Vojta
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ondřej Sáňka
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Vladimíra Rašplová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| |
Collapse
|
28
|
Yin H, Wu D, You J, Li S, Deng X, Luo Y, Zheng W. Occurrence, Distribution, and Exposure Risk of Organophosphate Esters in Street Dust from Chengdu, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:617-629. [PMID: 30840114 DOI: 10.1007/s00244-019-00602-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Street dust samples were collected from 31 sampling sites in urban area of Chengdu. The distribution characters of OPEs were analyzed in line with functional districts and industrial layout of the city. The results showed that the detection frequency was tris(2-carboxyethyl) phosphine (TCEP), trichloropropyl phosphate (TCPP), triphenyl phosphate (TPhP), and tributoxyethyl phosphate (TBEP) (100%) > tris(2-ethylhexyl) phosphate (TEHP) (93.5%) > tri-n-butyl phosphate (TnBP) (83.9%) > tridichloropropyl phosphate (TDCPP) (74.2%). The ∑7OPEs concentrations ranged from 94.0 to 1484.6 ng/g (mean 512.9 ± 417.5 ng/g), and TBEP was the predominant pollutant, accounting for 27.9% of the ∑7OPEs. The highest concentrations were observed in the center, west, and northwest sides of the city. Besides, compared with outer area, the higher concentration in the 1st Ring Road reflected that emissions of OPEs might be associated with the population and consumption of commercial products. The correlations between monomers were statistically significant (p < 0.05) for TnBP/TCPP (p = 0.002), TCEP/TCPP (p = 0.026), and TCEP/TPhP (p = 0.033). The exposure level in adults was 0.11 ng/(kg bw day), and in children was 0.20 ng/(kg bw day) while hand-to-mouth was the primary mode of transmission. The Risk Quotients (RQs) of OPEs were 5.35 × 10-10-1.46 × 10-5 and 4.99 × 10-10-2.82 × 10-5 for adults and children respectively, with no potential risk.
Collapse
Affiliation(s)
- Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China.
| | - Di Wu
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Junjie You
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Shiping Li
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Xu Deng
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Yi Luo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Wanqing Zheng
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| |
Collapse
|
29
|
Guo H, Zheng X, Ru S, Sun R, Mai B. Size-dependent concentrations and bioaccessibility of organophosphate esters (OPEs) in indoor dust: A comparative study from a megacity and an e-waste recycling site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1954-1960. [PMID: 30290337 DOI: 10.1016/j.scitotenv.2018.09.340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Indoor dust ingestion is an important pathway in human exposure to environmental pollutants, and the bioaccessibility of pollutants can largely influence human exposure risk assessment. In the present study, the concentrations and compositions of organophosphate esters (OPEs) were investigated for different sizes (50 μm to 2 mm) of indoor dust collected from a megacity, Guangzhou, and an e-waste recycling site. The concentrations of total OPEs were 5360 to 6830 ng/g and 560 to 20,500 ng/g across all sizes of dust from Guangzhou and the e-waste site, respectively. The levels and compositions of OPEs were consistent in different fractions of dust from Guangzhou. The highest concentrations of OPEs were found in the finest fraction of dust from the e-waste site. OPEs in Guangzhou dust showed decreasing bioaccessibility when the log KOW of FRs increased from 4 to 11. The bioaccessibility of most OPEs in dust from the e-waste site was much lower than those in Guangzhou dust, indicating low bioaccessibility in the components of dust, such as e-waste debris, from the e-waste site. The human exposure risks of OPEs in dust from Guangzhou were generally higher than those in dust from the e-waste site. Chitosan and montmorillonite could significantly decrease the bioaccessibility of all OPEs, except for tri-ethyl phosphate (TEP) and tris‑(2‑butoxyethyl) phosphate (TBOEP) in dust (p < 0.05), indicating chitosan and montmorillonite as promising food additives to enhance the elimination of OPEs.
Collapse
Affiliation(s)
- Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shuling Ru
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
30
|
Velázquez-Gómez M, Hurtado-Fernández E, Lacorte S. Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1354-1370. [PMID: 30340281 DOI: 10.1016/j.scitotenv.2018.08.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 05/27/2023]
Abstract
Dust is a complex but increasingly used matrix to assess human exposure to organic contaminants both in indoor and outdoor environments. Knowledge concerning the effects of organic pollution towards health outcome is crucial. This study is aimed to determine the presence of legacy compounds (DDTs and polychlorinated biphenyls, PCBs), compounds used in recent times (organophosphorous flame retardants, organophosphorous pesticides, BPA, phthalates and alkylphenols) and compounds originated from combustion processes (polycyclic aromatic hydrocarbons, PAHs) as well as nicotine in indoor environments along the metropolitan area of Barcelona. Monitored sites include public areas with high turnout (high schools, museums samples) and libraries and private spaces (houses and cars). Almost all compounds (57 over the 59 targeted) were found in each dust sample and libraries and schools were the most contaminated, with concentrations of ∑phthalates and ∑OPFRs up to 15 and 10 mg g-1, respectively. One-way ANOVA tests, Tukey contrasts and principal component analysis (PCA) revealed that sampling place influenced the observed contamination profiles and public and private environments were clearly differentiated. Finally, based on the concentrations detected, a deterministic calculation was performed to estimate the total daily intakes of each compound via dust. This information was used to evaluate the human exposure for toddlers, teenagers and adult workers. Consistently, the highest concentrations coming from plasticisers and flame retardants gave the major exposure rates. As expected, toddlers were the most affected group followed by museum and library workers, although the levels were below the reference doses.
