1
|
Israyilova A, Peykova TZ, Kittleson B, Sprowl PC, Mohammed TO, Quave CL. From Plant to Patient: A Historical Perspective and Review of Selected Medicinal Plants in Dermatology. JID INNOVATIONS 2025; 5:100321. [PMID: 39651343 PMCID: PMC11625147 DOI: 10.1016/j.xjidi.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 12/11/2024] Open
Abstract
Skin conditions are a common health concern faced by patients of all ages. For thousands of years, plants have been used to treat various skin conditions, including acne, vitiligo, and psoriasis, to name a few. Today, with increasing patient preference for natural therapies, modern medicine is now more than ever incorporating age-old knowledge of herbal remedies useful in treating skin conditions into modern-day treatments. This review covers various plant-derived therapeutics (polyphenon E [sincatechins], psoralen, salicylic acid, anthralin, podophyllotoxin, and Filsuvez [birch triterpenes, oleogel-S10]) that have demonstrated scientific evidence of clinical efficacy for dermatologic disorders. The discovery, composition, history of use, and current uses in dermatology are summarized for each botanical ingredient.
Collapse
Affiliation(s)
- Aygun Israyilova
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratory of Microbiology, Center of Excellence, Baku State University, Baku, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Baku, Azerbaijan
| | - Tsvetomira Zhivkova Peykova
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ben Kittleson
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul Caleb Sprowl
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Taha Osman Mohammed
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cassandra L. Quave
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Badivi S, Kazemi S, Eskandarisani M, Moghaddam NA, Mesbahian G, Karimifard S, Afzali E. Targeted delivery of bee venom to A549 lung cancer cells by PEGylate liposomal formulation: an apoptotic investigation. Sci Rep 2024; 14:17302. [PMID: 39068207 PMCID: PMC11283506 DOI: 10.1038/s41598-024-68156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study focused on developing an optimal formulation of liposomes loaded with bee venom (BV) and coated with PEG (BV-Lipo-PEG). The liposomes were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy. Among the liposomal formulations, F3 exhibited the narrowest size distribution with a low PDI value of 193.72 ± 7.35, indicating minimal agglomeration-related issues and a more uniform size distribution. BV-Lipo-PEG demonstrated remarkable stability over 3 months when stored at 4 °C. Furthermore, the release of the drug from the liposomal formulations was found to be pH-dependent. Moreover, BV-Lipo-PEG exhibited favorable entrapment efficiencies, with values reaching 96.74 ± 1.49. The anticancer potential of the liposomal nanocarriers was evaluated through MTT assay, flow cytometry, cell cycle analysis, and real-time experiments. The functionalization of the liposomal system enhanced endocytosis. The IC50 value of BV-Lipo-PEG showed a notable decrease compared to both the free drug and BV-Lipo alone, signifying that BV-Lipo-PEG is more effective in inducing cell death in A549 cell lines. BV-Lipo-PEG exhibited a higher apoptotic rate in A549 cell lines compared to other samples. In A549 cell lines treated with BV-Lipo-PEG, the expression levels of MMP-2, MMP-9, and Cyclin E genes decreased, whereas the expression levels of Caspase3 and Caspase9 increased. These findings suggest that delivering BV via PEGylated liposomes holds significant promise for the treatment of lung cancer.
Collapse
Affiliation(s)
- Samireh Badivi
- Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Kazemi
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Mohammadmahdi Eskandarisani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | | | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimifard
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Elham Afzali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Garcia-Mouronte E, Pérez-González LA, Naharro-Rodriguez J, Fernández Guarino M. Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life (Basel) 2024; 14:822. [PMID: 39063576 PMCID: PMC11277730 DOI: 10.3390/life14070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The detrimental effects of ultraviolet radiation (UVR) on human skin are well-documented, encompassing DNA damage, oxidative stress, and an increased risk of carcinogenesis. Conventional photoprotective measures predominantly rely on filters, which scatter or absorb UV radiation, yet fail to address the cellular damage incurred post-exposure. To fill this gap, antioxidant molecules and DNA-repair enzymes have been extensively researched, offering a paradigm shift towards active photoprotection capable of both preventing and reversing UV-induced damage. In the current review, we focused on "active photoprotection", assessing the state-of-the-art, latest advancements and scientific data from clinical trials and in vivo models concerning the use of DNA-repair enzymes and naturally occurring antioxidant molecules.
Collapse
Affiliation(s)
- Emilio Garcia-Mouronte
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | | - Jorge Naharro-Rodriguez
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | |
Collapse
|
4
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
5
|
Semenescu I, Similie D, Diaconeasa Z, Danciu C. Recent Advances in the Management of Rosacea through Natural Compounds. Pharmaceuticals (Basel) 2024; 17:212. [PMID: 38399428 PMCID: PMC10892689 DOI: 10.3390/ph17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Rosacea is a chronic skin disorder that affects more than 5% of the world's population, with the number increasing every year. Moreover, studies show that one-third of those suffering from rosacea report a degree of depression and are less compliant with treatment. Despite being the subject of prolonged studies, the pathogenesis of rosacea remains controversial and elusive. Since most medications used for the management of this pathology have side effects or simply do not yield the necessary results, many patients lose trust in the treatment and drop it altogether. Thus, dermato-cosmetic products with natural ingredients are gaining more and more notoriety in front of synthetic ones, due to the multiple benefits and the reduced number and intensity of side effects. This review is a comprehensive up-to-date report of studies that managed to prove the beneficial effects of different botanicals that may be useful in the short and long-term management of rosacea-affected skin. Based on recent preclinical and clinical studies, this review describes the mechanisms of action of a large array of phytochemicals responsible for alleviating the clinical symptomatology of the disease. This is useful in further aiding and better comprehending the way plant-based products may help in managing this complex condition, paving the way for research in this area of study.
