1
|
Agarwal P, Shashikumar P, S R. Indocyanine green mediated antimicrobial photodynamic therapy: A non-invasive treatment approach for chronic periodontitis with type 2 diabetes mellitus: A randomized controlled clinical trial. J Oral Biol Craniofac Res 2025; 15:525-533. [PMID: 40160851 PMCID: PMC11952009 DOI: 10.1016/j.jobcr.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Background Periodontitis is a destructive chronic inflammatory disorder of the periodontium and is a major cause of loss of teeth. Uncontrolled diabetes affects periodontal status and chronic periodontitis affects the glycemic status. Nonsurgical periodontal therapy is often not sufficient in completely eliminating the pathogens. Hence antimicrobial photodynamic therapy (aPDT), is being used in medically compromised patients as it does not cause adverse effects that are seen with other adjunctive treatments. This study aimed to evaluate the efficacy of antimicrobial photodynamic therapy using Indocyanine green as an adjunct to scaling and root planing in the treatment of periodontitis in controlled Type 2 Diabetes Mellitus (DM) patients with chronic generalized periodontitis. The objective to see improvements in clinical parameters and microbiological parameters along with its effect on glycemic levels. Materials and methods In this randomized controlled clinical trial a total of 40 chronic periodontitis patients with Type 2 DM were randomly assigned into test and control groups of 18 participants each. The test group received.Scaling and root planing (SRP) + aPDT) while the control group received only SRP. In SRP + aPDT group, pockets were irradiated with a diode laser after irrigation with Indocyanine green. Assessment of clinical parameters like plaque index (PI), gingival index (GI), probing depth, (PD), clinical attachment level (CAL), and glycated haemoglobin (HbA1c), as well as microbiological analysis for Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetem comitans (Aa) was done at baseline & 3 months post-therapy and data were statistically analysed. Results aPDT as an adjunct to SRP improved clinical and microbiological parameters. A statistically significant difference (p < 0.001) was noted on intergroup comparison with respect to PD, CAL, and colony forming units (CFU/ml) of Pg and Aa. There was an improvement in HbA1c levels from baseline to 3 months in both the groups however, there was no significant difference between the groups at 3 months. Conclusion The use of Indocyanine green mediated aPDT as adjuvant therapy in treatment of chronic periodontitis in Type 2 diabetes mellitus patients resulted in significant reduction in microbial counts as well as rendered additional clinical benefits. Clinical significance aPDT as adjunctive therapy to SRP can be a non-invasive treatment of choice for chronic periodontitis in medically compromised patients like Type 2 Diabetes mellitus patients.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Dept of Periodontology, JSS Dental College and Hospital, Mysuru, Karnataka, 570015, India
| | - Pratibha Shashikumar
- Dept of Periodontology, JSS Dental College and Hospital, Mysuru, Karnataka, 570015, India
| | - Rakshitha S
- Dept of Periodontology, JSS Dental College and Hospital, Mysuru, Karnataka, 570015, India
| |
Collapse
|
2
|
Dias LM, Paul P, Pavarina AC, Siqueira WL. Salivary proteins-enhanced antimicrobial photodynamic therapy: Overcoming three distinct cultures of resistant mixed biofilms. J Dent 2025; 157:105778. [PMID: 40268113 DOI: 10.1016/j.jdent.2025.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Denture stomatitis is frequently associated with biofilm formation by Candida albicans, which can coexist with Streptococcus mutans. Current treatments face several limitations, including the emergence of resistant strains and the persistent impact of biofilm formation on antimicrobial efficacy. The salivary proteins Histatin 3 (His3) and Histatin 5 (His5) have demonstrated effectiveness against C. albicans single-species biofilms. However, their efficacy against mixed-species biofilms, particularly those involving S. mutans and antifungal-resistant C. albicans strains, remains poorly understood. OBJECTIVES To investigate the efficacy of combining His3 and His5 with antimicrobial photodynamic therapy (aPDT) against mixed biofilms containing polyene-resistant (CaP+Sm), wild-type (CaW+Sm), and fluconazole-resistant (CaF+Sm) and S. mutans (Sm) on acrylic resins. METHODS 48-hour mixed biofilms (37 °C/5 % CO₂) were formed on acrylic resin disks treated with His3 and His5 (2h/37 °C/120 rpm). Biofilms were subjected to aPDT using Photodithazine (200 mg/L) followed by 30 min of red LED irradiation (660 nm, 50 J/cm²). Viability was assessed by colony-forming units (CFU), while ECM components (proteins, alkali-soluble polysaccharides (ASP), water-soluble polysaccharides (WSP), and extracellular DNA (eDNA)) were analyzed (n = 6). RESULTS Complete eradication of mixed biofilms was observed in CaW+Sm and CaF+Sm treated with His3+aPDT and His5+aPDT, while CaP+Sm showed a 98 % reduction in total microbiota. For CaP+Sm, combined His3+aPDT and His5+aPDT significantly reduced biofilm viability, achieving up to 99 % reduction in C. albicans and 80 % in S. mutans. ECM components, including proteins, ASP, WSP, and eDNA, were notably reduced, particularly in CaW+Sm and CaF+Sm cultures. CONCLUSION Combining Histatins with aPDT demonstrated superior efficacy compared to individual treatments, disrupting mixed biofilms of C. albicans and S. mutans and significantly reducing viability. CLINICAL SIGNIFICANCE Histatins with antimicrobial photodynamic therapy (aPDT) reduce biofilm viability and disrupt key components of extracellular matrix in resistant biofilm that contribute to the persistence of infections in denture stomatitis.
Collapse
Affiliation(s)
- Luana Mendonça Dias
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada; Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, Brazil.
| | - Promi Paul
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada.
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, Brazil.
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Shahbazi S, Esmaeili S, Moscowchi A, Amid R, Romanos G, Kadkhodazadeh M. Adjunctive photochemical therapy for management of inflammatory peri-implant diseases: A systematic review and meta-analysis. Photochem Photobiol 2025. [PMID: 40249199 DOI: 10.1111/php.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 03/16/2025] [Indexed: 04/19/2025]
Abstract
This study aimed to systematically review the data on interventions involving adjunctive photochemical therapy in treating peri-implant mucositis (PIM) and peri-implantitis (PI). The electronic search was conducted through six databases in October 2023, seeking studies relying on any kind of adjunctive photochemical therapy in treating inflammatory peri-implant diseases (PIDs). To showcase the effect size, mean differences along with 95% confidence intervals were utilized. Forty-seven studies were deemed eligible for qualitative synthesis, 14 of which were included in the meta-analysis. Low-level light therapy and photodynamic therapy led to enhanced improvements in clinical and radiographic indices, such as bone level (BL), bleeding on probing (BoP), clinical attachment level (CAL), and probing depth (PD), during the 3-month follow-up. However, the differences in efficacy between treatments incorporating adjunctive photochemical therapy and those relying solely on mechanical debridement, considered the gold standard, lessened over extended follow-up periods of 6, 9, and 12 months. Significant differences were observed when comparing the treatment outcomes following adjunctive photochemical therapy between obese and smoker patients with healthy subjects. Incorporating adjunctive photochemical therapy for PID treatment might improve clinical and radiographic parameters in a short-term follow-up of 3 months, but longer-term benefits appear comparable to routine treatments.
Collapse
Affiliation(s)
- Soheil Shahbazi
- Research Institute for Dental Sciences, Dentofacial Deformities Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saharnaz Esmaeili
- Research Institute for Dental Sciences, Dentofacial Deformities Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Moscowchi
- Research Institute for Dental Sciences, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Research Institute for Dental Sciences, Iranian Center for Endodontic Research, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Institute for Dental Sciences, Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Georgios Romanos
- Department of Periodontology and Endodontics, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Mahdi Kadkhodazadeh
- Research Institute for Dental Sciences, Iranian Center for Endodontic Research, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Institute for Dental Sciences, Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dramićanin MD, Brik MG, Antić Ž, Bănică R, Mosoarca C, Dramićanin T, Ristić Z, Dima GD, Förster T, Suta M. Pr 3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:562. [PMID: 40214607 PMCID: PMC11990599 DOI: 10.3390/nano15070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials.
Collapse
Affiliation(s)
- Miroslav D. Dramićanin
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Mikhail G. Brik
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Željka Antić
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Radu Bănică
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Cristina Mosoarca
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Tatjana Dramićanin
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Zoran Ristić
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - George Daniel Dima
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Tom Förster
- Inorganic Photoactive Materials, Institute of Inorganic and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (T.F.); (M.S.)
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (T.F.); (M.S.)
| |
Collapse
|
5
|
Wang P, Sun F, Ling X. Effectiveness of photodynamic therapy as an adjunctive treatment for periodontitis: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102036. [PMID: 39244026 DOI: 10.1016/j.jormas.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Periodontitis is a prevalent inflammatory disease affecting the supporting structures of teeth. While scaling and root planing (SRP) remains the gold standard for treatment, adjunctive therapies are being explored to enhance outcomes. This systematic review and meta-analysis aimed to evaluate the effectiveness of photodynamic therapy (PDT) as an adjunct to SRP in the treatment of periodontitis. METHODS A comprehensive literature search was conducted in PubMed, Embase, Web of Science, CNKI, Wanfang, and Weipu databases. Randomized controlled trials (RCTs) comparing SRP alone to SRP with adjunctive PDT were included. The primary outcomes were changes in clinical attachment level (CAL) and probing depth (PD). Secondary outcomes included plaque index (PI). Random-effects models were used for meta-analysis, and heterogeneity was assessed using I² statistics. RESULTS Eighteen RCTs met the inclusion criteria. Meta-analysis revealed that adjunctive PDT significantly improved CAL (SMD: -0.16; 95% CI: -0.40, -0.07; P < 0.001; I² = 60.7%) and PD (SMD: -0.55; 95% CI: -0.97, -0.13; P < 0.001; I² = 76.2%) compared to SRP alone. PI also showed improvement with adjunctive PDT (SMD: -0.40; 95% CI: -0.67, -0.14; P = 0.072; I² = 43.0%). Egger's test indicated a borderline significant publication bias for CAL, while no significant publication bias for PD. CONCLUSION This meta-analysis provides evidence that PDT as an adjunct to SRP can significantly improve clinical outcomes in periodontitis treatment. However, the high heterogeneity observed suggests that optimal PDT protocols need further investigation. Future research should focus on standardizing PDT parameters and exploring its long-term effects.
Collapse
Affiliation(s)
- Peng Wang
- Department of Periodontology, Shaoxing Stomatological Hospital, Shaoxing City, 312000, PR China
| | - Fei Sun
- Department of Periodontology, Shaoxing Stomatological Hospital, Shaoxing City, 312000, PR China
| | - Xiaoxu Ling
- Department of Endodontics, Shaoxing Stomatological Hospital, Shaoxing City, 312000, PR China.
| |
Collapse
|
6
|
AlMubarak AM. Role of antimicrobial photodynamic therapy for the management of peri‑implant diseases among habitual nicotinic product users: A systematic review. Photodiagnosis Photodyn Ther 2025; 51:104460. [PMID: 39736367 DOI: 10.1016/j.pdpdt.2024.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVE The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri‑implant diseases among habitual nicotinic product (NP) users. METHODS The research question was "Is aPDT effective for managing peri‑implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri‑implant diseases; probing depth; nicotine; and smoking. Original clinical studies were included. Letters to the Editor, Case-reports, case-series, commentaries, reviews and perspectives/expert opinions were excluded. The literature search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses. The risk of bias (RoB) was assessed using the Cochrane RoB 2 tool. RESULTS Seven RCTs performed on adult males were included and processed for data extraction. The mean ages of participants ranged between 31 and 57 years. The wavelength of the diode laser ranged between 660 and 670 nm in all studies. Results from all RCTs showed that aPDT, when performed as an adjunct to MD, is more effective in reducing peri‑implant plaque index, bleeding scores, and peri‑implant PD in contrast to when mechanical debridement (MD) was performed alone. None of the studies reported a statistically significant difference in crestal bone height, irrespective of whether MD was done with or without adjunct aPDT. In all studies, the follow-up duration ranged between 3 and 12 months. The aPDT was performed once (after MD) in all studies. All studies had a low RoB and their results were based on power-adjusted data. CONCLUSION In the short term, a single session of aPDT as an adjunct to MD effectively reduces peri‑implant soft-tissue inflammation among NP users with peri‑implant diseases. However, this treatment does not influence CBL in these patients.
