1
|
López-Valverde N, Quispe-López N, Blanco Rueda JA. Inflammation and immune response in the development of periodontal disease: a narrative review. Front Cell Infect Microbiol 2024; 14:1493818. [PMID: 39679199 PMCID: PMC11638196 DOI: 10.3389/fcimb.2024.1493818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
We present this critical review with the aim of highlighting the current status of periodontal diseases, focusing on the relevance of host modulating agents and immune pathways, in addition to new complementary therapeutic approaches for the treatment of these pathologies. Periodontal diseases are prevalent pathologies worldwide and the main cause of edentulism in the adult population. Their pathogenesis seems to be based on a dysbiosis of the oral microbiota that interacts with the host's immune defenses and is responsible for the inflammatory/immune response, which would be modified by a number of conditions such as individual susceptibility, environmental and sociodemographic factors, certain systemic pathologies and the individual's genetic condition, among others. Numerous studies have reported on the complex web of inflammatory mediators in periodontal disease and their role in tissue destruction as well as in homeostatic imbalance. Precisely, the role of epigenetics as a modifier of the host genetic condition has captured research attention in recent years. Therefore, this mini-review first discusses an updated etiological hypothesis of periodontal disease and the roles of certain cytokines in the immune response. In addition, the latest therapeutic trends with new developments and future perspectives are summarized.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, University of Salamanca; Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | | |
Collapse
|
2
|
Kim TJ, MacElroy AS, Defreitas A, Shenker BJ, Boesze-Battaglia K. A Synthetic Small Molecule, LGM2605: A Promising Modulator of Increased Pro-Inflammatory Cytokine and Osteoclast Differentiation by Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin. Dent J (Basel) 2024; 12:195. [PMID: 39056982 PMCID: PMC11276599 DOI: 10.3390/dj12070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Our research explores the interplay between Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) and the host's inflammatory response in molar/incisor pattern periodontitis (MIPP). Cdt disrupts phosphatidylinositol-3,4,5-triphosphate (PIP3) signaling, influencing cytokine expression through canonical and non-canonical inflammasome activation as well as nuclear factor-κB (NF-κB) activation, leading to inflammation in MIPP. THP-1 differentiated macrophages (TDMs) exposed to Cdt exhibited an upregulation of pro-inflammatory genes and subsequent cytokine release. We analyzed the ability of a small molecule therapeutic, LGM2605, known for its anti-inflammatory properties, to reduce pro-inflammatory gene expression and cytokine release in Cdt-exposed and Aa-inoculated TDMs. LGM2605's mechanism of action involves inhibiting NF-κB while activating the Nrf2-transcription factor and antioxidants. Herein, we show that this small molecule therapeutic mitigates Cdt-induced pro-inflammatory cytokine expression and secretion. Our study also further defines Cdt's impact on osteoclast differentiation and maturation in MIPP. Cdt promotes increased TRAP+ cells, indicating heightened osteoclast differentiation, specific to Cdt's phosphatase activity. Cathepsin K levels rise during this process, reflecting changes in TRAP distribution between control and Cdt-treated cells. Exploring LGM2605's effect on Cdt-induced osteoclast differentiation and maturation, we found TRAP+ cells significantly reduced with LGM2605 treatment compared to Cdt alone. Upon LGM2605 treatment, immunocytochemistry revealed a decreased TRAP intensity and number of multinucleated cells. Moreover, immunoblotting showed reduced TRAP and cathepsin K levels, suggesting LGM2605's potential to curb osteoclast differentiation and maturation by modulating inflammatory cytokines, possibly involving Nrf2 activation. In summary, our research reveals the intricate connections between Cdt, pro-inflammatory cytokines, and osteoclast differentiation, offering novel therapeutic possibilities for managing these conditions.
Collapse
Affiliation(s)
- Taewan J. Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Andrew S. MacElroy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Aleena Defreitas
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| |
Collapse
|
3
|
Ko SY. Therapeutic Potential of Ginsenosides on Bone Metabolism: A Review of Osteoporosis, Periodontal Disease and Osteoarthritis. Int J Mol Sci 2024; 25:5828. [PMID: 38892015 PMCID: PMC11172997 DOI: 10.3390/ijms25115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Ginsenosides, bioactive compounds from the genus Panax, have potential therapeutic effects on diverse ailments, including diabetes. Emerging evidence suggests their involvement in bone metabolism. The present review summarizes the current understanding of the effects of ginsenosides on osteoporosis, periodontal disease, and osteoarthritis. Their mechanisms of action include effects on osteoblasts, osteoclasts, periodontal ligament fibroblasts (PDLFs), and chondrocytes, which are pivotal in maintaining bone, periodontal tissue, and cartilage homeostasis. Ginsenosides may exert their beneficial effects by enhancing PDLF and osteoblast activity, suppressing osteoclast function, augmenting chondrocyte synthesis in the cartilage matrix, and mitigating connective tissue degradation. Moreover, they possess antioxidant, anti-inflammatory, antimicrobial, and anti-pyroptotic properties. Their efficacy in increasing bone density, ameliorating periodontitis, and alleviating osteoarthritis symptoms has been demonstrated in preclinical studies using animal models. In terms of their mechanism of action, ginsenosides modulate cellular differentiation, activity, and key signaling pathway molecules, such as mitogen-activated protein kinases (MAPKs), while also regulating various mediators. Furthermore, the symptomatic relief observed in animal models lends further credence to their therapeutic utility. However, to translate these preclinical findings into clinical practice, rigorous animal and clinical investigations are imperative to ascertain the safety, efficacy, and optimal dosing regimens in human subjects.
Collapse
Affiliation(s)
- Seon-Yle Ko
- Department of Oral Biochemistry and Institute of Dental Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Ahmad P, Siqueira WL. Mass spectrometry-based proteomics profiling of dogs with and without oral diseases: a systematic review. BMC Oral Health 2024; 24:369. [PMID: 38519930 PMCID: PMC10958906 DOI: 10.1186/s12903-024-04096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Understanding the distinct proteomics profiles in dogs' oral biofluids enhances diagnostic and therapeutic insights for canine oral diseases, fostering cross-species translational research in dentistry and medicine. This study aimed to conduct a systematic review to investigate the similarities and differences between the oral biofluids' proteomics profile of dogs with and without oral diseases. METHODS PubMed, Web of Science, and Scopus were searched with no restrictions on publication language or year to address the following focused question: "What is the proteome signature of healthy versus diseased (oral) dogs' biofluids?" Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analyses of the most abundant proteins were performed. Moreover, protein-protein interaction analysis was conducted. The risk of bias (RoB) among the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Studies Reporting Prevalence Data. RESULTS In healthy dogs, the proteomic analysis identified 5,451 proteins, with 137 being the most abundant, predominantly associated with 'innate immune response'. Dogs with oral diseases displayed 6,470 proteins, with distinct associations: 'defense response to bacterium' (periodontal diseases), 'negative regulation of transcription' (dental calculus), and 'positive regulation of transcription' (oral tumors). Clustering revealed significant protein clusters in each case, emphasizing the diverse molecular profiles in health and oral diseases. Only six studies were provided to the JBI tool, as they encompassed case-control evaluations that compared healthy dogs to dogs with oral disease(s). All included studies were found to have low RoB (high quality). CONCLUSION Significant differences in the proteomics profiles of oral biofluids between dogs with and without oral diseases were found. The synergy of animal proteomics and bioinformatics offers a promising avenue for cross-species research, despite persistent challenges in result validation.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Thomas S, Lappin DF, Bennett D, Nile C, Riggio MP. Elevated pro-inflammatory cytokines and chemokines in saliva of cats with feline odontoclastic resorptive lesion. Res Vet Sci 2024; 166:105092. [PMID: 38029490 DOI: 10.1016/j.rvsc.2023.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Feline odontoclastic resorptive lesion (FORL) is an inflammatory oral disease of unknown aetiopathogenesis that affects between 20% to 75% of cats. Twenty immune-associated molecules were measured in saliva of 25 healthy and 40 cats with FORL using a multiplex assay. No statistically significant differences were observed in the levels of these proteins between the healthy group and the diseased group of cats. A two-step cluster analysis of the oral microbiome and salivary cytokine data identified two subgroups of cats with FORL: FORL-1 (subset of cats with a less diverse oral microbiome) and FORL-2 (diseased cats with a microbiome similar to that of healthy animals). The level of some key proinflammatory cytokines (IL-1β, IL-12p40) and chemokines (IL-8, RANTES, KC) were significantly higher in the FORL-1 subgroup than in the FORL-2 subgroup and the healthy group. In addition, TNF-α levels were greater in the FORL-1 subgroup than in the FORL-2 subgroup. These increases in pro-inflammatory cytokines and chemokines indicate active ongoing inflammation that may promote the osteoclastic/odontoclastic activity associated with FORL.
