1
|
Chang MC, Chang SH, Tsai YL, Pan YH, Yeung SY, Chang HH, Jeng JH. Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling. Int J Biol Macromol 2025; 292:139193. [PMID: 39730047 DOI: 10.1016/j.ijbiomac.2024.139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses. This study aimed to test whether TriDAP stimulates cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and prostanoid production in human dental pulp cells (HDPCs) and their inhibition by signal transduction inhibitors, melatonin, and eugenol. We found that TriDAP stimulated cPLA2 and COX-2 expression as well as prostaglandin E2 (PGE2) and PGF2α secretion in HDPCs. TriDAP activated TAK1, MEK/ERK, and p38 signaling. COX-2 expression, PGE2, and PGF2α production induced by TriDAP were prevented by 5Z-7oxozeaenol, SB203580, and U0126. Moreover ASB14780 (a cPLA2 inhibitor) and the clinical drugs melatonin and eugenol suppressed TriDAP- and Poly(I:C)-stimulated PGE2 and PGF2α production. These results indicate that NOD activation in HDPCs may stimulate COX-2 expression and prostaglandin production, which are crucial in pulpal inflammatory and repair responses. The effects of TriDAP and Poly(I:C) were associated with TAK1, p38, MEK/ERK, and cPLA2 in pulpal inflammation. PLA2 inhibitors, melatonin, and eugenol can be used to control pulpal inflammation associated with NOD1/2 and TLR3 activation.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shu-Hui Chang
- School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Kumar Yadav B, Gupta D, Kumar Thakur R, Chauhan J, Mishra R, Kumar A. Assessment of the Efficacy of Subgingivally Delivered Liquorice Gel on Clinical Parameters and Prostaglandin E2 Levels in Chronic Periodontitis: A Clinico-Biochemical Study. Cureus 2025; 17:e76781. [PMID: 39897257 PMCID: PMC11786294 DOI: 10.7759/cureus.76781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Liquorice, also known as "mulaithi" in North India, has shown anti-inflammatory, antimicrobial, and anti-adherence effects that can prevent and treat various periodontal diseases. AIM This study aims to assess the efficacy of subgingivally delivered liquorice gel on clinical parameters and prostaglandin E2 (PGE2) levels in chronic periodontitis. MATERIALS AND METHODS A split-mouth, single-blind, prospective, parallel, randomized controlled clinical trial was conducted. Seventeen patients diagnosed with moderate chronic periodontitis with bilateral nearly symmetrical sites having a pocket depth of ≥4 mm but ≤6 mm were included in the study. A total of 60 sites were randomly divided into two groups, with 30 sites in each group: Group A, scaling and root planing (SRP) with subgingival delivery of liquorice gel, and Group B, SRP with subgingival delivery of placebo gel. The clinical parameters, plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), and gingival crevicular fluid (GCF), samples were collected at baseline, 15th day, and 30th day after gel placement. The collected GCF samples were subjected to biochemical analysis of PGE2 levels using an ELISA kit. The Mann-Whitney U and Wilcoxon signed-rank tests were performed for intergroup and intragroup comparisons. RESULTS Statistically significant improvements in clinical and biochemical parameters were observed in both groups over time. Intergroup comparison of PI and GI showed statistically non-significant differences at all time intervals. Similarly, intergroup comparisons of PPD, CAL, and PGE2 levels showed statistically non-significant differences at baseline and 15th day. However, on the 30th day, PPD, CAL, and PGE2 levels revealed statistically significant differences between both groups. Our result corroborated that Group A, tested with liquorice gel, showed better results than Group B. CONCLUSION Liquorice gel can be used as an effective local drug delivery agent as an adjunct to SRP for treating chronic periodontitis.
Collapse
Affiliation(s)
- Bipin Kumar Yadav
- Department of Periodontology, Faculty of Dental Sciences, Uttar Pradesh University of Medical Sciences, Etawah, IND
| | - Diksha Gupta
- Department of Periodontology, Faculty of Dental Sciences, Uttar Pradesh University of Medical Sciences, Etawah, IND
| | - Rajesh Kumar Thakur
- Department of Periodontology, Faculty of Dental Sciences, Uttar Pradesh University of Medical Sciences, Etawah, IND
| | - Jatin Chauhan
- Department of Periodontology, Faculty of Dental Sciences, Uttar Pradesh University of Medical Sciences, Etawah, IND
| | - Rahul Mishra
- Department of Periodontology, Faculty of Dental Sciences, Uttar Pradesh University of Medical Sciences, Etawah, IND
| | - Ajai Kumar
- Department of Biochemistry, Uttar Pradesh University of Medical Sciences, Etawah, IND
| |
Collapse
|
3
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
4
|
Muhammad Ridho F, Julyanto Syachputra A, Dias Nur'aini A, Ulfah K, Faqih M, Nurhuda A. Pre-clinical and clinical efficacy of curcumin as an anti-inflammatory agent for periodontitis. A systematic review. REVISTA CIENTÍFICA ODONTOLÓGICA 2024; 12:e222. [PMID: 39912085 PMCID: PMC11792608 DOI: 10.21142/2523-2754-1204-2024-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction There is ongoing exploration into herbal treatments to identify adjunct therapies with minimal side effects. One such treatment involves curcumin from turmeric (Curcuma longa). This study aims to review the efficacy of curcumin as an anti-inflammatory agent for periodontitis along with the mechanisms of action involved. Methods A systematic review of pre-clinical and clinical studies published on Scopus, PubMed, ScienceDirect, and Google Scholar up to May 2024 was employed following the PRISMA guidelines. Three tools were used for risk of bias assessment, namely the QUIN tool for in vitro studies, the SYRCLE's RoB for in vivo studies, and the Cochrane RoB 2 for RCTs. Finally, nineteen studies were included for review. Results This study highlights curcumin's efficacy in addressing periodontitis through diverse mechanisms. Curcumin demonstrated efficacy in attenuating inflammation within periodontal tissue by inhibiting several pro-inflammatory cytokines and mediators such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinases (MMPs), prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, while concurrently increasing IL-4 and IL-10. In addition, several transcription factors such as nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 1 (STAT1) were also inhibited by curcumin. Administration of curcumin has additionally been demonstrated to reduce other biomarkers of periodontitis, including C-reactive protein (CRP), alkaline phosphatase (ALP), and procalcitonin (PCT). Conclusion Curcumin has been shown to be effective as an adjunct therapeutic agent for periodontitis due to its anti-inflammatory effects by reducing the inflammatory response through a diverse range of mechanisms of action.
Collapse
Affiliation(s)
- Fiki Muhammad Ridho
- Dental Profession Program, Faculty of Dental Medicine, Universitas Airlangga. Surabaya, Indonesia. Dental Profession Program Faculty of Dental Medicine Universitas Airlangga Surabaya Indonesia
| | - Andika Julyanto Syachputra
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada. Yogyakarta, Indonesia. Department of Biology Faculty of Biology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Anisa Dias Nur'aini
- Pharmacist Profession Program, Faculty of Pharmacy, Universitas Ahmad Dahlan. Yogyakarta, Indonesia. Pharmacist Profession Program Faculty of Pharmacy Universitas Ahmad Dahlan Yogyakarta Indonesia
| | - Kamailiya Ulfah
- Veterinarian Profession Program, Faculty of Veterinary Medicine, Universitas Airlangga. Surabaya, Indonesia. Veterinarian Profession Program Faculty of Veterinary Medicine Universitas Airlangga Surabaya Indonesia
| | - Muhamad Faqih
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia. Johor Bahru, Malaysia. Department of Bioprocess Engineering Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Andang Nurhuda
- Undergraduate Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Surabaya, Indonesia. Undergraduate Program Faculty of Mathematics and Natural Sciences Universitas Negeri Surabaya Surabaya Indonesia
| |
Collapse
|
5
|
de Almeida K, Câmara P, Camargo G, Pereira T, Vieira A, Lopes-Cendes I, Severino P, Souto EB, Pascoal A, Pascoal V. Identification of microRNAs expressed in an animal model of periodontal disease and their impact on pathological processes. Tissue Cell 2024; 90:102525. [PMID: 39178577 DOI: 10.1016/j.tice.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs represent a class of small RNAs that act to silence genes post-transcriptionally by inhibiting the translation of target messenger RNAs, and this study aimed to understand how miRNAs influence the set-up of periodontal disease. Periodontitis was induced by inserting a ligature into the left first mandibular molar in a rat model, which was kept for the entire 56 days-time of experiment. After 56 days post-periodontitis induction, the histopathological analysis showed an apical extension of the junctional epithelium, with areas of hyperplasia, exocytosis, and a mixed inflammatory infiltrate with a predominance of neutrophils, lymphocytes, and eventual plasma cells in the deeper layers. The cement surface showed areas of irregularity, covered by cementoblasts and irregular surfaces, confirming the set-up of periodontitis. In the sequencing analysis, 26,404 genes were identified, with 132 reaching statistical significance. Among genes with a statistical difference, 18 were found to encode for microRNAs. The identified microRNAs are primarily involved in bone remodeling by acting on fibroblast growth factors, and collagen production. These outcomes demonstrate a signaling role in bone resorption, which is consistent with the histopathological observations that show the installation of inflammation with epithelial migration and the beginning of the repair process, with cementum resorption. The disclosure of how miRNAs may influence the maintaining of periodontal disease will help the development of new dental materials for the prophylaxis and treatment of alveolar bone resorption.