Collapse
Affiliation(s)
- Iulia Semenescu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Diana Similie
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Kang S, Kim HY, Lee AY, Kim HS, Park JH, Moon BC, Nam HH, Chae SW, Jung B, Moon C, Shin IS, Kim JS, Seo YS. Camellia sinensis (L.) Kuntze Extract Attenuates Ovalbumin-Induced Allergic Asthma by Regulating Airway Inflammation and Mucus Hypersecretion. Pharmaceutics 2023; 15:2355. [PMID: 37765323 PMCID: PMC10537373 DOI: 10.3390/pharmaceutics15092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Hyeon Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Jeollabuk-do, Republic of Korea;
| | - Sung-Wook Chae
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Jeollabuk-do, Republic of Korea;
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea
| | - Bokyung Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - In Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea
| |
Collapse
|
7
|
Anbualakan K, Tajul Urus NQ, Makpol S, Jamil A, Mohd Ramli ES, Md Pauzi SH, Muhammad N. A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients 2022; 15:92. [PMID: 36615749 PMCID: PMC9824837 DOI: 10.3390/nu15010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.
Collapse
Affiliation(s)
- Kirushmita Anbualakan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Qisti Tajul Urus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adawiyah Jamil
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suria Hayati Md Pauzi
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Shi J, Li T, Dong J, Wu Y, Wang W, Wang C. Neurotoxicity and Structure-Activity Relationships of Resveratrol and its two Natural Analogs, 4,4′-Dihydroxystilbene and Pinosylvin. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Resveratrol (RES) and its two natural analogues, 4,4′-dihydroxystilbene (DHS) and pinosylvin (PIN), are very important polyphenols and have attracted considerable pharmaceutical interest because of their diverse biological activities. However, their adverse effects on motor nerves and glioma cells have not been properly assessed. Herein, we surveyed the toxicity and analyzed the structure-activity relationship of these three polyphenols using transgenic zebrafish ( Danio rerio) and U87. Results indicated that, in zebrafish embryos, both DHS (1 and 10 μg/mL) with hydroxyl groups at the 4 and 4′ positions, and PIN (1 and 10 μg/mL) with hydroxyl groups at the 3 and 5 positions inhibited motor neuron growth more effectively than RES (1 and 10 μg/mL) with hydroxyl groups at the 3, 4′, and 5 positions, although their appearance is normal. Both the DHS- (10 μg/mL) and PIN (10 μg/mL) -treated groups significantly reduced the swimming distance of zebrafish compared with the RES (10 μg/mL) -treated group. In addition, DHS with the hydroxyl groups at the 4 and 4′ positions (0.002, 0.02, 0.2, 2, and 20 μM) inhibited U87 cell aggregation in a concentration-dependent manner; PIN with the hydroxyl groups at the 3 and 5 positions (0.002, 0.02, 0.2, 2, and 20 μM) promoted U87 cell aggregation in a concentration-dependent manner, while RES with three hydroxyl groups promoted U87 cell aggregation at concentrations from 0.2 to 2 μM. Taken together, DHS and PIN are more neurotoxic than RES. The position and number of hydroxyl groups significantly affected the ability of the polyphenols to aggregate into tumors in the U87 cell.
Collapse
Affiliation(s)
- Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Tingting Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yuanyuan Wu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Wenran Wang
- Blood Purification Centre, Third People’s Hospital of Rugao, Rugao, Jiangsu, P.R. China
| | - Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
9
|
Lotus root extract inhibits skin damage through suppression of collagenase production in vitro. Cytotechnology 2022; 74:309-317. [PMID: 35464168 PMCID: PMC8975922 DOI: 10.1007/s10616-022-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/18/2022] [Indexed: 11/03/2022] Open
Abstract
Lotus root is a traditional food ingredient used primarily in Asia and is rich in polyphenols. To determine its potential use in antiphotoaging, polyphenols were extracted from lotus root with 50% ethanol, and the activity of matrix metalloproteinase (MMP) was measured in dermal cells treated with ultraviolet A (UVA). UVA exposure increased the gene expression of IL-1α, the mRNA levels of MMP-1, and hence, the levels of MMP-1 protein in HaCaT cells, whereas cells treated with lotus polyphenol (LP) normalized these values to the control. In the presence of LP at concentrations of 1 and 10 μg/mL, both the secretion of IL-1α and protein levels of MMP-1 in human keratinocyte cells significantly reduced. Similarly, in the LabCyte EPI-MODEL24, irradiation with UVA caused an increase in mRNA expression of IL-1α and MMP-1, which was prevented by adding LP to the cells. Our results with three different skin cells accordingly showed that LP may help maintain skin health through decreased levels of MMP-1 activity via its anti-inflammatory properties.