Collapse
Affiliation(s)
- Sheeba Thomas
- Oral Sciences Research Group, Dental School, University of Glasgow, Glasgow, UK
| | | | - David Bennett
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Christopher Nile
- Oral Sciences Research Group, Dental School, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
6
|
Bayani M, Heidari M, Almasi-Hashiani A. Periodontal disease and visfatin level: A systematic review and meta-analysis. PLoS One 2023; 18:e0293368. [PMID: 37934738 PMCID: PMC10629655 DOI: 10.1371/journal.pone.0293368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Visfatin is considered an inflammatory biomarker in periodontal disease (PD). In this meta-analysis, we aimed to evaluate the relationship between Visfatin biomarker level with PD. In this study, Medline, Scopus, Web of Science, and Google Scholar were searched. We included studies that examined visfatin levels in samples from healthy people and periodontal disease until March 2023. The quality of the selected articles was evaluated using the Newcastle-Ottawa assessment scale. Depending on heterogeneity of studies, random-effects or fixed-effect models were used to pool results and report the standardized mean difference (SMD). After screening the retrieved papers, the related data were extracted. A total of 159 studies were identified, and 16 studies were included in the meta-analysis. In 9 studies, the SMD of visfatin level of gingival crevicular fluid (GCF) in patients with chronic periodontitis (CP) and healthy individuals was 4.32 (p<0.001). In 6 studies, the SMD of salivary visfatin level in patients with CP and healthy individuals was 2.95 (p = 0.004). In addition, in five studies, the SMD of serum visfatin level in patients with CP and healthy individuals was 7.87 (p<0.001). Therefore, Visfatin levels in serum, saliva, and GCF of patients with CP were increased in comparison to healthy individuals. Comparison of visfatin levels in saliva of gingivitis patients and healthy individuals showed a significant increase of visfatin in gingivitis patients (SMD:0.57, P = 0.018), but no significant difference was observed in the mean GCF visfatin level of gingivitis patients and healthy individuals (SMD:2.60, P = 0.090). In addition, the results suggested that there is no difference between gingivitis cases compared to CP patients (SMD:3.59, P = 0.217). Visfatin levels in GCF, serum, and saliva have the potential to be used as a diagnostic biomarker of periodontitis.
Collapse
Affiliation(s)
- Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | | | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Varshney S, Dwivedi A, Dwivedi V. Comparing efficacies of autologous platelet concentrate preparations as mono-therapeutic agents in intra-bony defects through systematic review and meta-analysis. J Oral Biol Craniofac Res 2023; 13:671-681. [PMID: 37711544 PMCID: PMC10497996 DOI: 10.1016/j.jobcr.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Aim This systematic review and meta-analysis aimed to assess individually the regenerative potential of PRF (Platelet-rich Fibrin), PRP (Platelet-rich Plasma), and PRGF (Plasma Rich in Growth Factors) in comparison to OFD (Open Flap Debridement) alone for treating Intrabony defects, by calculating pooled effect sizes. Background Relevant randomized controlled trials on humans were searched in PUBMED, COCHRANE CENTRAL, and GOOGLE SCHOLAR. Mean differences (MD) of Clinical Attachment level (CAL), Probing Pocket depth (PPD), and Defect Depth Reduction (DDR) between the Experimental and Control groups were used for calculating pooled effect sizes. Risk of bias was assessed using Cochrane's tool, and publication bias was evaluated through Funnel plots, Trim & Fill Method, and Rosenthal's Fail-Safe N Test. Review result A total of 23 studies were identified for qualitative and quantitative analysis. These studies were categorized into PRF, PRP, and PRGF groups based on the type of APC used. PRF showed the highest CAL gain (1.60 mm, 95% CI = 0.963-2.232 mm, P < 0.001, I2 = 93.83%) and PPD reduction (1.76 mm, 95% CI = 1.056 to 2.446, P < 0.001, I2 = 96.05%). However, PRP exhibited the greatest DDR (3.42 mm, 95% CI = -13.67 to -20.50, P = 0.011, I2 = 87.27%). PRF and PRP demonstrated large effect sizes, while PRGF showed a small effect size. Conclusion The use of PRF, PRP, and PRGF showed advantages in treating intrabony defects. However, caution is advised when interpreting the results due to heterogeneity and publication bias among the studies.
Collapse
Affiliation(s)
- Shailesh Varshney
- Department of Periodontology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anshuman Dwivedi
- Department of Stem Cells & Regenerative Medicine, Santosh University, Ghaziabad, Uttar Pradesh, India
| | - Vibha Dwivedi
- Department of Psychology, Himalayan Gharwal University, Uttarakhand, India
| |
Collapse
|
8
|
Chmielewski M, Pilloni A. Current Molecular, Cellular and Genetic Aspects of Peri-Implantitis Disease: A Narrative Review. Dent J (Basel) 2023; 11:dj11050134. [PMID: 37232785 DOI: 10.3390/dj11050134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
(1) Background: Peri-implantitis is a multi-factorial disease with an inflammatory background that occurs in both soft and hard tissues surrounding implants. In recent years, the understanding of the cellular, molecular and genetic background of peri-implantitis has broadened. This study aims to summarize the currently available articles on the subject and highlight the most recent advances over the last 20 years. (2) Methods: For this study, the Embase and PubMed libraries were searched using the keywords: ("peri-implantitis" AND "cytokine" OR "genetics" OR "cellular") and ("peri-implantitis" AND "cytokine" OR "genetics" OR "cellular" AND "risk factors"). The search revealed a total of 3013 articles (992 from PubMed, 2021 from Embase). Following screening of the titles and abstracts and full-text reads, 55 articles were included. (3) Results: In peri-implantitis IL-6, IL-1β, TNF-α, MMP-8 and their genetic variations appear to be the most important cytokines in relation to not only pathogenesis, but also their potential diagnostic capabilities. Epithelial and inflammatory cells, along with those of the bone lineage, are prime cellular elements found in peri-implantitis. (4) Conclusions: A wide array of cells stand behind peri-implantitis, as well as cytokines and their genetic variations that take part in the process. However, the growing interest in this topic has led to the introduction of specific new diagnostic tools to enable a better understanding of patients' responses to treatment and, in turn, to even enable prediction of the risk of developing peri-implant disease.
Collapse
Affiliation(s)
| | - Andrea Pilloni
- Section of Periodontics, Department of Oral and Maxillo-Facial Sciences, Sapienza Unviersity of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
de Oliveira ICV, Galvão-Moreira LV, Vilela JL, Duarte-Silva M, Aguiar-da-Silva LD, Pereira CAA, Pereira DMS, Pinheiro AJMCR, Lima-Neto LG, Fernandes ES, Cardoso CRB, Branco-de-Almeida LS. Cinnamaldehyde modulates host immunoinflammatory responses in rat ligature-induced periodontitis and peripheral blood mononuclear cell models. Int Immunopharmacol 2023; 115:109669. [PMID: 36634418 DOI: 10.1016/j.intimp.2022.109669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Cinnamaldehyde is a natural product with anti-inflammatory and immune-modulatory properties, known to regulate host responses to bacterial stimuli. This study aimed to investigate the effects of cinnamaldehyde on ligature-induced periodontitis in rats, and its impact on the modulation of human peripheral blood mononuclear cells (PBMC). Male Wistar rats were assigned into three groups:i) control: no ligature + vehicle; ii) ligature: ligature + vehicle; and iii) ligature + cinnamaldehyde (50 mg/kg); all treatments by daily oral gavage. After 14 days of induced periodontitis, the hemimandibles were collected for bone loss evaluation. The gingival levels of IL-1β, MMP-9 and iNOS mRNA were evaluated. Nitric oxide (NO) was measured in both rat saliva and plasma. PBMC were stimulated with Aggregatibacter actinomycetemcomitans (Aa) in the presence or absence of cinnamaldehyde (5, 20 e 40 µM), and cytokine production was quantified in cell supernatant. Proliferating lymphocytes were taken for flow cytometer reading, while culture supernatants were used for IFN-γ and IL-10 assessment. The ligature group had both increased alveolar bone loss and gingival expression of IL-1β, MMP-9 and iNOS compared to the control group. All parameters were attenuated by cinnamaldehyde treatment. Lower salivary but not plasma NO was detected in the cinnamaldehyde compared to the ligature group. Aa-stimulated PBMCs treated with cinnamaldehyde produced less IL-1β; the compound also attenuated lymphocyte proliferation in a dose-dependent manner, as well as cell IL-10 production. Cinnamaldehyde treatment reduced periodontal bone loss, and downregulated key inflammatory mediators and human PBMC responses, pointing to novel potential therapeutic effects of this compound.
