1
|
Suschak JJ, Bagley K, Shoemaker CJ, Six C, Kwilas S, Dupuy LC, Schmaljohn CS. The Genetic Adjuvants Interleukin-12 and Granulocyte-Macrophage Colony Stimulating Factor Enhance the Immunogenicity of an Ebola Virus Deoxyribonucleic Acid Vaccine in Mice. J Infect Dis 2019; 218:S519-S527. [PMID: 30053157 DOI: 10.1093/infdis/jiy378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In previous studies, we showed that deoxyribonucleic acid (DNA) vaccines expressing codon-optimized filovirus envelope glycoprotein genes protect mice and nonhuman primates from viral challenge when delivered by intramuscular (IM) electroporation (EP). To determine whether we could achieve equivalent immunogenicity and protective efficacy by a simplified delivery method, we generated DNA vaccine plasmids expressing genetic adjuvants to potentiate immune responses. We tested the Th1-inducing cytokine interleukin-12 and the granulocyte growth factor granulocyte-macrophage colony stimulating factor, both of which have demonstrated significant adjuvant effect when included in clinical DNA vaccine formulations. In addition, because interferon (IFN)-αβ is required for DNA vaccine-induced immunity, we tested inclusion of a potent stimulator of the IFN-αβ pathway. Our data suggest that IM vaccination of mice with plasmid DNA encoding genetic adjuvants enhances vaccine immunogenicity, resulting in increased anti-Ebola virus (EBOV) immunoglobulin G and T-cell responses. Codelivery of genetic adjuvants also improved EBOV neutralizing capability compared with vaccine alone. Finally, IM vaccination with plasmid EBOV and genetic adjuvants provided complete protection against EBOV challenge. Overall, our data suggest that codelivery of genetic adjuvants with filovirus DNA vaccines using IM delivery can provide comparable efficacy to the same DNA vaccines when delivered using IM-EP devices.
Collapse
Affiliation(s)
- John J Suschak
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | | | - Charles J Shoemaker
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Carolyn Six
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Steven Kwilas
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Lesley C Dupuy
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Connie S Schmaljohn
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| |
Collapse
|
2
|
Pittala S, Bagley K, Schwartz JA, Brown EP, Weiner JA, Prado IJ, Zhang W, Xu R, Ota-Setlik A, Pal R, Shen X, Beck C, Ferrari G, Lewis GK, LaBranche CC, Montefiori DC, Tomaras GD, Alter G, Roederer M, Fouts TR, Ackerman ME, Bailey-Kellogg C. Antibody Fab-Fc properties outperform titer in predictive models of SIV vaccine-induced protection. Mol Syst Biol 2019; 15:e8747. [PMID: 31048360 PMCID: PMC6497031 DOI: 10.15252/msb.20188747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023] Open
Abstract
Characterizing the antigen-binding and innate immune-recruiting properties of the humoral response offers the chance to obtain deeper insights into mechanisms of protection than revealed by measuring only overall antibody titer. Here, a high-throughput, multiplexed Fab-Fc Array was employed to profile rhesus macaques vaccinated with a gp120-CD4 fusion protein in combination with different genetically encoded adjuvants, and subsequently subjected to multiple heterologous simian immunodeficiency virus (SIV) challenges. Systems analyses modeling protection and adjuvant differences using Fab-Fc Array measurements revealed a set of correlates yielding strong and robust predictive performance, while models based on measurements of response magnitude alone exhibited significantly inferior performance. At the same time, rendering Fab-Fc measurements mathematically independent of titer had relatively little impact on predictive performance. Similar analyses for a distinct SIV vaccine study also showed that Fab-Fc measurements performed significantly better than titer. These results suggest that predictive modeling with measurements of antibody properties can provide detailed correlates with robust predictive power, suggest directions for vaccine improvement, and potentially enable discovery of mechanistic associations.