Collapse
|
10
|
Ghazi S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Jones VA, Patel PM, Wilson C, Wang H, Ashack KA. Complementary and alternative medicine treatments for common skin diseases: A systematic review and meta-analysis. JAAD Int 2021; 2:76-93. [PMID: 34409356 PMCID: PMC8362305 DOI: 10.1016/j.jdin.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background Complementary and alternative medicine (CAM) treatments are growing in popularity as alternative treatments for common skin conditions. Objectives To perform a systematic review and meta-analysis to determine the tolerability and treatment response to CAM treatments in acne, atopic dermatitis (AD), and psoriasis. Methods PubMed/Medline and Embase databases were searched to identify eligible studies measuring the effects of CAM in acne, AD, and psoriasis. Effect size with 95% confidence interval (CI) was estimated using the random-effect model. Results The search yielded 417 articles; 40 studies met the inclusion criteria. The quantitative results of CAM treatment showed a standard mean difference (SMD) of 3.78 (95% CI [−0.01, 7.57]) and 0.58 (95% CI [−6.99, 8.15]) in the acne total lesion count, a SMD of −0.70 (95% CI [−1.19, −0.21]) in the eczema area and severity index score and a SMD of 0.94 (95% CI [−0.83, 2.71]) in the scoring of atopic dermatitis score for AD, and a SMD of 3.04 (95% CI [−0.35, 6.43]) and 5.16 (95% CI [−0.52, 10.85]) in the Psoriasis Area Severity Index score for psoriasis. Limitations Differences between the study designs, sample sizes, outcome measures, and treatment durations limit the generalizability of data. Conclusions Based on our quantitative findings we conclude that there is insufficient evidence to support the efficacy and the recommendation of CAM for acne, AD, and psoriasis.
Collapse
Key Words
- AD, atopic dermatitis
- AV, aloe vera
- CAM, complementary and alternative medicine
- CCO, coconut oil
- GT, green tea
- PASI, psoriasis area and severity index
- SCORAD, scoring of atopic dermatitis
- SMD, standardized mean difference
- SSO, sunflower seed oil
- TCS, topical corticosteroid
- TLC, total lesion count
- TTO, tea tree oil
- acne vulgaris
- aloe vera
- atopic dermatitis
- coconut oil
- colloidal oatmeal
- complementary alternative medicine
- curcumin
- eczema
- green tea
- honey
- meta-analysis
- natural ingredients
- psoriasis
- shea butter
- sunflower seed oil
- systematic review
- tea tree oil
- turmeric
- witch hazel
Collapse
Affiliation(s)
- Virginia A. Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Payal M. Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Claire Wilson
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Hongnan Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois
| | - Kurt A. Ashack
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
- Dermatology Associates of West Michigan, Grand Rapids, Michigan
- Correspondence to: Kurt A. Ashack, MD, MHS, Dermatology Associates of West Michigan, 1740 East Paris Ave SE, Grand Rapids, MI 49546.
| |
Collapse
|
12
|
Farjadmand F, Karimpour-Razkenari E, Nabavi SM, Ardekani MRS, Saeedi M. Plant Polyphenols: Natural and Potent UV-Protective Agents for the Prevention and Treatment of Skin Disorders. Mini Rev Med Chem 2021; 21:576-585. [PMID: 33167833 DOI: 10.2174/1389557520666201109121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, destructive and immunosuppressive effects from long-term exposure to UV radiation have been fully investigated and documented in the literature. UV radiation is known as the main cause of skin aging and carcinogenesis. Hence, skin protection against anti-oxidative and immunosuppressive processes is highly in demand. Now, plant polyphenols have been found as a versatile and natural tool for the prevention and treatment of various skin diseases. The presence of a large number of hydroxyl groups in the cyclic structure of polyphenols has induced valuable biological activities. Among them, their UV protective activity has attracted lots of attention due to promising efficacy and simple instruction to use.
Collapse
Affiliation(s)
- Fatemeh Farjadmand
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Karimpour-Razkenari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ud-Din S, Wilgus TA, McGeorge DD, Bayat A. Pre-Emptive Priming of Human Skin Improves Cutaneous Scarring and Is Superior to Immediate and Delayed Topical Anti-Scarring Treatment Post-Wounding: A Double-Blind Randomised Placebo-Controlled Clinical Trial. Pharmaceutics 2021; 13:510. [PMID: 33917842 PMCID: PMC8068279 DOI: 10.3390/pharmaceutics13040510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
The concept of pre-emptive priming of skin pre-surgery offers a novel approach in optimizing cutaneous scarring outcome. We previously showed an anti-scarring topical (epigallocatechin-3-gallate (EGCG)) is effective in improving skin scarring when applied post-surgery. The objective was to deliver an active compound at the optimal time in order to maximize its impact and improve cutaneous scarring. Therefore, pre-emptive application of anti-scarring topical pre-surgery compared with post-surgery can potentially be superior on scarring outcome. This double-blinded randomized placebo-controlled trial compares the effects of pre-emptive priming of skin with an anti-scarring topical pre-surgery versus post-surgery. Healthy volunteers (n = 40) were split into 4-groups; each undergoing different modes of application versus placebo: Group-1 = priming (7Days) pre-injury, Group-2 = priming (3D) pre-injury, Group-3 = immediate (0D) day-of-injury, Group-4 = delayed application (14D) post-injury. Excisional skin-biopsies in upper-arms were evaluated weekly with multiple quantitative devices over 8-weeks. Histological, immunohistochemical, mRNA sequencing and QRT-PCR studies were performed on tissue-biopsies. EGCG reduced mast cells at weeks-4 and 8 by gene and protein analyses (p < 0.01). Group 1 was superior to other groups (p < 0.01) in both clinical (blood flow) and laboratory parameters (elastin and immune marker expression). Additionally, there was down-regulation of angiogenic-markers by mRNA-sequencing and of CD31 and VEGF-A at weeks-4 and 8 (p < 0.01) by immunohistochemistry and at week-4 (p < 0.05) by QRT-PCR. EGCG increased antioxidant levels (HO-1) at week-4 (p < 0.01) plus elastin at week-8 (p < 0.01). In conclusion, pre-emptive priming of skin pre-injury has significant beneficial effects on surgically induced skin scarring shown by reducing mast cells, blood flow and angiogenesis plus increasing elastin content. This clinical trial was registered with ISRCTN (ISRCTN70155584).
