1
|
Yalçın HT, Çakır DA, Yirün A, Sanajou S, Işık G, Bozdemir Ö, Özçelik İ, Güdül Bacanlı M, Zeybek ND, Baydar T, Erkekoğlu P. Comparative in vitro and in silico evaluation of the toxic effects of metformin and/or ascorbic acid, new treatment options in the treatment of Melasma. Toxicol Res (Camb) 2025; 14:tfaf025. [PMID: 40040652 PMCID: PMC11878769 DOI: 10.1093/toxres/tfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Melasma is a chronic condition that leads to the buildup of melanin pigment in the epidermis and dermis due to active melanocytes. Even though it is considered a non-life-threatening condition, pigment disorders have a negative impact on quality of life. Since melasma treatment is not sufficient and complicated, new treatment options are sought. Research on metformin and ascorbic acid suggested that they might be used against melasma in the scope of "drug repositioning."The MNT-1 human melanoma cell line was used to assess the effects of metformin, ascorbic acid, and metformin+ascorbic acid combination on cytotoxicity and oxidative stress. Melanin, cAMP, L-3,4-dihydroxyphenylalanine (L-DOPA) and tyrosinase levels were determined by commercial ELISA kits and tyrosinase gene expression was analyzed with RT-qPCR. Cytopathological evaluations were performed by phase contrast microscopy. Tyrosinase expression was determined by immunofluorescence (IF) staining of MNT-1 cells. The online service TargetNet was used for biological target screening. The parameters were not significantly altered by ascorbic acid applied at non-cytotoxic concentrations. On the contrary, metformin dramatically raised tyrosinase and intracellular ROS levels. Moreover, intracellular ROS levels and tyrosinase levels were found to be considerably elevated with the combined treatment. Also, potential metformin and ascorbic acid interactions were determined. According to the results, it can be said that these parameters were not significantly altered by ascorbic acid. On the contrary, metformin dramatically raised tyrosinase and intracellular oxidative stress levels. Moreover, intracellular oxidative stress and tyrosinase levels were elevated with the combined treatment. In conclusion, individual treatments of ascorbic acid or metformin may only provide a limited effect when treating melasma and extensive in vitro and in vivo research are required.
Collapse
Affiliation(s)
- Hülya Tezel Yalçın
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Deniz Arca Çakır
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| | - Anıl Yirün
- Çukurova University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Balcalı Sarıçam 01250 Adana, Turkey
| | - Sonia Sanajou
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Gözde Işık
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| | - Özlem Bozdemir
- Hacettepe University Faculty of Medicine, Department of Histology and Embryology, Sıhhiye Ankara 06100, Turkey
- Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Sıhhiye Ankara 06100, Turkey
| | - İbrahim Özçelik
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Yalnızbağ Erzincan 24002, Turkey
| | - Merve Güdül Bacanlı
- Faculty of Pharmacy, Department of Toxicology, Health Sciences University, Keçiören, Ankara 06010, Turkey
| | - Naciye Dilara Zeybek
- Hacettepe University Faculty of Medicine, Department of Histology and Embryology, Sıhhiye Ankara 06100, Turkey
| | - Terken Baydar
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
| | - Pınar Erkekoğlu
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye Ankara 06100, Turkey
- Hacettepe University Vaccine Institute, Department of Vaccine Technology, Sıhhiye Ankara 06100, Turkey
| |
Collapse
|
2
|
Hergenreder E, Minotti AP, Zorina Y, Oberst P, Zhao Z, Munguba H, Calder EL, Baggiolini A, Walsh RM, Liston C, Levitz J, Garippa R, Chen S, Ciceri G, Studer L. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. Nat Biotechnol 2024; 42:1515-1525. [PMID: 38168993 PMCID: PMC11348887 DOI: 10.1038/s41587-023-02031-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
The maturation of human pluripotent stem cell (hPSC)-derived neurons mimics the protracted timing of human brain development, extending over months to years for reaching adult-like function. Prolonged in vitro maturation presents a major challenge to stem cell-based applications in modeling and treating neurological disease. Therefore, we designed a high-content imaging assay based on morphological and functional readouts in hPSC-derived cortical neurons which identified multiple compounds that drive neuronal maturation including inhibitors of lysine-specific demethylase 1 and disruptor of telomerase-like 1 and activators of calcium-dependent transcription. A cocktail of four factors, GSK2879552, EPZ-5676, N-methyl-D-aspartate and Bay K 8644, collectively termed GENtoniK, triggered maturation across all parameters tested, including synaptic density, electrophysiology and transcriptomics. Maturation effects were further validated in cortical organoids, spinal motoneurons and non-neural lineages including melanocytes and pancreatic β-cells. The effects on maturation observed across a broad range of hPSC-derived cell types indicate that some of the mechanisms controlling the timing of human maturation might be shared across lineages.