Collapse
Affiliation(s)
| | | | | | - Eric P Brown
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | | | | | | | - Rong Xu
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | | | - Ranajit Pal
- Advanced Bioscience Laboratories, Inc., Rockville, MD, USA
| | | | - Charles Beck
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - George K Lewis
- Institute for Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Galit Alter
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
3
|
Suschak JJ, Bagley K, Six C, Shoemaker CJ, Kwilas S, Spik KW, Dupuy LC, Schmaljohn CS. The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Res 2018; 159:113-121. [PMID: 30268913 DOI: 10.1016/j.antiviral.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
We have previously shown that DNA vaccines expressing codon-optimized alphavirus envelope glycoprotein genes protect both mice and non-human primates from viral challenge when delivered by intramuscular electroporation (IM-EP). To determine if we could achieve equivalent immunogenicity and protective efficacy in the absence of electroporation, we co-delivered our Venezuelan equine encephalitis virus (VEEV) DNA vaccine with DNA plasmids expressing genetic adjuvants designed to augment immune responses. We tested the Th1-inducing cytokine IL-12 as well as the granulocyte growth factor GM-CSF, both of which have demonstrated significant adjuvant effect when included in clinical DNA vaccine formulations. Additionally, as multiple reports have described the necessity of IFN-αβ in DNA vaccine immunogenicity, we tested vaccine plasmids encoding a potent stimulator of the IFN-αβ pathway. Our data suggest that IM vaccination of mice with plasmid DNA encoding genetic adjuvants enhances VEEV vaccine immunogenicity, resulting in improved T cell responses, as well as skewing of the anti-VEEV IgG antibody isotype. Additionally, IM vaccination of VEEV DNA vaccine and IL-12 provided complete protection against aerosol VEEV challenge. Overall, our data suggest that co-delivery of genetic adjuvants with alphavirus DNA vaccines using IM delivery can influence the type of immune response obtained and provide comparable protective immunity to that achieved by IM-EP delivery of the vaccine without adjuvants.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Encephalitis Virus, Venezuelan Equine
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Interleukin-12/genetics
- Interleukin-12/immunology
- Mice
- Mice, Inbred BALB C
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- John J Suschak
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Carolyn Six
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles J Shoemaker
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven Kwilas
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kristin W Spik
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lesley C Dupuy
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Connie S Schmaljohn
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
4
|
Control of Heterologous Simian Immunodeficiency Virus SIV smE660 Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. J Virol 2018; 92:JVI.00281-18. [PMID: 29793957 PMCID: PMC6052320 DOI: 10.1128/jvi.00281-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms. We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge. IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.
Collapse
|
5
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017. [PMID: 28604157 DOI: 10.1080/21645515.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
6
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017; 13:2837-2848. [PMID: 28604157 PMCID: PMC5718814 DOI: 10.1080/21645515.2017.1330236] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
7
|
The Safety and Immunogenicity of an Interleukin-12-Enhanced Multiantigen DNA Vaccine Delivered by Electroporation for the Treatment of HIV-1 Infection. J Acquir Immune Defic Syndr 2016; 71:163-71. [PMID: 26761518 DOI: 10.1097/qai.0000000000000830] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Therapeutic vaccination is being studied in eradication and "functional cure" strategies for HIV-1. The Profectus Biosciences multiantigen (MAG) HIV-1 DNA vaccine encodes HIV-1 Gag/Pol, Nef/Tat/Vif, and Envelope, and interleukin-12 (IL-12) and is delivered by electroporation combined with intramuscular injection (IM-EP). METHODS Sixty-two HIV-1-infected patients on antiretroviral therapy (plasma HIV-1 RNA levels ≤ 200 copies/mL; CD4(+) T-cell counts ≥ 500 cells/mm(3)) were randomly allocated 5:1 to receive vaccine or placebo. At weeks 0, 4, and 12, 4 consecutive cohorts received 3000 μg HIV MAG pDNA with 0, 50, 250, or 1000 μg of IL-12 pDNA by IM-EP. A fifth cohort received HIV MAG pDNA and 1000 μg of IL-12 pDNA by standard IM injection. RESULTS CD4(+) T cells expressing IL-2 in response to Gag and Pol and interferon-γ responses to Gag, Pol, and Env increased from baseline to week 14 in the low-dose (50-μg) IL-12 arm vs. placebo (P < 0.05; intracellular cytokine staining). The total increase in the IL-2-expressing CD4 T-cell responses to any antigen was also higher in the low-dose IL-12 arm vs. placebo (P = 0.04). Cytokine responses by CD8 T cells to HIV antigens were not increased in any vaccine arm relative to placebo. CONCLUSIONS HIV-1 MAG/low-dose IL-12 DNA vaccine delivered by IM-EP augmented CD4(+) but not CD8(+) T-cell responses to multiple HIV-1 antigens.
Collapse
|
8
|
Valentin A, Li J, Rosati M, Kulkarni V, Patel V, Jalah R, Alicea C, Reed S, Sardesai N, Berkower I, Pavlakis GN, Felber BK. Dose-dependent inhibition of Gag cellular immunity by Env in SIV/HIV DNA vaccinated macaques. Hum Vaccin Immunother 2016; 11:2005-11. [PMID: 26125521 PMCID: PMC4635869 DOI: 10.1080/21645515.2015.1016671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The induction of a balanced immune response targeting the major structural proteins, Gag and Env of HIV, is important for the development of an efficacious vaccine. The use of DNA plasmids expressing different antigens offers the opportunity to test in a controlled manner the influence of different vaccine components on the magnitude and distribution of the vaccine-induced cellular and humoral immune responses. Here, we show that increasing amounts of env DNA results in greatly enhanced Env antibody titers without significantly affecting the levels of anti-Env cellular immune responses. Co-immunization with Env protein further increased antibody levels, indicating that vaccination with DNA only is not sufficient for eliciting maximal humoral responses against Env. In contrast, under high env:gag DNA plasmid ratio, the development of Gag cellular responses was significantly reduced by either SIV or HIV Env, whereas Gag humoral responses were not affected. Our data indicate that a balanced ratio of the 2 key HIV/SIV vaccine components, Gag and Env, is important to avoid immunological interference and to achieve both maximal humoral responses against Env to prevent virus acquisition and maximal cytotoxic T cell responses against Gag to prevent virus spread.