Collapse
Affiliation(s)
- Kelly de Almeida
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Priscilla Câmara
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Gabriela Camargo
- Postgraduate Program in Dentistry, Nova Friburgo Health Institute, Fluminense Federal University Nova Friburgo, Nova Friburgo, RJ, Brazil
| | - Tiago Pereira
- Graduate Program in Genetics, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - André Vieira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Patrícia Severino
- Biotechnological Postgraduate Program, Tiradentes University, Aracaju, Sergipe 49010-390, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Belfield D04 V1W8, Ireland.
| | - Aislan Pascoal
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Vinicius Pascoal
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
| |
Collapse
|
6
|
Syaify A, Sari R, Alhasyimi AA. Effects of Etlingera elatior flower extract on cyclooxygenase-2 expression in the gingival epithelium in a diabetic periodontitis rat model. J Taibah Univ Med Sci 2024; 19:746-752. [PMID: 39885945 PMCID: PMC11780365 DOI: 10.1016/j.jtumed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 02/01/2025] Open
Abstract
Objectives This research was aimed at investigating the effects of 70% ethanolic Etlingera elatior flower extract on cyclooxygenase-2 (COX-2) expression in the gingival epithelium in rats with diabetic periodontitis. Methods Diabetes and periodontitis were induced in 32 male Rattus norvegicus individuals weighing 200-300 g each. Streptozotocin dissolved in 1 mL citrate buffer was injected intraperitoneally to elicit hyperglycemia. Three days after diabetes induction, the rats' fasting blood glucose levels were measured with a GCU EasyTouch® glucometer. Diabetes was confirmed by fasting blood glucose levels exceeding 200 mg/dL. After diagnosis of diabetic periodontitis, a daily injection of 70% ethanolic E. elatior extract (n = 16) and saline (n = 16) was intraperitoneally administered for 7 days. Immunohistochemistry was used to detect COX-2 expression in the gingival epithelium on days 1, 3, 5, and 7 after injection, and the number of positively colored cells was expressed as a percentage. Brownish cytoplasm in the gingival epithelium was considered to indicate positive COX-2 expression, which extended from the basal layer to the corneum. The percentage of immunopositive cells was analyzed with two-way ANOVA followed by post-hoc LSD analysis at a 95% significance level. Results Injection of 70% ethanolic extract of E. elatior flower, compared with saline, resulted in greater COX-2 expression on days 1-5. On day 7, however, the E. elatior group exhibited substantially lower COX-2 expression than the saline group (p < 0.05). Conclusions In diabetic periodontitis, 70% ethanolic E. elatior extract was found to be a useful active component for host modulation therapy. The 70% ethanolic extract of E. elatior flower modulated COX-2 expression in the gingival epithelium in rats with diabetic periodontitis.
Collapse
Affiliation(s)
- Ahmad Syaify
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rezmelia Sari
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ananto A. Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Ye Q, Zhao Y, Zhao J, Ouyang Z, Feng Y, Hu J, Su X, Chen N, Chen Y, Tan L, Feng Y, Guo Y. Prevotella, a dominant bacterium in young people with stage Ⅲ periodontitis, related to the arachidonic acid metabolism pathway. Microbes Infect 2024; 26:105316. [PMID: 38423169 DOI: 10.1016/j.micinf.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
OBJECTS As periodontitis progresses, the oral microbiome changes dynamically. The aim of this study is to evaluate the dominant bacteria of adults with stage III periodontitis and investigate potential pathways related to the dominant bacteria. MATERIALS AND METHODS 16S rRNA sequencing was carried out to detect the differences in the oral microbiome between adult with stage Ⅰ and stage Ⅲ periodontitis and find the dominant bacteria in each group. The inhibitor of the predominant pathway for stage Ⅲ periodontitis was used to investigate the role of the dominant bacteria in periodontitis in vivo and in vitro. RESULTS There was no significant difference in the α-diversity between the two groups. The results of β-diversity showed that the samples were divided into different groups according to the stage of periodontitis. The dominant bacteria in youths with stage Ⅲ periodontitis was Prevotella and may be related to the arachidonic acid metabolism pathway. Administration of SKF-86002 suppressed the expression of inflammation mediators in vivo and vitro. CONCLUSIONS Prevotella was the one dominant bacteria in young people with stage Ⅲ periodontitis and was related to the arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yaqiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Zeyue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Xiaolin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Ningxin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| |
Collapse
|
8
|
Bereta GP, Strzelec K, Łazarz-Bartyzel K, Dziedzic-Kowalska A, Nowakowska Z, Krutyhołowa A, Bielecka E, Kantyka T, Grabiec AM, Kaczmarzyk T, Chomyszyn-Gajewska M, Potempa J, Gawron K. Identification of a new genetic variant (G231N, E232T, N235D) of peptidylarginine deiminase from P. gingivalis in advanced periodontitis. Front Immunol 2024; 15:1355357. [PMID: 38576615 PMCID: PMC10991804 DOI: 10.3389/fimmu.2024.1355357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.
Collapse
Affiliation(s)
- Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
10
|
Arroyo E, Oliveira-Alves MG, Chamorro-Petronacci CM, Marichalar-Mendia X, Bravo-López SB, Blanco-Carrión J, Pérez-Sayáns M. Protein-based salivary biomarkers for the diagnosis of periodontal diseases: Systematic review and meta-analysis. J Taibah Univ Med Sci 2023; 18:737-747. [PMID: 36852252 PMCID: PMC9957757 DOI: 10.1016/j.jtumed.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective This systematic review and meta-analysis was aimed at determining differentially expressed protein-based biomarkers detectable in the saliva for the diagnosis of major periodontal diseases. Methods A literature review was conducted through January 31, 2022. The methodological quality and risk of bias were assessed with the Newcastle-Ottawa scale for case-control studies. Heterogeneity among studies was analysed with the Q statistical test and the I2 test. p-values lower than 0.10 and I2 values higher than 50% indicated high heterogeneity among studies; therefore, the random-effects model was used. The analysis of biological pathways associated with the differentially expressed protein markers was performed with the STITCH integration analysis tool and was limited to interactions with high confidence levels (0.7). Results Of all protein-based biomarkers detected, 12 were suitable for meta-analysis: IL-1β, MIP-1α, albumin, TNF-α, ICTP, Ig-A, lactoferrin, MMP-8, IL-6, IL-8, IL-17 and PGE2. The salivary markers with high applicability were IL-1β for differentiating patients with chronic periodontal disease from patients with gingivitis with an OE = 73.5 pg/mL; ICTP for differentiating patients with chronic periodontal disease from healthy control patients with an OE = 0.091 ng/mL; and PGE2 for differentiating patients with chronic periodontal disease from healthy control patients with an OE = 36.3 pg/mL. Conclusions The biomarkers with the highest differential expression and the greatest potential for clinical applicability are IL-1β for differentiating periodontitis from gingivitis, and ICTP and PGE2 for differentiating periodontitis from healthy status.