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PT, UK;
| | - Traci A. Wilgus
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA;
| | | | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PT, UK;
- MRC-SA Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
14
|
Ud-Din S, Wilgus TA, McGeorge DD, Bayat A. Pre-Emptive Priming of Human Skin Improves Cutaneous Scarring and Is Superior to Immediate and Delayed Topical Anti-Scarring Treatment Post-Wounding: A Double-Blind Randomised Placebo-Controlled Clinical Trial. Pharmaceutics 2021. [PMID: 33917842 DOI: 10.3390/pharmaceutics13040510.pmid:33917842;pmcid:pmc8068279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The concept of pre-emptive priming of skin pre-surgery offers a novel approach in optimizing cutaneous scarring outcome. We previously showed an anti-scarring topical (epigallocatechin-3-gallate (EGCG)) is effective in improving skin scarring when applied post-surgery. The objective was to deliver an active compound at the optimal time in order to maximize its impact and improve cutaneous scarring. Therefore, pre-emptive application of anti-scarring topical pre-surgery compared with post-surgery can potentially be superior on scarring outcome. This double-blinded randomized placebo-controlled trial compares the effects of pre-emptive priming of skin with an anti-scarring topical pre-surgery versus post-surgery. Healthy volunteers (n = 40) were split into 4-groups; each undergoing different modes of application versus placebo: Group-1 = priming (7Days) pre-injury, Group-2 = priming (3D) pre-injury, Group-3 = immediate (0D) day-of-injury, Group-4 = delayed application (14D) post-injury. Excisional skin-biopsies in upper-arms were evaluated weekly with multiple quantitative devices over 8-weeks. Histological, immunohistochemical, mRNA sequencing and QRT-PCR studies were performed on tissue-biopsies. EGCG reduced mast cells at weeks-4 and 8 by gene and protein analyses (p < 0.01). Group 1 was superior to other groups (p < 0.01) in both clinical (blood flow) and laboratory parameters (elastin and immune marker expression). Additionally, there was down-regulation of angiogenic-markers by mRNA-sequencing and of CD31 and VEGF-A at weeks-4 and 8 (p < 0.01) by immunohistochemistry and at week-4 (p < 0.05) by QRT-PCR. EGCG increased antioxidant levels (HO-1) at week-4 (p < 0.01) plus elastin at week-8 (p < 0.01). In conclusion, pre-emptive priming of skin pre-injury has significant beneficial effects on surgically induced skin scarring shown by reducing mast cells, blood flow and angiogenesis plus increasing elastin content. This clinical trial was registered with ISRCTN (ISRCTN70155584).
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PT, UK
| | - Traci A Wilgus
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | | | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PT, UK
- MRC-SA Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
15
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Elmahallawy EK, Mohamed Y, Abdo W, El-Gohary FA, Ahmed Awad Ali S, Yanai T. New Insights Into Potential Benefits of Bioactive Compounds of Bee Products on COVID-19: A Review and Assessment of Recent Research. Front Mol Biosci 2021; 7:618318. [PMID: 33628764 PMCID: PMC7897699 DOI: 10.3389/fmolb.2020.618318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The recent emergence of COVID-19 represents one of the biggest challenges facing the world today. Despite the recent attempts to understand the epidemiological pattern and pathogenesis of the disease, detailed data about the physiology and pathology of the disease is still out of reach. Moreover, the lack of a widespread vaccine prompts an urgent call for developing a proper intervention strategy against the virus. Importantly, identification of novel molecules that target replication of the virus represents one of the promising strategies for the control this pandemic crisis. Among others, honey bee products contain numerous bioactive compounds such as propolis and several phenolic compounds that possess a wide range of therapeutic properties for combating various pathological disorders and infectious agents. The intention of the present review is to highlight the stages of SARS-CoV-2 lifecycle, the molecular mechanisms explaining the health benefits of honey bee products on COVID-19 physiology and pathology and the possible limitations. Further future research is suggested to explore more about bee natural bioactive compounds as potential candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Yasser Mohamed
- Laboratory of Kafr El Sheikh Fever Hospital, Kafr El Sheikh Fever Hospital, Kafr El-Sheikh, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa Ahmed Awad Ali
- Department of Nursing, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Critical Care and Emergency Nursing, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Tokuma Yanai
- Laboratory of Wildlife and Forensic Pathology/Biomedical Science Examination and Research Center, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Japan
| |
Collapse
|
17
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
19
|
Veronese F, Zavattaro E, Orioni G, Landucci G, Tarantino V, Airoldi C, Savoia P. Efficacy of new class I medical device for actinic keratoses: a randomized controlled prospective study. J DERMATOL TREAT 2019; 32:625-630. [PMID: 31689138 DOI: 10.1080/09546634.2019.1687820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The presence of Actinic Keratoses (AKs) represent the most important warning sign of subclinical ultraviolet radiation. Currently, the regular use of sunscreens is considered essential for the prevention of the development of AKs. AIM We evaluated the effectiveness of a new class I Medical Device (MD) for the prevention and treatment of AKs vs traditional sunscreen alone (SPF 100+). METHODS We conducted a randomized controlled prospective study in 90 Caucasian patients: 62 immunocompetent and 28 Organ Transplant Recipients (OTRs). We randomly assigned subjects to the MD group or sunscreen alone in a 1:1 assignment ratio. The patients have been reevaluated after three and six months. RESULTS In immunocompetent patients treated with MD, at the end of the study the reduction of the mean number of AKs was 54.7 vs. 9.43% with photoprotector. In OTRs, the global reduction was of 36.7% after MD use compared to 14.3% with the sunscreen. The prevalence of NMSCs, in the patients treated with MD, was 11.11 and 17.18 with sunscreen; the incidence was 19.7 in patients treated with MD and 32.1 in those treated with sunscreen. CONCLUSION The MD has demonstrated good efficacy in the reduction of visible AKs, encouraging its use also in high-risk category, like OTRs.