Collapse
Affiliation(s)
- M Velázquez-Gómez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Hurtado-Fernández
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - S Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
31
|
Die Q, Nie Z, Huang Q, Yang Y, Fang Y, Yang J, He J. Concentrations and occupational exposure assessment of polybrominated diphenyl ethers in modern Chinese e-waste dismantling workshops. CHEMOSPHERE 2019; 214:379-388. [PMID: 30267911 DOI: 10.1016/j.chemosphere.2018.09.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
In this work, the concentrations of polybrominated diphenyl ethers (PBDEs) were determined in air, dust and fly ash samples from three legal waste electrical and electronic equipment dismantling plants with strict pollution controls. The risks posed by PBDEs to workers at the plants were assessed. The atmospheric concentrations of PBDEs in the different e-waste recycling workshops were 0.58-2.89 × 103 ng/m3, and predominantly distributed in the particle phase (90.7%-99.9%). The concentrations of the PBDEs in the floor dust and fly ash samples from bag-type dust collectors in different workshops were 2.39-125 μg/g, 5.84-128 μg/g, respectively. The contributions of BDE-209 in air, floor dust and fly ash samples were 84.0%-97.9%, 11.2%-95.3% and 74.0%-94.9%, respectively, indicating that deca-BDE commercial formulations were their major sources. Daily exposure to PBDEs was also lower than has been found for workers in other recycling workshops. Human exposures to BDE-47, BDE-99, BDE-153, and BDE-209 were all below the levels considered to pose appreciable risks. Dust ingestion was the main exposure route for manual recyclers, and inhalation was the main exposure route for waste transportation workers. The results of this study indicate that PBDEs emissions and risks are lower in modern, legal e-waste recycling facilities with effective pollution controls. However, the effectiveness of the pollution controls need to be further researched in plastic crushing areas.
Collapse
Affiliation(s)
- Qingqi Die
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Nie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
32
|
Ait Bamai Y, Araki A, Nomura T, Kawai T, Tsuboi T, Kobayashi S, Miyashita C, Takeda M, Shimizu H, Kishi R. Association of filaggrin gene mutations and childhood eczema and wheeze with phthalates and phosphorus flame retardants in house dust: The Hokkaido study on Environment and Children's Health. ENVIRONMENT INTERNATIONAL 2018; 121:102-110. [PMID: 30195067 DOI: 10.1016/j.envint.2018.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIM Exposure to phthalates and phosphorus flame retardants (PFRs) is considered to be a risk factor for asthma and allergies. However, little is known about the contribution of loss-of-function mutations in the gene encoding filaggrin (FLG) gene, which are considered to be predisposing factors for eczema and asthma, to these associations. We investigated the associations between exposure to phthalates and PFRs in dust and eczema/wheeze among Japanese children, taking into consideration loss-of-function mutations in FLG. METHODS This study was part of the Hokkaido study on Environment and Children's Health. Seven phthalates and 11 PFRs in household dust were measured by gas chromatography-mass spectrometry. Eczema and wheeze were assessed in children aged 7 years using the International Study of Asthma and Allergies in Childhood questionnaire. Eight FLG mutations previously identified in the Japanese population were extracted from cord blood samples. Children with one or more FLG mutations were considered to be positive for FLG mutations. The study included 296 children who had complete data (birth records, FLG mutations, first trimester and 7 years questionnaires, and phthalate/PFR levels). Odds ratios (ORs) and 95% confidential intervals (CIs) of eczema and wheeze were calculated for log-transformed phthalate/PFR levels by logistic regression. We also performed stratified analyses based on FLG mutations. RESULTS The prevalence rates of eczema and wheeze were 20.6% and 13.9%, respectively. Among children without any FLG mutations, tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP) increased the OR of wheeze, (OR: 1.22, CI: 1.00-1.48). Significant p values for trends were found between tris (2-butoxyethyl) phosphate (TBOEP) and eczema and di-iso-nonyl phthalate (DiNP) and eczema among children without any FLG mutations, respectively. CONCLUSIONS Despite our limited sample size and cross-sectional study design, the effects of indoor environmental factors on childhood eczema and wheeze were clearer in children without loss-of-function mutations in FLG than in children with mutations. Children with FLG mutations might already be cared for differently in terms of medication or parental lifestyle. Further studies in larger populations are warranted so that severity of symptoms and combinations of FLG mutations can be investigated.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan.