Collapse
Affiliation(s)
- Esteban Arroyo
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, Sao Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Mónica G. Oliveira-Alves
- Technology Research Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruces, Brazil
- School of Medicine, Anhembi Morumbi University, Sao José dos Campos, Brazil
| | - Cintia M. Chamorro-Petronacci
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Dentistry, University of Santiago de Compostela, Spain
- ORALRES Group Instituto de Investigación de Santiago (IDIS), Spain
| | - Xabier Marichalar-Mendia
- Grupo GIU21/042, Department of Nursing I, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Susana B. Bravo-López
- Proteomic Platform, Health Research Institute, Santiago de Compostela, A Coruña, Spain
| | - Juan Blanco-Carrión
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
- Odontología Médico-Quirúrgica (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Dentistry, University of Santiago de Compostela, Spain
- ORALRES Group Instituto de Investigación de Santiago (IDIS), Spain
| |
Collapse
|
11
|
Senevirathna K, Pradeep R, Jayasinghe YA, Jayawickrama SM, Illeperuma R, Warnakulasuriya S, Jayasinghe RD. Carcinogenic Effects of Areca Nut and Its Metabolites: A Review of the Experimental Evidence. Clin Pract 2023; 13:326-346. [PMID: 36961055 PMCID: PMC10037666 DOI: 10.3390/clinpract13020030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Oral cancers (OC) are among the most frequent malignancies encountered in Southeast Asia, primarily due to the prevalent habit of betel quid (BQ) and smokeless tobacco use in this region. Areca nut (AN), the primary ingredient in BQ, contains several alkaloids, including arecoline, arecaidine, guvacoline, and guvacine. These have been associated with both the AN abuse liability and carcinogenicity. Additionally, variations in AN alkaloid levels could lead to differences in the addictiveness and carcinogenic potential across various AN-containing products. Recent studies based on animal models and in vitro experiments show cellular and molecular effects induced by AN. These comprise promoting epithelial-mesenchymal transition, autophagy initiation, tissue hypoxia, genotoxicity, cytotoxicity, and cell death. Further, clinical research endorses these undesired harmful effects in humans. Oral submucosal fibrosis, a potentially malignant disease of the oral cavity, is predominantly reported from the geographical areas of the globe where AN is habitually chewed. OC in chronic AN users presents a more aggressive phenotype, such as resistance to anti-cancer drugs. The available evidence on the carcinogenicity of AN based on the findings reported in the recently published experimental studies is discussed in the present review.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Roshan Pradeep
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Yovanthi Anurangi Jayasinghe
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Shalindu Malshan Jayawickrama
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Rasika Illeperuma
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 9RA, UK
| | - Ruwan Duminda Jayasinghe
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
12
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
13
|
Hu P, Zhu C. Betulinic Acid Exerts Anti-inflammatory Activity in Human Periodontal Ligament Cells Stimulated with Lipopolysaccharide and/or High Glucose. Endocr Metab Immune Disord Drug Targets 2023; 23:95-104. [PMID: 35538811 DOI: 10.2174/1871530322666220509231119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic patients have weakened periodontal ligaments and an increased risk of periodontitis due to uncontrolled glycemia. Betulinic acid (BA), a hypoglycemic drug, has anti-inflammatory activities. OBJECTIVES The current study aimed to explore the protective effect of BA on the inflammation in human periodontal ligament cells (PDLCs) stimulated with lipopolysaccharide (LPS) and/or high glucose (HG) status and its mechanisms of action. METHODS Human PDLCs were exposed to LPS and/or HG, with or without BA intervention. The production of nitrite oxide (NO) and prostaglandin E2 (PGE2) were quantified by Griess reaction and enzyme-linked immunosorbent assay, respectively. Immunoblotting analyses were employed to detect the expression of inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX- 2), as well as the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa- B (NF-κB) in human PDLCs. RESULTS The increased production of iNOS/NO and COX-2/PGE2 and increased phosphorylated levels of IκBα, JNK, and p38 can be detected in human PDLCs with LPS and/or HG situations, while increased phosphorylated ERK can be seen in cells under only LPS condition. Furthermore, the non-toxic concentration of BA (10 μM) prevented NF-κB and MAPKs activation and partly but significantly reversed the induction of COX-2/ PGE2 and iNOS/NO in human PDLCs with LPS and/or HG loaded. CONCLUSION BA was proved for the first time to protect human PDLCs from the LPS-induced and/or HG-induced inflammation, which works through the mechanism involving the action of MAPKs and NF-κB. signaling pathways. Thus, BA could be used to alleviate diabetic complications of periodontitis.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Yin L, Li X, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:336-347. [DOI: 10.1016/j.jdsr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
|
16
|
Modulation of Inflammatory Responses by a Non-Invasive Physical Plasma Jet during Gingival Wound Healing. Cells 2022; 11:cells11172740. [PMID: 36078148 PMCID: PMC9454534 DOI: 10.3390/cells11172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Gingival wound healing plays an important role in the treatment of a variety of inflammatory diseases. In some cases, however, wound healing is delayed by various endogenous or exogenous factors. In recent years, non-invasive physical plasma (NIPP), a highly reactive gas, has become the focus of research, because of its anti-inflammatory and wound healing-promoting efficacy. So far, since NIPP application has been poorly elucidated in dentistry, the aim of this study was to further investigate the effect of NIPP on various molecules associated with inflammation and wound healing in gingival cells. Human gingival fibroblasts (HGF) and human gingival keratinocytes (HGK) were treated with NIPP at different application times. Cell viability and cell morphology were assessed using DAPI/phalloidin staining. Cyclooxygenase (COX)2; tumour necrosis factor (TNF); CC Motif Chemokine Ligand (CCL)2; and interleukin (IL)1B, IL6 and IL8 were analysed at the mRNA and protein level by a real-time PCR and ELISA. NIPP did not cause any damage to the cells. Furthermore, NIPP led to a downregulation of proinflammatory molecules. Our study shows that NIPP application does not damage the gingival tissue and that the promotion of wound healing is also due to an anti-inflammatory component.
Collapse
|
17
|
Batool F, Gegout PY, Stutz C, White B, Kolodziej A, Benkirane-Jessel N, Petit C, Huck O. Lenabasum Reduces Porphyromonas gingivalis-Driven Inflammation. Inflammation 2022; 45:1752-1764. [PMID: 35274214 DOI: 10.1007/s10753-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the potential anti-inflammatory and anti-resorptive effects of lenabasum in the context of Porphyromonas gingivalis (Pg)-induced inflammation. Lenabasum or ajulemic acid (1',1'-dimethylheptyl-THC-11-oic-acid), a synthetic analog of THC-11-oic acid, has already demonstrated anti-inflammatory properties for the treatment of several inflammatory diseases. In vitro, the cytocompatibility of lenabasum was evaluated in human oral epithelial cells (EC), oral fibroblasts and osteoblasts by metabolic activity assay. The effect of lenabasum (5 µM) treatment of Pg-LPS- and P. gingivalis-infected EC on the pro- and anti-inflammatory markers was studied through RTqPCR. In vivo, lenabasum was injected subcutaneously in a P. gingivalis-induced calvarial abscess mouse model to assess its pro-healing effect. Concentrations of lenabasum up to 5 µM were cytocompatible in all cell types. Treatment of Pg-LPS and Pg-infected EC with lenabasum (5 µM; 6 h) reduced the gene expression of TNF-α, COX-2, NF-κB, and RANKL, whereas it increased the expression of IL-10 and resolvin E1 receptor respectively (p < 0.05). In vivo, the Pg-elicited inflammatory lesions' clinical size was significantly reduced by lenabasum injection (30 µM) vs untreated controls (45%) (p < 0.05). Histomorphometric analysis exhibited improved quantity and quality of bone (with reduced lacunae) and significantly reduced calvarial soft tissue inflammatory score in mice treated with lenabasum (p < 0.05). Tartrate-resistant acid phosphatase activity assay (TRAP) also demonstrated decreased osteoclastic activity in the treatment group compared to that in the controls. Lenabasum showed promising anti-inflammatory and pro-resolutive properties in the management of Pg-elicited inflammation, and thus, its potential as adjuvant periodontal treatment should be further investigated.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
| | - Céline Stutz
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | | | | | - Nadia Benkirane-Jessel
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France.,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France. .,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France. .,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
18
|
Garzón H, Suárez LJ, Muñoz S, Cardona J, Fontalvo M, Alfonso-Rodríguez CA. Biomaterials Used for Periodontal Disease Treatment: Focusing on Immunomodulatory Properties. Int J Biomater 2022; 2022:7693793. [PMID: 35528847 PMCID: PMC9072036 DOI: 10.1155/2022/7693793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 12/25/2022] Open
Abstract
The growing use of biomaterials with different therapeutic purposes increases the need for their physiological understanding as well as to seek its integration with the human body. Chronic inflammatory local pathologies, generally associated with infectious or autoimmunity processes, have been a current therapeutic target due to the difficulty in their treatment. The recent development of biomaterials with immunomodulatory capacity would then become one of the possible strategies for their management in local pathologies, by intervening in situ, without generating alterations in the systemic immune response. The treatment of periodontal disease as an inflammatory entity has involved the use of different approaches and biomaterials. There is no conclusive, high evidence about the use of these biomaterials in the regeneration of periodontitis sequelae, so the profession keeps looking for other different strategies. The use of biomaterials with immunomodulatory properties could be one, with a promising future. This review of the literature summarizes the scientific evidence about biomaterials used in the treatment of periodontal disease.
Collapse
Affiliation(s)
- H. Garzón
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - L. J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - S. Muñoz
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - J. Cardona
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - M. Fontalvo
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - C. A. Alfonso-Rodríguez
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
19
|
Tominari T, Akita M, Matsumoto C, Hirata M, Yoshinouchi S, Tanaka Y, Karouji K, Itoh Y, Maruyama T, Miyaura C, Numabe Y, Inada M. Endosomal TLR3 signaling in stromal osteoblasts induces prostaglandin E 2-mediated inflammatory periodontal bone resorption. J Biol Chem 2022; 298:101603. [PMID: 35101442 PMCID: PMC8892075 DOI: 10.1016/j.jbc.2022.101603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Miyuki Akita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shosei Yoshinouchi
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuki Tanaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kento Karouji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoshifumi Itoh
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, School of Dentistry, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| |
Collapse
|
20
|
Nakayama M, Naito M, Omori K, Ono S, Nakayama K, Ohara N. Porphyromonas gingivalis Gingipains Induce Cyclooxygenase-2 Expression and Prostaglandin E 2 Production via ERK1/2-Activated AP-1 (c-Jun/c-Fos) and IKK/NF-κB p65 Cascades. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1146-1154. [PMID: 35110422 DOI: 10.4049/jimmunol.2100866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Porphyromonas gingivalis is commonly known as one of the major pathogens contributing to periodontitis, and its persistent infection may increase the risk for the disease. The proinflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2 (COX-2)/PGE2, are closely associated with progression of periodontitis. In this study, we focused on the cysteine protease "gingipains," lysine-specific gingipain, arginine-specific gingipain (Rgp) A, and RgpB, produced by P. gingivalis, and used the wild-type strain and several gene-deletion mutants (rgpA, rgpB, kgp, and fimA) to elucidate the involvement of gingipains in COX-2 expression and PGE2 production. We infected human monocytes, which are THP-1 cells and primary monocytes, with these bacterial strains and found that gingipains were involved in induction of COX-2 expression and PGE2 production. We have shown that the protease activity of gingipains was crucial for these events by using gingipain inhibitors. Furthermore, activation of ERK1/2 and IκB kinase was required for gingipain-induced COX-2 expression/PGE2 production, and these kinases activated two transcription factors, c-Jun/c-Fos (AP-1) and NF-κB p65, respectively. In particular, these data suggest that gingipain-induced c-Fos expression via ERK is essential for AP-1 formation with c-Jun, and activation of AP-1 and NF-κB p65 plays a central role in COX-2 expression/PGE2 production. Thus, we show the (to our knowledge) novel finding that gingipains with the protease activity from P. gingivalis induce COX-2 expression and PGE2 production via activation of MEK/ERK/AP-1 and IκB kinase/NF-κB p65 in human monocytes. Hence it is likely that gingipains closely contribute to the inflammation of periodontal tissues.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Shintaro Ono
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Naoya Ohara
- Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan;
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Modulation of the Immune System Promotes Tissue Regeneration. Mol Biotechnol 2022; 64:599-610. [PMID: 35022994 DOI: 10.1007/s12033-021-00430-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The immune system plays an essential role in the angiogenesis, repair, and regeneration of damaged tissues. Therefore, the design of scaffolds that manipulate immune cells and factors in such a way that could accelerate the repair of damaged tissues, following implantation, is one of the main goals of regenerative medicine. However, before manipulating the immune system, the function of the various components of the immune system during the repair process should be well understood and the fabrication conditions of the manipulated scaffolds should be brought closer to the physiological state of the body. In this article, we first review the studies aimed at the role of distinct immune cell populations in angiogenesis and support of damaged tissue repair. In the second part, we discuss the use of strategies that promote tissue regeneration by modulating the immune system. Given that various studies have shown an increase in tissue repair rate with the addition of stem cells and growth factors to the scaffolds, and regarding the limited resources of stem cells, we suggest the design of scaffolds that are capable to develop repair of damaged tissue by manipulating the immune system and create an alternative for repair strategies that use stem cells or growth factors.