Collapse
Affiliation(s)
- Federica Veronese
- Department of Health Science, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| | - Elisa Zavattaro
- Department of Translational Medicine, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| | - Gionathan Orioni
- Department of Health Science, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| | - Gianluca Landucci
- Department of Health Science, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| | - Vanessa Tarantino
- Department of Health Science, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| | - Chiara Airoldi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Paola Savoia
- Department of Health Science, Dermatologic Clinic, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
20
|
Kaiser D, Bacher S, Mène‐Saffrané L, Grabenweger G. Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation. PEST MANAGEMENT SCIENCE 2019; 75:556-563. [PMID: 30221461 PMCID: PMC6587961 DOI: 10.1002/ps.5209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Solar radiation is assumed to be a major factor limiting the efficacy of entomopathogenic fungi used as biocontrol agents in open field applications. We evaluated 12 natural UV-protective co-formulants for their effect on the survival of UV-exposed Beauveria bassiana spores on agar plates, colza leaf discs and in the field. RESULTS Colony-forming unit (CFU) counts of unformulated conidia on agar plates and leaf discs dropped to ≤ 50% after exposure to UV radiation. The highest UV protection was achieved with humic acid, which provided > 90% protection of UV-B-exposed conidia in laboratory experiments. In the field, 10% humic acid increased spore persistence up to 87% at 7 days after application. Sesame and colza oil also provided high UV protection in both assays (> 73% and > 70%, respectively). CONCLUSIONS This study shows that it is possible to increase the persistence of B. bassiana spores under exposure to UV radiation by formulation with natural UV-protective additives. UV protectants might, therefore, increase the efficacy of entomopathogenic fungi as biocontrol agents in open field applications. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Deborah Kaiser
- Department of Plant ProtectionAgroscopeZurichSwitzerland
| | - Sven Bacher
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | | | | |
Collapse
|
21
|
Martić R, Krajišnik D, Milić J. Antioxidants of plant origin in cosmetic products: Physicochemical properties and photoprotective potential. ARHIV ZA FARMACIJU 2018. [DOI: 10.5937/arhfarm1801001m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Li Y, Wang S, Xin Y, Zheng M, Xu F, Xi X, Cao H, Cui X, Guo H, Han C. Maca Cosmetics: A Review on Constituents, Therapeutics and Advantages. J Oleo Sci 2018; 67:789-800. [DOI: 10.5650/jos.ess18012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Shiyuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| | - Yizhou Xin
- The Afliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
23
|
Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:53-60. [DOI: 10.1016/j.jphotobiol.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
|
24
|
Rajmani RS, Singh P, Singh LV. Apoptotic and Immunosuppressive Effects of Turmeric Paste on 7, 12 Di Methyl Benz (a) Anthracene Induced Skin Tumor Model of Wistar Rat. Nutr Cancer 2017; 69:1245-1255. [PMID: 29016221 DOI: 10.1080/01635581.2017.1367933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dietary components with potent anticancerous property are gaining attention as therapeutic agents due to low cost of therapy and minimal toxic effects. Turmeric is one such miracle spices of Indian and South Asian recipes with multiple medicinal properties. The anticarcinogenic properties of its active compound curcumin have been studied in detail. However, studies on the medicinal properties of crude turmeric used as dietary agents are lacking. Therefore, in this study we investigated the effects of dietary and topical crude turmeric paste on DMBA induced skin tumor of male Wistar rats. We observed the apoptotic effect of crude turmeric paste on DMBA induced tumor with depletion of T cells response. Our results demonstrated the significant expression of major pro-apoptotic genes like caspase-2, 3, 8, 9, PARP, and p53 and down regulation of major pro-inflammatory (NF-κB) and pro-angiogenic factors and (VEGF) in turmeric treated tumor tissues. We also observed significant decrease in CD4+, CD8+, and Natural Killer cell population as compared to the untreated group.
Collapse
Affiliation(s)
- R S Rajmani
- a Centre for Infectious Disease Research (CIDR) , Indian Institute of Science , Bengaluru , India.,b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| | - Prafull Singh
- b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| | - Lakshya Veer Singh
- b Indian Veterinary Research Institute , Izatnagar , Uttar Pradesh , India
| |
Collapse
|
25
|
Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, Parekh HS, Mutalik S. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition. AAPS PharmSciTech 2017; 18:2346-2357. [PMID: 28124212 DOI: 10.1208/s12249-017-0718-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q12), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.