Collapse
Affiliation(s)
- Abdulrahman M AlMubarak
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Panda S, Rout L, Mohanty N, Satpathy A, Sankar Satapathy B, Rath S, Gopinath D. Exploring the photosensitizing potential of Nanoliposome Loaded Improved Toluidine Blue O (NLITBO) Against Streptococcus mutans: An in-vitro feasibility study. PLoS One 2024; 19:e0312521. [PMID: 39475963 PMCID: PMC11524459 DOI: 10.1371/journal.pone.0312521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Streptococcus mutans is a major contributor to dental caries due to its ability to produce acid and survive in biofilms. Microbial resistance towards common antimicrobial agents like chlorhexidine and triclosan has shifted the research towards antimicrobial Photodynamic therapy (PDT). In this context, Toluidine Blue O (TBO) is being explored for its photosensitizing properties against Streptococcus mutans. There is a huge variation in the effective concentration of TBO among the current studies owing to the differences in source of and delivery system TBO as well as the time, power and energy densities of light. OBJECTIVE The primary objectives of this study are to encapsulate improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO), characterize it, and evaluate its antibacterial photosensitizing potential against Streptococcus mutans suspensions in vitro. METHOD ITBO was synthesised as per Indian patent (number -543908). NLITBO was prepared using the thin-film hydration method. Dynamic light scattering experiment determined the vesicle size, polydispersity index (PDI), and zeta potential. Surface features were characterized by Scanning and Transmission Electron microscopy. ITBO release from NLITBO was assessed using the extrapolation method. The antibacterial activity of the NLITBO was determined by evaluating the zone of inhibition (ZOI) in the Streptococcus mutans culture and comparing with 2% chlorhexidine gluconate. The minimum inhibitory concentration (MIC) of NLITBO as a photosensitizer with red light (wavelength 650nm, power density 0.1 W/cm2, energy density 9-9.1 J/ cm2, 90seconds time) was evaluated against Streptococcus mutans cells by colorimetric method in 96 well plate. RESULTS Percentage drug loading, loading efficiency, yield percentage, vesicle size, PDI, Zeta potential of NLTBO was reported as 9.3±0.4%, 84.4±7.6%, 73.5%, 123.52 nm, 0.57, -39.54mV respectively. Clusters of uni-lamellar nanovesicles with smooth non-perforated surfaces were observed in SEM and TEM. The size of the vesicle was within 100 nm. At 24 hours, a cumulative 79.81% of ITBO was released from NLITBO. Mean ZOI and MIC of NLITBO (1 μg /ml) were found to be 0.7±0.2 mm, 0.6μg/ml respectively. CONCLUSION We have synthesized and encapsulated improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO) and thoroughly characterized the formulation. The antibacterial efficacy of NLITBO without light was demonstrated by ZOI which is similar to 2% chlorhexidine gluconate. MIC of NLITBO as a photosensitiser along with the optimal light parameter was also proposed in this study. These findings suggested that NLITBO could serve as an effective alternative to conventional antibacterial treatments in managing Streptococcus mutans rich biofilms. It can have potential pharmaceutical application in oral health care.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Lipsa Rout
- Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University. Bhubaneswar, Odisha, India
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anurag Satpathy
- Department of Periodontics and Implantology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Shakti Rath
- Department of Microbiology & Research, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Divya Gopinath
- Basic Medical and Dental Sciences Dept, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
8
|
Kubizna M, Dawiec G, Wiench R. Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.-A Systematic Review. Int J Mol Sci 2024; 25:8136. [PMID: 39125706 PMCID: PMC11311843 DOI: 10.3390/ijms25158136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Oral candidiasis is a common problem among immunocompetent patients. The frequent resistance of Candida strains to popular antimycotics makes it necessary to look for alternative methods of treatment. The authors conducted a systematic review following the PRISMA 2020 guidelines. The objective of this review was to determine if curcumin-mediated blue light could be considered as an alternative treatment for oral candidiasis. PubMed, Google Scholar, and Cochrane Library databases were searched using a combination of the following keywords: (Candida OR candidiasis oral OR candidiasis oral OR denture stomatitis) AND (curcumin OR photodynamic therapy OR apt OR photodynamic antimicrobial chemotherapy OR PACT OR photodynamic inactivation OR PDI). The review included in vitro laboratory studies with Candida spp., in vivo animal studies, and randomized control trials (RCTs) involving patients with oral candidiasis or prosthetic stomatitis, published only in English. The method of elimination of Candida species in the studies was curcumin-mediated aPDT. A total of 757 studies were identified. Following the analysis of the titles and abstracts of the studies, only 42 studies were selected for in-depth screening, after which 26 were included in this study. All studies evaluated the antifungal efficacy of curcumin-mediated aPDT against C. albicans and non-albicans Candida. In studies conducted with planktonic cells solutions, seven studies demonstrated complete elimination of Candida spp. cells. The remaining studies demonstrated only partial elimination. In all cases, experiments on single-species yeast biofilms demonstrated partial, statistically significant inhibition of cell growth and reduction in biofilm mass. In vivo, curcumin-mediated aPDT has shown good antifungal activity against oral candidiasis also in an animal model. However, its clinical efficacy as a potent therapeutic strategy for oral candidiasis requires few further RCTs.
Collapse
Affiliation(s)
- Magdalena Kubizna
- Department of Oral Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.K.); (G.D.)
| | - Grzegorz Dawiec
- Department of Oral Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.K.); (G.D.)
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chair of Pediatric Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Tsai YH, Milbrandt NB, Prado RC, Ponce NB, Alam MM, Qiu SR, Yu X, Burda C, Kim TKJ, Samia ACS. Effect of Nitrogen Doping on the Photocatalytic Properties and Antibiofilm Efficacy of Reduced TiO 2 Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:4580-4592. [PMID: 38958462 DOI: 10.1021/acsabm.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nanomaterial-mediated antibacterial photodynamic therapy (aPDT) emerges as a promising treatment against antibiotic-resistant bacterial biofilms. Specifically, titanium dioxide nanoparticles (TiO2 NPs) are being investigated as photosensitizers in aPDT to address biofilm related diseases. To enhance their photocatalytic performance in the visible spectral range for biomedical applications, various strategies have been adopted, including reduction of TiO2 NPs. However, despite improvements in visible-light photoactivity, reduced TiO2 NPs have yet to reach their expected performance primarily due to the instability of oxygen vacancies and their tendency to reoxidize easily. To address this, we present a two-step approach to fabricate highly visible-light active and stable TiO2 NP photocatalysts, involving nitrogen doping followed by a magnesium-assisted reductive annealing process. X-ray photoelectron spectroscopy analysis of the synthesized reduced nitrogen-doped TiO2 NPs (H:Mg-N-TiO2 NPs) reveals that the presence of nitrogen stabilizes oxygen vacancies and reduced Ti species, leading to increased production of reactive oxygen species under visible-light excitation. The improved aPDT efficiency translates to a 3-fold enhancement in the antibiofilm activity of nitrogen-doped compared to undoped reduced TiO2 NPs against both Gram-positive (Streptococcus mutans) and Gram-negative (Porphyromonas gingivalis, Fusobacterium nucleatum) oral pathogens. These results underscore the potential of H:Mg-N-TiO2 NPs in aPDT for combating bacterial biofilms effectively.
Collapse
Affiliation(s)
- Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathalie B Milbrandt
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ross Clark Prado
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Beatrice Ponce
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Md Masud Alam
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - S Roger Qiu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratyory, Livermore, California 94551, United States
| | - Xiong Yu
- Department of Civil and Environmental Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Tae Kyong John Kim
- Swagelok Center for Surface Analysis of Materials, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Anna Cristina S Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Jervøe-Storm PM, Bunke J, Worthington HV, Needleman I, Cosgarea R, MacDonald L, Walsh T, Lewis SR, Jepsen S. Adjunctive antimicrobial photodynamic therapy for treating periodontal and peri-implant diseases. Cochrane Database Syst Rev 2024; 7:CD011778. [PMID: 38994711 PMCID: PMC11240860 DOI: 10.1002/14651858.cd011778.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
BACKGROUND Periodontitis and peri-implant diseases are chronic inflammatory conditions occurring in the mouth. Left untreated, periodontitis progressively destroys the tooth-supporting apparatus. Peri-implant diseases occur in tissues around dental implants and are characterised by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone. Treatment aims to clean the pockets around teeth or dental implants and prevent damage to surrounding soft tissue and bone, including improvement of oral hygiene, risk factor control (e.g. encouraging cessation of smoking) and surgical interventions. The key aspect of standard non-surgical treatment is the removal of the subgingival biofilm using subgingival instrumentation (SI) (also called scaling and root planing). Antimicrobial photodynamic therapy (aPDT) can be used an adjunctive treatment to SI. It uses light energy to kill micro-organisms that have been treated with a light-absorbing photosensitising agent immediately prior to aPDT. OBJECTIVES To assess the effects of SI with adjunctive aPDT versus SI alone or with placebo aPDT for periodontitis and peri-implant diseases in adults. SEARCH METHODS We searched the Cochrane Oral Health Trials Register, CENTRAL, MEDLINE, Embase, two other databases and two trials registers up to 14 February 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) (both parallel-group and split-mouth design) in participants with a clinical diagnosis of periodontitis, peri-implantitis or peri-implant disease. We compared the adjunctive use of antimicrobial photodynamic therapy (aPDT), in which aPDT was given after subgingival or submucosal instrumentation (SI), versus SI alone or a combination of SI and a placebo aPDT given during the active or supportive phase of therapy. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures, and we used GRADE to assess the certainty of the evidence. We prioritised six outcomes and the measure of change from baseline to six months after treatment: probing pocket depth (PPD), bleeding on probing (BOP), clinical attachment level (CAL), gingival recession (REC), pocket closure and adverse effects related to aPDT. We were also interested in change in bone level (for participants with peri-implantitis), and participant satisfaction and quality of life. MAIN RESULTS We included 50 RCTs with 1407 participants. Most studies used a split-mouth study design; only 18 studies used a parallel-group design. Studies were small, ranging from 10 participants to 88. Adjunctive aPDT was given in a single session in 39 studies, in multiple sessions (between two and four sessions) in 11 studies, and one study included both single and multiple sessions. SI was given using hand or power-driven instrumentation (or both), and was carried out prior to adjunctive aPDT. Five studies used placebo aPDT in the control group and we combined these in meta-analyses with studies in which SI alone was used. All studies included high or unclear risks of bias, such as selection bias or performance bias of personnel (when SI was carried out by an operator aware of group allocation). We downgraded the certainty of all the evidence owing to these risks of bias, as well as for unexplained statistical inconsistency in the pooled effect estimates or for imprecision when evidence was derived from very few participants and confidence intervals (CI) indicated possible benefit to both intervention and control groups. Adjunctive aPDT versus SI alone during active treatment of periodontitis (44 studies) We are very uncertain whether adjunctive aPDT during active treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (mean difference (MD) 0.52 mm, 95% CI 0.31 to 0.74; 15 studies, 452 participants), BOP (MD 5.72%, 95% CI 1.62 to 9.81; 5 studies, 171 studies), CAL (MD 0.44 mm, 95% CI 0.24 to 0.64; 13 studies, 414 participants) and REC (MD 0.00, 95% CI -0.16 to 0.16; 4 studies, 95 participants); very low-certainty evidence. Any apparent differences between adjunctive aPDT and SI alone were not judged to be clinically important. Twenty-four studies (639 participants) observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. Adjunctive aPDT versus SI alone during supportive treatment of periodontitis (six studies) We were very uncertain whether adjunctive aPDT during supportive treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (MD -0.04 mm, 95% CI -0.19 to 0.10; 3 studies, 125 participants), BOP (MD 4.98%, 95% CI -2.51 to 12.46; 3 studies, 127 participants), CAL (MD 0.07 mm, 95% CI -0.26 to 0.40; 2 studies, 85 participants) and REC (MD -0.20 mm, 95% CI -0.48 to 0.08; 1 study, 24 participants); very low-certainty evidence. These findings were all imprecise and included no clinically important benefits for aPDT. Three studies (134 participants) reported adverse effects: a single participant developed an abscess, though it is not evident whether this was related to aPDT, and two studies observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. AUTHORS' CONCLUSIONS Because the certainty of the evidence is very low, we cannot be sure if adjunctive aPDT leads to improved clinical outcomes during the active or supportive treatment of periodontitis; moreover, results suggest that any improvements may be too small to be clinically important. The certainty of this evidence can only be increased by the inclusion of large, well-conducted RCTs that are appropriately analysed to account for change in outcome over time or within-participant split-mouth study designs (or both). We found no studies including people with peri-implantitis, and only one study including people with peri-implant mucositis, but this very small study reported no data at six months, warranting more evidence for adjunctive aPDT in this population group.