Collapse
|
22
|
Jung JI, Kim S, Baek SM, Choi SI, Kim GH, Imm JY. Ecklonia cava Extract Exerts Anti-Inflammatory Effect in Human Gingival Fibroblasts and Chronic Periodontitis Animal Model by Suppression of Pro-Inflammatory Cytokines and Chemokines. Foods 2021; 10:foods10071656. [PMID: 34359526 PMCID: PMC8304037 DOI: 10.3390/foods10071656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is one of the most common chronic inflammatory diseases. The anti-inflammatory effect of the extract from brown algae Ecklonia cava was analyzed in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGF-1), the most abundant cells in gingival tissue. The gene expressions of cyclooxygenase-2 and interleukin-6 were decreased by 78 and 50%, respectively, at 100 μg/mL Ecklonia cava extract (ECE) treatment. The gene expressions of matrix metalloproteases (MMP-2 and MMP-8) and chemokines (macrophage inflammatory protein 1-alpha and stromal cell-derived factor 1) were also significantly down-regulated by ECE treatment (p < 0.05). The increased reactive oxygen species (ROS) production in HGF-1 cells by LPS stimulation was decreased by 30% at 100 μg/mL ECE treatment. The mitogen-activated protein kinase pathway and the nuclear factor-kappa B (NF-κB) signal activated by ROS were suppressed by ECE in a dose-dependent manner. ECE treatment (400 mg/kg, 8 weeks) significantly improved alveolar bone resorption in the ligature-induced chronic periodontitis rat model. ECE supplementation also lowered elevated mRNA expression of the receptor activator of nuclear factor-kappa B (RANKL)/osteoprotegerin (OPG) in the gingival tissue (p < 0.05). Therefore, ECE mitigated gingival tissue destruction and bone resorption associated with chronic periodontitis condition.
Collapse
Affiliation(s)
- Jae-In Jung
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Seonyoung Kim
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Seung-Min Baek
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Soo-Im Choi
- Plant Resources Research Institute, Duksung Women’s University, Seoul 10326, Korea; (S.-I.C.); (G.-H.K.)
| | - Gun-Hee Kim
- Plant Resources Research Institute, Duksung Women’s University, Seoul 10326, Korea; (S.-I.C.); (G.-H.K.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
- Correspondence: ; Tel.: +82-10-2526-1219
| |
Collapse
|
23
|
Choi BBR, Choi JH, Lee HY, Lee HJ, Song KW, Kim GC. Protective effects of non-thermal plasma on triethylene glycol dimethacrylate-induced damage in odontoblast-like MDPC-23 cells. Int Endod J 2021; 54:1548-1556. [PMID: 33938023 DOI: 10.1111/iej.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
AIM To evaluate whether the use of non-thermal plasma (NTP) could reduce triethylene glycol dimethacrylate (TEGDMA)-mediated damage in MDPC-23 cells. METHODOLOGY The effects of NTP and TEGDMA on MDPC-23 cell proliferation were tested using WST-1 assays after pretreatment with NTP for 1 min and exposure to TEGDMA. Live/Dead assays were used to visualize cell death. To monitor the effects of NTP and TEGDMA on the cell cycle and apoptotic cell death, flow cytometry was performed. Western blotting was used to assess changes in protein levels mediated by NTP and TEGDMA treatment, and enzyme-linked immunosorbent assays were performed to evaluate the effects of NTP and TEGDMA on prostaglandin E2 (PGE2 ) expression. One-way analysis of variance and Duncan's post hoc tests were used for statistical analysis. RESULTS NTP treatment effectively protected cells from TEGDMA-mediated cell damage and blocked TEGDMA-mediated cell growth inhibition (p < .05). NTP appeared to protect cells from death (p < .05) and blocked TEGDMA-mediated apoptotic cell death. Additionally, NTP reduced TEGDMA-mediated apoptotic activation of poly (ADP) ribose polymerase-1 and caspase-3 (p < .05). Furthermore, NTP effectively reduced TEGDMA-mediated expression of cyclooxygenase-2 and PGE2 proteins by inhibiting nuclear factor-κB protein expression (p < .05). CONCLUSIONS NTP alleviated TEGDMA-mediated adverse effects by reducing cytotoxicity and inflammatory reactions in cells exposed to TEGDMA.
Collapse
Affiliation(s)
| | | | | | - Hae-June Lee
- Department of Electrical Engineering, Pusan National University, Busan, Korea
| | - Ki Won Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
24
|
Lee YY, Li MJ, Yu ZY, Hung SL. Modulation of proinflammatory mediators by viruses-bacteria synergism in human osteoblasts-an in vitro study. J Formos Med Assoc 2021; 121:841-847. [PMID: 34253436 DOI: 10.1016/j.jfma.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/PURPOSE Viruses-bacteria synergistic interaction is associated with destructive periodontal diseases. However, the underlying mechanism for tissue destruction is not fully elucidated. In this study, lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) and polyinosinic-polycytidylic acid (poly I:C) were used to simulate bacteria and viruses, respectively. The possible combined effects of both molecular patterns on secretion of interleukin (IL)-6 and prostaglandin E2 (PGE2) from osteoblasts were determined. The effects of povidone-iodine (PVP-I) on the secretion of IL-6 and PGE2 were also examined. METHODS Viability of treated osteoblastic cells (MG63) was examined by detection the mitochondrial dehydrogenase activity. Secretion of IL-6 and PGE2 was detected using the enzyme-linked immunosorbent assay (ELISA). Mitogen-activated protein kinases (MAPKs) and cyclooxygenase-2 (COX-2) were determined using the Western blotting analysis. RESULTS Pg-LPS or poly I:C significantly enhanced the production of IL-6 and PGE2 in MG63 cells. The additive/synergistic effects of Pg-LPS/poly I:C on production of IL-6 and PGE2 were evident. The levels of phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) and expression of COX-2 protein were enhanced by Pg-LPS and/or poly I:C. On the other hand, the level of phosphorylation of extracellular signal-regulated kinase (ERK) was reduced by Pg-LPS and/or poly I:C. The stimulatory secretion of PGE2 by poly I:C was significantly reduced by PVP-I. CONCLUSION Concomitant infection of viruses and bacteria may be potentially harmful to the tooth supporting tissues by production of proinflammatory mediators. The results suggest the potential anti-inflammatory effect of PVP-I on bacterial or viral infection.
Collapse
Affiliation(s)
- Ya-Yun Lee
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Ju Li
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhu-Yun Yu
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ling Hung
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Assessment of the Vanillin Anti-Inflammatory and Regenerative Potentials in Inflamed Primary Human Gingival Fibroblast. Mediators Inflamm 2021; 2021:5562340. [PMID: 34035660 PMCID: PMC8116147 DOI: 10.1155/2021/5562340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background Inflammatory responses have been associated with delayed oral mucosal wound healing and the pathogenesis of the periodontal disease. The invasion of microbes into the tissues and the establishment of a chronic infection may be due to impaired healing. The protracted inflammatory phase may delay wound healing and probably support tissue fibrosis and reduce tissue regeneration. Vanillin is a well-known natural compound with potential anti-inflammatory capacity. Hence, we hypothesized that Vanillin could accelerate wound healing reducing inflammation and especially cytokine production making the oral tissue repair process easier. Methods Our hypothesis was tested using primary human gingival fibroblast (HGF) cell pretreated with Vanillin and primed with IL-1β, as inductor of proinflammatory environment. After 24 hours of treatments, the gene expression and production of IL-6, TNF-α, IL-8, COX-2, iNOS, and nitric oxide (NO) generation and the wound healing rate were determined. Results In IL-1β-primed cells, preincubation with Vanillin reduced IL-6, IL-8, COX-2, and iNOS expression and NO release, compared to IL-1β-primed cells. Moreover, Vanillin determines the increased gene expression of nAChRα7, leading us to hypothesize a role of Vanillin in the activation of the cholinergic anti-inflammatory pathway. Furthermore, in presence of mechanical injury, the Vanillin preincubation, wound closure may be reducing the expression and release of IL-6 and TNF-α and upregulation of COX-2 and IL-8. Conclusion Together, the results of this study highlight the anti-inflammatory and tissue repair ability of Vanillin in IL-1β-primed HGF. Therefore, Vanillin shows a potential therapeutic interest as an inflammatory modulator molecule with novel application in periodontal regeneration and oral health.