Collapse
Affiliation(s)
- Antonio Valentin
- a Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute at Frederick ; Frederick , MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci U S A 2015; 112:E992-9. [PMID: 25681373 DOI: 10.1073/pnas.1423669112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.
Collapse
|
10
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Jalah R, Kulkarni V, Patel V, Rosati M, Alicea C, Bear J, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Prattipati R, Pinter A, Bess J, Lifson JD, Reed SG, Sardesai NY, Venzon DJ, Valentin A, Pavlakis GN, Felber BK. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques. PLoS One 2014; 9:e91550. [PMID: 24626482 PMCID: PMC3953433 DOI: 10.1371/journal.pone.0091550] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 11/25/2022] Open
Abstract
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
Collapse
Affiliation(s)
- Rashmi Jalah
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jenifer Bear
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lei Yu
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yongjun Guan
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute and Departments of Surgery and Immunology, Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and Departments of Surgery and Immunology, Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rajasekhar Prattipati
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Abraham Pinter
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | | | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
12
|
Kulkarni V, Rosati M, Valentin A, Jalah R, Alicea C, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Irene C, Prattipati R, Pinter A, Sullivan SM, Pavlakis GN, Felber BK. Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Hum Vaccin Immunother 2013; 9:2069-80. [PMID: 23820294 DOI: 10.4161/hv.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Lei Yu
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | | | | | | - Carmela Irene
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Rajasekhar Prattipati
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Abraham Pinter
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | | | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
13
|
Kulkarni V, Rosati M, Bear J, Pilkington GR, Jalah R, Bergamaschi C, Singh AK, Alicea C, Chowdhury B, Zhang GM, Kim EY, Wolinsky SM, Huang W, Guan Y, LaBranche C, Montefiori DC, Broderick KE, Sardesai NY, Valentin A, Felber BK, Pavlakis GN. Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Hum Vaccin Immunother 2013; 9:2081-94. [PMID: 23811579 DOI: 10.4161/hv.25473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A panel of SIVmac251 transmitted Env sequences were tested for expression, function and immunogenicity in mice and macaques. The immunogenicity of a DNA vaccine cocktail expressing SIVmac239 and three transmitted SIVmac251 Env sequences was evaluated upon intradermal or intramuscular injection followed by in vivo electroporation in macaques using sequential vaccination of gp160, gp120 and gp140 expressing DNAs. Both intradermal and intramuscular vaccination regimens using the gp160 expression plasmids induced robust humoral immune responses, which further improved using the gp120 expressing DNAs. The responses showed durability of binding and neutralizing antibody titers and high avidity for>1 y. The intradermal DNA delivery regimen induced higher cross-reactive responses able to neutralize the heterologous tier 1B-like SIVsmE660_CG7V. Analysis of cellular immune responses showed induction of Env-specific memory responses and cytotoxic granzyme B(+) T cells in both vaccine groups, although the magnitude of the responses were ~10x higher in the intramuscular/electroporation group. The cellular responses induced by both regimens were long lasting and could be detected ~1 y after the last vaccination. These data show that both DNA delivery methods are able to induce robust and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Ashish K Singh
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Bhabadeb Chowdhury
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA; Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Eun-Young Kim
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Steven M Wolinsky
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Wensheng Huang
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Celia LaBranche
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | - David C Montefiori
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | | | | | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
14
|
Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, von Gegerfelt A, Huang W, Guan Y, Broderick KE, Sardesai NY, LaBranche C, Montefiori DC, Pavlakis GN, Felber BK. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother 2012; 8:1620-9. [PMID: 22894956 DOI: 10.4161/hv.21407] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4-5 post injection were paralleled by a rapid increase of IFN-γ, indicating bioactivity of the IL-12 cytokine. Both plasma IL-12 and IFN-γ levels were reduced to basal levels by day 14, indicating a short presence of elevated levels of the bioactive IL-12. The effect of IL-12 as adjuvant together with an SIVmac239 DNA vaccine was further examined comparing two groups of rhesus macaques vaccinated in the presence or absence of IL-12 DNA. The IL-12 DNA-adjuvanted group developed significantly higher SIV-specific cellular immune responses, including IFN-γ (+) Granzyme B (+) T cells, demonstrating increased levels of vaccine-induced T cells with cytotoxic potential, and this difference persisted for 6 mo after the last vaccination. Coinjection of IL-12 DNA led to increases in Gag-specific CD4 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets, whereas the Env-specific increases were mainly mediated by the CD8 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets. The IL-12 DNA-adjuvanted vaccine group developed higher binding antibody titers to Gag and mac251 Env, and showed higher and more durable neutralizing antibodies to heterologous SIVsmE660. Therefore, co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL-12 DNA as vaccine adjuvant.