Collapse
Affiliation(s)
- Pia-Merete Jervøe-Storm
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Jennifer Bunke
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Helen V Worthington
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ian Needleman
- Unit of Periodontology and International Centre for Evidence-Based Oral Health, UCL Eastman Dental Institute, London, UK
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Laura MacDonald
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tanya Walsh
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sharon R Lewis
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Maruyama T, Ekuni D, Yokoi A, Nagasaki J, Sawada N, Morita M. Effect of Antimicrobial Photodynamic Therapy on the Tongue Dorsum on Reducing Halitosis and the Duration of the Effect: A Randomized Clinical Trial. Healthcare (Basel) 2024; 12:980. [PMID: 38786391 PMCID: PMC11121130 DOI: 10.3390/healthcare12100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial photodynamic therapy (PDT) is a treatment that is gaining popularity in modern clinical medicine. However, little is known about the effect of PDT alone on reducing oral halitosis and the duration of the effect. This trial examined the effect of PDT on the tongue dorsum on reducing oral halitosis and the duration of the effect. This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and Okayama University Hospital (CRB20-015), and it was registered in the Japan Registry of Clinical Trials (jRCTs061200060). Twenty-two participants were randomly assigned to two groups: an intervention group and control group. PDT was performed in the intervention group using red laser emission and methylene blue gel on the middle and posterior area of the tongue dorsum. The concentration of volatile sulfur compounds, bacterial count on the tongue dorsum, probing pocket depth, bleeding on probing, and simplified oral debris index score were determined before and 1 week after PDT. The Mann-Whitney U test was used to assess the significance of the differences in each parameter between the two groups. We found that the hydrogen sulfide concentration and bacterial count on the tongue dorsum were decreased in the intervention group, but there was no statistically significant difference between the two groups. These results indicated that performing only PDT on the tongue dorsum may not contribute to reducing halitosis.
Collapse
Affiliation(s)
- Takayuki Maruyama
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8558, Japan
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
| | - Aya Yokoi
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
| | | | - Nanami Sawada
- Department of Preventive Dentistry, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Manabu Morita
- Department of Oral Health Sciences, Takarazuka University of Medical and Health Care, Takarazuka 666-0162, Japan;
| |
Collapse
|
12
|
Vieira SM, Mima EGDO, Honório HM, Moher D, Drugowick LMH, Stabili MRG, Dovigo LN. A protocol for an overview of systematic reviews to map photodynamic inactivation evidence in different dental specialties. Photochem Photobiol Sci 2024; 23:387-394. [PMID: 38341812 DOI: 10.1007/s43630-023-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/13/2024]
Abstract
This is a protocol for an overview to summarize the findings of Systematic Reviews (SR) dealing with Photodynamic Inactivation (PDI) for control of oral diseases. Specific variables of oral infectious will be considered as outcomes, according to dental specialty. Cochrane Database of Systematic Reviews (CDSR), MEDLINE, LILACS, Embase, and Epistemonikos will be searched, as well as reference lists. A search strategy was developed for each database using only terms related to the intervention (PDI) aiming to maximize sensitivity. After checking for duplicate entries, selection of reviews will be performed in a two-stage technique: two authors will independently screening titles and abstracts, and then full texts will be assessed for inclusion/exclusion criteria. Any disagreement will be resolved through discussion and/or consultation with a third reviewer. Data will be extracted following the recommendations in Chapter V of Cochrane Handbook and using an electronic pre-specified form. The evaluation of the methodological quality and risk of bias (RoB) of the SR included will be carried out using the AMSTAR 2 and ROBIS. Narrative summaries of relevant results from the individual SR will be carried out and displayed in tables and figures. A specific summary will focus on PDI parameters and study designs, such as the type and concentration of photosensitizer, pre-irradiation time, irradiation dosimetry, and infection or microbiological models, to identify the PDI protocols with clinical potential. We will summarize the quantitative results of the SRs narratively.
Collapse
Affiliation(s)
- Sâmmea Martins Vieira
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara, SP, CEP 14801-903, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Collective Health, School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - David Moher
- Ottawa Hospital Research Institute, Centre for Journalology, Ottawa, Canada
| | - Lara Maria Herrera Drugowick
- State University of Campinas (UNICAMP), Institute of Mathematics, Statistics and Scientific Computing, Campinas, SP, Brazil
| | | | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara, SP, CEP 14801-903, Brazil.
| |
Collapse
|
13
|
Aghili SS, Jahangirnia A, Alam M, Oskouei AB, Golkar M, Badkoobeh A, Abbasi K, Mohammadikhah M, Karami S, Soufdoost RS, Namanloo RA, Talebi S, Amookhteh S, Hemmat M, Sadeghi S. The effect of photodynamic therapy in controlling the oral biofilm: A comprehensive overview. J Basic Microbiol 2023; 63:1319-1347. [PMID: 37726220 DOI: 10.1002/jobm.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | | | - Sahar Talebi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Amookhteh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hemmat
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadeghi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Rodrigues RD, Araujo NS, Filho JMP, Vieira CLZ, Ribeiro DA, Dos Santos JN, Cury PR. Photodynamic therapy as adjunctive treatment of single-rooted teeth in patients with grade C periodontitis: A randomized controlled clinical trial. Photodiagnosis Photodyn Ther 2023; 44:103776. [PMID: 37657680 DOI: 10.1016/j.pdpdt.2023.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The present study aimed to evaluate the adjunctive effect of an antimicrobial photodynamic therapy (aPDT) protocol on single-rooted teeth of patients with grade C periodontitis. METHODS Sixty-four single-rooted teeth (14 patients) were included in each group of this double-blinded split-mouth randomized clinical trial. The teeth were randomly divided into scaling and root planing + aPDT (test group) and scaling and root planing+sham aPDT (control group). The aPDT protocol consisted of incubation with 1% methylene blue for 5 min, rinsing, and application of a diode laser (wavelength of 660 nm, power of 100 mW) for 10 s. aPDT was repeated after 7 days. Bleeding on probing (BoP), probing depth (PD), gingival recession (GR), and clinical attachment loss (CAL) were recorded before and 3 months after treatment. A 5% significance level was adopted for statistical analysis. RESULTS Final PD was significantly (P = 0.02) lower in the test group (2.87 ± 1.40 mm) compared to control (3.12 ± 1.69 mm). The test group showed a significantly higher percentage of sites with PD≤4 mm and concomitant BoP compared to control (91%x86%;P < 0.001). At sites with baseline PD>4 mm, final PD and CAL were significantly (P = 0.01) lower in the test group (4.11 ± 1.66 and 4.89 ± 2.49 mm, respectively) compared to control (4.88 ± 1.99 and 5.89 ± 2.74 mm, respectively). CONCLUSIONS aPDT combined with scaling and root planning provided slightly better periodontal clinical results than the latter procedure alone, exerting a superior effect at sites with greater baseline PD. aPDT might be used as adjunctive treatment in grade C periodontitis affecting single-rooted teeth since it improves the response to conventional periodontal treatment.
Collapse
Affiliation(s)
- Rafael Drummond Rodrigues
- Postgraduate Program in Dentistry and Health, School of Dentistry, Faculdade de Odontologia, Avenida Araújo Pinho, Federal University of Bahia, Av. Araujo Pinho, 62, CEP: 4110-150 62, Canela 40110-150, Salvador, Bahia, Brazil
| | - Nara Santos Araujo
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Av. Araujo Pinho, 62, CEP 4110-160, Salvador, Bahia, Brazil
| | - Jorge Moreira Pinto Filho
- Postgraduate Program in Dentistry and Health, School of Dentistry, Faculdade de Odontologia, Avenida Araújo Pinho, Federal University of Bahia, Av. Araujo Pinho, 62, CEP: 4110-150 62, Canela 40110-150, Salvador, Bahia, Brazil
| | - Carolina Letícia Zilli Vieira
- Department of Environmental Health, School of Public Health, Harvard T.H. Chan, 401 Park Dr Landmark Center West 420 Room, Boston, MA 02215, USA
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo, Av. Ana Costa, 95 - Vila Mathias, CEP: 11060-001, Santos, São Paulo, Brazil
| | - Jean Nunes Dos Santos
- Postgraduate Program in Dentistry and Health, School of Dentistry, Faculdade de Odontologia, Avenida Araújo Pinho, Federal University of Bahia, Av. Araujo Pinho, 62, CEP: 4110-150 62, Canela 40110-150, Salvador, Bahia, Brazil
| | - Patricia Ramos Cury
- Postgraduate Program in Dentistry and Health, School of Dentistry, Faculdade de Odontologia, Avenida Araújo Pinho, Federal University of Bahia, Av. Araujo Pinho, 62, CEP: 4110-150 62, Canela 40110-150, Salvador, Bahia, Brazil.
| |
Collapse
|
15
|
Ahrari F, Mazhari F, Ghazvini K, Fekrazad R, Menbari S, Nazifi M. Antimicrobial photodynamic therapy against Lactobacillus casei using curcumin, nano-curcumin, or erythrosine and a dental LED curing device. Lasers Med Sci 2023; 38:260. [PMID: 37946038 DOI: 10.1007/s10103-023-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to investigate the photodynamic effects of curcumin, nanomicelle curcumin, and erythrosine on Lactobacillus casei (L. casei). Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 µM/L, 250 µM/L) were tested either alone or combined with light irradiation (PDT effect) against L. casei in planktonic and biofilm cultures. The light was emitted from a light-emitting diode (LED) with a central wavelength of 450 nm. A 0.12% chlorhexidine digluconate (CHX) solution served as the positive control, and a solution containing neither photosensitizer nor light was the negative control group. The number of viable microorganisms was determined using serial dilution. There was a significant difference in the viability of L. casei in both planktonic and biofilm forms (P < 0.05). In the planktonic culture, the antibacterial effects of CHX and PDT groups with curcumin 3 g/L and erythrosine 250 µM/L were significantly greater than the other groups (P < 0.05). For L. casei biofilms, the greatest toxic effects were observed in CHX and PDT groups with curcumin 3 g/L, erythrosine 250 µmol/L, erythrosine 100 µmol/L, and nanomicelle curcumin 3 g/L, with a significant difference to other groups (P < 0.05). The antibacterial effects of all photosensitizers (except erythrosine 250 µmol/L at planktonic culture) enhanced significantly when combined with light irradiation (P < 0.05). PDT with curcumin 3 g/L or erythrosine 250 µmol/L produced comparable results to CHX against L. casei at both planktonic and biofilm cultures. Alternatively, PDT with erythrosine 100 µmol/L or nanomicelle curcumin 3 g/L could be suggested to kill L. casei biofilms.