Collapse
Affiliation(s)
- Izabel C V de Oliveira
- Post Graduate Program in Dentistry, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil
| | - Leonardo V Galvão-Moreira
- School of Medicine, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil
| | - Juliana L Vilela
- School of Dentistry, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil
| | - Murillo Duarte-Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, São Paulo, Brazil
| | - Lucas D Aguiar-da-Silva
- School of Dentistry, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil
| | - Cesar A A Pereira
- School of Dentistry, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil
| | - Domingos M S Pereira
- Programa de Pós-Graduação, Universidade CEUMA, R. Anapurus, 1 - Renascença II, São Luís, Maranhão, Brazil
| | - Aruanã J M C R Pinheiro
- Programa de Pós-Graduação, Universidade CEUMA, R. Anapurus, 1 - Renascença II, São Luís, Maranhão, Brazil
| | - Lídio G Lima-Neto
- Programa de Pós-Graduação, Universidade CEUMA, R. Anapurus, 1 - Renascença II, São Luís, Maranhão, Brazil
| | - Elizabeth S Fernandes
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Av. Iguaçu, 333 - Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, Paraná, Brazil
| | - Cristina R B Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n - Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Luciana S Branco-de-Almeida
- Post Graduate Program in Dentistry, Federal University of Maranhão, Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão, Brazil.
| |
Collapse
|
10
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Sclafani R, Valletta A, Lo Giudice A, Cavalcanti R, Spagnuolo G, Isola G. Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:13708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Raffaele Cavalcanti
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
11
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Delgado-Domínguez J, Ruíz-Remigio A, Leyva-Huerta ER, Portilla-Robertson J, Fernández-Presas AM. Antimicrobial and anti-inflammatory activity of Cystatin C on human gingival fibroblast incubated with Porphyromonas gingivalis. PeerJ 2022; 10:e14232. [PMID: 36312752 PMCID: PMC9615962 DOI: 10.7717/peerj.14232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Periodontal disease is considered one of the most prevalent chronic infectious diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of cystatin C and to assess the effect on the inflammatory and anti-inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin C. Methods P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were evaluated. Results Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs. Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was reduced in the presence of the peptide. Conclusions Cystatin C inhibits the growth of P. gingivalis and decreases the inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Adriana Ruíz-Remigio
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elba Rosa Leyva-Huerta
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Javier Portilla-Robertson
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, México,Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Mexico City, México
| |
Collapse
|
12
|
Thomas S, Lappin DF, Spears J, Bennett D, Nile C, Riggio M. Expression of toll-like receptor and cytokine mRNAs in feline odontoclastic resorptive lesion (FORL) and feline oral health. Res Vet Sci 2022; 152:395-402. [DOI: 10.1016/j.rvsc.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
13
|
A Review on the Potential Species of the Zingiberaceae Family with Anti-viral Efficacy Towards Enveloped Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products are a great wellspring of biodiversity for finding novel antivirals, exposing new interactions between structure and operation and creating successful defensive or remedial methodologies against viral diseases. The members of Zingiberaceae traditional plant and herbal products have robust anti-viral action, and their findings will further lead to the production of derivatives and therapeutic. Additionally, it highlights the insight of utilizing these phytoextracts or their constituent compounds as an emergency prophylactic medicine during the pandemic or endemic situations for novel viruses. In this connection, this review investigates the potential candidates of the Zingiberaceae family, consisting of bioactive phytocompounds with proven antiviral efficacy against enveloped viruses. The present study was based on published antiviral efficacy of Curcuma longa, Zingiber officinale, Kaempferia parviflora, Aframomum melegueta Elettaria cardamomum, Alpina Sps (belongs to the Zingiberaceae family) towards the enveloped viruses. The relevant data was searched in Scopus”, “Scifinder”, “Springer”, “Pubmed”, “Google scholar” “Wiley”, “Web of Science”, “Cochrane “Library”, “Embase”, Dissertations, theses, books, and technical reports. Meticulously articles were screened with the subject relevancy and categorized for their ethnopharmacological significance with in-depth analysis. We have comprehensively elucidated the antiviral potency of phytoextracts, major composition, key compounds, mode of action, molecular evidence, immunological relevance, and potential bioactive phytocompounds of these five species belonging to the Zingiberaceae family. Conveniently, these phytoextracts exhibited multimode activity in combating the dreadful enveloped viruses.
Collapse
|
14
|
Li X, Wang C, Wang L, Huang R, Li WC, Wang X, Wong SSW, Cai Z, Leung KCF, Jin L. A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses. J Colloid Interface Sci 2022; 614:322-336. [PMID: 35104706 DOI: 10.1016/j.jcis.2022.01.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/02/2023]
Abstract
HYPOTHESIS Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1β. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.
Collapse
Affiliation(s)
- Xuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Leilei Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Wai-Chung Li
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Xinna Wang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
15
|
Sukumaran G, Ezhilarasan D, Ramani P, Merlin RJ. Molecular docking analysis of syringic acid with proteins in inflammatory cascade. Bioinformation 2022; 18:219-225. [PMID: 36518124 PMCID: PMC9722417 DOI: 10.6026/97320630018219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 09/19/2023] Open
Abstract
Syringic Acid (SA) is a dimethoxybenzene derived from plants. Dietary SA possesses anti-obesity, anti-inflammatory and anti-steatotic effects and is of interest as a potential therapeutic medication in the treatment of obesity, diabetes, diabetic cataracts and asthma. It has anti-tumorigenic effect against hepatocellular carcinoma, lung carcinoma and oral mucosal carcinoma. It is also believed to have a protective effect on Acetaminophen induced damage in Wistar rats. Therefore, it is of interest to document the molecular docking analysis of syringic acid with proteins in inflammatory cascade such as TNF α, NFκB, P50, P65 and IKB for further consideration in drug discovery.
Collapse
Affiliation(s)
- Gheena Sukumaran
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology,Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R Jancy Merlin
- Department of Advanced Zoology and Biotechnology, Women’s Christian College, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Yue C, Cao J, Wong A, Kim JH, Alam S, Luong G, Talegaonkar S, Schwartz Z, Boyan BD, Giannobile WV, Sahingur SE, Lin Z. Human Bone Marrow Stromal Cell Exosomes Ameliorate Periodontitis. J Dent Res 2022; 101:1110-1118. [PMID: 35356822 PMCID: PMC9305845 DOI: 10.1177/00220345221084975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human bone marrow stromal cell (hBMSC)-derived exosomes are promising therapeutics for inflammatory diseases due to their unique microRNA (miRNA) and protein cargos. Periodontal diseases often present with chronicity and corresponding exuberant inflammation, which leads to loss of tooth support. In this study, we explored whether hBMSC exosomes can affect periodontitis progression. hBMSC exosomes were isolated from cell culture medium through sequential ultracentrifugation. miRNAs and proteins that were enriched in hBMSC exosomes were characterized by RNA sequencing and protein array, respectively. hBMSC exosomes significantly suppressed periodontal keystone pathogen Porphyromonas gingivalis-triggered inflammatory response in macrophages in vitro. Transcriptomic analysis suggested that exosomes exerted their effects through regulating cell metabolism, differentiation, and inflammation resolution. In vivo, weekly exosome injection into the gingival tissues reduced the tissue destruction and immune cell infiltration in rat ligature-induced periodontitis model. Collectively, these findings suggest that hBMSC-derived exosomes can potentially be used as a host modulation agent in the management of periodontitis.
Collapse
Affiliation(s)
- C Yue
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - J Cao
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.,Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - A Wong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - J H Kim
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S Alam
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - G Luong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S Talegaonkar
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Z Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - B D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - W V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - S E Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Z Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Abdulfattah SY, Baiomy AAB, Youssef JM. Is netrin-1 a reliable inflammatory marker for periodontitis? JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2022; 14:1-6. [PMID: 35919444 PMCID: PMC9339723 DOI: 10.34172/japid.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
Background The current study tested netrin-1 as a reliable inflammatory marker of periodontal disease. Methods Gingival crevicular fluid (GCF) samples were taken at baseline from 30 systemically healthy individuals. Fifteen subjects had stage II grade A or B periodontitis, and 15 were periodontally and clinically healthy. Whole-mouth periodontal parameters [probing depth (PD), clinical attachment loss (CAL), plaque index (PI), and gingival index (GI)] were recorded. The GCF samples were re-collected, and clinical parameters were re-recorded after six weeks following full-mouth scaling and root planing (SRP) in the periodontitis group. Results Netrin-1 GCF levels were significantly lower in periodontitis patients than periodontally healthy individuals at baseline with a significant increase in netrin-1 GCF levels after SRP (P<0.05). Conclusion Netrin-1 may have a significant role in the inflammatory process of chronic periodontitis; thus, it could be a promising anti-inflammatory marker in periodontal disease.
Collapse
Affiliation(s)
- Sarah Yasser Abdulfattah
- Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Azza Abdel Baky Baiomy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jilan Mohammed Youssef
- Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Zhou J, Li L, Cui D, Xie X, Yang W, Yan F. Effects of gold nanoparticles combined with human β-defensin 3 on the alveolar bone loss of periodontitis in rat. Biomed Eng Online 2021; 20:115. [PMID: 34819109 PMCID: PMC8611896 DOI: 10.1186/s12938-021-00954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human β-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. METHODS A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro-computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. RESULTS Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. CONCLUSIONS AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.