Collapse
Affiliation(s)
- Emiliano Hergenreder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yana Zorina
- Gene Editing and Screening Core Facility, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, USA
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ryan M Walsh
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
3
|
Labarrade F, Botto JM, Imbert I. Co-culture of iNeurons with primary human skin cells provides a reliable model to examine intercellular communication. J Cosmet Dermatol 2023. [PMID: 36847702 DOI: 10.1111/jocd.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVE The skin is a sensory organ, densely innervated with various types of sensory nerve endings, capable of discriminating touch, environmental sensations, proprioception, and physical affection. Neurons communication with skin cells confer to the tissue the ability to undergo adaptive modifications during response to environmental changes or wound healing after injury. Thought for a long time to be dedicated to the central nervous system, the glutamatergic neuromodulation is increasingly described in peripheral tissues. Glutamate receptors and transporters have been identified in the skin. There is a strong interest in understanding the communication between keratinocytes and neurons, as the close contacts with intra-epidermal nerve fibers is a favorable site for efficient communication. To date, various coculture models have been described. However, these models were based on non-human or immortalized cell line. Even the use of induced pluripotent stem cells (iPSCs) is posing limitations because of epigenetic variations during the reprogramming process. METHODS In this study, we performed small molecule-driven direct conversion of human skin primary fibroblasts into induced neurons (iNeurons). RESULTS The resulting iNeurons were mature, showed pan-neuronal markers, and exhibited a glutamatergic subtype and C-type fibers characteristics. Autologous coculture of iNeurons with human primary keratinocytes, fibroblasts, and melanocytes was performed and remained healthy for many days, making possible to study the establishment of intercellular interactions. CONCLUSION Here, we report that iNeurons and primary skin cells established contacts, with neurite ensheathment by keratinocytes, and demonstrated that iNeurons cocultured with primary skin cells provide a reliable model to examine intercellular communication.
Collapse
|
4
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
5
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
6
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
7
|
Glutamate receptors in domestication and modern human evolution. Neurosci Biobehav Rev 2020; 108:341-357. [DOI: 10.1016/j.neubiorev.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
|
8
|
Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis 2018; 7:86. [PMID: 30425240 PMCID: PMC6234219 DOI: 10.1038/s41389-018-0098-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Our research group demonstrated that riluzole, an inhibitor of glutamatergic signaling reduced melanoma cell proliferation in vitro and tumor progression in vivo. The underlying mechanisms of riluzole are largely unknown. Microarray analyses on two human melanoma cell lines revealed that riluzole stimulates expression of the cystine-glutamate amino acid antiporter, xCT (SLC7A11). Western immunoblot analysis from cultured human melanoma or normal melanocytic cells showed that xCT was significantly overexpressed in most melanomas, but not normal cells. Studies using human tumor biopsy samples demonstrated that overexpression of xCT was correlated with cancer stage and progression. To further investigate if xCT is involved in melanoma cell growth, we derived several stable clones through transfection of exogenous xCT to melanoma cells that originally showed very low expression of xCT. The elevated xCT expression promoted cell proliferation in vitro and inversely, these melanoma clones showed a dose-dependent decrease in cell proliferation in response to riluzole treatment. Xenograft studies showed that these clones formed very aggressive tumors at a higher rate compared to vector controls. Conversely, treatment of xenograft-bearing animals with riluzole down-regulated xCT expression suggesting that xCT is a molecular target of riluzole. Furthermore, protein lysates from tumor biopsies of patients that participated in a riluzole monotherapy phase II clinical trial showed a reduction in xCT levels in post-treatment specimens from patients with stable disease. Taken together, our results show that xCT may be utilized as a marker to monitor patients undergoing riluzole-based chemotherapies.
Collapse
|
9
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
10
|
NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int J Mol Sci 2018; 19:ijms19071929. [PMID: 29966365 PMCID: PMC6073738 DOI: 10.3390/ijms19071929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.
Collapse
|
11
|
Haitao R, Huiqin L, Tao Q, Xunzhe Y, Xiaoqiu S, Wei L, Jiewen Z, Liying C, Hongzhi G. Autoimmune encephalitis associated with vitiligo? J Neuroimmunol 2017; 310:14-16. [DOI: 10.1016/j.jneuroim.2017.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/26/2023]
|
12
|
Belheouane M, Gupta Y, Künzel S, Ibrahim S, Baines JF. Improved detection of gene-microbe interactions in the mouse skin microbiota using high-resolution QTL mapping of 16S rRNA transcripts. MICROBIOME 2017; 5:59. [PMID: 28587635 PMCID: PMC5461731 DOI: 10.1186/s40168-017-0275-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/15/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Recent studies highlight the utility of quantitative trait locus (QTL) mapping for determining the contribution of host genetics to interindividual variation in the microbiota. We previously demonstrated that similar to the gut microbiota, abundances of bacterial taxa in the skin are significantly influenced by host genetic variation. In this study, we analyzed the skin microbiota of mice from the 15th generation of an advanced intercross line using a novel approach of extending bacterial trait mapping to both the 16S rRNA gene copy (DNA) and transcript (RNA) levels, which reflect relative bacterial cell number and activity, respectively. RESULTS Remarkably, the combination of highly recombined individuals and 53,203 informative SNPs allowed the identification of genomic intervals as small as <0.1 megabases containing single genes. Furthermore, the inclusion of 16S rRNA transcript-level mapping dramatically increased the number of significant associations detected, with five versus 21 significant SNP-bacterial trait associations based on DNA- compared to RNA-level profiling, respectively. Importantly, the genomic intervals identified contain many genes involved in skin inflammation and cancer and are further supported by the bacterial traits they influence, which in some cases have known genotoxic or probiotic capabilities. CONCLUSIONS These results indicate that profiling based on the relative activity levels of bacterial community members greatly enhances the capability of detecting interactions between the host and its associated microbes. Finally, the identification of several genes involved in skin cancer suggests that similar to colon carcinogenesis, the resident microbiota may play a role in skin cancer susceptibility and its potential prevention and/or treatment.