Collapse
Affiliation(s)
- Farzaneh Ahrari
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Vakilabad Blvd, Mashhad, Iran.
| | - Fatemeh Mazhari
- Dental Material Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Antimicrobial Resistance Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Fekrazad
- Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, School of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Nazifi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Tonon CC, de Souza Rastelli AN, Bodahandi C, Ghosh G, Hasan T, Xu Q, Greer A, Lyons AM. Superhydrophobic Tipped Antimicrobial Photodynamic Therapy Device for the In Vivo Treatment of Periodontitis Using a Wistar Rat Model. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50083-50094. [PMID: 37862708 PMCID: PMC10800031 DOI: 10.1021/acsami.3c12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Limited options exist for treatment of periodontitis; scaling and root planing (SRP) are not sufficient to eradicate P. gingivalis and the resulting inflammatory disease. Chlorhexidine (CHX), used as an adjuvant to SRP, may reduce bacterial loads but leads to pain and staining, while evidence for its efficacy is lacking. Antibiotics are effective but can lead to drug-resistance. The rising concern of antibiotic resistance limits the future use of this treatment approach. This study evaluates the efficacy of a novel superhydrophobic (SH) antimicrobial photodynamic therapy (aPDT) device as an adjuvant to SRP for the treatment of periodontitis induced in a Wistar rat in vivo model relative to CHX. The SH-aPDT device comprises an SH silicone rubber strip coated with verteporfin photosensitizer (PS), sterilized, and secured onto a tapered plastic optical fiber tip connected to a red diode laser. The superhydrophobic polydimethylsiloxane (PDMS) strips were fabricated by using a novel soluble template method that creates a medical-grade elastomer with hierarchical surface roughness without the use of nanoparticles. Superhydrophobicity minimizes direct contact of the PS-coated surface with bacterial biofilms. Upon insertion of the device tip into the pocket and energizing the laser, the device generates singlet oxygen that effectively targets and eliminates bacteria within the periodontal pocket. SH-aPDT treatment using 125 J/cm2 of red light on three consecutive days reduced P. gingivalis significantly more than SRP-CHX controls (p < 0.05). Clinical parameters significantly improved (p < 0.05), and histology and stereometry results demonstrated SH-aPDT to be the most effective treatment for improving healing and reducing inflammation, with an increase in fibroblast cells and extracellular matrix and a reduction in vascularization, inflammatory cells, and COX-2 expression. The SH-aPDT approach resulted in complete disease clearance assessed 30 days after treatment initiation with significant reduction of the periodontal pocket and re-formation of the junctional epithelium at the enamel-cementum junction. PS isolation on a SH strip minimizes the potential for bacteria to develop resistance, where the treatment may be aided by the oxygen supply retained within the SH surface.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, Sao Paulo State University-UNESP, 1680 Humaita St., Araraquara, SP 14801-903, Brazil
| | - Chathuna Bodahandi
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Goutam Ghosh
- SingletO2 Therapeutics LLC, VentureLink, Room 524B, 211 Warren St, Newark, NJ 07103, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - QianFeng Xu
- SingletO2 Therapeutics LLC, VentureLink, Room 524B, 211 Warren St, Newark, NJ 07103, United States
| | - Alexander Greer
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
- SingletO2 Therapeutics LLC, VentureLink, Room 524B, 211 Warren St, Newark, NJ 07103, United States
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- SingletO2 Therapeutics LLC, VentureLink, Room 524B, 211 Warren St, Newark, NJ 07103, United States
| |
Collapse
|
17
|
Silva T, Lunardi AJL, Barros ACSM, Mandetta ARH, Grudzien E, San-Martín M, Horliana ACRT, Bussadori SK, Motta LJ. Application of Photodynamic Therapy in Pediatric Dentistry: Literature Review. Pharmaceutics 2023; 15:2335. [PMID: 37765303 PMCID: PMC10537059 DOI: 10.3390/pharmaceutics15092335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Microbiological control of dental pathologies presents a significant clinical challenge for dental surgeons, particularly considering drug-resistant microorganisms. To address this issue, Antimicrobial Photodynamic Therapy (PDT) has emerged as an effective and complementary technique for microbial reduction. This therapy involves the application of a photosensitizer dye (PS) either topically or systemically, followed by exposure to low-power lasers with appropriate visible light wavelengths. PDT has found a valuable place in dentistry across various specialties, including surgery, periodontics, endodontics, dentistry, implantology, orthodontics, and pediatrics. In the realm of pediatric dentistry, managing microorganisms during dental treatments has become a major challenge. Considering its promising results and ease of application, Photodynamic Therapy presents an interesting alternative for clinical practice. However, it is important to note that specific protocols must be followed for each application, encompassing the type of photosensitizer, concentration, pre-irradiation time, light type, wavelength, energy, power, and mode of light delivery. Researchers have been steadily refining these protocols to facilitate PDT's integration into clinical practice. The objective of this review is to describe in which procedures and oral health problems in children PDT can be applied. In this sense, we list what the literature brings about the possibilities of applying PDT in a pediatric dentistry clinic.
Collapse
Affiliation(s)
- Tamiris Silva
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Nove de Julho University, São Paulo 01525-000, SP, Brazil (S.K.B.)
| | - Ana Júlia Lacerda Lunardi
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Nove de Julho University, São Paulo 01525-000, SP, Brazil (S.K.B.)
| | | | - Amanda Rafaelly Honório Mandetta
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Nove de Julho University, São Paulo 01525-000, SP, Brazil (S.K.B.)
| | - Elizabeth Grudzien
- Departamento de Bienestar y Salud, Universidad Católica del Uruguay, Av. 8 de Octubre 2738, Montevideo 11600, Uruguay
| | - Magdalena San-Martín
- Departamento de Bienestar y Salud, Universidad Católica del Uruguay, Av. 8 de Octubre 2738, Montevideo 11600, Uruguay
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Nove de Julho University, São Paulo 01525-000, SP, Brazil (S.K.B.)
| | - Lara Jansiski Motta
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Nove de Julho University, São Paulo 01525-000, SP, Brazil (S.K.B.)
| |
Collapse
|
18
|
Zhang X, Wang T, Ma W, Bi L. The study on the effect of amino acid porphyrin conjugate-mediated antimicrobial photodynamic therapy on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2023; 43:103684. [PMID: 37393048 DOI: 10.1016/j.pdpdt.2023.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) based on the action of visible light and photosensitizers has emerged as a promising microbial reduction and alternative to antibiotics resistance to cariogenic pathogens. The present research aims to evaluate the antimicrobial effect of aPDT mediated by a new photosensitizer (amino acid porphyrin conjugate 4i) on Streptococcus mutans (S. mutans) biofilm. Qualitative morphologic characteristics of S. mutans biofilms are shown by scanning electron microscopy (SEM). The colony plate counting method is used to measure the dark toxicity and the phototoxicity of different concentrations of 4i-aPDT to S. mutans biofilms. MTT assay is conducted to investigate the effect of 4i mediated aPDT on the metabolic activity of S. mutans biofilm. Changes in structure morphology, bacterial density and extracellular matrix of S. mutans biofilm are observed by SEM. The distribution of living and dead bacteria in biofilm is detected using Confocal laser microscopy (CLSM). The results indicate that single laser irradiation has no antibacterial effect on S. mutans biofilms. With the increase of 4i concentration or the prolongation of laser irradiation time, the antibacterial effect of 4i-mediated aPDT on S. mutans biofilm is more statistically significant compared to the control. When the concentration of 62.5 µmol/L 4i is continuously illuminated for 10 min, the logarithm of the colonies in the biofilm shows a reduction of 3.4 log10. MTT assay detected absorbance values of biofilm by 4i-mediated aPDT are the lowest, indicating a significant decrease in biofilm metabolic activity. SEM analysis shows that 4i mediated aPDT reduced the quantity and density of S. mutans. A dense red fluorescence image of the 4i-aPDT treated biofilm is observed under CLSM, indicating that the dead bacteria are widely distributed.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Tao Wang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wei Ma
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
19
|
Elsadek MF. Effectiveness of two photosensitizer-mediated photodynamic therapy for treating moderate peri-implant infections in type-II diabetes mellitus patients: A randomized clinical trial. Photodiagnosis Photodyn Ther 2023; 43:103643. [PMID: 37270045 DOI: 10.1016/j.pdpdt.2023.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE This study evaluated the impact of Fox Green (FG) against methylthioninium chloride (MTC)-facilitated photodynamic therapy (PDT) as an adjunctive to manual scaling (MS) on the peri‑implant clinical and cytokine parameters in type-2 diabetes mellitus (DM) patients with peri‑implantitis. METHODS Patients were divided into group-A comprising 13 patients who received adjunctive FG-PDT using a diode laser (wavelength: 810 nm; irradiation power: 300 mW; irradiation time: 30 s; fluence: 56 Jcm-2), group-B comprising 12 patients who received adjunctive MTC-PDT using a diode laser (wavelength: 660 nm; irradiation power: 100 mW; irradiation time: 120 s/site; fluence: 30 Jcm-2), and group-C comprising 13 patients who received MS alone [control group]). After diagnosing the diabetics with peri‑implantitis (established on eligibility criteria), a structured questionnaire was used to gather the information of the participants. Plaque (PS) and bleeding scores (BS), along with peri‑implant probing scores (PPS) and peri‑implant bone loss (PIBL), together with immunological variables (interleukin [IL]-6, tumor necrosis factor-alpha [TNF-α], and advanced glycation end products [AGEs]) were measured in all study group participants at baseline, 3-month, and 6-month follow-ups. RESULTS A significant reduction was observed for PS, BS, and PPS within all tested groups at each follow-up visits compared from their baseline values (p<0.05). However, a substantial decrease in PIBL was observed in all study group patients at 6-month follow-up as compared to 3-month follow-up (p<0.05). Regarding the levels of IL-6 and TNF-α, a substantial reduction was observed in all study groups until 6-month from their baseline scores (p<0.05). However, no changes were observed in the levels of AGEs in any group at either visit (p>0.05). CONCLUSION In DM patients with periimplantitis, adjunctive FG-PDT and MTC-PDT exhibited comparable outcomes in terms of peri‑implant clinical as well as pro-inflammatory characteristics than MS alone among peri‑implantitis patients with DM.
Collapse
Affiliation(s)
- Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia.
| |
Collapse
|
20
|
Thankappan P, Gopalakrishnan D, Manandhar S. Emerging role of photodynamic therapy as an adjunct to nonsurgical periodontal therapy on periodontal status and glycemic control in patients with type 2 diabetes: A clinical study. J Indian Soc Periodontol 2023; 27:508-514. [PMID: 37781335 PMCID: PMC10538516 DOI: 10.4103/jisp.jisp_7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
Background Periodontal disease is considered to be the sixth most common complication of diabetes mellitus (DM). Antibiotics (systemic and local) enhance the outcome of conventional mechanical debridement but frequent use of antimicrobials may develop resistance to microorganisms. To overcome this complicacy, the current study assessed the effectiveness of photodynamic therapy (PDT) in chronic periodontitis patients with type 2 diabetes when used as a combination therapy to standard periodontal therapy by assessing the various clinical and glycemic parameters. Materials and Methods A total of 16 known cases of chronic Periodontitis patients who were suffering from type 2 DM were allocated into two groups. The test group (n = 8) was treated with standard scaling and root planing (SRP) along with PDT while the control group was treated with SRP alone. Various clinical parameters assessed were plaque index, gingival index, pocket probing depth, clinical attachment level, and Glycated hemoglobin level at baseline and 90 days after therapy. Results At the end of the study, both the groups showed improvements with regard to all clinical and glycemic parameters compared to baseline. However, the test group presented statistically significant favorable results (all P < 0.05). Conclusion Conventional periodontal treatment aided with PDT proved to be a beneficial therapeutic measure and effective alternative in patients with chronic periodontitis with diabetes when compared with standard periodontal therapy alone.