Collapse
Affiliation(s)
- Jing Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Xiaoting Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
19
|
Balaji S, Cholan PK, Victor DJ. An emphasis of T-cell subsets as regulators of periodontal health and disease. J Clin Transl Res 2021; 7:648-656. [PMID: 34778595 PMCID: PMC8580519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The pathogenesis of complex diseases like periodontitis is moderated by the balance in immune inflammatory responses. T-lymphocytes are immune cells that descend from the bone marrow. Furthermore, they develop in the thymus playing an indispensable role in adaptive immune responses. The periodontal microenvironment allows differentiation of various groups of T-lymphocytes such as CD4+ (Th1/Th2/Th17/Treg/Tfh/Th9/T22), CD8+ cells, gamma-delta (γd) T cells, or memory cells based on the current regional cytokine milieu to secrete distinct cytokines and other molecules required for resolution of inflammation or result in progression of the disease based on interactions among various cells. AIM The dynamism of T-lymphocytes in the immunopathogenesis of periodontal diseases resulting in tissue destruction is established but the mechanisms of immunoregulation that underpins periodontal disease progression are cumbersome. This review aims to understand the distinct types of T cells and their effector functions with their portrayal in periodontal disease. RELEVANCE FOR PATIENTS This review gives valuable insights on the possibility of predicting periodontal disease progression, on the management and its prognosis by evaluating specific cytokines of destructive T-cell phenotype, and on the future perspectives of therapeutic modalities including ways of modulating host immune and inflammatory responses to establish periodontal homeostasis and areas of research.
Collapse
Affiliation(s)
- Saranya Balaji
- Department of Periodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Priyanka K. Cholan
- Department of Periodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | | |
Collapse
|
20
|
Kwack KH, Maglaras V, Thiyagarajan R, Zhang L, Kirkwood KL. Myeloid-derived suppressor cells in obesity-associated periodontal disease: A conceptual model. Periodontol 2000 2021; 87:268-275. [PMID: 34463977 DOI: 10.1111/prd.12384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Periodontitis is a common chronic inflammatory disease characterized by destruction of the supporting structures of the teeth. Severe periodontitis is highly prevalent-affecting 10%-15% of adults-and carries several negative comorbidities, thus reducing quality of life. Although a clear relationship exists between severity of obesity and incidence of periodontal disease, the biologic mechanisms that support this link are incompletely understood. In this conceptual appraisal, a new "two-hit" model is presented to explain obesity-exacerbated periodontal bone loss. This proposed model recognizes a previously unappreciated aspect of myeloid-derived suppressor cell population expansion, differentiation, and activity that can participate directly in periodontal bone loss, providing new mechanistic and translational perspectives.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Victoria Maglaras
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, New York, USA.,Research Service, Western New York Veterans Affairs Healthcare Service, Buffalo, New York, USA
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA.,Department of Head and Neck/Plastic and Reconstructive Surgery, Buffalo, New York, USA
| |
Collapse
|
21
|
Evaluation of PRF Efficiency in the Treatment of Infrabony Defects. ACTA ACUST UNITED AC 2021; 41:79-86. [PMID: 32573474 DOI: 10.2478/prilozi-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The present study aimed to investigate the effectiveness of PRF in the treatment of infrabony defects in patients with chronic periodontitis by evaluating the clinical outcome through periodontal depth, clinical attachment level at the baseline, 6 and 9 months post operatively. MATERIAL AND METHODS Sixty infrabony defects with probing depth ≥ 5 mm were treated. The inclusion criterion was the necessity for surgical bilateral maxillary treatment. By using split-mouth study design, each patient had one side treated with conventional flap surgery and the other side with conventional flap surgery and PRF. Clinical parameters, such as probing depth (PD) and clinical attachment lost (CAL), were recorded in both groups at baseline, 6 and 9 months post operatively. RESULTS Positive effects for all clinical and radiographic parameters were evident in the group with PRF. Mean PD reduction demonstrated statistically significant greater results in the test group (4.00±1.07 mm) compared to the control one (4.83±0.99 mm), p = 0.003 after 9 months postoperatively. After 9 months, there were better results in the test group compared to the control group for CAL (5.60±1.61 mm, 6.20±1.58 mm), but statistically not significant. CONCLUSION Additional use of PRF in the conventional surgical treatment of infrabony defects demonstrated better parameters than the open flap debridement alone.
Collapse
|
22
|
Agossa K, Delepierre A, Lizambard M, Delcourt-Debruyne E, Siepmann J, Siepmann F, Neut C. In-situ forming implants for dual controlled release of chlorhexidine and ibuprofen for periodontitis treatment: Microbiological and mechanical key properties. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Moon SH, Ji SH, Son JL, Shin SJ, Oh S, Kim SH, Bae JM. Antibacterial, anti-inflammatory, and anti-osteoclastogenic activities of Colocasia antiquorum var. esculenta: Potential applications in preventing and treating periodontal diseases. Dent Mater J 2020; 39:1096-1102. [PMID: 32999262 DOI: 10.4012/dmj.2020-157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the inhibitory effects of Colocasia antiquorum var. esculenta (CA) on Porphyromonas gingivalis (P. gingivalis) growth, inflammation, and osteoclastogenesis. CA was effective in inhibiting the growth of P. gingivalis when applied together with an experimental fluoride varnish. CA also significantly decreased the release of interleukin-6, tumor necrosis factor-α, and nitric oxide from lipopolysaccharide-induced RAW 264.7 cells. No significant differences in viability were noted between the cells treated with CA and the controls. In addition, CA significantly attenuated osteoclast differentiation on bone marrow macrophages. In conclusion, CA inhibited the growth of P. gingivalis and showed anti-inflammatory and anti-osteoclastogenic effects. Therefore, CA may have the potential to act as a novel natural agent for preventing periodontitis.
Collapse
Affiliation(s)
- Seong-Hee Moon
- Department of Dental Biomaterials and Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
| | - Sang Hee Ji
- Innovative Target Research Center, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Ju-Lee Son
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
| | - Seong Hwan Kim
- Innovative Target Research Center, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Ji-Myung Bae
- Department of Dental Biomaterials and Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University
| |
Collapse
|
25
|
A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 2020; 10:14745. [PMID: 32901057 PMCID: PMC7479608 DOI: 10.1038/s41598-020-71593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The control of inflammation and infection is crucial for periodontal wound healing and regeneration. M101, an oxygen carrier derived from Arenicola marina, was tested for its anti-inflammatory and anti-infectious potential based on its anti-oxidative and tissue oxygenation properties. In vitro, no cytotoxicity was observed in oral epithelial cells (EC) treated with M101. M101 (1 g/L) reduced significantly the gene expression of pro-inflammatory markers such as TNF-α, NF-κΒ and RANKL in P. gingivalis-LPS stimulated and P. gingivalis-infected EC. The proteome array revealed significant down-regulation of pro-inflammatory cytokines (IL-1β and IL-8) and chemokine ligands (RANTES and IP-10), and upregulation of pro-healing mediators (PDGF-BB, TGF-β1, IL-10, IL-2, IL-4, IL-11 and IL-15) and, extracellular and immune modulators (TIMP-2, M-CSF and ICAM-1). M101 significantly increased the gene expression of Resolvin-E1 receptor. Furthermore, M101 treatment reduced P. gingivalis biofilm growth over glass surface, observed with live/dead analysis and by decreased P. gingivalis 16 s rRNA expression (51.7%) (p < 0.05). In mice, M101 reduced the clinical abscess size (50.2%) in P. gingivalis-induced calvarial lesion concomitant with a decreased inflammatory score evaluated through histomorphometric analysis, thus, improving soft tissue and bone healing response. Therefore, M101 may be a novel therapeutic agent that could be beneficial in the management of P. gingivalis associated diseases.
Collapse
|
26
|
Penmetsa GS, Mopidevi A, Ramaraju V, Ramachandran R, Ramesh MV. Role of Orthoboon (glucosamine sulfate + collagen + Vitamin C): A novel host-modulating agent in the management of chronic periodontitis. J Indian Soc Periodontol 2020; 24:428-432. [PMID: 33144770 PMCID: PMC7592613 DOI: 10.4103/jisp.jisp_645_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/05/2022] Open
Abstract
Background: Recent trends suggest using novel host-modulating agents as a treatment strategy for chronic periodontitis. Glucosamine sulfate (GS) was proven to have anti-inflammatory actions related to its ability to suppress neutrophil functions. Orthoboon, an anti-arthritic and anti-inflammatory drug, has shown to have a positive therapeutic effect due to its constituents made of a combination of GS, Vitamin C, and collagen. The aim of the study was to evaluate the host modulatory effects of Orthoboon on periodontal status and to estimate the C reactive protein (CRP) levels before and after nonsurgical periodontal therapy (NSPT). Materials and Methods: A total number of 40 patients with chronic periodontitis were randomly divided into two groups of 20 patients each. The test group patients (n = 20) received 500 mg Orthoboon three times daily for 45 days. Prior to the initiation of Orthoboon, all patients in both test group and control group were subjected to Phase I periodontal therapy. CRP levels were estimated immediately after phase I therapy and 45 days after therapy. Clinical parameters including plaque index, gingival index, and bleeding index were recorded before and after NSPT for the two groups. Results: The mean CRP levels were reduced significantly in the test group before and after administration of Orthoboon and also there were statistically significant differences in the mean CRP levels at the end of 45 days between the test group and the control group. Conclusion: Administration of Orthoboon, i.e., GS, with a combination of Vitamin C and collagen was proved to be of a significant benefit in the test group than in the control group.