Collapse
|
26
|
José MTDAF, Pedrita AS, Emanuella CVP, Raimundo GDOJ, Fabrício SS, Jackson RGDSA, Larissa AR, Xirley PN, Edigênia CDCA. Flavonoids as photoprotective agents: A systematic review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2016.6273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, Liao B, Ying H, Ravichandran N, Du Q. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater 2016; 105:2416-2425. [PMID: 27618624 DOI: 10.1002/jbm.b.33785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/15/2016] [Accepted: 08/28/2016] [Indexed: 11/11/2022]
Abstract
Nanoethosomal suspensions, composed of phospholipids, ethanol, and water, are novel lipid carriers. These suspensions have been reported to enhance the permeation of drugs into the skin as a result of the interdigitation effect of ethanol on the lipid bilayer of liposomes and by increasing the fluidity of lipids in the stratum corneum. The physical stability of the nanoethosomal suspension is still a critical research problem until now. This study investigated the commercial palm sucrose esters to improve the colloidal stability of nanoethosomal suspensions. The results indicated that palm sucrose esters (PSE) were effective for stabilizing nanoethosomal suspension of (-)-epigallocatechin gallate (EGCG) from green tea. A PSE concentration of 0.15% was optimal for a nanoethosomal suspension which gave mean diameter 75.5 ± 3.5 nm, zeta potential -30.8 ± 3.2 mV and polydispersity index 0.207 ± 0.017. Moreover, the effectiveness of stabilization was influenced by the degree of esterification of the sucrose esters: the sucrose polyesters could prolong the stability of nanoethosomes loaded with EGCG to a year, but the sucrose monoesters only provided less than 6 months of stabilization. EGCG nanoethosomal suspension stabilized by sucrose polyesters shows better inhibition effectiveness against UVB-induced skin damage than native EGCG. The nanoethosomal suspension has the potential for its utilization as skin care and other products. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2416-2425, 2017.
Collapse
Affiliation(s)
- Weihua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yuanyuan Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Tao Lv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Zhaoyang Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Bingwu Liao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Hao Ying
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Nagaiya Ravichandran
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| |
Collapse
|
28
|
Huang CH, Li HJ, Wu NL, Hsiao CY, Lin CN, Chang HH, Hung CF. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts. PLoS One 2016; 11:e0161767. [PMID: 27583973 PMCID: PMC5008741 DOI: 10.1371/journal.pone.0161767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
Abstract
Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging.
Collapse
Affiliation(s)
- Cheng-Hua Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Hsin-Ju Li
- Department of Chemistry, Fu Jen University, New Taipei City, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Dermatology, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Nan Lin
- College of Pharmacy, Kaoshiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Hsien Chang
- Biomedical Cybernetics Laboratory, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Lu PH, Hsu CH. Does supplementation with green tea extract improve acne in post-adolescent women? A randomized, double-blind, and placebo-controlled clinical trial. Complement Ther Med 2016; 25:159-63. [PMID: 27062963 DOI: 10.1016/j.ctim.2016.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Green tea is believed to have beneficial effects in the prevention and treatment of acne. OBJECTIVE To examine the effects of a decaffeinated green tea extract (GTE), providing a daily dose of 856 mg of epigallocatechin gallate (EGCG) upon women with post-adolescent acne. METHODS A randomized, double-blind, placebo-controlled clinical trial was conducted from May 2012 through October 2013. A final group of 80 subjects were randomly assigned to receive either 1500 mg of decaffeinated GTE or placebo (cellulose) daily for 4 weeks. Inflammatory lesion counts were used as the major outcome measurement. At baseline and after 4 weeks of treatment, anthropometric measurements, fasting glucose levels and a lipid profile were measured from both groups. RESULTS Sixty-four of 80 women, from 25 to 45 years of age with moderate-to-severe acne completed the study. Statistically significant differences were noted in inflammatory lesion counts distributed on the nose, periorally and on the chin between the two groups. However, there were no significant differences between groups for total lesion counts. Within-group comparison revealed that the GTE group had significant reductions in inflammatory lesions distributed on the forehead and cheek, and significant reductions in total lesion counts. GTE resulted in significant reductions in total cholesterol levels within the GTE group. CONCLUSIONS GTE resulted in significant reductions in lesions located on the nose, perioral area and chin. More research is required to determine whether a decaffeinated GTE standardized for EGCG content will provide clinical benefits in women with post-adolescent acne.
Collapse
Affiliation(s)
- P H Lu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taiwan; Department of Dermatology, Far Eastern Memorial Hospital, Taiwan
| | - C H Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taiwan; Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taiwan.