Collapse
Affiliation(s)
- Prasanth Thankappan
- Department of Periodontology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Dharmarajan Gopalakrishnan
- Department of Periodontology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sumita Manandhar
- Department of Periodontology, Armed Forces Medical Colleges, Pune, Maharashtra, India
| |
Collapse
|
21
|
Sologova D, Petukhova M, Podoplelova P, Davletshin D, Firsova A, Grishin A, Grin M, Suvorov N, Vasil’ev Y, Dydykin S, Rysanova E, Shchelkova V, Tarasenko S, Diachkova E. Effectiveness of Photodynamic Therapy as Antiseptic Measure for Oral Cavity and Pharynx: A Systematic Review. Dent J (Basel) 2023; 11:192. [PMID: 37623288 PMCID: PMC10453266 DOI: 10.3390/dj11080192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The complex traditional treatment of inflammation diseases in oral cavity includes the prescription of antibiotic and antiseptic therapy. This systematic review aims to evaluate the effect of photodynamic therapy as a part of management of inflammatory diseases in oral cavity; Methods: The study is presented in accordance with the preferred reporting points for systematic reviews and meta-analyses (PRISMA). This systematic review was conducted using electronic databases such as Medline PubMed, Scopus and the Cochrane Central Register of Controlled Trials. All the studies in this systematic review, were randomized, the risk of bias 2 (ROB 2) were assessed; Results: Considering the inclusion and exclusion criteria, we included 10 randomized clinical trials, published up to 2023 investigating the application of photodynamic therapy as a part of management of inflammatory diseases in oral cavity. The diode laser was used in the oral cavity in the zone of inflammatory process (gingivitis, mucositis, periimplantitis, marginal periodontitis, abscess, periostitis, osteomyelitis etc.) in nine studies or in the zone before surgical procedures in one study; Conclusion: Based on the results of clinical studies, it can be stated that photodynamic therapy shows good results for operations performed in the oral cavity and pharynx.
Collapse
Affiliation(s)
- Diana Sologova
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Marina Petukhova
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Polina Podoplelova
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Dinislam Davletshin
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Anna Firsova
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Andrey Grishin
- Maxillofacial Surgery Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8\2, 119991 Moscow, Russia;
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (M.G.); (N.S.)
| | - Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (M.G.); (N.S.)
| | - Yuriy Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street bldg. 8\2, 119435 Moscow, Russia; (Y.V.); (S.D.)
| | - Sergey Dydykin
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street bldg. 8\2, 119435 Moscow, Russia; (Y.V.); (S.D.)
| | - Elena Rysanova
- Moscow Regional Research and Clinical Institute, Street Schepkina 61/2, 129110 Moscow, Russia; (E.R.); (V.S.)
| | - Victoria Shchelkova
- Moscow Regional Research and Clinical Institute, Street Schepkina 61/2, 129110 Moscow, Russia; (E.R.); (V.S.)
| | - Svetlana Tarasenko
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| | - Ekaterina Diachkova
- Department of Oral Surgery of the Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (M.P.); (P.P.); (D.D.); (A.F.); (S.T.); (E.D.)
| |
Collapse
|
22
|
Glowacka-Sobotta A, Ziental D, Czarczynska-Goslinska B, Michalak M, Wysocki M, Güzel E, Sobotta L. Nanotechnology for Dentistry: Prospects and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2130. [PMID: 37513141 PMCID: PMC10383982 DOI: 10.3390/nano13142130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity-human squamous carcinoma-is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today's medicine.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Chair and Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Maciej Michalak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
23
|
Manphibool C, Matangkasombut O, Chantarangsu S, Chantarawaratit PO. Effects of blue-light LED toothbrush on reducing dental plaque and gingival inflammation in orthodontic patients with fixed appliances: a crossover randomized controlled trial. BMC Oral Health 2023; 23:293. [PMID: 37189136 DOI: 10.1186/s12903-023-02977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Patients with fixed orthodontic appliances have higher plaque accumulation and gingival inflammation. Our aim was to compare the effectiveness of a light emitting diode (LED) toothbrush with a manual toothbrush in reducing dental plaque and gingival inflammation in orthodontic patients with fixed appliances, and to investigate the effect of the LED toothbrush on Streptococcus mutans (S. mutans) biofilm in vitro. METHODS Twenty-four orthodontic patients were recruited and randomly assigned into 2 groups: (1) started with manual and (2) started with LED toothbrushes. After a 28-day usage and 28-day wash-out period, the patients switched to the other intervention. The plaque and gingival indices were determined at baseline and 28 days after each intervention. The patients' compliance and satisfaction scores were collected using questionnaires. For the in vitro experiments, S. mutans biofilm was divided into 5 groups (n = 6) with 15-, 30-, 60-, or 120-sec LED exposure, and without LED exposure as a control group. RESULTS There was no significant difference in the gingival index between the manual and LED toothbrush groups. The manual toothbrush was significantly more effective in reducing the plaque index in the proximal area on the bracket side (P = 0.031). However, no significant difference was found between the two groups in other areas around the brackets or on the non-bracket side. After LED exposure in vitro, the percentages of bacterial viability after LED exposure for 15-120 s were significantly lower compared with the control (P = 0.006). CONCLUSION Clinically, the LED toothbrush was not more effective in reducing dental plaque or gingival inflammation than the manual toothbrush in orthodontic patients with fixed appliances. However, the blue light from the LED toothbrush significantly reduced the number of S. mutans in biofilm when it was exposed to the light for at least 15 s in vitro. CLINICAL TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20210510004). Registered 10/05/2021.
Collapse
Affiliation(s)
- Chavirakarn Manphibool
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
24
|
Al-Khalifa KS, Alam BF, Alhumaidan AA, Aljoghaiman EA, Alhassan MM, Ali S. Bibliometric analysis on research trends for contribution of photodynamic therapy in periodontitis. Photodiagnosis Photodyn Ther 2023; 42:103594. [PMID: 37156454 DOI: 10.1016/j.pdpdt.2023.103594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The objective of this bibliometric was to ascertain the research trend regarding the application of photodynamic therapy as a treatment modality for periodontal disease. METHODS An online search was administered using the Scopus database to retrieve all the relevant research literature published from 2003 till 26th Dec 2022. After applying the inclusion criteria articles pertinent to the topic were manually selected. Data was saved as CSV. Data was read using VOSviewer software and further analysis was performed using Microsoft excel. RESULTS From a total of 545 articles, 117 scientific papers relevant to the field were evaluated. The keen interest of researchers was identified by an increase in the number of publications over the course of time, with the highest citations n=827 attained during the year 2009. Brazil, India, and USA made significant contribution by publishing highest number of papers. Organizations from the USA produced the highest publications which attained high citations. Author Sculean A. published the highest number of papers. Journal of periodontology was the leading journal, by publishing highest number of papers (n=15), followed by Journal of Clinical Periodontology. CONCLUSION This bibliometric analysis provided detailed information regarding the total number of publications from 2003 to 2022 and the number of citations attained. Brazil has been identified as the leading country, whilst all the leading organizations which contributed significantly, were from USA. The Journal of Periodontology published the highest number of papers which had been highly cited. Sculean A, affiliated with University of Bern, Switzerland published the highest number of papers.
Collapse
Affiliation(s)
- Khalifa S Al-Khalifa
- Department of preventive dental sciences, College of Dentistry Imam Abdulrahman bin Faisal University, Saudi Arabia.
| | | | - Abdulkareem Abdullah Alhumaidan
- Department of preventive dental sciences, division of periodontics, Imam Abdulrahman bin Faisal University, College of dentistry. Saudi Arabia.
| | - Eman Ahmed Aljoghaiman
- Department of preventive dental sciences, division of periodontics, Imam Abdulrahman bin Faisal University, College of dentistry. Saudi Arabia.
| | | | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
25
|
Annunziata M, Donnarumma G, Guida A, Nastri L, Persico G, Fusco A, Sanz-Sánchez I, Guida L. Clinical and microbiological efficacy of indocyanine green-based antimicrobial photodynamic therapy as an adjunct to non-surgical treatment of periodontitis: a randomized controlled clinical trial. Clin Oral Investig 2023; 27:2385-2394. [PMID: 36719506 PMCID: PMC10159973 DOI: 10.1007/s00784-023-04875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The aim of the present randomized clinical trial (RCT) with a parallel arm design was to evaluate the clinical and microbiological efficacy of repeated ICG-aPDT as an adjunct to full-mouth subgingival debridement in the treatment of periodontitis. MATERIALS AND METHODS Twenty-four periodontitis patients were treated with full-mouth ultrasonic subgingival debridement (FMUD). Initial sites with probing depth (PD) > 4 mm were randomly assigned to receive the test (ICG-aPDT with an 810 nm diode laser) or the control treatment (off-mode aPDT) one and four weeks after FMUD. Clinical parameters were registered after 3 and 6 months. The presence of the main periodontal pathogens in subgingival samples was assessed with real-time PCR. RESULTS Both treatment modalities resulted in significant clinical improvements at 3 and 6 months. The only significant differences in favour of the test group were found at 6 months for a higher PD reduction in initial deep pockets (PD ≥ 6 mm) and a higher percentage of closed pockets (PD ≤ 4 mm/no bleeding on probing). Limited microbiological changes were observed in both groups after treatment with no inter-group difference, except for a more significant reduction in Aggregatibacter actinomycetemcomitans and Parvimonas micra levels in the test group at 3 months. CONCLUSION The combination of repeated ICG-aPDT and FMUD provided no benefits except for selective clinical and microbiological improvements compared to FMUD alone. CLINICAL RELEVANCE Based on the obtained results, only limited adjunctive effects could be found for the combined use of ICG-aPDT and FMUD. Further, well-designed RCT with larger sample sizes are required to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov NCT04671394.
Collapse
Affiliation(s)
- Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Agostino Guida
- U.O.C. Odontostomatologia, A.O.R.N. "A. Cardarelli", Naples, Italy
| | - Livia Nastri
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gerardo Persico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ignacio Sanz-Sánchez
- Etiology and Therapy of Periodontal and Peri-Implant Diseases (ETEP) Research Group, University Complutense, Madrid, Spain.
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
27
|
Reina BD, Santezi C, Malheiros SS, Calixto G, Rodero C, Victorelli FD, Chorilli M, Dovigo LN. Liquid crystal precursor system as a vehicle for curcumin-mediated photodynamic inactivation of oral biofilms. JOURNAL OF BIOPHOTONICS 2023; 16:e202200040. [PMID: 36169026 DOI: 10.1002/jbio.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Curcumin has great potential as a photosensitizer, but it has low solubility in aqueous solutions. This study reports the antimicrobial efficacy of photodynamic inactivation (PDI) mediated by a curcumin-loaded liquid crystal precursor (LCP) on in situ dental biofilms. Thirty volunteers used intraoral devices containing enamel samples for 48 hours for biofilm formation. The samples were then removed from the device and treated either with LCP with 160 μM of curcumin plus illumination at 18 J/cm2 (C + L+ group) or with LCP without curcumin in the dark (C - L - group). Following this, the biofilm from the samples was plated for quantifying the viable colonies at 37°C for 48 hours. Specific and nonspecific media were used for the presumptive isolation of Streptococcus mutans, Lactobacillus species/aciduric microorganisms, Candida species, and total microbiota. The C + L+ group showed a highly significant (P < .001) reduction in the log10 (colony forming units/mL) values as compared to the C - L - group for all culture media. Hierarchical linear regression indicated that there may be predictors at individual volunteer level explaining the difference in the PDI efficacy among different individuals (P = .001). The LCP system retained curcumin and released it slowly and continuously, thus protecting the drug from photodegradation. LCP with curcumin is considered effective for the photoinactivation of dental biofilms, but the PDI efficacy may differ based on the host's individual characteristics.
Collapse
Affiliation(s)
- Bárbara Donadon Reina
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| | - Carolina Santezi
- Independent Researcher at the Moment of the Submission (Unaffiliated Researcher), São Carlos, Brazil
| | - Samuel Santana Malheiros
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| | - Giovana Calixto
- Department of Biosciences, Piracicaba Dental School - University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Camila Rodero
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Francesca Damiani Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
28
|
Orlandi VT, Martegani E, Trivellin N, Bolognese F, Caruso E. Photo-Inactivation of Staphylococcus aureus by Diaryl-Porphyrins. Antibiotics (Basel) 2023; 12:antibiotics12020228. [PMID: 36830139 PMCID: PMC9951968 DOI: 10.3390/antibiotics12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Photodynamic Antimicrobial Chemotherapy (PACT) has received great attention in recent years since it is an effective and promising modality for the treatment of human oral and skin infections with the advantage of bypassing pathogens' resistance to antimicrobials. Moreover, PACT applications demonstrated a certain activity in the inhibition and eradication of biofilms, overcoming the well-known tolerance of sessile communities to antimicrobial agents. In this study, 13 diaryl-porphyrins (mono-, di-cationic, and non-ionic) P1-P13 were investigated for their potential as photosensitizer anti-Staphylococcus aureus. The efficacy of the diaryl-porphyrins was evaluated through photo-inactivation tests. Crystal-violet staining combined with viable count techniques were aimed at assaying their anti-biofilm activity. Among the tested compounds, the neutral photosensitizer P4 was better than the cationic ones, irrespective of their corresponding binding rates. In particular, P4 was active in inhibiting the biofilm formation and in impairing the viability of the adherent and planktonic populations of a 24 h old biofilm. The inhibitory activity was also efficient against a methicillin resistant S. aureus strain. In conclusion, the diaryl-porphyrin family represents a reservoir of promising compounds for photodynamic applications against the pathogen S. aureus and in preventing the formation of biofilms that cause many infections to become chronic.