Collapse
Affiliation(s)
- Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| |
Collapse
|
13
|
Guan HZ, Ren HT, Cui LY. Autoimmune Encephalitis: An Expanding Frontier of Neuroimmunology. Chin Med J (Engl) 2017; 129:1122-7. [PMID: 27098800 PMCID: PMC4852682 DOI: 10.4103/0366-6999.180514] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730; Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
14
|
Yi H, Geng L, Black A, Talmon G, Berim L, Wang J. The miR-487b-3p/GRM3/TGFβ signaling axis is an important regulator of colon cancer tumorigenesis. Oncogene 2017; 36:3477-3489. [PMID: 28114282 PMCID: PMC5472494 DOI: 10.1038/onc.2016.499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Molecular targeting is an import strategy to treat advanced colon cancer. The current study demonstrates that expression of GRM3, a metabotropic glutamate receptor mainly expressed in mammalian central nervous system, is significantly upregulated in majority of human colonic adenocarcinomas tested and colon cancer cell lines. Knockdown of GRM3 expression or inhibition of GRM3 activation in colon cancer cells reduces cell survival and anchorage-independent growth in vitro and inhibits tumor growth in vivo. Mechanistically, GRM3 antagonizes TGFβ-mediated activation of protein kinase A and inhibition of AKT. In addition, TGFβ signaling increases GRM3 protein stability and knockdown of GRM3 enhances TGFβ-mediated tumor suppressor function. Further studies indicate that miR-487b-3p directly targets GRM3. Overexpression of miR-487b-3p mimics the effects of GRM3 knockdown and suppresses the tumorigenicity of colon cancer cells in vivo. Expression of miR-487b-3p is decreased in colon adenocarcinomas and inversely correlates with GRM3 expression. Taken together, these studies indicate that upregulation of GRM3 expression is a functionally important molecular event in colon cancer, and that GRM3 is a promising molecular target for colon cancer treatment. This is particularly interesting and important from a therapeutic standpoint because numerous metabotropic glutamate receptor antagonists are available, many of which have been found unsuitable for treatment of neuropsychiatric disorders for reasons such as inability to readily penetrate blood brain barriers. Since GRM3 is upregulated in colon cancer, but rarely expressed in normal peripheral tissues, targeting GRM3 with such agents would not likely cause adverse neurological or peripheral side effects, making GRM3 an attractive and specific molecular target for colon cancer treatment.
Collapse
Affiliation(s)
- H Yi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Geng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - G Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Berim
- Department of Internal Medicine Oncology/Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Physiological Roles of Non-Neuronal NMDA Receptors. Trends Pharmacol Sci 2016; 37:750-767. [DOI: 10.1016/j.tips.2016.05.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
|
16
|
Integration of Next Generation Sequencing and EPR Analysis to Uncover Molecular Mechanism Underlying Shell Color Variation in Scallops. PLoS One 2016; 11:e0161876. [PMID: 27563719 PMCID: PMC5001709 DOI: 10.1371/journal.pone.0161876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/12/2016] [Indexed: 12/05/2022] Open
Abstract
The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture.
Collapse
|
17
|
Signaling Pathways in Melanogenesis. Int J Mol Sci 2016; 17:ijms17071144. [PMID: 27428965 PMCID: PMC4964517 DOI: 10.3390/ijms17071144] [Citation(s) in RCA: 598] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.
Collapse
|
18
|
Yang XZ, Cui LY, Ren HT, Qu T, Guan HZ. Anti-NMDAR encephalitis after resection of melanocytic nevi: report of two cases. BMC Neurol 2015; 15:165. [PMID: 26370233 PMCID: PMC4570733 DOI: 10.1186/s12883-015-0424-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encephalitis with antibodies against N-methyl D-aspartate receptor (NMDAR) is recognized as a group of antibody-mediated neuropsychiatric syndromes, which occurs with and without a tumor association. Neoplasm may contribute to the pathogenesis of Anti-NMDAR encephalitis in tumor-positive patients. However, the underlying causes in tumor-negative patients are largely unknown. This is the first report, of which we are aware, of two cases of anti-NMDAR encephalitis after the resection of melanocytic nevus. CASE PRESENTATION We describe 2 female patients in their 20s confirmed with anti-NMDAR encephalitis. They shared two points in common: About several weeks (2 weeks and 5 weeks respectively) before the initial symptom, both of them underwent a resection of melanocytic nevi; the screening tests for an ovarian teratoma and other tumors were all negative. A 25 year-old woman presented with seizure, psychiatric symptoms and behavioral change for 2 weeks. Electroencephalogram indicated electrographic seizures. Anti-NMDAR antibodies were all positive in the cerebrospinal fluid and serum. Her symptoms relieved gradually after the treatment with steroids and mycophenolate mofetil. Another patient admitted to our hospital with psychosis, behavioral change and complex partial seizure over a period of 5 months. Electroencephalogram demonstrated generalized slow activities. High titres of anti-NMDAR antibodies were both detected in the cerebrospinal fluid and serum. She responded well to the first-line immunotherapy and got substantial recovery. CONCLUSION Our cases provided an observational link between anti-NMDAR encephalitis and resection of nevi. We postulate that the exposure of certain antigen on nevus cell caused by nevi excision, which might be NMDA receptor or other mimic cross-reactive antigens, may trigger an autoimmune response resulting in encephalitis. This suggested a potential site of antigen exposure triggering the immune response in non-tumor associated anti-NMDAR encephalitis, which may lend support to elucidating the underlying immunopathological mechanisms. Further studies are expected for investigating the expression of NMDA receptor on nevus cell and evaluating the validity of this hypothesis.