Collapse
|
26
|
Abstract
Filifactor alocis, a fastidious Gram-positive obligate anaerobic bacterium, is a newly appreciated member of the periodontal community that is now proposed to be a diagnostic indicator of periodontal disease. Its pathogenic characteristics are highlighted by its ability to survive in the oxidative stress-rich environment of the periodontal pocket and to significantly alter the microbial community dynamics by forming biofilms and interacting with several oral bacteria. Here, we describe the current understanding of F. alocis virulence attributes, such as its comparative resistance to oxidative stress, production of unique proteases and collagenases that can cause structural damage to host cells, and dysregulation of the immune system, which enable this bacterium to colonize, survive, and outcompete other traditional pathogens in the inflammatory environment of the periodontal pocket. Furthermore, we explore the recent advancements and future directions for F. alocis research, including the potential mechanisms for oxidative stress resistance and our evolving understanding of the interactions and mechanisms of bacterial survival inside neutrophils. We also discuss the current genetic tools and challenges involved in manipulating the F. alocis genome for the functional characterization of the putative virulence genes. Collectively, this information will expedite F. alocis research and should lead to the identification of prime targets for the development of novel therapeutics to aid in the control and prevention of periodontal disease.
Collapse
Affiliation(s)
- E Aja
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - M Mangar
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
27
|
Filifactor alocis and Tumor Necrosis Factor-Alpha Stimulate Synthesis of Visfatin by Human Macrophages. Int J Mol Sci 2021; 22:ijms22031235. [PMID: 33513808 PMCID: PMC7865436 DOI: 10.3390/ijms22031235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
There is little known about the effect of the periodontopathogen Filifactor alocis on macrophages as key cells of the innate immune defense in the periodontium. Therefore, the aim of the present study was to investigate the effect of F. alocis and additionally of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) on visfatin and other pro-inflammatory and proteolytic molecules associated with periodontitis in human macrophages. The presence of macrophage markers CD14, CD86, CD68, and CD163 was examined in gingival biopsies from healthy individuals and periodontitis patients. Human macrophages were incubated with F. alocis and TNFα for up to 2 d. The effects of both stimulants on macrophages were determined by real-time PCR, ELISA, immunocytochemistry, and immunofluorescence. F. alocis was able to significantly stimulate the synthesis of visfatin by human macrophages using TLR2 and MAPK pathways. In addition to visfatin, F. alocis was also able to increase the synthesis of cyclooxygenase 2, TNFα, and matrix metalloproteinase 1. Like F. alocis, TNFα was also able to stimulate the production of these proinflammatory and proteolytic molecules. Our results highlight the pathogenetic role of F. alocis in periodontal diseases and also underline the involvement of visfatin in the aetiopathogenesis of periodontitis.
Collapse
|
28
|
Ferrà-Cañellas MDM, Munar-Bestard M, Garcia-Sureda L, Lejeune B, Ramis JM, Monjo M. BMP4 micro-immunotherapy increases collagen deposition and reduces PGE2 release in human gingival fibroblasts and increases tissue viability of engineered 3D gingiva under inflammatory conditions. J Periodontol 2021; 92:1448-1459. [PMID: 33393105 PMCID: PMC8724682 DOI: 10.1002/jper.20-0552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Background We aimed to evaluate the effect of low doses (LD) bone morphogenetic protein‐2 (BMP2) and BMP4 micro‐immunotherapy (MI) in two in vitro models of periodontal wound healing/regeneration. Methods We first evaluated the effect of LD of BMP2 and BMP4 MI on a 2D cell culture using human gingival fibroblasts (hGF) under inflammatory conditions induced by IL1β. Biocompatibility, inflammatory response (Prostaglandin E2 (PGE2) release), collagen deposition and release of extracellular matrix (ECM) organization‐related enzymes (matrix metalloproteinase‐1 (MMP1) and metalloproteinase inhibitor 1 (TIMP1)) were evaluated after short (3 days) and long‐term (24 days) treatment with BMP2 or BMP4 MI. Then, given the results obtained in the 2D cell culture, LD BMP4 MI treatment was evaluated in a 3D cell culture model of human tissue equivalent of gingiva (GTE) under the same inflammatory stimulus, evaluating the biocompatibility, inflammatory response and effect on MMP1 and TIMP1 release. Results LD BMP4 was able to decrease the release of the inflammatory mediator PGE2 and completely re‐establish the impaired collagen metabolism induced by IL1β treatment. In the 3D model, LD BMP4 treatment improved tissue viability compared with the vehicle, with similar levels to 3D tissues without inflammation. No significant effects were observed on PGE2 levels nor MMP1/TIMP1 ratio after LD BMP4 treatment, although a tendency to decrease PGE2 levels was observed after 3 days. Conclusions LD BMP4 MI treatment shows anti‐inflammatory and regenerative properties on hGF, and improved viability of 3D gingiva under inflammatory conditions. LD BMP4 MI treatment could be used on primary prevention or maintenance care of periodontitis.
Collapse
Affiliation(s)
- Maria Del Mar Ferrà-Cañellas
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Preclinical Research Department, Labo'Life España, Consell, Spain
| | - Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | | | - Beatrice Lejeune
- Preclinical and Clinical Research, Regulatory Affairs Department, Labo'Life France, Nantes, France
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
29
|
Silencing matrix metalloproteinase-13 (Mmp-13) reduces inflammatory bone resorption associated with LPS-induced periodontal disease in vivo. Clin Oral Investig 2020; 25:3161-3172. [PMID: 33140162 DOI: 10.1007/s00784-020-03644-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of specific inhibition of MMP-13 on inflammation and inflammatory bone resorption in a murine model of lipopolysaccharide (LPS)-induced periodontitis. MATERIALS AND METHODS Periodontitis was induced in mice by micro-injections of LPS into the gingival tissues adjacent to the palatal surfaces of maxillary molars twice a week for 15 days. Matrix metalloproteinase-13 (Mmp-13) shRNA or a specific biochemical inhibitor were also injected into the same sites in alternating days with the LPS injections. Efficacy of shRNA-mediated silencing of Mmp-13 was verified by quantitative real-time polymerase chain reaction (qPCR) and immunoblot. Bone resorption was assessed by microcomputed tomography (uCT). Histological sections stained with hematoxylin/eosin (H/E) were used in the stereometric analysis of the inflammatory infiltrate. Gingival tissues were used to evaluate expression of Mmp-13, Il-6, Tnf-α, Ptgs2, and Rankl (qPCR). Protein levels of TGF-β and IL-10 in the tissues were determined by enzyme-linked immunosorbent assays (ELISA) or by MMP-13 and p38 immunoblot. RESULTS Silencing Mmp-13 expression reduced bone resorption significantly. Expression of Mmp-13, Il-6, and Tnf-α, as well as the protein levels of IL-6 and TNF-α, was reduced in the animals treated with adenovirus-delivered shRNA; however, these effects were not associated with modulation of p38 MAPK signaling. Interestingly, inhibition Mmp-13 did not affect the severity of inflammatory infiltrate. CONCLUSIONS Site-specific inhibition of MMP-13 reduced bone resorption and production of inflammatory mediators associated with periodontal disease. CLINICAL RELEVANCE The results suggest that site-specific inhibition of MMP-13 may be an interesting strategy to modulate inflammation and reduce bone resorption in osteolytic inflammatory diseases.
Collapse
|
30
|
Jiang Y, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis 2020; 28:249-263. [PMID: 32989880 DOI: 10.1111/odi.13654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore how various methylation mechanisms function and affect macrophages in periodontitis, with an aim of getting a comprehensive understanding of pathogenesis of the disease. SUBJECT Alterations in DNA methylation are associated with different periodontitis susceptible factors and disrupt immunity homeostasis. The host's immune response to stimulus plays a vital role in the progression of periodontitis. Macrophages are key immune cells of immune system. They act as critical regulators in maintaining issue homeostasis with their nature of high plasticity. The altered methylation status of genes may cause abnormal expression of proteins in the progress of periodontitis, thus, exert potential influence on macrophages. RESULTS Certain genes are selectively activated or silenced due to the changes in the methylation status, which causes the alteration of the expression level of cytokines/chemokines, signal molecules, extracellular matrix molecules, leads to the change in local microenvironment, affects activation states of immune cells including macrophages, thus influences the host immune response during periodontitis.. This results in differential susceptibility and therapeutic outcome. CONCLUSION DNA methylation alteration may cause aberrant expression level of genes associated with periodontal diseases, thus results in deregulation of macrophages, which supports the prospect of using DNA methylation-related parameter as a new biomarker for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| |
Collapse
|
31
|
Khouly I, Braun RS, Ordway M, Aouizerat BE, Ghassib I, Larsson L, Asa’ad F. The Role of DNA Methylation and Histone Modification in Periodontal Disease: A Systematic Review. Int J Mol Sci 2020; 21:ijms21176217. [PMID: 32867386 PMCID: PMC7503325 DOI: 10.3390/ijms21176217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a number of reports in the literature on the role of epigenetic mechanisms in periodontal disease, a thorough assessment of the published studies is warranted to better comprehend the evidence on the relationship between epigenetic changes and periodontal disease and its treatment. Therefore, the aim of this systematic review is to identify and synthesize the evidence for an association between DNA methylation/histone modification and periodontal disease and its treatment in human adults. A systematic search was independently conducted to identify articles meeting the inclusion criteria. DNA methylation and histone modifications associated with periodontal diseases, gene expression, epigenetic changes after periodontal therapy, and the association between epigenetics and clinical parameters were evaluated. Sixteen studies were identified. All included studies examined DNA modifications in relation to periodontitis, and none of the studies examined histone modifications. Substantial variation regarding the reporting of sample sizes and patient characteristics, statistical analyses, and methodology, was found. There was some evidence, albeit inconsistent, for an association between DNA methylation and periodontal disease. IL6, IL6R, IFNG, PTGS2, SOCS1, and TNF were identified as candidate genes that have been assessed for DNA methylation in periodontitis. While several included studies found associations between methylation levels and periodontal disease risk, there is insufficient evidence to support or refute an association between DNA methylation and periodontal disease/therapy in human adults. Further research must be conducted to identify reproducible epigenetic markers and determine the extent to which DNA methylation can be applied as a clinical biomarker.