Collapse
Affiliation(s)
- Viviana Teresa Orlandi
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence:
| | - Eleonora Martegani
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Nicola Trivellin
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6A, 35131 Padova, Italy
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
29
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
30
|
Trigo-Gutierrez JK, Calori IR, de Oliveira Bárbara G, Pavarina AC, Gonçalves RS, Caetano W, Tedesco AC, Mima EGDO. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front Microbiol 2023; 14:1132781. [PMID: 37152758 PMCID: PMC10157243 DOI: 10.3389/fmicb.2023.1132781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.
Collapse
Affiliation(s)
- Jeffersson Krishan Trigo-Gutierrez
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geovana de Oliveira Bárbara
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- *Correspondence: Ewerton Garcia de Oliveira Mima,
| |
Collapse
|
31
|
Wang N, Hao S, Zhang J, Yang J. Clinical efficacy of photodynamic therapy on halitosis: a systematic review and meta-analysis. Lasers Med Sci 2022; 38:29. [PMID: 36585474 DOI: 10.1007/s10103-022-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Halitosis is a widespread health problem with complex factors, and therapeutic effects sometimes are unsatisfactory. Plenty of clinical trials have tried to prove the effectiveness of photodynamic therapy (PDT), but the results are indeterminate. This study aimed to evaluate the clinical efficacy of PDT on halitosis. We searched PubMed, Cochrane Library, Embase, Web of Science, and Scopus from inception to August 10, 2022, and only studies about the PDT on halitosis were included. The criteria for meta-analysis comprised randomized controlled trials (RCTs) comparing the treatment of PDT with tongue scraper (TS) immediately after the halitosis therapy and during a 7-, 14-, 30-, and 90-day follow-up. Eight eligible studies involving 345 patients were included in this study. It was shown that PDT (MD = - 34.49, 95% CI [- 66.34, - 2.64], P = 0.03) or PDT + TS (MD = - 67.72, 95% CI [- 101.17, - 34.28], P < 0.001) had better efficacy than TS on the H2S concentration reduction immediately after the halitosis therapy. No significant differences were observed in reducing the H2S among TS, PDT alone, and PDT + TS at the follow-up. Besides, no difference between PDT and TS was found in the reduction of CH3SCH3 and CH3SH. Based on the current evidence, PDT and PDT + TS demonstrate efficacy in the treatment of halitosis in the short term, and PDT was shown to be a beneficial and promising therapeutic method.
Collapse
Affiliation(s)
- Nini Wang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
32
|
D’Ercole S, Carlesi T, Dotta TC, Pierfelice TV, D’Amico E, Tripodi D, Iezzi G, Piattelli A, Petrini M. 5-Aminolevulinic Acid and Red Led in Endodontics: A Narrative Review and Case Report. Gels 2022; 8:697. [PMID: 36354605 PMCID: PMC9689491 DOI: 10.3390/gels8110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
The present study aims to discuss the main factors involving the use of 5-aminolevulinic acid together with red LED light and its application in endodontic treatment through a narrative review and a case report. Persistence of microorganisms remaining on chemical-mechanical preparation or intracanal dressing is reported as the leading cause of failure in endodontics. Photodynamic therapy has become a promising antimicrobial strategy as an aid to endodontic treatment. Being easy and quick to apply, it can be used both in a single session and in several sessions, as well as not allowing forms of microbial resistance. 5-aminolevulinic acid in combination with red LED light has recently been studied in many branches of medicine, with good results against numerous types of bacteria including Enterococuss faecalis. The case report showed how bacterial count of CFU decreased by half (210 CFU/mL), after 45 min of irrigation with a gel containing 5% of 5-aminolevulinic acid compared to the sample before irrigation (420 CFU/mL). The subsequent irradiation of red LED light for 7 min, the bacterial count was equal to 0. Thus, it is concluded that the use of 5-aminolevulinic acid together with red LED light is effective in endodontic treatment.
Collapse
Affiliation(s)
- Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teocrito Carlesi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Sant’Angelo, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
33
|
Li Y, Du J, Huang S, Wang S, Wang Y, Lei L, Zhang C, Huang X. Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide. Int J Mol Sci 2022; 23:11373. [PMID: 36232675 PMCID: PMC9569606 DOI: 10.3390/ijms231911373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans (S. mutans) and Candida albicans (C. albicans) are prominent microbes associated with rapid and aggressive caries. In the present study, we investigated the antimicrobial efficacy, cytotoxicity, and mechanism of toluidine blue O (TBO)-mediated antimicrobial photodynamic therapy (aPDT) and potassium iodide (KI). The dependence of KI concentration, TBO concentration and light dose on the antimicrobial effect of aPDT plus KI was determined. The cytotoxicity of TBO-mediated aPDT plus KI was analyzed by cell counting kit-8 (CCK-8) assay. A singlet oxygen (1O2) probe test, time-resolved 1O2 detection, and a 1O2 quencher experiment were performed to evaluate the role of 1O2 during aPDT plus KI. The generation of iodine and hydrogen peroxide (H2O2) were analyzed by an iodine starch test and Amplex red assay. The anti-biofilm effect of TBO-mediated aPDT plus KI was also evaluated by counting forming unit (CFU) assay. KI could potentiate TBO-mediated aPDT against S. mutans and C. albicans in planktonic and biofilm states, which was safe for human dental pulp cells. 1O2 measurement showed that KI could quench 1O2 signals, implicating that 1O2 may act as a principal mediator to oxidize excess iodide ions to form iodine and H2O2. KI could highly potentiate TBO-mediated aPDT in eradicating S. mutans and C. albicans due to the synergistic effect of molecular iodine and H2O2.
Collapse
Affiliation(s)
- Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jingyun Du
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Shaofeng Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanhuang Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Lishan Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Chengfei Zhang
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| |
Collapse
|
34
|
Komine C, Uchibori S, Tsudukibashi O, Tsujimoto Y. Application of Reactive Oxygen Species in Dental Treatment. J Pers Med 2022; 12:jpm12091531. [PMID: 36143315 PMCID: PMC9503199 DOI: 10.3390/jpm12091531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) and free radicals, which have been implicated in inflammation, pain, carcinogenesis, and aging, are actually used in dental treatments such as tooth bleaching and composite resin polymerization. Recently, numerous studies have investigated the application of ROS in the medical and dental fields. In previous studies, ROS were generated intentionally through pathways such as photolysis, photocatalytic methods, and photodynamic therapy, which are used in the medical field to target cancer. In the field of dentistry, generated ROS are applied mainly for periodontal treatment and sterilization of the root canal, and its effectiveness as an antibacterial photodynamic therapy has been widely reported.. Given this background, the present article aimed to review the basic effects of ROS in dental medicine, especially endodontic therapy, and to discuss future applications of ROS.
Collapse
Affiliation(s)
- Chiaki Komine
- Department of Laboratory Medicine and Dentistry for the Compromised Patient, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: ; Tel.: +81-47-360-9465
| | - Satoshi Uchibori
- Department of Oral Function and Fixed Prothodontics, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Osamu Tsudukibashi
- Department of Laboratory Medicine and Dentistry for the Compromised Patient, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Yasuhisa Tsujimoto
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
35
|
Soundarajan S, Rajasekar A. Comparative evaluation of combined efficacy of methylene blue mediated antimicrobial photodynamic therapy (a-PDT) using 660 nm diode laser versus Erbium-chromium-yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser as an adjunct to scaling and root planing on clinical parameters in supportive periodontal therapy: A randomized split-mouth trial. Photodiagnosis Photodyn Ther 2022; 39:102971. [PMID: 35738551 DOI: 10.1016/j.pdpdt.2022.102971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study was to evaluate combined efficacy of methylene blue mediated antimicrobial photodynamic therapy (a-PDT) using 660 nm diode laser versus Er, Cr: YSGG laser as an adjunct to scaling and root planing on improving the Probing depth (PD), Clinical attachment level (CAL), Plaque Index (PI) and Gingival Index (GI).clinical parameters in Supportive periodontal therapy. MATERIALS AND METHOD In this split-mouth, double-blind, randomized controlled trial, we compared a-PDT versus Er,Cr:YSGG as an adjunct to scaling and root planning (SRP) with SRP alone in Supportive periodontal therapy. A total of 36 subjected were enrolled. In each patient, two quadrants constituted the control group (Group I - Scaling and root planing SRP alone), one site in other quadrant constituted the test group 1 (Group II - SRP followed by application of Er, Cr: YSGG laser), and another site in different quadrant constituted the test group 2 (Group III - SRP followed by antimicrobial Photodynamic therapy using diode laser). The diode laser was operated at a peak power of 70 mW using a 0.6 mm diameter fiber-optic tip. Each site was irradiated with a power density of 28 mW/cm2, for 10 s, thus delivering a total energy of 16.72 J/cm2 per tooth. Whereas, the Er,Cr:YSGG laser's parameters were set to 1 W of power, 10% air, and 15% water. The same procedure was repeated at 1st, 2nd and 3rd week for both the laser therapies. Plaque index (PI), Gingival index (GI), Probing depth (PD,) and Clinical attachment level (CAL) were measured by a single examiner at baseline and 3 months follow up. Inter group analysis of the parameters were done using One-way ANOVA and pairwise comparison was carried out by Tukey's post hoc test. Intra group analysis was performed using Students's paired t test. Statistical significance was set to p < 0.05. RESULTS There were no significant differences between participants for clinical parameters at baseline. PI, GI PD, and CAL significantly improved at 3 months follow up compared to baseline in both the study groups (Group II - SRP + Er,Cr:YSGG, Group III - SRP + a-PDT) with P < 0.05. Adjunctive use of Er,Cr:YSGG laser with SRP showed better clinical outcomes than a-PDT with SRP. CONCLUSION Nonsurgical periodontal therapy of chronic periodontitis using Er, Cr: YSGG, and a-PDT as an adjunct to SRP was significantly more effective than SRP alone in reducing PD, CAL, GI, and PI at 3 months follow up. Adjunctive use of Er,Cr:YSGG laser with SRP showed better clinical outcomes than a-PDT with SRP. However, the long-term positive benefits of the laser therapies are yet unknown and more research with longer follow-ups are required.