Collapse
Affiliation(s)
- Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Center of Neuroscience, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Center of Neuroscience, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hai-Tao Ren
- Department of Neurology, Peking Union Medical College Hospital, Center of Neuroscience, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Tao Qu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hong-Zhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Center of Neuroscience, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Gelb T, Pshenichkin S, Rodriguez OC, Hathaway HA, Grajkowska E, DiRaddo JO, Wroblewska B, Yasuda RP, Albanese C, Wolfe BB, Wroblewski JT. Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas. Oncogene 2015; 34:2711-20. [PMID: 25065592 PMCID: PMC5853109 DOI: 10.1038/onc.2014.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate 1 (mGlu) receptor has been proposed as a target for the treatment of metastatic melanoma. Studies have demonstrated that inhibiting the release of glutamate (the natural ligand of mGlu1 receptors), results in a decrease of melanoma tumor growth in mGlu1 receptor-expressing melanomas. Here we demonstrate that mGlu1 receptors, which have been previously characterized as oncogenes, also behave like dependence receptors by creating a dependence on glutamate for sustained cell viability. In the mGlu1 receptor-expressing melanoma cell lines SK-MEL-2 (SK2) and SK-MEL-5 (SK5), we show that glutamate is both necessary and sufficient to maintain cell viability, regardless of underlying genetic mutations. Addition of glutamate increased DNA synthesis, whereas removal of glutamate not only suppressed DNA synthesis but also promoted cell death in SK2 and SK5 melanoma cells. Using genetic and pharmacological inhibitors, we established that this effect of glutamate is mediated by the activation of mGlu1 receptors. The stimulatory potential of mGlu1 receptors was further confirmed in vivo in a melanoma cell xenograft model. In this model, subcutaneous injection of SK5 cells with short hairpin RNA-targeted downregulation of mGlu1 receptors resulted in a decrease in the rate of tumor growth relative to control. We also demonstrate for the first time that a selective mGlu1 receptor antagonist JNJ16259685 ((3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone) slows SK2 and SK5 melanoma tumor growth in vivo. Taken together, these data suggest that pharmacological inhibition of mGlu1 receptors may be a novel approach for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- T Gelb
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - S Pshenichkin
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - O C Rodriguez
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - H A Hathaway
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - E Grajkowska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J O DiRaddo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - B Wroblewska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - R P Yasuda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - C Albanese
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - B B Wolfe
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J T Wroblewski
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Yokukansan, a traditional Japanese medicine, adjusts glutamate signaling in cultured keratinocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:364092. [PMID: 25313361 PMCID: PMC4182005 DOI: 10.1155/2014/364092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023]
Abstract
Glutamate plays an important role in skin barrier signaling. In our previous study, Yokukansan (YKS) affected glutamate receptors in NC/Nga mice and was ameliorated in atopic dermatitis lesions. The aim of this study was to assess the effect of YKS on skin and cultured human keratinocytes. Glutamate concentrations in skin of YKS-treated and nontreated NC/Nga mice were measured. Then, glutamate release from cultured keratinocytes was measured, and extracellular glutamate concentrations in YKS-stimulated cultured human keratinocytes were determined. The mRNA expression levels of NMDA receptor 2D (NMDAR2D) and glutamate aspartate transporter (GLAST) were also determined in YKS-stimulated cultured keratinocytes. The glutamate concentrations and dermatitis scores increased in conventional mice, whereas they decreased in YKS-treated mice. Glutamate concentrations in cell supernatants of cultured keratinocytes increased proportionally to the cell density. However, they decreased dose-dependently with YKS. YKS stimulation increased NMDAR2D in a concentration-dependent manner. Conversely, GLAST decreased in response to YKS. Our findings indicate that YKS affects peripheral glutamate signaling in keratinocytes. Glutamine is essential as a transmitter, and dermatitis lesions might produce and release excess glutamate. This study suggests that, in keratinocytes, YKS controls extracellular glutamate concentrations, suppresses N-methyl-D-aspartate (NMDA) receptors, and activates glutamate transport.