Collapse
Affiliation(s)
- Ismael Khouly
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY 10010, USA;
- Correspondence:
| | - Rosalie Salus Braun
- Department of Cariology and Comprehensive Care, College of Dentistry, New York University, New York, NY 10010, USA;
| | - Michelle Ordway
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Bradley Eric Aouizerat
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY 10010, USA;
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010, USA
| | - Iya Ghassib
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48104, USA;
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden;
| | - Farah Asa’ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden;
| |
Collapse
|
32
|
Regulation of Cyclooxygenase 2 by Filifactor alocis in Fibroblastic and Monocytic Cells. Mediators Inflamm 2020; 2020:4185273. [PMID: 32089643 PMCID: PMC7023199 DOI: 10.1155/2020/4185273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a prevalent chronic inflammatory disease triggered by a synergistic and dysbiotic microbiota present in the oral biofilm. This in vitro study is aimed at evaluating the regulation of cyclooxygenase (COX)2 expression and production by the periodontopathogen Filifactor alocis in human gingival fibroblastic (HGF-1) and monocytic (THP-1) cells and also at investigating the underlying cellular pathway mechanisms. HGF-1 and THP-1 cells were exposed either to F. alocis or to the proinflammatory cytokine tumor necrosis factor alpha (TNFα) for 1 and 2 d to examine the COX2 expression by qPCR. COX2 protein levels were evaluated by ELISA in F. alocis-stimulated cells. Both types of cells were also stimulated with a blocking toll-like receptor (TLR)2 antibody or specific inhibitors against MAPKs. F. alocis significantly (p < 0.05) increased COX2 at both transcriptional and protein levels in both HGF-1 and THP-1 cells. Moreover, the stimulatory effect of F. alocis on COX2 was more pronounced in HGF-1 cells in comparison to THP-1 cells. F. alocis upregulated the COX2 expression in a dose-dependent manner in both type cells at 1 d. TNFα also significantly (p < 0.05) increased the COX2 expression in both cells. After preincubation of HGF-1 and THP-1 cells either with a neutralizing anti-TLR2 antibody or with specific MAPK inhibitors, the F. alocis-upregulated COX2 expression was significantly (p < 0.05) suppressed at 1 d. Our in vitro study provides original evidence that F. alocis stimulates COX2 production in fibroblastic and monocytic cells through TLR2 and MAPK mechanisms, suggesting a role of this periodontopathogen in the etiopathogenesis of periodontitis.
Collapse
|
33
|
Ern C, Frasheri I, Berger T, Kirchner HG, Heym R, Hickel R, Folwaczny M. Effects of prostaglandin E 2 and D 2 on cell proliferation and osteogenic capacity of human mesenchymal stem cells. Prostaglandins Leukot Essent Fatty Acids 2019; 151:1-7. [PMID: 31589940 DOI: 10.1016/j.plefa.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
The manifestation of periodontitis-related inflammatory reaction is inevitably bound to the production of prostaglandins E2 and D2 which have been suggested to mediate osteoclastic and osteogenic effects within the affected tissue. We demonstrated the presence of PGE2 and PGD2 receptors on hMSCs on RNA level and with immunofluorescence. For each Prostaglandin, three concentrations were studied: 0.1; 0.5 or 1.0 µg/ml. A lower expression of EP1 and EP4 (PGE2 receptors 1 and 4) after stimulation with PGE2 was shown, thus a tendency to compromise osteogenic differentiation and metabolism. PGE2 induced a higher growth-rate during the first week, while a continuous inflammatory challenge determined a decrease of the proliferation of hMSCs. PGD2 inhibited cell growth irrespective of the duration of the stimulation. PGE2 and PGD2 have also negative effects on calcium deposition osteogenic, thus on differentiation of hMSCs. PGE2 and PGD2 seem to induce bone resorption also having indirectly a negative impact on the osteogenic differentiation of hMSCs. Thus, inhibitors of PGE2 and PGD2 can be used as adjunct to mechanical periodontal treatment.
Collapse
Affiliation(s)
- C Ern
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - I Frasheri
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - T Berger
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - H G Kirchner
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - R Heym
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - R Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany
| | - M Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, Munich D-80336, Germany.
| |
Collapse
|
34
|
Jekabsone A, Sile I, Cochis A, Makrecka-Kuka M, Laucaityte G, Makarova E, Rimondini L, Bernotiene R, Raudone L, Vedlugaite E, Baniene R, Smalinskiene A, Savickiene N, Dambrova M. Investigation of Antibacterial and Antiinflammatory Activities of Proanthocyanidins from Pelargonium sidoides DC Root Extract. Nutrients 2019; 11:nu11112829. [PMID: 31752295 PMCID: PMC6893413 DOI: 10.3390/nu11112829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
The study explores antibacterial, antiinflammatory and cytoprotective capacity of Pelargonium sidoides DC root extract (PSRE) and proanthocyanidin fraction from PSRE (PACN) under conditions characteristic for periodontal disease. Following previous finding that PACN exerts stronger suppression of Porphyromonas gingivalis compared to the effect on commensal Streptococcus salivarius, the current work continues antibacterial investigation on Staphylococcus aureus, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans and Escherichia coli. PSRE and PACN are also studied for their ability to prevent gingival fibroblast cell death in the presence of bacteria or bacterial lipopolysaccharide (LPS), to block LPS- or LPS + IFNγ-induced release of inflammatory mediators, gene expression and surface antigen presentation. Both PSRE and PACN were more efficient in suppressing Staphylococcus and Aggregatibacter compared to Escherichia, prevented A. actinomycetemcomitans- and LPS-induced death of fibroblasts, decreased LPS-induced release of interleukin-8 and prostaglandin E2 from fibroblasts and IL-6 from leukocytes, blocked expression of IL-1β, iNOS, and surface presentation of CD80 and CD86 in LPS + IFNγ-treated macrophages, and IL-1β and COX-2 expression in LPS-treated leukocytes. None of the investigated substances affected either the level of secretion or expression of TNFα. In conclusion, PSRE, and especially PACN, possess strong antibacterial, antiinflammatory and gingival tissue protecting properties under periodontitis-mimicking conditions and are suggestable candidates for treatment of the disease.
Collapse
Affiliation(s)
- Aiste Jekabsone
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-675-94455
| | - Inga Sile
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV1006 Riga, Latvia
- Riga Stradins University, Dzirciema Str. 16, LV1007, Latvia
| | - Andrea Cochis
- Department of Health Sciences, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, C.so Trieste 15A, 28100 Novara, Italy
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV1006 Riga, Latvia
- Riga Stradins University, Dzirciema Str. 16, LV1007, Latvia
| | - Goda Laucaityte
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Elina Makarova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV1006 Riga, Latvia
| | - Lia Rimondini
- Department of Health Sciences, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, C.so Trieste 15A, 28100 Novara, Italy
| | - Rasa Bernotiene
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Evelina Vedlugaite
- Clinic of dental and oral pathology, LSMU Hospital, Kaunas Clinics, Medical academy, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania
| | - Rasa Baniene
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Alina Smalinskiene
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Nijole Savickiene
- Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV1006 Riga, Latvia
- Riga Stradins University, Dzirciema Str. 16, LV1007, Latvia
| |
Collapse
|
35
|
Hajishengallis G, Kajikawa T, Hajishengallis E, Maekawa T, Reis ES, Mastellos DC, Yancopoulou D, Hasturk H, Lambris JD. Complement-Dependent Mechanisms and Interventions in Periodontal Disease. Front Immunol 2019; 10:406. [PMID: 30915073 PMCID: PMC6422998 DOI: 10.3389/fimmu.2019.00406] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a prevalent inflammatory disease that leads to the destruction of the tooth-supporting tissues. Current therapies are not effective for all patients and this oral disease continues to be a significant public health and economic burden. Central to periodontal disease pathogenesis is a reciprocally reinforced interplay between microbial dysbiosis and destructive inflammation, suggesting the potential relevance of host-modulation therapies. This review summarizes and discusses clinical observations and pre-clinical intervention studies that collectively suggest that complement is hyperactivated in periodontitis and that its inhibition provides a therapeutic benefit. Specifically, interception of the complement cascade at its central component, C3, using a locally administered small peptidic compound (Cp40/AMY-101) protected non-human primates from induced or naturally occurring periodontitis. These studies indicate that C3-targeted intervention merits investigation as an adjunctive treatment of periodontal disease in humans.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evlambia Hajishengallis
- Division of Pediatric Dentistry, Department of Preventive and Restorative Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Hatice Hasturk
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Chen W, Zhi M, Feng Z, Gao P, Yuan Y, Zhang C, Wang Y, Dong A. Sustained co-delivery of ibuprofen and basic fibroblast growth factor by thermosensitive nanoparticle hydrogel as early local treatment of peri-implantitis. Int J Nanomedicine 2019; 14:1347-1358. [PMID: 30863065 PMCID: PMC6390857 DOI: 10.2147/ijn.s190781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective The aims of this study were to 1) encapsulate ibuprofen (IBU) and basic fibroblast growth factor (bFGF) in a thermosensitive micellar hydrogel, 2) test the biological properties of this in situ drug delivery system, and 3) study the effect of hydrogel in promoting soft tissue healing after implant surgery and its anti-inflammatory function as an early local treatment of peri-implantitis. Materials and methods A thermosensitive micellar hydrogel was prepared from amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone) (PECT) nanoparticles and tested in vitro using a scanning electron microscope, rheometer, UV spectrophotometer, HPLC, and transmission electron microscope. Results The bFGF + IBU/PECT hydrogel formed a stable, water-dispersible nanoparticle core shell that was injectable at room temperature, hydrogel in situ at body temperature, and provided sustained release of both hydrophilic and hydrophobic drugs. The hydrogel promoted the proliferation and adhesion of human gingival fibroblasts, upregulated the expression of adhesion factors such as vinculin proteins, and showed anti-inflammatory properties. Conclusion In situ preparation of IBU-and bFGF-loaded PECT hydrogel represents a promising drug delivery system with the potential to provide early local treatment for peri-implantitis.