Collapse
Affiliation(s)
- Gautami S Penmetsa
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Anudeep Mopidevi
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Venkata Ramaraju
- Department of Prosthodontics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Radhika Ramachandran
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - M V Ramesh
- Department of Public Health Dentistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|
27
|
Ramamoorthy A, Mahendra J, Mahendra L, Govindaraj J, Samu S. Effect of Sudharshan Kriya Pranayama on Salivary Expression of Human Beta Defensin-2, Peroxisome Proliferator-Activated Receptor Gamma, and Nuclear Factor-Kappa B in Chronic Periodontitis. Cureus 2020; 12:e6905. [PMID: 32064220 PMCID: PMC7006603 DOI: 10.7759/cureus.6905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction Sudharshan kriya pranayama (SKP) is a form of yoga that reduces inflammation and contributes to general health. Very few prior studies have examined the role of pranayama on oral health. We evaluated the clinical status and inflammatory biomarkers in patients with chronic periodontitis before and after SKP. Materials and methods Ninety male subjects were considered for the study and divided into three groups: subjects with a healthy periodontium (Group1), subjects with chronic gingivitis (Group2), and subjects with chronic periodontitis (Group3). The clinical parameters included plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), and salivary markers human beta-defensin-2(HBD-2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and nuclear factor-kappa B (NF-κB). These parameters and markers were evaluated before and after 90 days of SKP. The data obtained were statistically evaluated by McNemar's test, paired sample t-test, and one-way analysis of variance. Results There was a significant improvement in PI in all three groups. GI showed an improvement in Groups 2 and 3. PPD and CAL also showed an improvement in Group 3. HBD-2 and NF-κB decreased with SKP, whereas PPAR-γ expression increased after the intervention. In Groups 2 and 3 with the decrease in GI, there was a corresponding decrease in HBD-2. In Group 3 with an improvement in PPD and CAL, there was an improvement in PPAR-γ expression. Conclusions The results show that SKP can significantly decrease periodontal inflammation and improve periodontal status. It also effectively improves the expression of PPAR-γ, thereby decreasing salivary levels of HBD-2 and NF-κB, respectively. Based on our results, pranayama can be an effective adjunct in maintaining oral health.
Collapse
Affiliation(s)
| | - Jaideep Mahendra
- Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Little Mahendra
- Periodontics, Maktoum Bin Hamdan Dental University College, Dubai, ARE
| | | | - Subramaniam Samu
- Biochemistry, Regenix Super Speciality Laboratories Research Center, Chennai, IND
| |
Collapse
|
28
|
Souissi M, Azelmat J, Chaieb K, Grenier D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 2020; 61:102089. [DOI: 10.1016/j.anaerobe.2019.102089] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
29
|
Kirkwood KL, Zhang L, Thiyagarajan R, Seldeen KL, Troen BR. Myeloid-Derived Suppressor Cells at the Intersection of Inflammaging and Bone Fragility. Immunol Invest 2019; 47:844-854. [PMID: 31282803 DOI: 10.1080/08820139.2018.1552360] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age-related alteration of the immune system with aging, or immunosenescence, plays a major role in several age-associated conditions, including loss of bone integrity. Studies over the past several years have clearly established the immune system is chronically activated with advanced aging, termed inflammaging, and is characterized by elevated levels of proinflammatory cytokines in response to physiological or environmental cues that essentially result in an arrested immune system that maintains a low-level state of activation. This age-associated inflammation impacts several biological systems including the innate immune system, where aging results in a skewing of the hematopoiesis toward the myeloid lineage, including the expansion of myeloid-derived suppressor cells (MDSCs). This heterogeneous population of myeloid cells classically displays immunosuppressive capacity but they also have the ability to directly differentiate into osteoclasts. This review explores the possibility of inflammaging to be involved in reduction of bone microarchitecture and loss of bone mass/strength through the expansion of MDSCs and the osteoclastogenic capacity and activity.
Collapse
Affiliation(s)
- Keith L Kirkwood
- a Department of Oral Biology , University at Buffalo , Buffalo , New York , USA.,b Department of Oral Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , New York , USA
| | - Lixia Zhang
- a Department of Oral Biology , University at Buffalo , Buffalo , New York , USA
| | - Ramkumar Thiyagarajan
- c Division of Geriatrics and Palliative Medicine , University at Buffalo, Research Service, Western New York Veterans Affairs Healthcare Service , Buffalo , New York , USA
| | - Kenneth L Seldeen
- c Division of Geriatrics and Palliative Medicine , University at Buffalo, Research Service, Western New York Veterans Affairs Healthcare Service , Buffalo , New York , USA
| | - Bruce R Troen
- c Division of Geriatrics and Palliative Medicine , University at Buffalo, Research Service, Western New York Veterans Affairs Healthcare Service , Buffalo , New York , USA
| |
Collapse
|
30
|
Quercetin Inhibits Inflammatory Response Induced by LPS from Porphyromonas gingivalis in Human Gingival Fibroblasts via Suppressing NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6282635. [PMID: 31531360 PMCID: PMC6720363 DOI: 10.1155/2019/6282635] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/09/2019] [Accepted: 07/10/2019] [Indexed: 01/17/2023]
Abstract
Quercetin, a natural flavonol existing in many food resources, has been reported to be an effective antimicrobial and anti-inflammatory agent for restricting the inflammation in periodontitis. In this study, we aimed to investigate the anti-inflammatory effects of quercetin on Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide- (LPS-) stimulated human gingival fibroblasts (HGFs). HGFs were pretreated with quercetin prior to LPS stimulation. Cell viability was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), along with chemokine interleukin-8 (IL-8), were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IκBα, p65 subunit of nuclear factor-kappa B (NF-κB), peroxisome proliferator-activated receptor-γ (PPAR-γ), liver X receptor α (LXRα), and Toll-like receptor 4 (TLR4) were measured by real-time quantitative PCR (RT-qPCR). The protein levels of IκBα, p-IκBα, p65, p-p65, PPAR-γ, LXRα, and TLR4 were characterized by Western blotting. Our results demonstrated that quercetin inhibited the LPS-induced production of IL-1β, IL-6, IL-8, and TNF-α in a dose-dependent manner. It also suppressed LPS-induced NF-κB activation mediated by TLR4. Moreover, the anti-inflammatory effects of quercetin were reversed by the PPAR-γ antagonist of GW9662. In conclusion, these results suggested that quercetin attenuated the production of IL-1β, IL-6, IL-8, and TNF-α in P. gingivalis LPS-treated HGFs by activating PPAR-γ which subsequently suppressed the activation of NF-κB.
Collapse
|
31
|
Valerio MS, Alexis F, Kirkwood KL. Functionalized nanoparticles containing MKP-1 agonists reduce periodontal bone loss. J Periodontol 2019; 90:894-902. [PMID: 30811602 DOI: 10.1002/jper.18-0572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Progress over of the past several years has elucidated a role for mitogen-activated protein kinase phosphatase to regulate periodontal inflammation yielding new possibilities for treatment of periodontal diseases. These studies aimed to determine if nanoparticles (NPs) loaded with a pharmacological agent that induces mitogen-activated protein kinase phosphatase have potential clinical utility for management of periodontal inflammation and alveolar bone. METHODS Polyethylene glycol (PEG)-polylactide (PLA) (PEG-PLA) NPs were loaded with auranofin (ARN), an antirheumatic drug, to induce mitogen-activated protein kinase phosphatase (MKP)-1 expression in vitro and in vivo. Release kinetics of ARN from NPs was performed by high performance liquid chromatography (HPLC). Fluorescent-labeled NPs were used to show uptake into macrophages by flow cytometry. Real-time quantitative polymerase chain reaction (qPCR) was used to determine dual specificity protein phosphatase (Dusp)-1 mRNA induction by Auranofin-loaded nanoparticles (ARN-NPs) and viability of ARN-NPs was determined by colorimetric in vitro assays. Functional in vitro assays were used to measure functional MKP-1 induction and preclinical models using Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced alveolar bone loss and microcomputed tomography was used to determine in vivo efficacy of functionalized ARN-NPs. RESULTS Data indicated that ARN-NPs had reduced cytotoxicity compared with free ARN and Dusp1 mRNA and MKP-1 activity was significantly increased by ARN-NPs in vitro. Flow cytometry indicated rapid uptake into macrophages. Finally, significant bone loss reduction was observed with ARN-NPs compared with control NPs in vivo using an lipopolysaccharide-induced rat model of periodontitis. CONCLUSION Results from these studies suggest that developing NPs functionalized with ARN have anti-inflammatory activities and may be a novel adjuvant therapeutic strategy to significantly improve periodontitis therapy and outcomes.