Collapse
|
21
|
Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B, Muller I, Baglione V, Unneberg P, Wikelski M, Grabherr MG, Wolf JBW. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 2014; 344:1410-4. [DOI: 10.1126/science.1253226] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
D'mello SAN, Flanagan JU, Green TN, Leung EY, Askarian-Amiri ME, Joseph WR, McCrystal MR, Isaacs RJ, Shaw JHF, Furneaux CE, During MJ, Finlay GJ, Baguley BC, Kalev-Zylinska ML. Evidence That GRIN2A Mutations in Melanoma Correlate with Decreased Survival. Front Oncol 2014; 3:333. [PMID: 24455489 PMCID: PMC3888952 DOI: 10.3389/fonc.2013.00333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Previous whole-exome sequencing has demonstrated that melanoma tumors harbor mutations in the GRIN2A gene. GRIN2A encodes the regulatory GluN2A subunit of the glutamate-gated N-methyl-d-aspartate receptor (NMDAR), involvement of which in melanoma remains undefined. Here, we sequenced coding exons of GRIN2A in 19 low-passage melanoma cell lines derived from patients with metastatic melanoma. Potential mutation impact was evaluated in silico, including within the GluN2A crystal structure, and clinical correlations were sought. We found that of 19 metastatic melanoma tumors, four (21%) carried five missense mutations in the evolutionarily conserved domains of GRIN2A; two were previously reported. Melanoma cells that carried these mutations were treatment-naïve. Sorting intolerant from tolerant analysis predicted that S349F, G762E, and P1132L would disrupt protein function. When modeled into the crystal structure of GluN2A, G762E was seen to potentially alter GluN1-GluN2A interactions and ligand binding, implying disruption to NMDAR functionality. Patients whose tumors carried non-synonymous GRIN2A mutations had faster disease progression and shorter overall survival (P < 0.05). This was in contrast to the BRAF V600E mutation, found in 58% of tumors but showing no correlation with clinical outcome (P = 0.963). Although numbers of patients in this study are small, and firm conclusions about the association between GRIN2A mutations and poor clinical outcome cannot be drawn, our results highlight the high prevalence of GRIN2A mutations in metastatic melanoma and suggest for the first time that mutated NMDARs impact melanoma progression.
Collapse
Affiliation(s)
- Stacey Ann N D'mello
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand ; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , Auckland , New Zealand
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand
| | | | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand
| | - Michael R McCrystal
- Department of Clinical Oncology, Auckland District Health Board , Auckland , New Zealand ; Canopy Cancer Care, Mercy Hospital , Auckland , New Zealand
| | - Richard J Isaacs
- Regional Cancer Treatment Service, Palmerston North Public Hospital , Palmerston North , New Zealand
| | | | | | - Matthew J During
- Department of Molecular Virology, Immunology and Medical Genetics, Neuroscience and Neurological Surgery, Ohio State University , Columbus, OH , USA ; Centre for Brain Research, University of Auckland , Auckland , New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland , Auckland , New Zealand ; LabPlus Haematology, Auckland District Health Board , Auckland , New Zealand
| |
Collapse
|
23
|
Ribeiro MPC, Nunes-Correia I, Santos AE, Custódio JBA. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells. Exp Cell Res 2013; 321:288-96. [PMID: 24240127 DOI: 10.1016/j.yexcr.2013.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Recent reports suggest that N-methyl-d-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Nunes-Correia
- Center for Neuroscience and Cell Biology, Flow Cytometry Unit, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
24
|
Kim JE, Finlay GJ, Baguley BC. The role of the hippo pathway in melanocytes and melanoma. Front Oncol 2013; 3:123. [PMID: 23720711 PMCID: PMC3655322 DOI: 10.3389/fonc.2013.00123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/03/2013] [Indexed: 12/13/2022] Open
Abstract
The Hippo signaling pathway comprises a series of cytoplasmic tumor suppressor proteins including Merlin and the Lats1/2 and MST1/2 kinases, and is thought to play a critical role in determining the sizes of organs and tissues. The Hippo pathway is regulated upstream by extracellular mechanosensory signaling arising from cell shape and polarity, as well as by a variety of extracellular signaling molecules. When active, the pathway maintains the transcriptional activators Yes-associated protein (YAP) and TAZ in phosphorylated forms in the cytoplasm, preventing cell proliferation. When the Hippo pathway is inactivated, YAP and TAZ are translocated to the nucleus and induce the expression of a variety of proteins concerned with entry into the cell division cycle, such as cyclin D1 and Fox M1, as well as the inhibition of apoptosis. The failure of the Hippo pathway has been implicated in the development of many different types of cancer but there is limited information available as to its involvement in melanoma. We hypothesize here firstly that the Hippo pathway is involved in maintaining density of cutaneous melanocytes on the basement membrane at the junction of the epidermis and the dermis, and secondly, that its function is disturbed in melanoma. We have analyzed a series of 23 low passage human melanoma lines as well as cultured normal melanoma, and find that melanocytes, as well as all melanoma cell lines examined express TAZ. Melanocytes and most melanoma lines also express YAP. E-cadherin, an upstream regulator of the Hippo pathway, and Axl, a receptor tyrosine kinase regulated by the Hippo pathway, are expressed in melanocytes and in several melanoma cell lines. These observations, together with published evidence for the presence of Merlin, Lats1/2, and MST1/2 in melanocytes and melanoma cells, support the hypothesis that the Hippo pathway is an important component of melanocyte and melanoma behavior.