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
33
|
Araki A, Bastiaensen M, Ait Bamai Y, Van den Eede N, Kawai T, Tsuboi T, Ketema RM, Covaci A, Kishi R. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. ENVIRONMENT INTERNATIONAL 2018; 119:438-446. [PMID: 30031263 DOI: 10.1016/j.envint.2018.07.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Phosphate flame retardants (PFRs) are ubiquitously detected in indoor environments. Despite increasing health concerns pertaining to PFR exposure, few epidemiological studies have examined PFR exposure and its effect on children's allergies. OBJECTIVES To investigate the association between PFRs in house dust, their metabolites in urine, and symptoms of wheeze and allergies among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. House dust samples were collected from upper-surface objects. Urine samples were collected from the first morning void. Levels of 11 PFRs in dust and 14 PFR metabolites in urine were measured. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood questionnaire. The odds ratios (ORs) of the Ln transformed PFR concentrations and categorical values were calculated using a logistic regression model adjusted for sex, grade, dampness index, annual house income, and creatinine level (for PFR metabolites only). RESULTS The prevalence rates of wheeze, rhinoconjunctivitis, and eczema were 22.7%, 36.7%, and 28.1%, respectively. A significant association between tris(1,3-dichloroisopropyl) phosphate (TDCIPP) in dust and eczema was observed: OR (95% confidence interval), 1.44 (1.13-1.82) (>limit of detection (LOD) vs <LOD). The ORs for rhinoconjunctivitis (OR = 5.01 [1.53-16.5]) and for at least one symptom of allergy (OR = 3.87 [1.22-12.3]) in the 4th quartile of Σtris(2-chloro-isopropyl) phosphate (TCIPP) metabolites was significantly higher than those in the 1st quartile, with significant p-values for trend (Ptrend) (0.013 and 0.024, respectively). A high OR of 2.86 (1.04-7.85) (>LOD vs <LOD) was found for hydroxy tris(2-butoxyethyl) phosphate (TBOEP)-OH and eczema. OR of the 3rd tertile of bis (1,3-dichloro-2-propyl) phosphate (BDCIPP) was higher than the 1st tertile as a reference for at least one symptom (OR = 3.91 [1.25-12.3]), with a significant Ptrend = 0.020. CONCLUSIONS We found that TDCIPP in house dust, and metabolites of TDCIPP, TBOEP and TCIPP were associated with children's allergic symptoms. Despite some limitations of this study, these results indicate that children's exposure to PFR may impact their allergic symptoms.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Rahel Mesfin Ketema
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan; Hokkaido University, Graduate School of Health Sciences, Kita 12, Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
34
|
Li W, Shi Y, Gao L, Wu C, Liu J, Cai Y. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:566-575. [PMID: 29885627 DOI: 10.1016/j.envpol.2018.05.092] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/28/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
As a major group of plasticizers and flame-retardants, organophosphate esters (OPEs) have attracted particular attention due to their wide occurrence and potential impacts on human health and ecosystems. In the present study, the occurrence and distribution of 14 OPEs, including seven Alkyl-OPEs, three Cl-OPEs, and four Aryl-OPEs, were investigated in 65 road dust samples collected from November to December 2014 in Beijing, China. Cl-OPEs were the predominant compounds in the road dust samples, with the median concentration of 646 μg/kg, followed by the Alkyl-OPEs (median 135 μg/kg) and Aryl-OPEs (median 129 μg/kg). Tris(2-chloro-1-methylethyl) phosphate (TCPP) was the most abundant OPE with the median concentration of 384 μg/kg. In addition, OPEs levels showed significant difference (p < 0.05) in the spatial distribution. Markedly higher levels of OPEs were observed in 2nd and 3rd ring road with heavy traffic and high population density, indicating that the traffic and population were important factors for this distribution pattern. It was further supported by the analysis of OPEs in roadside soil and indoor dust in the vicinity of road dust sample sites. Finally, the average daily dose (ADD) for OPEs via inhalation, dermal absorption, and ingestion was calculated to evaluate the carcinogenic and non-carcinogenic risks to residents exposed to OPEs in the road dust. Risk assessment revealed that the risk originating from exposure to OPEs of road dust is currently low in Beijing, China.
Collapse
Affiliation(s)
- Wenhui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Civil and Environment Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Gao
- Thermofisher Scientific China Limited Application Research Center, Beijing, 100102, China
| | - Chuandong Wu
- Civil and Environment Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiemin Liu
- Civil and Environment Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
35
|
Arnold K, Teixeira JP, Mendes A, Madureira J, Costa S, Salamova A. A pilot study on semivolatile organic compounds in senior care facilities: Implications for older adult exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:908-915. [PMID: 29860215 DOI: 10.1016/j.envpol.2018.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of five groups of semivolatile organic compounds (SVOCs) (total of ∼120 distinct chemicals) was investigated in senior care facilities in the United States and in Portugal. Indoor settled dust samples were collected from fourteen facilities, and the concentrations of organophosphate esters (OPEs), brominated flame retardants (BFRs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) were measured in these samples. Overall, OPEs, PAHs, and BFRs were the most abundant, and OCPs and PCBs were the least abundant SVOC groups in dust collected from both U.S. and Portuguese facilities. ∑OPE, ∑PAH, and ∑BFR concentrations were significantly higher in U.S. facilities than those in Portuguese facilities (P < 0.001), while ∑OCP and ∑PCB concentrations were not different between the two countries (P < 0.05). The samples were collected from three different microenvironments, including bedrooms, living rooms, and corridors. ∑OPE, ∑PAH, and ∑BFR concentrations were up to five times higher in corridors compared to bedrooms and living rooms. ∑OCP and ∑PCB concentrations were overall higher in bedrooms and in living rooms and lower in corridors.