Collapse
Affiliation(s)
- Michael S Valerio
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí, Ecuador
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA.,Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
32
|
Hong JY, Lee JS, Choi SH, Shin HS, Park JC, Shin SI, Chung JH. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. BMC Oral Health 2019; 19:40. [PMID: 30845920 PMCID: PMC6407240 DOI: 10.1186/s12903-019-0728-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 12/04/2022] Open
Abstract
Background To evaluate gingival inflammation from fixed-dose combinations of vitamin C, vitamin E, lysozyme and carbazochrome (CELC) in the treatment of chronic periodontitis following scaling and root planing. Methods One hundred patients were randomly assigned to receive CELC (test) or placebo (control) for the first 4 weeks at a 1:1 ratio, and both groups received CELC for the remaining 4 weeks. Primary outcome was the mean change in the gingival index (GI) after 4 weeks. Secondary outcomes included mean change in GI after 8 weeks and plaque index, probing depth, clinical attachment level, and VAS at 4 weeks and 8 weeks. Results Ninety-three patients completed the study. The GI in the test group significantly decreased after 4 weeks (p < 0.001) and 8 weeks (p < 0.001). The mean change from baseline in GI significantly decreased in the test group compared to the control group after 4 weeks (p = 0.015). In the GEE model adjusting for age, gender and visits, the test group showed 2.5 times GI improvement compared to the control group (p = 0.022). Conclusions Within the study, CELC showed a significant reduction in gingival inflammation compared with a placebo. Other parameters, however, were similar between groups. Trial registration KCT0001366 (Clinical Research Information Service, Republic of Korea) and 29 Jan 2015, retrospectively registered.
Collapse
Affiliation(s)
- Ji-Youn Hong
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Jung-Seok Lee
- Department of Periodontology, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seong-Ho Choi
- Department of Periodontology, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hyun-Seung Shin
- Department of Periodontology, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Jung-Chul Park
- Department of Periodontology, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Seung-Il Shin
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jong-Hyuk Chung
- Department of Periodontology, Periodontal-Implant Clinical Research Institute, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
33
|
Li Y, Mooney EC, Holden SE, Xia XJ, Cohen DJ, Walsh SW, Ma A, Sahingur SE. A20 Orchestrates Inflammatory Response in the Oral Mucosa through Restraining NF-κB Activity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2044-2056. [PMID: 30760622 DOI: 10.4049/jimmunol.1801286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Deregulated immune response to a dysbiotic resident microflora within the oral cavity leads to chronic periodontal disease, local tissue destruction, and various systemic complications. To preserve tissue homeostasis, inflammatory signaling pathways involved in the progression of periodontitis must be tightly regulated. A20 (TNFAIP3), a ubiquitin-editing enzyme, has emerged as one of the key regulators of inflammation. Yet, the function of A20 in the oral mucosa and the biological pathways in which A20 mitigates periodontal inflammation remain elusive. Using a combination of in vivo and ex vivo disease models, we report in this study that A20 regulates inflammatory responses to a keystone oral bacterium, Porphyromonas gingivalis, and restrains periodontal inflammation through its effect on NF-κB signaling and cytokine production. Depletion of A20 using gene editing in human macrophage-like cells (THP-1) significantly increased cytokine secretion, whereas A20 overexpression using lentivirus infection dampened the cytokine production following bacterial challenge through modulating NF-κB activity. Similar to human cells, bone marrow-derived macrophages from A20-deficient mice infected with P. gingivalis displayed increased NF-κB activity and cytokine production compared with the cells isolated from A20-competent mice. Subsequent experiments using a murine ligature-induced periodontitis model showed that even a partial loss of A20 promotes an increased inflammatory phenotype and more severe bone loss, further verifying the critical function of A20 in the oral mucosa. Collectively, to our knowledge, these findings reveal the first systematic evidence of a physiological role for A20 in the maintenance of oral tissue homeostasis as a negative regulator of inflammation.
Collapse
Affiliation(s)
- Yajie Li
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Erin C Mooney
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Sara E Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Xia-Juan Xia
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Scott W Walsh
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298.,Departments of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Averil Ma
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Sinem E Sahingur
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298; .,Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
34
|
de Almeida Brandão D, Spolidorio LC, Johnson F, Golub LM, Guimarães-Stabili MR, Rossa C. Dose-response assessment of chemically modified curcumin in experimental periodontitis. J Periodontol 2018; 90:535-545. [PMID: 30394523 DOI: 10.1002/jper.18-0392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND CMC2.24, a novel tri-ketonic chemically modified compound based on natural di-ketonic curcumin, has been shown to reduce bone loss and inflammatory mediators in experimental periodontitis, however, a potential dose-response relationship was not determined. The purpose of this study was to assess the effects of different doses of CMC2.24 on inflammation and bone resorption in vivo and also to describe on the effects of CMC2.24 on macrophage response. METHODS CMC2.24 was administered daily to animals for 28 days by oral gavage, at the following doses: 0 (control), 1, 3, 10, and 30 mg/kg of body weight. Experimental periodontitis was induced by injections of lipopolysaccharide (LPS) into the gingival tissues. Outcomes assessed were bone resorption, detection of tartrate-resistant acid phosphatase, and determination of gene expression. In vitro, macrophages (RAW264.7) were treated with different concentrations of CMC2.24: 1, 3, 10, and 30 μM and then subjected to different activation stimuli. Gene expression, phagocytic activity, production of reactive oxygen species (ROS) and cytokine production were evaluated. RESULTS CMC2.24 inhibited bone resorption, osteoclastogenesis, and tumor necrosis factor (TNF)-α expression in vivo. These beneficial responses reached maximum levels at a dose of 1 mg/kg, i.e. no dose-dependent effect. In vitro, CMC2.24 reduced the production of TNF-α and interleukin-10, inhibited phagocytic activity and stimulated production of ROS. A dose-dependent effect was observed only for ROS production. CONCLUSION Low doses of CMC2.24 (1 mg/kg/day) administered orally were sufficient to significantly inhibit alveolar bone resorption associated with the experimental periodontal disease; whereas in vitro macrophage inflammatory gene expression and phagocytosis were reduced, whereas production of ROS was stimulated.
Collapse
Affiliation(s)
| | | | - Francis Johnson
- Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine Stony Brook University
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara, Brazil
| |
Collapse
|
35
|
Valerio MS, Kirkwood KL. Sexual Dimorphism in Immunity to Oral Bacterial Diseases: Intersection of Neutrophil and Osteoclast Pathobiology. J Dent Res 2018; 97:1416-1423. [PMID: 30205018 DOI: 10.1177/0022034518798825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sex is a biological variable that affects immune responses to bacterial and other types of infectious agents. Males and females are known to have differential oral bacterial disease burden in periodontal and endodontic disease. Understanding that there is a contribution from both sex and gender to these oral diseases, we discuss in this review recent sex-based findings that provide a pathobiological basis for differences observed between males and females. Sexual dimorphism of immune responses with respect to neutrophil trafficking and osteoclast differentiation and formation is presented as a plausible mechanism to explain the sexual differences. We also emphasize that sex, as a biological variable, should be considered in these types of oral immunologic studies.
Collapse
Affiliation(s)
- M S Valerio
- 1 Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Department of Defense and Department of Veterans Affairs, Bethesda, MD, USA
| | - K L Kirkwood
- 2 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.,3 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
36
|
Geskovski N, Sazdovska SD, Gjosheva S, Petkovska R, Popovska M, Anastasova L, Mladenovska K, Goracinova K. Rational development of nanomedicines for molecular targeting in periodontal disease. Arch Oral Biol 2018; 93:31-46. [DOI: 10.1016/j.archoralbio.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
|
37
|
Levi YLAS, Novais GS, Dias RB, Andraus RAC, Messora MR, Neto HB, Ervolino E, Santinoni CS, Maia LP. Effects of the prebiotic mannan oligosaccharide on the experimental periodontitis in rats. J Clin Periodontol 2018; 45:1078-1089. [PMID: 29999540 DOI: 10.1111/jcpe.12987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/05/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the effect of the prebiotic (PREB) mannan oligosaccharide (MOS) on the progression of the experimental periodontitis (EP) and intestinal morphology in rats. MATERIALS AND METHODS Forty rats were randomly allocated into groups (n = 10): C (control), PREB, EP and EP-PREB. Groups PREB and EP-PREB received MOS incorporated into the feed daily. After 30 days, groups EP and EP-PREB received a cotton ligature around their mandibular first molars, kept for 14 days. Morphometrical, histomorphometrical, microcomputed tomography, gene expression analyses and immunohistochemistry were performed. Data were statistically analysed (p < 0.05). RESULTS Group EP-PREB showed less interproximal bone loss, area without bone in the furcation and bone porosity, and greater bone mineral density than group EP (p < 0.05). It was also observed a significant decrease in IL-10 and IFN-γ gene expression, besides a decrease in TNF-α and IL-1β and an increase in TGF-β immunolabeling score for group EP-PREB. Group EP-PREB also presented villous height and crept depth values similar to group C, while group EP presented reduced values (p < 0.05). CONCLUSION It can be concluded that the oral administration of MOS promotes a protective effect against alveolar bone loss caused by EP in rats, modifying histologic and immune-inflammatory parameters, in addition to protecting the intestine.