Collapse
Affiliation(s)
- Subasree Soundarajan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Arvina Rajasekar
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
36
|
Tonon CC, Ashraf S, de Souza Rastelli AN, Ghosh G, Hasan T, Xu Q, Greer A, Lyons AM. Evaluation of photosensitizer-containing superhydrophobic surfaces for the antibacterial treatment of periodontal biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112458. [PMID: 35691161 PMCID: PMC10373426 DOI: 10.1016/j.jphotobiol.2022.112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising approach to control biofilms involved in periodontal diseases. However, certain challenges, such as staining of teeth, preferential interaction of photosensitizer (PS) with Gram-positive versus Gram-negative bacteria, and insufficient oxygen in hypoxic periodontal pockets have presented barriers to its use in the clinic. To overcome these challenges, a novel superhydrophobic (SH) film that generates airborne singlet oxygen has been developed. The SH-aPDT approach isolates the PS onto a topologically rough solid SH film on which channels allow air to diffuse to the PS surface, thus ensuring sufficient oxygen supply. Upon illumination, gas phase singlet oxygen (1O2) is produced and diffuses from the SH surface to the underlying biofilm. The killing efficacy was assessed as a function of transmitted fluence (17.9-89.5 J/cm2) and chorin e6 loading (96-1110 nmol/cm2) by counting of colony forming units, biofilm metabolism by XTT and confocal microscopy. The decrease in viability of both Gram-positive and Gram-negative bacteria in a multi-species biofilm was found to be linearly dependent on the fluence as well as the loading of the PS up to 71.6 J/cm2 when 1110 nmols/cm2 of chlorin e6 was used. A > 4.6 log bacterial reduction was observed under these conditions (p < 0.05). This novel SH-aPDT approach shows promise as an effective method to disinfect multi-species bacterial biofilms associated with periodontal disease and will be evaluated in animal models in future studies.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University-UNESP, 1680 Humaitá St., Araraquara, SP 14801-903, Brazil
| | - Goutam Ghosh
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - QianFeng Xu
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States
| | - Alexander Greer
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States.
| | - Alan M Lyons
- SingletO(2) Therapeutics LLC, TechBox, Suite 3, 75 Clinton St, Staten Island, NY 10304, United States; Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States.
| |
Collapse
|
37
|
Rahman B, Acharya AB, Siddiqui R, Verron E, Badran Z. Photodynamic Therapy for Peri-Implant Diseases. Antibiotics (Basel) 2022; 11:antibiotics11070918. [PMID: 35884171 PMCID: PMC9311944 DOI: 10.3390/antibiotics11070918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Peri-implant diseases are frequently presented in patients with dental implants. This category of inflammatory infections includes peri-implant mucositis and peri-implantitis that are primarily caused by the oral bacteria that colonize the implant and the supporting soft and hard tissues. Other factors also contribute to the pathogenesis of peri-implant diseases. Based on established microbial etiology, mechanical debridement has been the standard management approach for peri-implant diseases. To enhance the improvement of therapeutic outcomes, adjunctive treatment in the form of antibiotics, probiotics, lasers, etc. have been reported in the literature. Recently, the use of photodynamic therapy (PDT)/antimicrobial photodynamic therapy (aPDT) centered on the premise that a photoactive substance offers benefits in the resolution of peri-implant diseases has gained attention. Herein, the reported role of PDT in peri-implant diseases, as well as existing observations and opinions regarding PDT, are discussed.
Collapse
Affiliation(s)
- Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, University City, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Elise Verron
- CNRS, UMR 6230, CEISAM, UFR Sciences et Techniques, Université de Nantes, 2, rue de la Houssinière, BP 92208, CEDEX 3, 44322 Nantes, France;
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
- Correspondence:
| |
Collapse
|
38
|
Chen S, Tang L, Xu M, Chen T, Zhao S, Liu M, Liu S. Light-emitting-diode-based antimicrobial photodynamic therapies in the treatment of periodontitis. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:311-321. [PMID: 34907599 DOI: 10.1111/phpp.12759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
The use of light-emitting diode (LED)-based photodynamic therapies in the treatment of periodontitis is increasing because these modalities are effective, safe, and painless. They are not subject to acquired drug resistance or environmental issues and are associated with no complications when used appropriately. These light sources have also been used in combination with pharmacological measures to synergize their effects and optimize therapeutic outcomes. This review focuses on optical devices used in treating periodontitis and delineates the current applications of various methods, including their utility and efficacy. The application of LEDs in periodontology is described.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Luyao Tang
- Department of Light Source and Illuminating Engineering, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
| | - Meng Xu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianran Chen
- Department of Light Source and Illuminating Engineering, Fudan University, Shanghai, China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Muqing Liu
- Department of Light Source and Illuminating Engineering, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Effect of the technique of photodynamic therapy against the main microorganisms responsible for periodontitis: A systematic review of in-vitro studies. Arch Oral Biol 2022; 138:105425. [DOI: 10.1016/j.archoralbio.2022.105425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
40
|
Wang M, Gu K, Ding W, Wan M, Zhao W, Shi H, Li J. Antifungal effect of a new photosensitizer derived from BODIPY on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2022; 39:102946. [PMID: 35660011 DOI: 10.1016/j.pdpdt.2022.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been recognized as an alternative treatment of Candida albicans (C. albicans) infections. The aim of this study was to investigate the antifungal effect of PDT mediated by a new photosensitizer (PS) derived from BODIPY (BDP-4L) on C. albicans biofilms. METHODS C. albicans biofilms were incubated with BDP-4L of different concentrations and then irradiated at the light doses of 1.8, 3.6, 5.4, 7.2 and 9.0 J/cm2. XTT reduction assay was conducted to determine the PS concentration and PDT parameters. Confocal light scanning microscopy (CLSM) and scanning electron microscope (SEM) were used to visualize and quantify the effect of BDP-4L on C. albicans biofilms after PDT. RESULTS C. albicans biofilms were inactivated in light dose-dependent and PS concentration-dependent manners using BDP-4L as PS. Without irradiation, no inactivation effect was observed when PS concentrations varied from 5 μM to 80 μM. 40 μM PS with 3.6 J/cm2 irradiation resulted in a significant reduction of 83.8% in biofilm metabolic activities. CLSM assay demonstrated that cell viability was obviously inhibited by 82.6%. SEM images revealed ruptured and rough cell surface, indicating increased cell membrane permeability after PDT. CONCLUSIONS Our results suggested that BDP-4L mediated PDT exhibited a favorable antifungal effect on C. albicans biofilms.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Wenxin Ding
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital North, Fudan University, No.108, Rd. Luxiang, Huashan Hospital North, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
41
|
Cosgarea R, Ramseier CA, Jepsen S, Arweiler NB, Jervøe-Storm PM, Batori-Andronescu I, Rößler R, Conrad T, Eick S, Sculean A. One-Year Clinical, Microbiological and Immunological Results of Local Doxycycline or Antimicrobial Photodynamic Therapy for Recurrent/Persisting Periodontal Pockets: A Randomized Clinical Trial. Antibiotics (Basel) 2022; 11:antibiotics11060738. [PMID: 35740145 PMCID: PMC9220761 DOI: 10.3390/antibiotics11060738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
We evaluated, in this study, the clinical, microbiological and immunological effects of local drug delivery (LDD) or photodynamic therapy (PDT), adjunctive to subgingival instrumentation (SI) in persistent or recurrent periodontal pockets in patients enrolled in supportive periodontal therapy (SPT) after one year. A total of 105 patients enrolled in SPT with persistent/recurrent pockets were randomly treated with SI +PDT or SI + LDD or SI (control). The number of treated sites with bleeding on probing (n BOP+), probing pocket depths (PPD), clinical attachment level (CAL), full-mouth plaque and bleeding scores (gingival bleeding index, %bleeding on probing-BOP) was evaluated at baseline and after 12 months. Additionally, eight periodontopathogens and the immunomarkers IL-1β (interleukin)and MMP-8 (matrix metalloprotease) were quantitatively determined using real-time PCR and ELISA, respectively. All three treatments resulted in statistically significant clinical improvements (p < 0.05) without statistically significant intergroup differences (p > 0.05), which were maintained up to 12 months. The presence of BOP negatively affected the PPD and CAL. Moreover, statistically significantly fewer bleeding sites at 12 months were observed in the test groups (p = 0.049). Several periodontopathogens were reduced after 12 months. In conclusion, the present data indicate that in periodontal patients enrolled in SPT, treatment of persistent/recurrent pockets with SI alone or combined with either PDT or LDD may lead to comparable clinical, microbiological and immunological improvements, which are maintained up to 12 months. Secondly, the presence of BOP directly impacts the PPD and CAL.
Collapse
Affiliation(s)
- Raluca Cosgarea
- Department for Periodontology, Operative and Preventive Dentistry, University of Bonn, 53111 Bonn, Germany; (S.J.); (P.M.J.-S.)
- Clinic for Periodontology and Peri-Implant Diseases, Philipps University Marburg, 35033 Marburg, Germany;
- Department of Prosthodontics, Iuliu Hatieganu University Cluj-Napoca, 400006 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +49-(0)-228-2872-2480; Fax: +49-(0)-228-2872-2161
| | - Christoph A. Ramseier
- Department of Periodontology, School of Dentistry, University of Bern, 3010 Bern, Switzerland; (C.A.R.); (S.E.); (A.S.)
| | - Søren Jepsen
- Department for Periodontology, Operative and Preventive Dentistry, University of Bonn, 53111 Bonn, Germany; (S.J.); (P.M.J.-S.)
| | - Nicole Birgit Arweiler
- Clinic for Periodontology and Peri-Implant Diseases, Philipps University Marburg, 35033 Marburg, Germany;
| | - Pia Merete Jervøe-Storm
- Department for Periodontology, Operative and Preventive Dentistry, University of Bonn, 53111 Bonn, Germany; (S.J.); (P.M.J.-S.)
| | | | - Ralf Rößler
- University for Digital Technologies in Medicine and Dentistry, 9516 Wiltz, Luxembourg; (R.R.); (T.C.)
| | - Torsten Conrad
- University for Digital Technologies in Medicine and Dentistry, 9516 Wiltz, Luxembourg; (R.R.); (T.C.)
- Clinic for Mouth, Jaw and Plastic Facesurgery, University of Frankfurt, 6059 Frankfurt, Germany
- Private Practice, 55411 Bingen am Rhein, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dentistry, University of Bern, 3010 Bern, Switzerland; (C.A.R.); (S.E.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dentistry, University of Bern, 3010 Bern, Switzerland; (C.A.R.); (S.E.); (A.S.)
| |
Collapse
|
42
|
Hydrogen peroxide potentiates antimicrobial photodynamic therapy in eliminating Candida albicans and Streptococcus mutans dual-species biofilm from denture base. Photodiagnosis Photodyn Ther 2021; 37:102691. [PMID: 34921987 DOI: 10.1016/j.pdpdt.2021.102691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Candida albicans (C.albicans) is the primary pathogen of denture biofilm. Moreover, it could establish a cross-kingdom relationship with bacteria to enhance its virulence and resistance to antifungal drugs. This study aimed to investigate the efficacy of antimicrobial photodynamic therapy (aPDT) in combination with hydrogen peroxide (H2O2) against C.albicans and Streptococcus mutans (S.mutans) dual-species biofilm formed on polymethyl methacrylate (PMMA) disk, and explore its involved mechanisms. METHODS C.albicans and S.mutans were grown on PMMA disk for 48 h to form biofilm and received different treatments. The treatments included:1) phosphate-buffered saline (PBS) group,2) 100 mM H2O2 group,3) aPDT group,4) aPDT+ H2O2 and 5) H2O2+aPDT group. Colony forming units (CFU), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and scanning electron microscope (SEM) were used to evaluate the antimicrobial effects. Extracellular polysaccharide substance (EPS) production and observation, cell permeability of biofilm, and uptake of toluidine blue O (TBO) by biofilm were assessed to investigate the involved mechanism. RESULTS There was no significant difference between PBS group and H2O2 group in viable microorganisms and metabolic activity of biofilm. The treatment protocols containing aPDT group reduced microorganism numbers and metabolic activity when compared to PBS group or H2O2 group (P<0.05). H2O2+aPDT treatment showed the highest antimicrobial efficacy in comparison with other treatments (P<0.05). Pretreatment with H2O2 could decrease EPS production and enhance cell permeability, leading to increased TBO uptake in biofilm. CONCLUSION Pretreatment with H2O2 improved aPDT efficiency in eliminating dual-species biofilm from PMMA disk by reducing EPS amount, enhancing cell permeability, and increasing TBO uptake.