Collapse
Affiliation(s)
- Karen Arnold
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States
| | - João Paulo Teixeira
- National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Ana Mendes
- National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Joana Madureira
- National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Solange Costa
- National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Amina Salamova
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
36
|
Audy O, Melymuk L, Venier M, Vojta S, Becanova J, Romanak K, Vykoukalova M, Prokes R, Kukucka P, Diamond ML, Klanova J. PCBs and organochlorine pesticides in indoor environments - A comparison of indoor contamination in Canada and Czech Republic. CHEMOSPHERE 2018; 206:622-631. [PMID: 29778940 DOI: 10.1016/j.chemosphere.2018.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are restricted compounds that are ubiquitously detected in the environment, including indoor matrices such as air and residential dust. We report concentrations of PCBs and selected OCPs in indoor air and dust from homes in Canada (23 homes) and Czech Republic (20 homes). Indoor air concentrations of PCBs and OCPs were ∼10 times higher than that outdoors. PCB concentrations of ∼450 ng/m3 were similar in both countries, higher in homes built before the restrictions on PCBs, and had congener profiles consistent with PCB mixtures manufactured or used in each country. All OCP air concentrations were higher in the Czech Republic than in the Canadian samples, suggesting greater indoor use of, for example, DDT and HCH. These data emphasize the persistence of these organochlorine compounds indoors and their presence in homes even decades after new usage was prohibited. Indoor levels of these legacy POPs remain at similar concentrations to compounds of current concern, such as brominated flame retardants and perfluorinated alkyl substances, emphasizing that they deserve ongoing attention in view of knowledge of PCB and OCP toxicity.
Collapse
Affiliation(s)
- Ondrej Audy
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic.
| | - Marta Venier
- School of Public and Environmental Affairs, Indiana University, 702 Walnut Grove Avenue, Bloomington, IN, 47405, United States
| | - Simon Vojta
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Jitka Becanova
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Kevin Romanak
- School of Public and Environmental Affairs, Indiana University, 702 Walnut Grove Avenue, Bloomington, IN, 47405, United States
| | - Martina Vykoukalova
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Roman Prokes
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Petr Kukucka
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, M5S 3B1, Canada
| | - Jana Klanova
- RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, 62500, Brno, Czech Republic
| |
Collapse
|
37
|
Ali N, Ibrahim Ismail IM, Kadi MW, Salem Ali Albar HM. Currently used organophosphate flame retardants determined in the settled dust of masjids and hotels of Saudi Arabia, a new insight into human health implications of dust exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:798-805. [PMID: 29629467 DOI: 10.1039/c8em00014j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Indoor settled dust particles are considered as an important source of human exposure to chemicals such as organophosphate flame retardants (PFRs). In recent decades the Kingdom of Saudi Arabia (KSA) has experienced tremendous growth in population, as a result the number of masjids has also increased significantly to provide sufficient space for the public to offer prayers. The hospitality industry in KSA is also expanding to cater for the ever-increasing number of pilgrims visiting the two holy cities of the kingdom. However, limited data are available on the indoor pollution of masjids and hotels. In this study, PFRs were analyzed in the settled dust collected from various hotels and masjids of Jeddah, KSA. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloro-2-propyl) phosphate (TCPP) were the major PFRs in masjid (median = 2490 and 2055 ngg-1) and hotel (median = 2360 and 3315 ngg-1) dust, respectively. A public health risk assessment was carried out by determining the incremental lifetime cancer risk (ILCR), and daily exposure via dust ingestion, inhalation, and dermal contact of PFRs. The calculated daily exposure via dust ingestion was well below the reference dose (RfD) values, and also the calculated hazardous quotient (HQ) and carcinogenic risk were well below the risk mark. However, the ILCR for PFRs was below the reference values of USEPA, which suggested that long-term exposure to these chemicals has a limited cause for concern. The study showed that the general public is exposed to PFRs in the studied microenvironments and the major exposure routes are dermal contact and ingestion.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Sciences, King Abdulaziz University, PO Box: 80216, Jeddah21589, Saudi Arabia.