Collapse
Affiliation(s)
- Ji Eun Kim
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland Auckland, New Zealand
| | | | | |
Collapse
|
25
|
Song Z, He CD, Liu J, Sun C, Lu P, Li L, Gao L, Zhang Y, Xu Y, Shan L, Liu Y, Zou W, Zhang Y, Gao H, Gao W. Blocking glutamate-mediated signalling inhibits human melanoma growth and migration. Exp Dermatol 2013; 21:926-31. [PMID: 23171453 DOI: 10.1111/exd.12048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2012] [Indexed: 01/16/2023]
Abstract
Glutamate is an excitatory neurotransmitter that has been shown to regulate the proliferation, migration and survival of neuronal progenitors in the central nervous system through its action on metabotropic and ionotropic glutamate receptors (GluRs). Antagonists of ionotropic GluRs have been shown to cause a rapid and reversible change in melanocyte dendritic morphology, which is associated with the disorganization of actin and tubulin microfilaments in the cytoskeleton. Intracellular expression of microtubule-associated protein (MAP) 2a affects the assembly, stabilization and bundling of microtubules in melanoma cells; stimulates the development of dendrites; and suppresses melanoma cell migration and invasion. In this study, we investigated the relationship between glutamate-mediated signalling and microtubules, cell dendritic morphology and melanoma cell motility. We found that metabotropic GluR1 and N-methyl-d-aspartate receptor antagonists increased dendritic branching and inhibited the motility, migration and proliferation of melanoma cells. We also demonstrated that the invasion and motility of melanoma cells are significantly inhibited by the combination of increased expression of MAP2a and either metabotropic GluR1 or N-methyl-d-aspartate receptor antagonists. Moreover, the blockade of glutamate receptors inhibited melanoma growth in vivo. Collectively, these results demonstrate the importance of glutamate signalling in human melanoma and suggest that the blockade of glutamate receptors is a promising novel therapy for treating melanoma.
Collapse
Affiliation(s)
- Zhiqi Song
- Dermatology Department of 1st Affiliated Hospital, Dalian Medical University, Dalian City, Liaoning Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Devi S, Markandeya Y, Maddodi N, Dhingra A, Vardi N, Balijepalli RC, Setaluri V. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res 2013; 26:348-56. [PMID: 23452348 DOI: 10.1111/pcmr.12083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/19/2013] [Indexed: 12/23/2022]
Abstract
Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca(2+) uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca(2+) influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi /Go proteins, did not affect basal or mGluR6-induced Ca(2+) uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.
Collapse
Affiliation(s)
- Sulochana Devi
- Department of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Profiling mRNA of the graying human hair follicle constitutes a promising state-of-the-art tool to assess its aging: an exemplary report. J Invest Dermatol 2012; 133:1150-60. [PMID: 23235529 DOI: 10.1038/jid.2012.462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Determining hitherto uninvestigated and safe targets to halt the aging process is important in our aging society. Graying is a hallmark of the aging process and may be used to identify aging tissue for comparative analysis. Here we analyzed differential gene expressions between pigmented, gray, and white human scalp skin hair follicles (HFs) from identical donors. Forming intersections between five donors identified 194/192 downregulated and 186/177 upregulated genes in gray/white HFs. These included melanogenesis (tyrosinase; tyrosinase-related protein 1)- and melanosome structure (Melan-A; Pmel17)-associated genes and regulation of melanocyte relevant tyrosine kinases. Alongside these expected changes, regulated genes included nonmelanocyte-related genes associated with aging as well as nonaging-related genes associated with melanocytes. Intriguingly, among them, genes associated with energy metabolism (i.e., glutaminase) and axon guidance (plexin C1) were altered. These results were reflected by pathway analysis and exemplarily confirmed by PCR and immunohistochemical studies. Supplementing cultured HFs with glutamine or plexin C1 revealed biological relevance and pharmacointerventional potential of these microarray results in altering the HF aging process. Together, we present intriguing data obtained from intra-individual sample comparison that suggest the graying HF to be a valid aging model and a promising target for testing therapeutic interventions.
Collapse
|
28
|
Metabotropic glutamate receptor 1 (Grm1) is an oncogene in epithelial cells. Oncogene 2012; 32:4366-76. [PMID: 23085756 PMCID: PMC3910169 DOI: 10.1038/onc.2012.471] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
Non-neuronal expression of components of the glutamatergic system has been increasingly observed, and our laboratory previously had demonstrated the etiological role of ectopically expressed metabotropic glutamate receptor 1 (Grm1/mGluR1) in mouse models of melanoma. We hypothesize that inappropriate glutamatergic signaling in other cell types can dysregulate growth leading to transformation and tumorigenesis. As most cancers are carcinomas, we selected an immortalized primary baby mouse kidney (iBMK) cell model to assess whether Grm1 can transform epithelial cells. These iBMK cells, engineered to be immortal yet non-tumorigenic and retaining normal epithelial characteristics, were used as recipients for exogenous Grm1 cDNA. Several stable Grm1 expressing clones were isolated and the Grm1-receptors were shown to be functional, as evidenced by the accumulation of second messengers in response to Grm1 agonist. Additionally activated by agonist were MAPK and AKT signaling cascades, major intracellular pathways shown by many investigators to be critical in melanomagenesis and other neoplasms. These Grm1-iBMK cells exhibited enhanced cell proliferation in in vitro MTT assays and significant tumorigenicity in in vivo allografts. Persistent Grm1 expression was required for the maintenance of the in vivo tumorigenic phenotype as demonstrated by an inducible Grm1-silencing RNA. These are the first results that indicate Grm1 can be an oncogene in epithelial cells. Additionally, relevance to human disease in the corresponding tumor type of renal cell carcinoma (RCC) may be suggested by observed expression of GRM1/mGluR1 in a number of RCC tumor biopsy samples and cell lines, and the effects of GRM1 modulation on tumorigenicity therein. Moreover RCC cell lines exhibited elevated levels of extracellular glutamate, and some lines responded to drugs which modulate the glutamatergic system. These findings imply a possible role for glutamate signaling apparatus in RCC cell growth, and that the glutamatergic system may be a therapeutic target in renal cell carcinoma.