Collapse
|
43
|
Hampden-Martin A, Fothergill J, El Mohtadi M, Chambers L, Slate AJ, Whitehead KA, Shokrollahi K. Photodynamic antimicrobial chemotherapy coupled with the use of the photosensitizers methylene blue and temoporfin as a potential novel treatment for Staphylococcus aureus in burn infections. Access Microbiol 2021; 3:000273. [PMID: 34816092 PMCID: PMC8604179 DOI: 10.1099/acmi.0.000273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is a novel alternative antimicrobial therapy that elicits a broad mechanism of action and therefore has a low probability of generating resistance. Such properties make PACT ideally suited for utilization in localized applications such as burn wounds. The aim of this study was to determine the antimicrobial activity of MB and temoporfin against both a S. aureus isolate and a P. aeruginosa isolate in light (640 nm) and dark conditions at a range of time points (0–20 min). A Staphylococcus aureus isolate and a Pseudomonas aeruginosa isolate were treated in vitro with methylene blue (MB) and temoporfin under different conditions following exposure to light at 640 nm and in no-light (dark) conditions. Bacterial cell viability [colony-forming units (c.f.u.) ml−1] was then calculated. Against P. aeruginosa, when MB was used as the photosensitizer, no phototoxic effect was observed in either light or dark conditions. After treatment with temoporfin, a reduction of less than one log (7.00×107 c.f.u. ml−1) was observed in the light after 20 min of exposure. However, temoporfin completely eradicated S. aureus in both light and dark conditions after 1 min (where a seven log reduction in c.f.u. ml−1 was observed). Methylene blue resulted in a loss of S. aureus viability, with a two log reduction in bacterial viability (c.f.u. ml−1) reported in both light and dark conditions after 20 min exposure time. Temoporfin demonstrated greater antimicrobial efficacy than MB against both the S. aureus and P. aeruginosa isolates tested. At 12.5 µM temoporfin resulted in complete eradication of S. aureus. In light of this study, further research into the validity of PACT, coupled with the photosensitizers (such as temoporfin), should be conducted in order to potentially develop alternative antimicrobial treatment regimes for burn wounds.
Collapse
Affiliation(s)
| | - Jo Fothergill
- Institute of Infection and Global Heath, University of Liverpool, Liverpool, UK
| | - Mohamed El Mohtadi
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, L39 4QP, UK
| | - Lucy Chambers
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK
| | - Anthony J Slate
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK
| | - Kayvan Shokrollahi
- Mersey Regional Burns and Plastic Surgery Unit, Whiston Hospital, Liverpool, UK
| |
Collapse
|
44
|
Potassium iodide enhances inactivation of Streptococcus mutans biofilm in antimicrobial photodynamic therapy with red laser. Photodiagnosis Photodyn Ther 2021; 37:102622. [PMID: 34775066 DOI: 10.1016/j.pdpdt.2021.102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the effect of potassium iodide (KI) addition on antimicrobial photodynamic therapy (aPDT) mediated by red laser (λ = 660 nm) and methylene blue in Streptococcus mutans biofilm model. METHODS S. mutans biofilms were cultured in 96-well plates containing BHI broth with 1% sucrose for 18 h, 10% CO2 and 37°C and divided in groups (n = 3, in triplicate): C (NaCl 0.9%); CX (0.2% chlorhexidine); P (photosensitizer); KI (10, 25 and 50 mM); PKI (10, 25 and 50 mM); L (L 1: : 100 J/cm2, 9 J; L2: 200 J/cm2, 18 J); PL (photosensitizer + L1 or L2); KIL (KI at 10, 25 and 50 mM + L1 or L2); and PKIL (photosensitizer + 10, 25 and 50 mM KI + L1 or L2). Biofilms were submitted to three pre-irradiation (PI) times (5, 10, and 15 min). After the treatments, microbial counting's reduction was analyzed by Kruskal-Wallis and post-hoc Dunn's tests, respectively, and the interaction between light parameters and the PI times by two-way ANOVA (p < 0.05). RESULTS The S. mutans viability significantly reduced in all aPDT groups, in the presence or absence of KI (p < 0.05). For all PI times, PKIL groups (10, 25, and 50 mM) significantly differed from PL groups (p < 0.05) with a reduction of 9.0 logs reached at 50 mM of KI with 15 min of PI, irradiated at 18 J. We found no significant interaction between PI time and irradiation (p > 0.05). CONCLUSION Addition KI to TFDA mediated by methylene blue and red laser promoted an additional effect in reducing the microbial viability of S. mutans biofilm.
Collapse
|
45
|
Chunikhin NA, Bazikyan EA, Chunikhin AA, Klinovskaya AS. Morphological Assessment of the Effect of Nanosecond Diode Laser Radiation With a Wavelength of 1265 nm on Periodontal Tissue in the Treatment of Apical Periodontitis: An Experimental Study. J Lasers Med Sci 2021; 12:e43. [PMID: 34733766 DOI: 10.34172/jlms.2021.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Introduction: There is a morphological assessment of the damaged area and the inflammatory response of periodontal tissues after therapy. It seems relevant to evaluate the reaction of the periapical tissues of the teeth of experimental animals after the treatment of simulated apical periodontitis using laser photodynamic therapy (PDT) and non-pigment laser transcanal microablation using morphological research. Methods: The lower incisors of 15 rabbits were used to simulate acute apical periodontitis of pulpal origin. Subsequently, the traditional treatment of teeth canals using mechanical cleaning and irrigation with antiseptic solution started. Then, three groups underwent different therapies - using PDT (n = 5; photosensitizer chlorin e6, [l = 660 nm, 60 mW/cm2 ] for 2 minutes), using a new technology of transcanal laser ablation (n = 5; diode laser [l = 1265 nm, 180 mW/cm2 ] for 3 minutes), and without additional treatment (n = 5). Laser therapy in two groups was carried out for 10 days once in 2 days. The animals were euthanized 10 days after the treatment started, decapitation was performed, and morphological specimens were studied under a microscope. Descriptive analysis (study of inflammatory apical infiltrate, bone regeneration of the alveoli and periodontal ligament) and quantitative analysis were performed. The data were statistically processed using the Kruskal-Wallis test. Results: The group treated with the new laser technology showed the best results with moderate lymph-macrophage infiltration and congested vessels, moderate neoangiogenesis and fibrogenesis. The size of the lesion was 506.4 mm2, compared with the PDT group - 872.0 mm2 (P ≤ 0.05). Conclusion: A decrease in the focus of inflammation, moderate neoangiogenesis and fibrogenesis in the periapical region when using transcanal laser microablation indicate the prospects of using the new technology in clinical practice in the complex therapy of apical periodontitis.
Collapse
Affiliation(s)
| | - Ernest Aramovich Bazikyan
- Department of Oral Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russian Federation
| | | | - Anna Sergeevna Klinovskaya
- Department of Oral Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russian Federation
| |
Collapse
|
46
|
Lavaee F, Motamedifar M, Rafiee G. The effect of photodynamic therapy by gold nanoparticles on Streptococcus mutans and biofilm formation: an in vitro study. Lasers Med Sci 2021; 37:1717-1725. [PMID: 34694502 DOI: 10.1007/s10103-021-03422-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022]
Abstract
In this experimental study, we aimed to evaluate the antibacterial and anti-biofilm effects of photodynamic therapy with a photosensitizer in conjunction with Gold nanoparticles against Streptococcus mutans as an important cariogenic bacterial agent. This experimental in vitro study evaluated the antibacterial and anti-biofilm effect of five groups as followed against S. mutans: methylene blue (MB), Gold nanoparticles (AuNPs), methylene blue conjugated with Gold nanoparticles (MB-AuNPs), MB mediated photodynamic therapy (MB mediated PDT) and methylene blue conjugated with Gold nanoparticles mediated photodynamic therapy (MB-AuNPs mediated PDT). InGaAlP laser (Azor-2 K) with 25 mW total output, 660 nm wavelength and laser probe cross-section of 0.78 cm2 was used for methylene blue activation. Total dose of 19.23 J/cm2 for 10 min was irradiated to each group. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and colony forming unit (CFU) were determined. Bacterial biofilm formation inhibition was assessed by crystal violet staining (The microtiter plate biofilm assay). The viability of S. mutans cells was assessed by MTT assay. MB mediated PDT and MB-AuNP mediated PDT were the most effective method for S. mutans biofilm inhibition (P < 0.05). MB alone, MB-AuNP alone and MB mediated PDT and MB-AuNP mediated PDT had the same effect against the planktonic phase of S. mutans (P > 0.05). Also they had similar pattern for bacterial growth inhibition and bactericidal effect (P > 0.05). Gold nano particle mediated photodynamic therapy represented antibacterial and antibiofilm activity against S. mutans; but this modality was not more effective than routine PDT.
Collapse
Affiliation(s)
- Fatemeh Lavaee
- Oral and Dental Disease Research Center, Oral and Maxillofacial Medicine Department, School of Dentistry, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Mohammad Motamedifar
- HIV/AIDS Research Center, Institute of health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Rafiee
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
48
|
Lu H, Luan X, Wu X, Meng L, Zhang X, Wang Y, Han Y, Wang X, Sun L, Bi L. Antimicrobial photodynamic therapeutic effects of cationic amino acid-porphyrin conjugate 4i on Porphyromonas gingivalis in vitro. Photodiagnosis Photodyn Ther 2021; 36:102539. [PMID: 34555533 DOI: 10.1016/j.pdpdt.2021.102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) is considered to be among the principal pathogens in periodontal disease. The present study aimed to investigate the effect of antimicrobial photodynamic therapy (aPDT) mediated by cationic amino acid-porphyrin conjugate 4i on P. gingivalis METHODS: The uptake of 4i by P. gingivalis over different times of incubation was evaluated by optical density using a microplate reader. Laser radiation at λ=650nm-660nm with I =50 mW/cm2 at doses of 0, 3.0, 6.0, 9.0, and 12 J/cm2 was used for aPDT. A colony-counting method and confocal laser scanning microscopy (CLSM) were used to observe the neutralization of P. gingivalis. The fluorescent molecular probe 3'(p-hydroxyphenyl)-fluorescein and the reagent Singlet Oxygen Sensor Green were used to measure the quantities of •OH and 1O2 produced by 4i after irradiation with different light energies. RESULTS The 4i conjugate was absorbed gradually by P. gingivalis, reaching a maximum at 30 min. A clear cytotoxic effect on P. gingivalis was observed with aPDT using 62.5 µM 4i, with colony counts dropping by a factor of 3.35 log10, indicating a sterilization rate of 99.95%. Light irradiation resulted principally in the production of • OHby 4i. A live/dead viability assay demonstrated substantial red fluorescence in P. gingivalis treated with aPDT. CONCLUSIONS The results suggest that 4i-aPDT caused substantial cytotoxicity in P. gingivalis.
Collapse
Affiliation(s)
- Haiyan Lu
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Xiaomin Luan
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Xiaoying Wu
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Lei Meng
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Xingyu Zhang
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Yijing Wang
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Yang Han
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Xiaochun Wang
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Lingling Sun
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Liangjia Bi
- Department of Stomatology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
49
|
Reina BD, Santezi Neto C, Garcia PPNS, Chorilli M, Calixto GMF, Dovigo LN. Bioadhesive Curcumin-Mediated Photodynamic Inactivation and Its Potential to Cause Undesirable Effects on Dental and Restorative Surfaces. Pharmaceutics 2021; 13:pharmaceutics13091458. [PMID: 34575534 PMCID: PMC8468794 DOI: 10.3390/pharmaceutics13091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Curcumin-mediated Photodynamic Inactivation (PDI) has shown great potential to disinfect specific sites on tooth enamel but may involve contact with restorative materials. Thus, before use in dentistry, it is necessary to investigate whether the PDI protocol causes undesirable changes in the surfaces of aesthetic restorative materials and dental enamel. This study investigated the effect of PDI mediated by curcumin (CUR) in a liquid crystal precursor system on color stability (ΔE), surface roughness (Ra), and microhardness (kgf) of three different composite resins and bovine dental enamel specimens. The microhardness and roughness readings were performed 60 days after the treatments while the color readings were performed immediately, 24, 48, and 72 h, 7, 14, 21, 30, and 60 days after the treatments. Results showed that CUR mediated-PDI does not seem to have the potential to promote any esthetic or mechanical changes to the surface of tooth enamel and can be applied safely in clinical practice. However, the results on color, roughness, and hardness obtained for composite resins show that some negative effects can be produced, depending on the type of restorative material; more experiments must be performed with different formulations and, perhaps, with lower concentrations of CUR.
Collapse
Affiliation(s)
- Bárbara Donadon Reina
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
| | - Carolina Santezi Neto
- Independent Researcher, the Moment of the Submission (Unaffiliated Researcher), São Carlos SP 14801-903, Brazil;
| | - Patrícia Petromilli Nordi Sasso Garcia
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmacy, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km. 1, Araraquara SP 14800-903, Brazil;
| | - Giovana Maria Fioramonti Calixto
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Avenida Limeira, Piracicaba SP 13414-903, Brazil;
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
- Correspondence:
| |
Collapse
|
50
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|