Collapse
Affiliation(s)
- Yara L A S Levi
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Gabriela S Novais
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Raisa B Dias
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Rodrigo A C Andraus
- Graduate Program in Rehabilitation Sciences, Londrina, University Pitagoras UNOPAR Parana, Brazil
| | - Michel R Messora
- Departament of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of Sao Paulo-USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Hermann B Neto
- Department of Functional Sciences, University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Edilson Ervolino
- Division of Histology, Department of Basic Sciences, Dental School of Aracatuba, University Estadual Paulista-UNESP, Aracatuba, Sao Paulo, Brazil
| | - Carolina S Santinoni
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Luciana P Maia
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo-UNOESTE, Presidente Prudente, Sao Paulo, Brazil.,Graduate Program in Dentistry, University Pitagoras UNOPAR, Londrina, Parana, Brazil
| |
Collapse
|
38
|
Qi F, Sun JH, Yan JQ, Li CM, Lv XC. Anti-inflammatory effects of isorhamnetin on LPS-stimulated human gingival fibroblasts by activating Nrf2 signaling pathway. Microb Pathog 2018; 120:37-41. [DOI: 10.1016/j.micpath.2018.04.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
|
39
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
40
|
Local administration of Tiludronic Acid downregulates important mediators involved in periodontal tissue destruction in experimental periodontitis in rats. Arch Oral Biol 2018; 88:1-9. [DOI: 10.1016/j.archoralbio.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022]
|
41
|
Kim JY, Kim KH, Kwag EH, Seol YJ, Lee YM, Ku Y, Rhyu IC. Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions. J Periodontal Implant Sci 2018; 48:70-83. [PMID: 29770236 PMCID: PMC5944225 DOI: 10.5051/jpis.2018.48.2.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/04/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. METHODS RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. RESULTS Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor κB (NF-κB) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin E2 [PGE2], interleukin [IL]-1β, and IL-6) and nitrite production. CONCLUSIONS Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Eun-Hye Kwag
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Yang Jo Seol
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Yong Moo Lee
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Young Ku
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Chul Rhyu
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
42
|
Elburki MS, Rossa C, Guimarães-Stabili MR, Lee HM, Curylofo-Zotti FA, Johnson F, Golub LM. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis. Inflammation 2018; 40:1436-1449. [PMID: 28534138 DOI: 10.1007/s10753-017-0587-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
Collapse
Affiliation(s)
- Muna S Elburki
- Department of Periodontics, Faculty of Dentistry, University of Benghazi, Jamal Abdel Nasser Street, Benghazi, Libya.
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | | | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Fabiana A Curylofo-Zotti
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
43
|
|
44
|
Mieszkowska A, Folkert J, Gaber T, Miksch K, Gurzawska K. Pectin nanocoating reduces proinflammatory fibroblast response to bacteria. J Biomed Mater Res A 2017; 105:3475-3481. [PMID: 28782183 DOI: 10.1002/jbm.a.36170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Implant failures are primarily related to bacterial infections and inflammation. Nanocoating of implant devices with organic molecules is a method used for improving their integration into host tissues and limiting inflammation. Bioengineered plant-derived rhamnogalacturonan-Is (RG-Is) from pectins improve tissue regeneration and exhibit anti-inflammatory properties. Therefore, the aim of this study is to evaluate the in vitro effect of RG-I nanocoating on human gingival primary fibroblast (HGF) activity and proinflammatory response following Porphyromonas gingivalis (P. gingivalis) infection. Infected HGFs were incubated on tissue culture polystyrene (TCPS) plates coated with unmodified RG-I isolated from potato pectin (PU) and dearabinanated RG-I (PA). HGF morphology, proliferation, metabolic activity, and expression of genes responsible for extracellular matrix (ECM) turnover and proinflammatory response were examined. Following the P. gingivalis infection, PU and PA significantly promoted HGF proliferation and metabolic activity. Moreover, gene expression levels of IL1B, IL8, TNFA, and MMP2 decreased in the infected cells cultured on PU and PA, whereas the expression of COL1A1, FN1, and FGFR1 was upregulated. The results indicate that RG-Is are promising candidates for nanocoating of an implant surface, can reduce inflammation, and enhance implant integration, particularly in medically compromised patients with chronic inflammatory diseases such as periodontitis and rheumatoid arthritis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3475-3481, 2017.
Collapse
Affiliation(s)
- A Mieszkowska
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - J Folkert
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - T Gaber
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin 10117, Germany
| | - K Miksch
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - K Gurzawska
- Oral Surgery Department, Birmingham Dental School and Hospital, University of Birmingham, Birmingham B46NN, United Kingdom
| |
Collapse
|
45
|
Hao C, Wu B, Hou Z, Xie Q, Liao T, Wang T, Ma D. Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Int Immunopharmacol 2017; 50:313-318. [PMID: 28738247 DOI: 10.1016/j.intimp.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022]
Abstract
Asiatic acid, a triterpenoid component isolated from Centella asiatica (L.) Urban, possesses antioxidative and anti-inflammatory activities. In this study, we aimed to investigate the anti-inflammatory effects of asiatic acid both in vivo and in vitro. HGFs or RAW264.7 cells were treated with asiatic acid 1h before LPS treatment. Cell viability was measured by MTT assay. The levels of PGE2, NO, IL-6, and IL-8 were detected by ELISA. Protein expression levels were detected by western blot analysis. In vivo, asiatic acid significantly inhibited LPS-induced IL-6 and IL-8 expression levels in gingival tissues. In vitro, LPS-induced PGE2, NO, IL-6, and IL-8 production was significantly attenuated by asiatic acid. Asiatic acid also inhibited p65 NF-κB phosphorylation induced by LPS in HGFs. The expression of PPAR-γ was up-regulated by asiatic acid. Furthermore, GW9662, a PPAR-γ inhibitor, attenuated the inhibitory effect of asiatic acid on PGE2, NO, IL-6, and IL-8 production. Our results suggest that asiatic acid activates PPAR-γ, which subsequently inhibits LPS-induced NF-κB activation and inflammatory mediators production. Asiatic acid may offer therapeutic potential for the treatment of periodontitis.
Collapse
Affiliation(s)
- Chunbo Hao
- Department of Stomatology, Nanfang Hospital and College of Stomatology, Southern Medical University, Guangzhou, PR China; Department of Stomatology, Hainan Province People's Hospital, Haikou, Hainan, PR China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital and College of Stomatology, Southern Medical University, Guangzhou, PR China.
| | - Zhiming Hou
- School of Stomatology, Hospital of Stomatology China Medical University, Shenyang, PR China
| | - Qi Xie
- Department of Stomatology, Hainan Province People's Hospital, Haikou, Hainan, PR China
| | - Tianan Liao
- School of Stomatology, Hospital of Stomatology China Medical University, Shenyang, PR China
| | - Tao Wang
- Department of Stomatology, Hainan Province People's Hospital, Haikou, Hainan, PR China
| | - Dandan Ma
- Department of Stomatology, Nanfang Hospital and College of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
46
|
Mahendra J, Mahendra L, Ananthalakshmi R, Parthiban PS, Cherukuri S, Junaid M. Effect of Pranayama on Ppar-γ, Nf-κB Expressions and Red Complex Microorganisms in Patients with Chronic Periodontitis - A Clinical Trial. J Clin Diagn Res 2017; 11:ZC82-ZC86. [PMID: 28764300 DOI: 10.7860/jcdr/2017/27846.10108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/27/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Sudarshankriya pranayama is the control of breathing movements to regulate the energy flow throughout the body, which has shown to positively affect immune function, autonomic nervous system and psychologic-neuro pathways. The practice of pranayama has been proven to show several benefits such as reduction in stress levels, relieves anxiety and depression, increase in antioxidant levels, reduces insulin resistance and improves respiratory function. AIM The objective of the study was to evaluate the levels of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), Nuclear Factor-Kappa B (NF-κB) and the presence of Red Complex Microorganisms (RCM) such as Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia in the subgingivalpl aque samples of chronic periodontitis subjects before and after intervention with pranayama as an adjunct to Scaling and Root Planing (SRP). MATERIALS AND METHODS A total of 30 subjects (control group) were treated with SRP and 30 subjects (pranayama group) underwent SRP and pranayama for three months. Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), Bleeding Index (BI) and Plaque Index (PI) were recorded and the presence of PPAR-γ, NF-κB and RCM were assessed at baseline and after three months using polymerase chain reaction. ANCOVA test was done to compare the clinical parameters between the groups. Fisher's Exact test was done to identify RCM and Mann-Whitney and Wilcoxon-signed test was used to identify the expression of NF-κB and PPAR-γ in the plaque samples. RESULTS The change in the mean CAL from baseline to third month was significantly higher in pranayama group compared to control group (p≤0.05). There was a statistically significant reduction in the expression of NF-κB and increase in PPAR-γ expression levels in pranayama group on comparison with the control group (p<0.001). The reduction in number of positive samples with T.denticola, P.gingivalis and T.forsythia at third month post-intervention did not affect the change in the expression levels of NF-κB and PPAR-γ. CONCLUSION The CAL showed significant improvement with reduction in the RCM, NF-κB and increase in PPAR-γ levels in subjects who underwent pranayama as an adjunct to SRP. In future, pranayama can be used as an additional treatment modality to provide a new dimension in treatment of periodontitis.