Collapse
Affiliation(s)
- Wenlei Chen
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Min Zhi
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China,
| | - Pengfei Gao
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yuan Yuan
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Congcong Zhang
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yonglan Wang
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China,
| |
Collapse
|
37
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
38
|
Kats A, Gerasimcik N, Näreoja T, Nederberg J, Grenlöv S, Lagnöhed E, Desai S, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit osteoclastogenesis and PGE 2 production in LPS-stimulated co-cultures of periodontal ligament and RAW 264.7 cells, and RANKL-mediated osteoclastogenesis and bone resorption in PBMCs. J Cell Mol Med 2018; 23:1152-1163. [PMID: 30506812 PMCID: PMC6349150 DOI: 10.1111/jcmm.14015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammatory mediator prostaglandin E2 (PGE2 ) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase-1 (mPGES-1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES-1 inhibitors, aminothiazoles TH-848 and TH-644, on PGE2 production and osteoclastogenesis in co-cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL-mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co-cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate-resistant acid phosphatase (TRAP) were scored as osteoclast-like cells. Levels of PGE2 , osteoprotegerin (OPG) and interleukin-6, as well as mRNA expression of mPGES-1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP-positive multinucleated cells were analysed and bone resorption was measured by the CTX-I assay. Aminothiazoles reduced LPS-stimulated osteoclast-like cell formation both in co-cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS-stimulated cultures, but did not affect LPS-induced mPGES-1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast-like cells and decreased the production of PGE2 in co-cultures as well as single-cell cultures. Furthermore, these compounds inhibited RANKL-induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Natalija Gerasimcik
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jonas Nederberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Simon Grenlöv
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Ekaterina Lagnöhed
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Suchita Desai
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
39
|
Ara T, Nakatani S, Kobata K, Sogawa N, Sogawa C. The Biological Efficacy of Natural Products against Acute and Chronic Inflammatory Diseases in the Oral Region. MEDICINES 2018; 5:medicines5040122. [PMID: 30428613 PMCID: PMC6313758 DOI: 10.3390/medicines5040122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/31/2023]
Abstract
The oral inflammatory diseases are divided into two types: acute and chronic inflammatory diseases. In this review, we summarize the biological efficacy of herbal medicine, natural products, and their active ingredients against acute and chronic inflammatory diseases in the oral region, especially stomatitis and periodontitis. We review the effects of herbal medicines and a biscoclaurin alkaloid preparation, cepharamthin, as a therapy against stomatitis, an acute inflammatory disease. We also summarize the effects of herbal medicines and natural products against periodontitis, a chronic inflammatory disease, and one of its clinical conditions, alveolar bone resorption. Recent studies show that several herbal medicines such as kakkonto and ninjinto reduce LPS-induced PGE2 production by human gingival fibroblasts. Among herbs constituting these herbal medicines, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly reduce PGE2 production. Moreover, anti-osteoclast activity has been observed in some natural products with anti-inflammatory effects used against rheumatoid arthritis such as carotenoids, flavonoids, limonoids, and polyphenols. These herbal medicines and natural products could be useful for treating oral inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Sachie Nakatani
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Kenji Kobata
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| |
Collapse
|
40
|
Batool F, Morand DN, Thomas L, Bugueno IM, Aragon J, Irusta S, Keller L, Benkirane-Jessel N, Tenenbaum H, Huck O. Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study. MATERIALS 2018; 11:ma11040580. [PMID: 29642582 PMCID: PMC5951464 DOI: 10.3390/ma11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Ibuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous poly-ε-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized through electrospinning. The effects of IBU-PCL on the proliferation and migration of epithelial cells (EC) and fibroblasts (FB) exposed to Porphyromonas gingivlais lipopolysaccharide (Pg-LPS) were evaluated through the AlamarBlue test and scratch assay, respectively. Anti-inflammatory and remodeling properties were investigated through Real time qPCR. Finally, the in vivo efficacy of the IBU-PCL membrane was assessed in an experimental periodontitis mouse model through histomorphometric analysis. The results showed that the anti-inflammatory effects of IBU on gingival cells were effectively amplified using the functionalized membrane. IBU-PCL reduced the proliferation and migration of cells challenged by Pg-LPS, as well as the expression of fibronectin-1, collagen-IV, integrin α3β1 and laminin-5. In vivo, the membranes significantly improved the clinical attachment and IBU-PCL also reduced inflammation-induced bone destruction. These data showed that the IBU-PCL membrane could efficiently and differentially control inflammatory and migratory gingival cell responses and potentially promote periodontal regeneration.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - David-Nicolas Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Lionel Thomas
- Institute Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg 67000, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Javier Aragon
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
- Hopitaux Universitaires de Strasbourg, Pôle de médecine et chirurgie bucco-dentaire, Department of Periodontology, 67000 Strasbourg, France.
| |
Collapse
|
41
|
Memmert S, Nogueira AVB, Damanaki A, Nokhbehsaim M, Eick S, Divnic-Resnik T, Spahr A, Rath-Deschner B, Till A, Götz W, Cirelli JA, Jäger A, Deschner J. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clin Oral Investig 2018; 22:2933-2941. [PMID: 29442188 DOI: 10.1007/s00784-018-2381-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Damage-regulated autophagy modulator (DRAM) 1 is a p53 target gene with possible involvement in oral inflammation and infection. This study sought to examine the presence and regulation of DRAM1 in periodontal diseases. MATERIAL AND METHODS In vitro, human periodontal ligament fibroblasts were exposed to interleukin (IL)-1β and Fusobacterium nucleatum for up to 2 days. The DRAM1 synthesis and its regulation were analyzed by real-time PCR, immunocytochemistry, and ELISA. Expressions of other autophagy-associated genes were also studied by real-time PCR. In vivo, synthesis of DRAM1 in gingival biopsies from rats and patients with and without periodontal disease was examined by real-time PCR and immunohistochemistry. For statistics, ANOVA and post-hoc tests were applied (p < 0.05). RESULTS In vitro, DRAM1 was significantly upregulated by IL-1β and F. nucleatum over 2 days and a wide range of concentrations. Additionally, increased DRAM1 protein levels in response to both stimulants were observed. Autophagy-associated genes ATG3, BAK1, HDAC6, and IRGM were also upregulated under inflammatory or infectious conditions. In vivo, the DRAM1 gene expression was significantly enhanced in rat gingival biopsies with induced periodontitis as compared to control. Significantly increased DRAM1 levels were also detected in human gingival biopsies from sites of periodontitis as compared to healthy sites. CONCLUSION Our data provide novel evidence that DRAM1 is increased under inflammatory and infectious conditions in periodontal cells and tissues, suggesting a pivotal role of DRAM1 in oral inflammation and infection. CLINICAL RELEVANCE DRAM1 might be a promising target in future diagnostic and treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - A V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - A Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - M Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - S Eick
- Department of Periodontology, Laboratory for Oral Microbiology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - T Divnic-Resnik
- Department/Discipline of Periodontics, Faculty of Dentistry, The University of Sydney, Sydney, Australia
| | - A Spahr
- Department/Discipline of Periodontics, Faculty of Dentistry, The University of Sydney, Sydney, Australia
| | - B Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - A Till
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - W Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - J A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - A Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - J Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Effects of Huanglian Jiedu Decoration in Rat Gingivitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8249013. [PMID: 29576800 PMCID: PMC5822758 DOI: 10.1155/2018/8249013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022]
Abstract
Gingivitis is an inflammatory disease that affects gingival tissues through a microbe-immune interaction. Huanglian Jiedu decoction (HLJD) is used traditionally for clearing and detoxifying in China, which had been reported to possess many pharmacological effects. Rat gingival inflammation model was established by lipopolysaccharide (LPS) injection for 3 consecutive days, and HLJD was given by gavage before LPS injection. After 3 days rats were sacrificed and tissue samples were evaluated. Serum cytokine levels such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoabsorbent assay (ELISA). Oxidative stress related molecules such as total antioxidant capacity (T-AOC), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined. Expression of AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway were inspected by western blotting. Histological changes of gingival tissues were tested with hematoxylin-eosin (HE) staining. HLJD significantly decreased serum levels of IL-6 and TNF-α, suppressed generation of MDA and ROS, and enhanced T-AOC creation. Moreover, HLJD inhibited expressions of AMPK and ERK1/2. The inflammation severity of gingival tissue by HE staining was severe in model group but relieved in HLJD group obviously. HLJD exhibited protective effects against gingival damage through suppressing inflammation reaction and elevating antioxidation power.