| | | | | | | |
Collapse
|
38
|
Sohail M, Eqani SAMAS, Podgorski J, Bhowmik AK, Mahmood A, Ali N, Sabo-Attwood T, Bokhari H, Shen H. Persistent organic pollutant emission via dust deposition throughout Pakistan: Spatial patterns, regional cycling and their implication for human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:829-837. [PMID: 29146075 DOI: 10.1016/j.scitotenv.2017.08.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
In the current study, Persistent Organic Pollutants (POPs) in outdoor dustfall was monitored for the first time along the Indus river system of Pakistan. Among the studied OCPs (ng/g, dry weight), DDTs (0.16-62) were the predominant contaminants identified in deposited dust followed by HCHs (0.1-10.2), HCB (0.09-7.4) and chlordanes (0.1-2.8). The indicative diagnostic ratio for DDTs and HCHs suggested recent emission of DDTs as well as historical emission of both chemicals in regions where they were used for crop protection and malarial control. The levels of ∑31PCBs (ng/g, dry weight) in dust ranged from 0.95-125, and compositional profiles suggested arochlor-1248, -1254 commercial mixtures as source. A few exceptions were samples from urban areas that reflected the use of aroclor-1260, and-1262 and/or unintentional leakage from several industrial processes. The WHO05-TEQ values for dioxin-like PCBs (with major contributions of PCB-126) were found to be 0.07-34.5 (median; 1.87) pg TEQg-1dw for all the studied samples. Correlation analysis identified that DDTs, HCHs, HCB and PCBs were significantly associated (r=90; p<0.01) with dusts collected in proximity to urban centers with widespread anthropogenic activities in these areas. A few cases where high levels of POPs from remote mountain highlands were detected, point to the potential for long range transport of these chemicals. Human risk assessment analysis of contaminated dust showed that DDTs and PCBs are major constituent chemicals of concern with regard to the development of cancer in children, with ingestion being the main route of exposure of dust-borne DDTs (0.12-1.03×10-6) and PCBs (0.86-12.43×10-6).
Collapse
Affiliation(s)
- Muhammad Sohail
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Habib Bokhari
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
39
|
Björnsdotter MK, Romera-García E, Borrull J, de Boer J, Rubio S, Ballesteros-Gómez A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. ENVIRONMENT INTERNATIONAL 2018; 112:59-67. [PMID: 29268159 DOI: 10.1016/j.envint.2017.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Phosphate flame retardants (PFRs) are ubiquitous chemicals in the indoor environment. Diphenyl phosphate (DPHP) is a major metabolite and a common biomarker of aryl-PFRs. Since it is used as a chemical additive and it is a common impurity of aryl-PFRs as well as a degradation product, its presence in indoor dust as an additional source of exposure should not be easily ruled out. In this study, DPHP (and TPHP) are measured in indoor dust in samples collected in Spain and in the Netherlands (n=80). Additionally, the presence of other emerging aryl-PFRs was monitored by target screening. TPHP and DPHP were present in all samples in the ranges 169-142,459ng/g and 106-79,661ng/g, respectively. DPHP concentrations were strongly correlated to the TPHP levels (r=0.90, p<0.01), suggesting that DPHP could be present as degradation product of TPHP or other aryl-PFRs. Estimated exposures for adults and toddlers in Spain to TPHP and DPHP via dust ingestion (country for which the number of samples was higher) were much lower than the estimated reference dose (US EPA) for TPHP. However, other routes of exposure may contribute to the overall internal exposure (diet, dermal contact with dust/consumer products and inhalation of indoor air). The estimated urinary DPHP levels for adults and toddlers in Spain (0.002-0.032ng/mL) as a result of dust ingestion were low in comparison with the reported levels, indicating a low contribution of this source of contamination to the overall DPHP exposure. Other aryl-PFRs, namely cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), 2-ethylhexyl diphenyl phosphate (EDPHP), isodecyl diphenyl phosphate (IDP) and bisphenol A bis(diphenyl phosphate) (BDP), were all detected in indoor dust, however, with lower frequency.
Collapse
Affiliation(s)
- Maria K Björnsdotter
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Encarnación Romera-García
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Josep Borrull
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain.
| |
Collapse
|
40
|
Iqbal M, Syed JH, Breivik K, Chaudhry MJI, Li J, Zhang G, Malik RN. E-Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13895-13905. [PMID: 29134799 DOI: 10.1021/acs.est.7b03159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Informal e-waste recycling activities have been shown to be a major emitter of organic flame retardants (FRs), contributing to both environmental and human exposure to laborers at e-waste recycling sites in some West African countries, as well as in China and India. The main objective of this study was to determine the levels of selected organic FRs in both air and soil samples collected from areas with intensive informal e-waste recycling activities in Karachi, Pakistan. Dechlorane Plus (DP) and "novel" brominated flame retardants (NBFRs) were often detected in high concentrations in soils, while phosphorus-based FRs (OPFRs) dominated atmospheric samples. Among individual substances and substance groups, decabromodiphenyl ether (BDE-209) (726 ng/g), decabromodiphenyl ethane (DBDPE) (551 ng/g), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) (362 ng/g), and triphenyl-phosphate (∑TPP) (296 ng/g) were found to be prevalent in soils, while OPFR congeners (5903-24986 ng/m3) were prevalent in air. The two major e-waste recycling areas (Shershah and Lyari) were highly contaminated with FRs, suggesting informal e-waste recycling activities as a major emission source of FRs in the environment in Karachi City. However, the hazards associated with exposure to PM2.5 appear to exceed those attributed to exposure to selected FRs via inhalation and soil ingestion.