Collapse
|
29
|
Abstract
The neurotransmitter glutamate interacts with glutamate receptor proteins, leading to the activation of multiple signaling pathways. Dysfunction in the glutamatergic signaling pathway is well established as a frequent player in diseases such as schizophrenia, Alzheimer disease, and brain tumors (gliomas). Recently, aberrant functioning of this pathway has also been shown in melanoma. In both glioma and melanoma, glutamate secretion stimulates tumor growth, proliferation, and survival through activation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathways. In the future, extracellular glutamate levels and glutamatergic signaling may serve as biological markers for tumorigenicity and facilitate targeted therapy for melanoma. .
Collapse
Affiliation(s)
- Todd D Prickett
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
30
|
|
31
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
32
|
Haas HS, Linecker A, Pfragner R, Sadjak A. Peripheral glutamate signaling in head and neck areas. Head Neck 2011; 32:1554-72. [PMID: 20848447 DOI: 10.1002/hed.21438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The major excitatory neurotransmitter glutamate is also found in the periphery in an increasing number of nonexcitable cells. In line with this it became apparent that glutamate can regulate a broad array of peripheral biological responses, as well. Of particular interest is the discovery that glutamate receptor reactive reagents can influence tumor biology. However, the knowledge of glutamate signaling in peripheral tissues is still incomplete and, in the case of head and neck areas, is almost lacking. The roles of glutamate signaling pathways in these regions are manifold and include orofacial pain, periodontal bone production, skin and airway inflammation, as well as salivation. Furthermore, the interrelations between glutamate and cancers in the oral cavity, thyroid gland, and other regions are discussed. In summary, this review shall strengthen the view that glutamate receptor reagents may also be promising targets for novel therapeutic concepts suitable for a number of diseases in peripheral tissues. The contents of this review cover the following sections: Introduction; The "Glutamate System"; The Taste of Glutamate; Glutamate Signaling in Dental Regions; Glutamate Signaling in Head and Neck Areas; Glutamate Signaling in Head and Neck Cancer; A Brief Overview of Glutamate Signaling in Other Cancers; and Conclusion.
Collapse
Affiliation(s)
- Helga Susanne Haas
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| | | | | | | |
Collapse
|
33
|
Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int J Cosmet Sci 2011; 33:210-21. [PMID: 21265866 DOI: 10.1111/j.1468-2494.2010.00616.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin-lightening products are commercially available for cosmetic purposes to obtain lighter skin complexion. Clinically, they are also used for treatment of hyperpigmentary disorders such as melasma, café au lait spot and solar lentigo. All of these target naturally melanin production, and many of the commonly used agents are known as competitive inhibitors of tyrosinase, one of the key enzymes in melanogenesis. In this review, we present an overview of commonly used skin-whitening ingredients that are commercialized, but we also hypothesize on other mechanisms that could be important targets to control skin pigmentation such as for example regulation of the adrenergic and glutaminergic signalling and also control of tetrahydrobiopterins in the human skin.
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Cosmetics Skin Research Institute, SE-101 39 Stockholm, Sweden
| | | |
Collapse
|
34
|
Abstract
Melanoma remains one of the cancers for which a decline in morbidity has not been achieved with current scientific and medical advances. Mono-therapies targeting melanoma have been largely ineffective, increasing the need for identification of new drugable targets. Multiple tumor suppressors and oncogenes that impart genetic predisposition to melanoma have been identified and are being studied in an attempt to provide insight on the development of anti-melanoma therapies. Metabotropic Glutamate Receptor I (GRM1) has recently been implicated as a novel oncogene involved in melanomagenesis. GRM1 (mGlu1, protein) belongs to the G protein coupled receptor (GPCR) super family and is normally functional in the central nervous system. Our group showed in a transgenic mouse model system that ectopic expression of Grm1 in melanocytes is sufficient to induce spontaneous melanoma development in vivo. GPCRs are some of the most important therapeutic drug targets discovered to date and they make up a significant proportion of existing therapies. This super family of transmembrane receptors has wide spread expression and interacts with a diverse array of ligands. Diverse physiological responses can be induced by stimulator(s) or suppressor(s) of GPCRs, which contributes to their attractiveness in existing and emerging therapies. GPCR targeting therapies are employed against a variety of human disorders including those of the central nervous system, cardiovascular, metabolic, urogenital and respiratory systems. In the current review, we will discuss how the identification of the oncogenic properties of GRM1 opens up new strategies for the design of potential novel therapies for the treatment of melanoma.