Collapse
|
43
|
Ebersole JL, Graves CL, Gonzalez OA, Dawson D, Morford LA, Huja PE, Hartsfield JK, Huja SS, Pandruvada S, Wallet SM. Aging, inflammation, immunity and periodontal disease. Periodontol 2000 2018; 72:54-75. [PMID: 27501491 DOI: 10.1111/prd.12135] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
The increased prevalence and severity of periodontal disease have long been associated with aging, such that this oral condition affects the majority of the adult population over 50 years of age. Although the immune system is a critical component for maintaining health, aging can be characterized by quantitative and qualitative modifications of the immune system. This process, termed 'immunosenescence', is a progressive modification of the immune system that leads to greater susceptibility to infections, neoplasia and autoimmunity, presumably reflecting the prolonged antigenic stimulation and/or stress responses that occur across the lifespan. Interestingly, the global reduction in the host capability to respond effectively to these challenges is coupled with a progressive increase in the general proinflammatory status, termed 'inflammaging'. Consistent with the definition of immunosenescence, it has been suggested that the cumulative effect of prolonged exposure of the periodontium to microbial challenge is, at least in part, a contributor to the effects of aging on these tissues. Thus, it has also been hypothesized that alterations in the function of resident immune and nonimmune cells of the periodontium contribute to the expression of inflammaging in periodontal disease. Although the majority of aging research has focused on the adaptive immune response, it is becoming increasingly clear that the innate immune compartment is also highly affected by aging. Thus, the phenomenon of immunosenescence and inflammaging, expressed as age-associated changes within the periodontium, needs to be more fully understood in this era of precision and personalized medicine and dentistry.
Collapse
|
44
|
Ara T, Sogawa N. Effects of shinbuto and ninjinto on prostaglandin E 2 production in lipopolysaccharide-treated human gingival fibroblasts. PeerJ 2017; 5:e4120. [PMID: 29209578 PMCID: PMC5713626 DOI: 10.7717/peerj.4120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we revealed that several kampo medicines used for patients with excess and/or medium patterns (kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)) reduced prostaglandin (PG)E2 levels using LPS-treated human gingival fibroblasts (HGFs). Recently, we examined other kampo medicines used for patients with the deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs comprising shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently reduced LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly reduced and bakumondoto did not reduce PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activity or the expression of molecules involved in the arachidonic acid cascade. Therefore, we next examined which herbs compromising shinbuto and ninjinto reduce LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo increased the expression of cytosolic phospholipase (cPL)A2 but did not affect annexin1 or COX-2 expression. These results suggest that shokyo and kankyo suppress cPLA2 activity. We demonstrated that kampo medicines suppress inflammatory responses in patients with the deficiency pattern, and in those with excess or medium patterns. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Norio Sogawa
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
45
|
Montero J, López-Valverde N, Ferrera MJ, López-Valverde A. Changes in crevicular cytokines after application of melatonin in patients with periodontal disease. J Clin Exp Dent 2017; 9:e1081-e1087. [PMID: 29075409 PMCID: PMC5650209 DOI: 10.4317/jced.53934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background A clinical trial was designed to evaluate the effects of topical application of melatonin on the crevicular fluid levels of interleukins and prostaglandins and to evaluate changes in clinical parameters. Material and Methods A consecutive sample of 90 patients were recruited from the Health Centre of Pinos Puente in Granada, Spain and divided into 3 groups: 30 patients with diabetes and periodontal disease, who were given melatonin; 30 patients with diabetes and periodontal disease, who were given a placebo, and 30 healthy individuals with no history of systemic disease or clinical signs of periodontal disease, who were also given a placebo. The 30 patients with diabetes and periodontitis were treated with topical application of melatonin (1% orabase cream formula) for 20 days by. The rest of the patients with diabetes and periodontitis and healthy subjects were treated with a placebo of orabase cream. We measured the gingival index by exploring the percentage of standing teeth bleeding on probing. The periodontogram was performed with a Florida Probe. Results In the diabetic patients who were given topical melatonin, there was a statistically significant decrease in the two clinical parameters. By contrast, in diabetic patients who were given the topical placebo, there was no statistically significant variation. Conclusions In patients with diabetes and periodontal disease, treatment with topical melatonin was associated with a significant improvement in the gingival index and in pocket depth, and a statistically significant reduction in concentrations of interleukin-1β, interleukin-6 and prostaglandin E2 in gingival crevicular fluid. Key words:Melatonin, periodontal disease, diabetes mellitus, interleukin-1β, interleukin-6, prostaglandin E2.
Collapse
Affiliation(s)
- Javier Montero
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| | - Nansi López-Valverde
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| | - María-José Ferrera
- Pinos Puente Health Centre, Granada-Metropolitan Health District, Granada, Spain
| | - Antonio López-Valverde
- Departament of Surgery, Faculty of Medicine, Scholl of dentistry, University of Salamanca, Spain
| |
Collapse
|
46
|
Asa'ad F, Bollati V, Pagni G, Castilho RM, Rossi E, Pomingi F, Tarantini L, Consonni D, Giannobile WV, Rasperini G. Evaluation of DNA methylation of inflammatory genes following treatment of chronic periodontitis: A pilot case-control study. J Clin Periodontol 2017; 44:905-914. [DOI: 10.1111/jcpe.12783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Farah Asa'ad
- Department of Biomedical, Surgical and Dental Sciences; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; University of Milan; Milan Italy
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab; Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
- Epidemiology Unit; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Milan Italy
| | - Giorgio Pagni
- Department of Biomedical, Surgical and Dental Sciences; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; University of Milan; Milan Italy
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology; University of Michigan School of Dentistry; Ann Arbor MI USA
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - Eleonora Rossi
- Department of Biomedical, Surgical and Dental Sciences; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; University of Milan; Milan Italy
| | | | - Letizia Tarantini
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab; Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Dario Consonni
- Epidemiology Unit; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Milan Italy
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine; School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; University of Milan; Milan Italy
| |
Collapse
|
47
|
Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater 2017; 53:13-28. [PMID: 28119112 DOI: 10.1016/j.actbio.2017.01.056] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. STATEMENT OF SIGNIFICANCE Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration.
Collapse
Affiliation(s)
- Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Priscilla S Briquez
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
48
|
Studies on Shokyo, Kanzo, and Keihi in Kakkonto Medicine on Prostaglandin E 2 Production in Lipopolysaccharide-Treated Human Gingival Fibroblasts. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2016; 2016:9351787. [PMID: 27819025 PMCID: PMC5081445 DOI: 10.1155/2016/9351787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that a kampo medicine, kakkonto, decreases lipopolysaccharide- (LPS-) induced prostaglandin E2 (PGE2) production by human gingival fibroblasts. In this study, we examined the herbs constituting kakkonto that exhibit this effect. Shokyo strongly and concentration dependently and kanzo and keihi moderately decreased LPS-induced PGE2 production. Shokyo did not alter cyclooxygenase-2 (COX-2) activity, cytosolic phospholipase A2 (cPLA2), annexin 1 and COX-2 expression, and LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation. Kanzo inhibited COX-2 activity but increased annexin 1 and COX-2 expression and did not alter LPS-induced ERK phosphorylation. Keihi inhibited COX-2 activity and LPS-induced ERK phosphorylation but slightly increased COX-2 expression and did not alter cPLA2 and annexin 1 expression. These results suggest that the mechanism of shokyo is through the inhibition of cPLA2 activity, and that of kanzo and keihi is through the inhibition of COX-2 activity and indirect inhibition of cPLA2 activity. Therefore, it is possible that shokyo and kakkonto are clinically useful for the improvement of inflammatory responses.
Collapse
|
49
|
Li L, Sun W, Wu T, Lu R, Shi B. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and PI3K/Akt signaling pathway. Eur J Pharmacol 2016; 794:61-68. [PMID: 27832944 DOI: 10.1016/j.ejphar.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Periodontal diseases often begin with chronic gingival inflammation, which causes the destruction of periodontal tissues. Inflammatory immune responses from host cells to bacteria, such as Porphyromonas gingivalis (P. gingivalis), cause periodontal degradation. Human gingival fibroblasts (HGFs) are the major cells in periodontal soft tissues. When stimulated by lipopolysaccharide (LPS), HGFs could secrete several pro-inflammatory cytokines and chemokines, such as interleukins (ILs) IL-6, IL-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). Caffeic acid phenethyl ester (CAPE) is the main active component of propolis, which is collected by honeybees from different plants and known for its anti-inflammatory effects. The anti-inflammatory effects of CAPE on the LPS-induced HGFs were demonstrated in this study. HGFs were pretreated with CAPE (10, 20, and 30µm) for 1h, followed by LPS stimulation (1μg/ml) for 24h. Enzyme-linked immunosorbent assay, Western blot analysis, and immunofluorescence staining were used to evaluate the production of IL-6, IL-8, iNOS, and COX-2, as well as the activation of TLR4-mediated NF-κB, PI3K/AKT, and MAPK signaling pathways. The results indicated that CAPE inhibits LPS-induced IL-6, IL-8, iNOS, and COX-2 production in a dose-dependent manner. Moreover, CAPE suppresses LPS-induced TLR4/MyD88 and nuclear factor kappa B (NF-κB) activation. In addition, phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) phosphorylation was inhibited by CAPE. These results demonstrated that CAPE could be effective for treating of periodontal diseases.
Collapse
Affiliation(s)
- Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Wei Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Tao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
50
|
Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1 β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5357689. [PMID: 27807462 PMCID: PMC5078667 DOI: 10.1155/2016/5357689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.
Collapse
|