Collapse
Affiliation(s)
- Mehreen Iqbal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University , Islamabad 45320, Pakistan
| | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- Department of Meteorology, COMSATS Institute of Information Technology (CIIT) , Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Knut Breivik
- Norwegian Institute for Air Research , Box 100, NO-2027 Kjeller, Norway
- University of Oslo , Department of Chemistry, Box 1033, NO-0315 Oslo, Norway
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University , Islamabad 45320, Pakistan
| |
Collapse
|
41
|
Zhou L, Hiltscher M, Püttmann W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. INDOOR AIR 2017; 27:1113-1127. [PMID: 28556503 DOI: 10.1111/ina.12397] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We analyzed organophosphate flame retardants (OPFRs) in 74 indoor dust samples collected from seven microenvironments (building material markets, private cars, daycare centers, private homes, floor/carpet stores, offices, and schools) in the Rhine/Main region of Germany. Ten of 11 target OPFRs were ubiquitously detected, some with more than 97% detection frequency, including tris(1,3-dichloroisopropyl)phosphate (TCIPP), tris(2-butoxyethyl)phosphate (TBOEP), triphenyl phosphate (TPHP), and tris(isobutyl) phosphate (TIBP). Total concentrations (∑OPFRs) ranged from 5.9 to 4800 μg/g, with TBOEP and TCIPP being the most abundant congeners. The ∑OPFRs in schools, private cars, offices, and daycare centers were significantly (P<.05) higher than in private homes. The ∑OPFRs for building material markets (19 μg/g) and floor/carpet stores (20 μg/g) showed no significant difference to the other microenvironments, likely because of forced ventilation. The profiles of OPFRs in dust samples from offices and private homes were highly similar, while profiles from the other five microenvironments were substantially different. Comparison of our results with previous studies indicates a significant global variation in OPFR concentrations and their profiles, reflecting distinct fire safety regulations in different countries and/or different sampling strategies. Dust ingestion constitutes the major exposure pathway to OPFRs for toddlers, while air inhalation is the major pathway for adults.
Collapse
Affiliation(s)
- L Zhou
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - M Hiltscher
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - W Püttmann
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Malliari E, Kalantzi OI. Children's exposure to brominated flame retardants in indoor environments - A review. ENVIRONMENT INTERNATIONAL 2017; 108:146-169. [PMID: 28863388 DOI: 10.1016/j.envint.2017.08.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 05/19/2023]
Abstract
The aim of this review is to present up-to-date research on children's exposure to brominated flame retardants (BFRs) in indoor environments. Large geographical variations were observed for all BFRs [polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA)], with the highest concentrations of PBDEs measured in North America (BDE-47) and Europe (BDE-209), where higher concentrations of PBDEs are present in dust from houses, daycare centers and primary schools. In Asia the highest PBDE concentrations were measured in China, near e-waste recycling areas. In the Middle East, Australia and Africa BFR levels were low in most indoor spaces. Asian countries also have the highest concentrations of TBBPA and HBCDD, followed by European countries. Fewer studies have been conducted measuring novel and emerging BFRs (NBFRs or EBFRs), of which decabromodiphenylethane (DBDPE) has the highest concentration in indoor environments, especially in China. The vast majority of children's exposure studies have been conducted in houses, sampling either dust or air, and considerably fewer in schools, daycare centers, cars and public facilities, despite BFR levels being comparable to (or sometimes even higher than) house dust. Relatively fewer studies focused on children's tissues such as serum, and only two studied exposure via mouthing toys. Alternative noninvasive sampling matrices that may act as surrogates for exposure to BFRs such as handwipes and silicone wristbands have recently started to gain momentum, because of the ease of sampling, faster collection time and better correlations to serum than house dust. Feces sampling is another promising alternative to children's serum that warrants further research. While many studies have associated different indoor environment characteristics, there is a knowledge gap on the association between children's behaviour and activity patterns and their exposure to BFRs, as well as data on infant exposure to BFRs via baby products. Results from the studies showed that dust ingestion was the dominant exposure pathway for most studied BFRs compared to indoor air inhalation and dermal contact, especially for infants and toddlers who have higher exposures than older children.
Collapse
|
43
|
Toxicokinetic of tris(2-butoxyethyl) phosphate (TBOEP) in humans following single oral administration. Arch Toxicol 2017; 92:651-660. [DOI: 10.1007/s00204-017-2078-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
44
|
Castorina R, Butt C, Stapleton HM, Avery D, Harley KG, Holland N, Eskenazi B, Bradman A. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort). CHEMOSPHERE 2017; 179:159-166. [PMID: 28365501 PMCID: PMC5491392 DOI: 10.1016/j.chemosphere.2017.03.076] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 05/18/2023]
Abstract
Organophosphate flame retardants (PFRs), used in consumer products since the 1970s, persist in the environment. Restrictions on penta-polybrominated diphenyl ether (PBDE) flame retardants resulted in increased use of Firemaster® 550 (FM® 550), and the organophosphate triesters: tris(1,3- dichloro-2-propyl) phosphate (TDCIPP); tris(chloropropyl) phosphate (TCIPP); tris(2-chloroethyl) phosphate (TCEP); and triphenyl phosphate (TPHP). The objectives of this study were to (1) identify determinants of flame retardants (4 PFRs, PentaBDEs and FM® 550) in house dust, (2) measure urinary PFR metabolites in pregnant women, and (3) estimate health risks from PFR exposure. We measured flame retardants in house dust (n = 125) and metabolites in urine (n = 310) collected in 2000-2001 from Mexican American women participating in the CHAMACOS birth cohort study in California. We detected FM® 550 and PFRs, including two (TCEP and TDCIPP) known to the state of California to cause cancer, in most dust samples. The maximum TCEP and TDCIPP dust levels were among the highest ever reported although the median levels were generally lower compared to other U.S. cohorts. Metabolites of TDCIPP (BDCIPP: bis(1,3-dichloro-2-propyl) phosphate) and TPHP (DPHP: diphenyl phosphate) were detected in 78% and 79% of prenatal urine samples, respectively. We found a weak but positive correlation between TPHP in dust and DPHP in 124 paired prenatal urine samples (Spearman rho = 0.17; p = 0.06). These results provide information on PFR exposure and risk in pregnant women from the early 2000's and are also valuable to assess trends in exposure and risk given changing fire safety regulations and concomitant changes in chemical flame retardant use.