| |
Collapse
|
30
|
Andzi Barhé T, Feuya Tchouya G. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus Sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2014.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Mejía-Giraldo JC, Henao-Zuluaga K, Gallardo C, Atehortúa L, Puertas-Mejía MA. NovelIn VitroAntioxidant and Photoprotection Capacity of Plants from High Altitude Ecosystems of Colombia. Photochem Photobiol 2015; 92:150-7. [DOI: 10.1111/php.12543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Juan C. Mejía-Giraldo
- Research Group on Functional Compounds; Institute of Chemistry; University of Antioquia; Medellín Colombia
| | - Kelly Henao-Zuluaga
- Research Group on Functional Compounds; Institute of Chemistry; University of Antioquia; Medellín Colombia
| | - Cecilia Gallardo
- Faculty of Pharmaceutical Chemistry; University of Antioquia; Medellín Colombia
| | - Lucia Atehortúa
- Biotechnology Group; University of Antioquia; Medellín Colombia
| | - Miguel A. Puertas-Mejía
- Research Group on Functional Compounds; Institute of Chemistry; University of Antioquia; Medellín Colombia
| |
Collapse
|
32
|
Casanova F, Santos L. Encapsulation of cosmetic active ingredients for topical application--a review. J Microencapsul 2015; 33:1-17. [PMID: 26612271 DOI: 10.3109/02652048.2015.1115900] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Collapse
Affiliation(s)
- Francisca Casanova
- a LEPABE, Departamento De Engenharia Química , Faculdade De Engenharia Da Universidade Do Porto , Rua Dr. Roberto Frias , Porto , Portugal
| | - Lúcia Santos
- a LEPABE, Departamento De Engenharia Química , Faculdade De Engenharia Da Universidade Do Porto , Rua Dr. Roberto Frias , Porto , Portugal
| |
Collapse
|
33
|
Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett 2015; 11:610-618. [PMID: 26870255 PMCID: PMC4727048 DOI: 10.3892/ol.2015.3957] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Melittin, a significant constituent of Apis mellifera (honeybee) venom, is a water-soluble toxic peptide that has traditionally been used as an antitumor agent. However, the underlying mechanisms by which it inhibits tumor cell growth and angiogenesis remain to be elucidated. In the present study, screening for increased cathepsin S (Cat S) expression levels was performed in MHCC97-H cells and various other hepatocellular carcinoma cell lines by reverse transcription-polymerase chain reaction and western blot analysis. A pcDNA3.1-small hairpin RNA (shRNA)-Cat S vector was stably transfected into MHCC97-H cells (shRNA/MHCC97-H) in order to knockdown the expression of Cat S. The effects resulting from the inhibition of Cat S-induced proliferation, invasion and angiogenesis by melittin were examined using cell proliferation, cell viability, flat plate colony formation, migration, wound healing, Transwell migration and ELISA assays. In order to substantiate the evidence for melittin-mediated inhibition of Cat S-induced angiogenesis, Cat S RNA was transfected into primary human umbilical vein endothelial cells (Cat S-HUVECs) to induce overexpression of the Cat S gene. The effects of melittin on HUVECs were examined using Transwell migration and tube formation assays. The findings demonstrated that melittin was able to significantly suppress MHCC97-H cell (Mock/MHCC97-H) proliferation, invasion and angiogenesis, as well as capillary tube formation of Cat S-HUVECs, in a dose-dependent manner. However, proliferation, invasion and angiogenesis in shRNA/MHCC97-H and in native HUVECs (Mock-HUVECs) were unaffected. In addition, melittin specifically decreased the expression of phosphorylated (activated) Cat S, and components of the vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2)/mitogen-activated protein kinase kinase 1 (MEK1)/extracellular signal-regulated kinase (ERK)1/2 signaling pathway in Mock/MHCC97-H cells. In conclusion, the inhibition of tumor cell growth and anti-angiogenic activity exerted by melittin may be associated with anti-Cat S actions, via the inhibition of VEGF-A/VEGFR-2/MEK1/ERK1/2 signaling.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hanguang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dongdong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
34
|
Mejía-Giraldo JC, Gallardo C, Puertas-Mejía MA. In vitro photoprotection and antioxidant capacity of Sphagnum meridense extracts, a novel source of natural sunscreen from the mountains of Colombia. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2015-0302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Excessive ultraviolet radiation can cause skin cancer and related health problems in humans. Traditionally, organic and inorganic sunscreens have been used to minimize these effects. Besides, some phenolic compounds present in plants play an important role as photoprotectors. Sphagnum meridense (L), found in Colombia, is continuously exposed to sunlight on high mountain ecosystems. In this work, we evaluated the potential of S. meridense extracts to be applied as UVA-UVB filter in cosmetic formulations and its antioxidant capacity. The mixture acetone-37% hydrochloric acid (1%, v/v) showed the best polyphenol content and UVA-UVB absorption coefficient. These extracts also exhibited promissory UVAPF values, UVA/UVB ratio, critical wavelength (λc) and antioxidant capacity in vitro, comparable to that of conventional sunscreens.
Collapse
|
35
|
Zink A, Traidl-Hoffmann C. Grüner Tee in der Dermatologie - Mythen und Fakten. J Dtsch Dermatol Ges 2015. [DOI: 10.1111/ddg.20_12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Zink
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein; Technische Universität München; München Deutschland
- Institut für Umweltmedizin; UNIKA-T, Technische Universität München; München Deutschland
| | - Claudia Traidl-Hoffmann
- Institut für Umweltmedizin; UNIKA-T, Technische Universität München; München Deutschland
- CK-CARE; Christine Kühne Center for Allergy Research and Education; Davos Schweiz
- Ambulanz für Umweltmedizin; Klinikum Augsburg; Augsburg Deutschland
| |
Collapse
|
36
|
Abstract
Green tea consumption has a long tradition in Asian countries--especially China. The epidemiologically and experimentally observed anticarcinogenic and antiinflammatory effects of green tea have led to the implementation of green tea extracts in multiple therapeutic applications - both in dermatological and cosmeceutical preparations. The most abundant evidence exists for the anticarcinogenic and chemopreventive effect of green tea or its major constituent epigallocatechin-3-gallate. Almost equally evident is the effect in infectious diseases such as cutaneous viral infections. For external genital warts, a topical ointment with green tea extracts was licensed in the USA in 2010, and recently also in Europe. Experimental evidence pinpointing the block of central signal transduction factors in inflammatory mechanisms has led to the evaluation of catechins in inflammatory disorders such as atopic dermatitis. The belief of green tea as a "wonder weapon" against diseases dates back thousands of years. According to a Chinese legend, ancient Emperor Shen Nung noted a delightful aroma after some leaves of a nearby tree had fallen into boiling water. He immediately proclaimed the new "drink" as "heaven-sent", starting the belief - persisting until today - of green tea as a medication from nature against many different diseases. This review summarizes biological effects and clinical implications of green tea.