Collapse
Affiliation(s)
- Jaideep Mahendra
- Professor, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Little Mahendra
- Associate Professor, Department of Periodontics, Raja Muthaiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - R Ananthalakshmi
- Reader, Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Prathahini S Parthiban
- Postgraduate Student, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Sandhya Cherukuri
- Postgraduate Student, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Mohammed Junaid
- Senior Lecturer, Department of Public Health Dentistry, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
47
|
Özden FO, Sakallioğlu EE, Sakallioğlu U, Ayas B, Erişgin Z. Effects of grape seed extract on periodontal disease: an experimental study in rats. J Appl Oral Sci 2017; 25:121-129. [PMID: 28403352 PMCID: PMC5393532 DOI: 10.1590/1678-77572016-0298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/02/2016] [Indexed: 01/20/2023] Open
Abstract
Objective This study aimed to demonstrate the effect of grape seed extract (GSE) on periodontitis. Material and Methods Ligature induced periodontitis was created in 40 rats and they were assigned to four equal groups. One group was fed laboratory diet (group A) while three groups received GSE additionally. Silk ligatures were placed around the cervical area of the mandibular first molars for four weeks to induce periodontitis. The GSE groups were reallocated regarding GSE consumption as: for two weeks before ligation (group B; totally eight weeks), from ligation to two weeks after removal of the ligature (group C; totally six weeks), and for two weeks from ligature removal (group D; totally two weeks). Sections were assessed histologically and immunohistochemically. Inflammatory cell number (ICN), connective tissue attachment level (CAL), osteoclast density (OD), IL-10 and TGF-β stainings in gingival epithelium (GE), connective tissue (GC), and periodontal ligament (PL) were used as the study parameters. Results Lower ICN, higher CAL, and lower OD were observed in the GSE groups (p<0.05). IL-10 was more intensive in the GSE groups and in the GEs (p<0.05). Group B showed the highest IL-10 for PL (p<0.05). TGF-ß was higher in the GEs of all groups (p<0.017). Conclusions The results suggest anti-inflammatory activities of GSE, but further investigations are needed for clarification of these activities.
Collapse
Affiliation(s)
- Feyza Otan Özden
- Ondokuz Mayıs University, School of Dentistry, Department of Periodontology, Samsun, Turkey
| | - Elif Eser Sakallioğlu
- Ondokuz Mayıs University, School of Dentistry, Department of Periodontology, Samsun, Turkey
| | - Umur Sakallioğlu
- Ondokuz Mayıs University, School of Dentistry, Department of Periodontology, Samsun, Turkey
| | - Bülent Ayas
- Ondokuz Mayıs University, Faculty of Medicine, Department of Histology and Embriology, Samsun, Turkey
| | - Züleyha Erişgin
- Giresun University, Faculty of Medicine, Department of Histology and Embriology, Giresun, Turkey
| |
Collapse
|
48
|
Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch Oral Biol 2017; 81:131-135. [PMID: 28528307 DOI: 10.1016/j.archoralbio.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Periodontal diseases are initiated by pathogenic bacterial biofilm activity that induces a host inflammatory cells immune response, degradation of dento gingival fibrous tissue and its detachment from root cementum. It is well accepted, that osteoclastic alveolar bone loss is governed exclusively through secretion of proinflammatory cytokines. Nevertheless, our findings suggest that once degradation of collagen fibers by MMPs occurs, a drop of cellular strains cause immediate release of ATP from marginal gingival fibroblasts, cell deformation and influx of Ca+2. Increased extracellular ATP (eATP) by interacting with P2×7 purinoreceptors, present on fibroblasts and osteoblasts, induces generation of receptor activator of nuclear factor kB ligand (RANKL) that further activates osteoclastic alveolar bone resorption and bone loss. In addition, increased eATP levels may amplify inflammation by promoting leukocyte recruitment and NALP3-inflammasome activation via P2×7. Then, the inflammatory cells secrete cytokines, interleukin IL-1, TNF and RANKL that further trigger alveolar bone resorption. Moreover, eATP can be secreted from periodontal bacteria that may further contribute to inflammation and bone loss in periodontitis. It seems therefore, that eATP is a key modulator that initiates the pathway of alveolar bone resorption and bone loss in patients with periodontal disease. In conclusion, we propose that strain release in gingival fibroblasts aligned on collagen fibers, due to activity of MMP, activates release of ATP that triggers the pathway of alveolar bone resorption in periodontitis. We predict that by controlling the eATP interaction with its cellular purinoreceptors will reduce significantly bone loss in periodontitis.
Collapse
|
49
|
Oliveira GJPLD, Paula LGFD, Souza JACD, Spin-Neto R, Stavropoulos A, Marcantonio RAC. Effects of avocado/soybean unsaponifiables (ASU) on the treatment of ligature-induced periodontitis in rats. Braz Oral Res 2017; 31:e28. [PMID: 28403331 DOI: 10.1590/1807-3107bor-2017.vol31.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study is to evaluate the effect of the avocado/soybean unsaponifiables (ASU) on the treatment of induced periodontitis in rats. Periodontitis was induced in 84 rats via ligature placement around the second upper molar, which was removed after 7 days, and scaling and root planning (SRP) was performed at this time. Subsequently, the rats were randomly allocated to four groups with 21 animals each: One SRP group in which saline solution was administered (SS), and three groups in which ASU was administered (0.6 g/kg/day), beginning either 7 days before the induction of periodontitis (SRP/ASU-7), on the day of periodontitis induction (SRP/ASU0), or on the day of treatment (SRP/ASU+7). ASU and SS were administered daily by gavage until the sacrifice of the animals (7, 15, and 30 days after SRP). The % bone in the furcation area was evaluated by histomorphometry and micro-CT. The expression of proteins (TRAP, RANKL, and alkaline phosphatase) and mRNA (IL-1β, TNF-α, IL-6, RANKL, and alkaline phosphatase) were evaluated by immunohistochemistry and qPCR. The SRP/ASU+7 group presented a higher percentage of bone fill in the furcation area and higher expression of alkaline phosphatase than in the SRP group (at 7 and 30 days, respectively). The SRP/ASU0 and SRP/ASU+7 groups presented lower expression levels of RANKL mRNA than the SRP and SRP/ASU-7 groups at 15 days. ASU administration on the day of the SRP treatment of the ligature-induced periodontitis promoted subtle beneficial effects on periodontal repair following the treatment of induced periodontitis within the experimental period of 7 days.
Collapse
Affiliation(s)
| | | | | | - Rubens Spin-Neto
- Aarhus University, Department of Dentistry, Section of Oral Radiology, Aarhus, Denmark
| | - Andreas Stavropoulos
- Malmo University, Faculty of Odontology, Department of Periodontology and Community Dentistry, Malmo, Sweden
| | | |
Collapse
|
50
|
Türer ÇC, Balli U, Güven B, Çetinkaya BÖ, Keleş GÇ. Visfatin levels in gingival crevicular fluid and serum before and after non-surgical treatment for periodontal diseases. J Oral Sci 2016; 58:491-499. [PMID: 28025432 DOI: 10.2334/josnusd.16-0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to evaluate visfatin levels at different stages of periodontal disease and in healthy tissues. In addition, the effect of non-surgical periodontal therapy on visfatin levels in gingival crevicular fluid and serum was investigated. Forty-five patients were divided into three groups based on clinical and radiographical findings. Group 1 comprised periodontally healthy individuals (n = 15); group 2 comprised patients with gingivitis (n = 15); and group 3 was composed of patients with generalized chronic periodontitis (n = 15). Gingival crevicular fluid and serum samples were collected before treatment and at 1, 3, and 6 months after treatment. Visfatin levels were measured by enzyme-linked immunosorbent assays. Gingival crevicular fluid and serum visfatin levels were higher in patients with chronic periodontitis than those with gingivitis or healthy controls (P < 0.016). In addition, visfatin levels were higher in the gingivitis group than in healthy controls (P < 0.016). Non-surgical periodontal treatment resulted in a significant reduction in gingival crevicular fluid and serum visfatin levels. Furthermore, visfatin levels increased with inflammation and decreased following periodontal treatment. Our findings suggest that visfatin is an inflammatory biomarker of periodontal disease.(J Oral Sci 58, 491-499, 2016).
Collapse
Affiliation(s)
- Çiğdem Coşkun Türer
- Department of Periodontology, Faculty of Dentistry, Bülent Ecevit University
| | | | | | | | | |
Collapse
|