Collapse
|
35
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
36
|
Fischer M, Glanz D, Urbatzka M, Brzoska T, Abels C. Keratinocytes: a source of the transmitter L-glutamate in the epidermis. Exp Dermatol 2010; 18:1064-6. [PMID: 19397696 DOI: 10.1111/j.1600-0625.2009.00886.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various glutamate receptors have been described in both keratinocytes and melanocytes. L-Glutamate is the physiological agonist of the glutamate receptor family. The source of this transmitter had not yet been identified. In normal human epidermal keratinocytes (NHEK) and HaCaT-keratinocytes, cell supernatants were sampled in various stages of cell density and the l-glutamate content photometrically determined. The following examination time-points were defined: non-confluent (ca. 33%), subconfluent (ca. 70%) and confluent (90-100%). The L-glutamate concentration originally in the culture medium was 14.7 mg/l (0.1 mm/l). The L-glutamate concentration in the cell supernatant increased in NHEK with increasing cell density: non-confluent 39.9 + or - 4 mg/l, subconfluent 60.6 + or - 15.8 mg/l, confluent 100.7 + or - 33.2 mg/l. A linear increase of L-glutamate concentration was also found for HaCaT cells. The investigations show that keratinocytes are capable of producing and releasing L-glutamate. Thus they are a source of L-glutamate which acts as a transmitter on epidermal glutamate receptors.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Dermatology and Venerology, HELIOS-Klinikum Aue, Gartenstrasse 6, D-08280 Aue, Germany.
| | | | | | | | | |
Collapse
|
37
|
Föller M, Mahmud H, Gu S, Kucherenko Y, Gehring EM, Shumilina E, Floride E, Sprengel R, Lang F. Modulation of suicidal erythrocyte cation channels by an AMPA antagonist. J Cell Mol Med 2009; 13:3680-6. [PMID: 19320779 PMCID: PMC4516516 DOI: 10.1111/j.1582-4934.2009.00745.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In neurons alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are heteromeric cation channels composed of different sub-units, including GluA1-GluA4. When expressed without GluA2, AMPA receptors function as Ca2+-permeable cation channels. In erythrocytes, activation of Ca2+-permeable cation channels triggers suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with subsequent exposure of phosphatidylserine at the cell surface. Activators of the channels and thus eryptosis include removal of extracellular Cl− (replaced by gluconate) and energy depletion (removal of glucose). The present study explored whether GluA1 is expressed in human erythrocytes and whether pharmacological AMPA receptor inhibition modifies Ca2+ entry and suicidal death of human erythrocytes. GluA1 protein abundance was determined by confocal microscopy, phosphatidylserine exposure was estimated from annexin V binding, cell volume from forward scatter in FACS analysis, cytosolic Ca2+ concentration from Fluo3 fluorescence and channel activity by whole-cell patch-clamp recordings. As a result, GluA1 is indeed expressed in the erythrocyte cell membrane. The AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) inhibited the cation channels following Cl− removal and the eryptosis following Cl− removal or energy depletion. The present study reveals a novel action of AMPA receptor antagonists and raises the possibility that GluA1 or a pharmacologically related protein participates in the regulation of Ca2+ entry into and suicidal death of human erythrocytes.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology 2008; 55:396-402. [PMID: 18554669 DOI: 10.1016/j.neuropharm.2008.04.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/24/2008] [Indexed: 12/20/2022]
Abstract
Although the glutamatergic system usually functions in the CNS, expression has been observed in non-neuronal tissues and a subset of cancers. Metabotropic glutamate receptors (mGlus) are highly "druggable" GPCRs and thus a priority for validation as therapeutic targets. We have previously reported that the aberrant expression of mGlu1 is sufficient to induce spontaneous melanoma development in vivo. We isolated and characterized several stable mGlu1-mouse melanocytic clones and demonstrated that these clones are transformed and tumorigenic. We hypothesize that expression of mGlus may not be uncommon in the pathogenesis of tumors other than melanoma, and that activity of an otherwise normal glutamate receptor in an ectopic cellular environment involves signaling pathways which dysregulate cell growth, ultimately leading to tumorigenesis. As most human cancers are of epithelial origin (carcinomas), in this review, the possibility that mGlu1 could function as a complete oncogene and transform epithelial cells is also discussed.
Collapse
|
39
|
Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S. Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res 2008; 21:368-78. [PMID: 18435704 DOI: 10.1111/j.1755-148x.2008.00452.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we reported a transgenic mouse line, TG-3, that develops spontaneous melanoma with 100% penetrance. We demonstrated that ectopic expression of Grm1 in melanocytes was sufficient to induce melanoma in vivo. In this present study, the transforming properties of Grm1 in two cultured immortalized melanocytes were investigated. We showed that, in contrast to parental melanocytes, these Grm1-clones have lost their requirement of TPA supplement for proliferation and have acquired the ability to form colonies in semi-solid medium. Xenografts of these cells formed robust tumors in both immunodeficient nude and syngeneic mice with a short latency (3-5 days). The malignancy of these cells was demonstrated by angiogenesis and invasion to the muscle and the intestine. The requirement of Grm1 expression for the maintenance of transformation was demonstrated by an inducible siRNA system. Induction of expression of siRNA for Grm1 reduced the number of proliferating/viable cells in vitro and suppressed in vivo xenografted tumor growth in comparison with control. Taken together, these results showed that expression of exogeneously introduced Grm1 is sufficient to induce full transformation of immortalized melanocytes.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
40
|
|