Collapse
Affiliation(s)
- Rosemary Castorina
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA.
| | - Craig Butt
- Duke University, Nicholas School of the Environment, 450 Research Drive, Durham, NC, 27519, USA
| | - Heather M Stapleton
- Duke University, Nicholas School of the Environment, 450 Research Drive, Durham, NC, 27519, USA
| | - Dylan Avery
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA
| |
Collapse
|
45
|
Kademoglou K, Xu F, Padilla-Sanchez JA, Haug LS, Covaci A, Collins CD. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. ENVIRONMENT INTERNATIONAL 2017; 102:48-56. [PMID: 28190611 DOI: 10.1016/j.envint.2016.12.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 05/22/2023]
Abstract
Indoor dust has been acknowledged as a major source of flame retardants (FRs) and dust ingestion is considered a major route of exposure for humans. In the present study, we investigated the presence of PBDEs and alternative FRs such as emerging halogenated FRs (EHFRs) and organophosphate flame retardants (PFRs) in indoor dust samples from British and Norwegian houses as well as British stores and offices. BDE209 was the most abundant PBDE congener with median concentrations of 4700ngg-1 and 3400ngg-1 in UK occupational and house dust, respectively, 30 and 20 fold higher than in Norwegian house dust. Monomeric PFRs (m-PFRs), including triphenyl phosphate (TPHP), tris(chloropropyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) dominated all the studied environments. To the best of our knowledge, this is the first report of isodecyldiphenyl phosphate (iDPP) and trixylenyl phosphate (TXP) in indoor environments. iDPP was the most abundant oligomeric PFR (o-PFR) in all dust samples, with median concentrations one order of magnitude higher than TXP and bisphenol A bis(diphenyl phosphate (BDP). iDPP and TXP worst-case scenario exposures for British workers during an 8h exposure in the occupational environment were equal to 34 and 1.4ngkgbw-1day-1, respectively. The worst-case scenario for BDE209 estimated exposure for British toddlers (820ngkgbw-1day-1) did not exceeded the proposed reference dose (RfD) (7000ngkgbw-1day-1), while exposures for sum of m-PFRs (Σm-PFRs) in British toddlers and adults (17,900 and 785ngkgbw-1day-1 respectively) were an order of magnitude higher than for Norwegian toddlers and adults (1600 and 70ngkgbw-1day-1).
Collapse
Affiliation(s)
| | - Fuchao Xu
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | | | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Chris D Collins
- Soil Research Centre, University of Reading, Reading RG6 6DW, UK.
| |
Collapse
|
46
|
Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem Toxicol 2017; 100:1-7. [DOI: 10.1016/j.fct.2016.12.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 02/01/2023]
|
47
|
Civan MY, Kara UM. Risk assessment of PBDEs and PAHs in house dust in Kocaeli, Turkey: levels and sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23369-23384. [PMID: 27638794 DOI: 10.1007/s11356-016-7512-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/23/2016] [Indexed: 05/04/2023]
Abstract
Indoor dust samples were collected from 40 homes in Kocaeli, Turkey and were analyzed simultaneously for 14 polybrominated diphenyl ethers (PBDEs) and 16 poly aromatic hydrocarbons (PAHs) isomers. The total concentrations of PBDEs (Σ14PBDEs) ranged from 29.32 to 4790 ng g-1, with a median of 316.1 ng g-1, while the total indoor dust concentrations of 16 PAHs (Σ16PAHs) extending over three to four orders of magnitude ranged from 85.91 to 40,359 ng g-1 with a median value of 2489 ng g-1. Although deca-PBDE products (BDE-209) were the principal source of PBDEs contamination in the homes (median, 138.3 ng g-1), the correlation in the homes was indicative of similar sources for both the commercial penta and deca-PBDE formulas. The PAHs diagnostic ratios indicated that the main sources of PAHs measured in the indoor samples could be coal/biomass combustion, smoking, and cooking emissions. For children and adults, the contributions to ∑14PBDEs exposure were approximately 93 and 25 % for the ingestion of indoor dust, and 7 and 75 % for dermal contact. Exposure to ∑16PAHs through dermal contact was the dominant route for both children (90.6 %) and adults (99.7 %). For both groups, exposure by way of inhalation of indoor dust contaminated with PBDEs and PAHs was negligible. The hazard index (HI) values for BDE-47, BDE-99, BDE-153, and BDE-209 were lower than the safe limit of 1, and this result suggested that none of the population groups would be likely to experience potential health risk due to exposure to PBDEs from indoor dust in the study area. Considering only ingestion + dermal contact, the carcinogenic risk levels of both B2 PAHs and BDE-209 for adults were 6.2 × 10-5 in the US EPA safe limit range while those for children were 5.6 × 10-4 and slightly higher than the US EPA safe limit range (1 × 10-6 and 1 × 10-4). Certain precautions should be considered for children.