Collapse
Affiliation(s)
- Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Variability of bio-clinical parameters in Chinese-origin Rhesus macaques infected with simian immunodeficiency virus: a nonhuman primate AIDS model. PLoS One 2011; 6:e23177. [PMID: 21850259 PMCID: PMC3151272 DOI: 10.1371/journal.pone.0023177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/07/2011] [Indexed: 11/22/2022] Open
Abstract
Background Although Chinese-origin Rhesus macaques (Ch RhMs) infected with simian immunodeficiency virus (SIV) have been used for many years to evaluate the efficacy of AIDS vaccines and therapeutics, the bio-clinical variability of such a nonhuman primate AIDS model was so far not established. Methodology/Principal Findings By randomizing 150 (78 male and 72 female) Ch RhMs with diverse MHC class I alleles into 3 groups (50 animals per group) challenged with intrarectal (ir) SIVmac239, intravenous (iv) SIVmac239, or iv SIVmac251, we evaluated variability in bio-clinical endpoints for 118 weeks. All SIV-challenged Ch RhMs became seropositive for SIV during 1–2 weeks. Plasma viral load (VL) peaked at weeks 1–2 and then declined to set-point levels as from week 5. The set-point VL was 30 fold higher in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. This difference in plasma VL increased overtime (>100 fold as from week 68). The rates of progression to AIDS or death were more rapid in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. No significant difference in bio-clinical endpoints was observed in animals challenged with ir or iv SIVmac239. The variability (standard deviation) in peak/set-point VL was nearly one-half lower in animals infected with SIVmac239 (ir or iv) than in those infected with SIVmac251 (iv), allowing that the same treatment-related difference can be detected with one-half fewer animals using SIVmac239 than using SIVmac251. Conclusion/Significance These results provide solid estimates of variability in bio-clinical endpoints needed when designing studies using the Ch RhM SIV model and contribute to the improving quality and standardization of preclinical studies.
Collapse
|
16
|
Yin J, Dai A, Shen A, Lecureux J, Lewis MG, Boyer JD. Viral reservoir is suppressed but not eliminated by CD8 vaccine specific lymphocytes. Vaccine 2010; 28:1924-31. [PMID: 20188248 DOI: 10.1016/j.vaccine.2009.10.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It has long been postulated that while CD8 lymphocytes are capable of suppressing human immunodeficiency virus (HIV)-1 replication it is unlikely that the viral reservoirs once formed can be cleared. Our previous studies demonstrate that co-immunizing cynomologous macaques with a simian/human immunodeficiency virus (SHIV) DNA-based vaccines induces a strong cellular immune response that is able to suppress viral replication. We further demonstrated that interleukin (IL)-12 could significantly enhance the vaccine specific CD8 lymphocyte response. In this manuscript cynomologous macaques were vaccinated with a SHIV DNA-based vaccine co-delivered with IL-12. The macaques were then challenged with SHIV89.6p. Two years post-immunization and viral challenge we transiently depleted CD8(+) T cells. Plasma viral load increased, demonstrating the central role of CD8(+) T cells in viral suppression yet an inability to clear the viral reservoirs. Furthermore, in the data presented here, we found a higher number of IFN-gamma producing vaccine specific cells did not enhance suppression of viral replication.
Collapse
Affiliation(s)
- Jiangmei Yin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Blvd., Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The CTL response plays a central part in deciding the outcome of viral infections. Evidence from host and viral genetics, gene expression microarrays and assays of T-cell phenotype and function indicate that individual differences in the efficiency of the virus-specific CTL response strongly determine the outcome of infection with the human retroviruses HTLV-1 and HIV-1. It is now believed that differences in anti-viral CTL efficiency or "quality" at the single-cell level are critical in determining the efficacy of the host response to viruses. However, it is difficult to identify and quantify the reasons for this apparent individual variation in CTL efficiency, because of the chronic course of infection and the dynamical complexity of the equilibrium that is established between the virus and the host immune response. Specifically, it is unclear whether the observed variations among infected hosts, i.e. in the frequency, phenotype and function or quality of T cells, are the causes or effects - or both - of the variation in the efficiency of virus control.
Collapse
|
18
|
Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge. J Virol 2008; 82:10911-21. [PMID: 18753198 DOI: 10.1128/jvi.01129-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.
Collapse
|