Collapse
Affiliation(s)
- Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey.
| | - U Merve Kara
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| |
Collapse
|
48
|
Jonker W, Ballesteros-Gómez A, Hamers T, Somsen GW, Lamoree MH, Kool J. Highly Selective Screening of Estrogenic Compounds in Consumer-Electronics Plastics by Liquid Chromatography in Parallel Combined with Nanofractionation-Bioactivity Detection and Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12385-12393. [PMID: 27934237 DOI: 10.1021/acs.est.6b03762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical safety of consumer products is an issue of emerging concern. Plastics are widely used, e.g. as casings of consumer electronics (TVs, computers, routers, etc.), which are present in houses and offices in continuously increasing numbers. In this study, we investigate the estrogenic activity of components of plastics coming from electronics' casings. A recently developed fractionation platform for effect-directed analysis (EDA) was used. This platform combines reversed-phase liquid chromatography in parallel with bioassay detection via nanofractionation and with online high-resolution time-of-flight mass spectrometry (TOFMS) for the identification of bioactives. Four out of eight of the analyzed plastics samples showed the presence of estrogenic compounds. Based on the MS results these were assigned to bisphenol A (BPA), 2,4-di-tert-butylphenol, and a possible bisphenol A analog. All samples contained flame retardants, but these did not show any estrogenicity. The observed BPA, however, could be an impurity of tetrabromo-BPA (TBBPA) or TBBPA-based flame retardants. Due to the plausible migration of additives from plastics into the environment, plastics from consumer electronics likely constitute a source of estrogenic compound contamination in the indoor environment.
Collapse
Affiliation(s)
- Willem Jonker
- Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ana Ballesteros-Gómez
- Institute for Environmental Studies, Vrij Universiteit Amsterdam , De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Timo Hamers
- Institute for Environmental Studies, Vrij Universiteit Amsterdam , De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Marja H Lamoree
- Institute for Environmental Studies, Vrij Universiteit Amsterdam , De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
49
|
Zhang X, Zou W, Mu L, Chen Y, Ren C, Hu X, Zhou Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:686-693. [PMID: 27484948 DOI: 10.1016/j.jhazmat.2016.07.055] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/25/2016] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
Although organophosphate flame retardants (OPFRs) have been shown to accumulate in abiotic and biotic environmental compartments, data about OPFRs concentrations in various foods are limited and are none in humans through diets. In this work, the concentrations of 6 typical OPFRs were investigated in 50 rice samples, 75 commonly consumed foods and 45 human hair samples from China. The dietary intakes of OPFRs for adult people via food ingestion were estimated. The concentrations of ΣOPFRs in foods ranged from 0.004ng/g to 287ng/g. OPFRs were detected in 53.3% of the human hair samples. The highest OPFRs concentrations were found in rice and vegetables. Tri(2-chloroethyl)phosphate(TCEP), tris(2-chloroisopropyl)phosphate(TCIPP), and tri(2-ethyltexyl)phosphate(TEHP) were predominant in all food samples. OPFRs concentrations in foods were not significantly affected by the packaging materials. The mean dietary intakes of ΣOPFRs for adult males and females were 539 and 601ng/kg body weight/day, respectively. The greatest contribution to these values is from rice, accounting for approximately 60% of the total intake, particularly from rice protein. Rice ingestion was considered a potential major pathway for human exposure to OPFRs, and regional differences in the levels of OPFRs in foods and dietary differences should be given more attention in the future.
Collapse
Affiliation(s)
- Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Yuming Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
50
|
El-Mubarak AH, Rushdi AI, Al-Mutlaq KF, Al Mdawi FZ, Al-Hazmi K, Dumenden RS, Pascua RA. Polycyclic aromatic hydrocarbons and trace metals in mosque's carpet dust of Riyadh, Saudi Arabia, and their health risk implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21273-21287. [PMID: 27497850 DOI: 10.1007/s11356-016-7299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque's carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g-1 (mean = 4096 ± 4277 ng g-1) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g-1) and indium was the lowest (1.9 ± 9.3 μg g-1). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10-11 for adult and 1.56 × 10-11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10-4 for Co to 7.58 × 10-1 for Li and for children ranged from 3.70 × 10-3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.
Collapse
Affiliation(s)
- Aarif H El-Mubarak
- Department of Plant Protection and Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry, Faculty of Science, University of Gezira, Wad Medani, Sudan.
| | - Ahmed I Rushdi
- Department of Plant Protection and Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- College of Earth, Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Earth and Environmental Sciences, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Khalid F Al-Mutlaq
- Department of Plant Protection and Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Falah Z Al Mdawi
- Environmental Science Program, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Khalid Al-Hazmi
- Environmental Science Program, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ramil S Dumenden
- Department of Plant Protection and Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Rex A Pascua
- Department of Plant Protection and Chair of Green Energy Research, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|