Collapse
Affiliation(s)
- Alexander Zink
- Department of Dermatology and Allergy Biederstein, Technische Universität München, Munich, Germany.,Institute for environmental medicine, UNIKA-T, Technischen Universität München, Munich, Germany
| | - Claudia Traidl-Hoffmann
- Institute for environmental medicine, UNIKA-T, Technischen Universität München, Munich, Germany.,CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland.,Outpatient Clinic for environmental medicine, Klinikum Augsburg, Augsburg, Germany
| |
Collapse
|
37
|
Zillich OV, Schweiggert-Weisz U, Eisner P, Kerscher M. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci 2015; 37:455-64. [PMID: 25712493 DOI: 10.1111/ics.12218] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023]
Abstract
Polyphenols are secondary plant metabolites with antioxidant, anti-inflammatory and anti-microbial activity. They are ubiquitously distributed in the plant kingdom; high amounts contain, for example, green tea and grape seeds. Polyphenolic extracts are attractive ingredients for cosmetics and pharmacy due to their beneficial biological properties. This review summarizes the effects of polyphenols in the context of anti-ageing activity. We have explored in vitro studies, which investigate antioxidant activity, inhibition of dermal proteases and photoprotective activity, mostly studied using dermal fibroblasts or epidermal keratinocytes cell lines. Possible negative effects of polyphenols were also discussed. Further, some physicochemical aspects, namely the possible interactions with emulsifiers and the influence of the cosmetic formulation on the skin delivery, were reported. Finally, few clinical studies, which cover the anti-ageing action of polyphenols on the skin after topical application, were reviewed.
Collapse
Affiliation(s)
- O V Zillich
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Papendamm 21, 20146, Hamburg, Germany
| | - U Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany
| | - P Eisner
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany
| | - M Kerscher
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Papendamm 21, 20146, Hamburg, Germany
| |
Collapse
|
38
|
Olorunnisola OS, Adetutu A, Afolayan AJ. An inventory of plants commonly used in the treatment of some disease conditions in Ogbomoso, South West, Nigeria. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:60-8. [PMID: 25435287 DOI: 10.1016/j.jep.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study was designed to take an inventory of medicinal plants, recipes and methods commonly used traditionally to treat some cardiovascular and inflammatory diseases in five local government areas in Ogbomoso, Oyo State, Nigeria. MATERIAL AND METHODS First-hand field survey through semi-structured questionnaire was employed in the 5 months study. RESULTS A total of 101 plant species (medicinal plants (80.90%), spices (17.5%) and vegetables (1.53%)) belonging to 51 different families were mentioned for the treatment of various types of cardiovascular and inflammatory diseases. The survey revealed that 51.5% of the plants mentioned are used for the management of inflammatory diseases, 34.7% for the treatment of cardiovascular diseases and 11.9% of the plants are used for the treatment of both diseases. Euphorbiaceae (7.9%) are the most frequently used families of plants for the treatment of the various types of diseases mentioned, followed by Caesalpiaceae, (4.9%), Apocynoceae (4.9%) and Poaceae (4.9%). Fifty-nine recipes are usually prepared for the treatment of the six types of inflammatory diseases while twenty-three recipes are reportedly used for the treatment of the four types of cardiovascular diseases mentioned in this study. The recipes covered in the survey were mostly prepared from leaves (37.6%) and roots (23.8%) decoction or infusions. Medications are mostly administered orally with few numbers of the recipes showing side effect. CONCLUSION The study has documented indigenous plants in Ogbomoso as a potential source for the development of new drugs for the treatment of cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- O S Olorunnisola
- Medicinal Plant and Economic Development (MPED) Research Center. University of Fort Hare, Alice 5700, South Africa; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A Adetutu
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A J Afolayan
- Medicinal Plant and Economic Development (MPED) Research Center. University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
39
|
Abstract
The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage.
Collapse
Affiliation(s)
- Nisakorn Saewan
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, Thailand
| | | |
Collapse
|
40
|
Premratanachai P, Chanchao C. Review of the anticancer activities of bee products. Asian Pac J Trop Biomed 2014; 4:337-44. [PMID: 25182716 DOI: 10.12980/apjtb.4.2014c1262] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022] Open
Abstract
Bee products have long been used in traditional medicine. The raw materials, crude extracts and purified active compounds from them have been found to exhibit interesting bioactivities, such as antimicrobial, anti-inflammatory and antioxidant activities. In addition, they have been widely used in the treatment of many immune-related diseases, as well as in recent times in the treatment of tumors. Bee product peptides induce apoptotic cell death in vitro in several transformed (cancer) human cell lines, including those derived from renal, lung, liver, prostate, bladder and lymphoid cancers. These bioactive natural products may, therefore, prove to be useful as part of a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding the in vivo and in vitro potential of selective bee products against tumor cells.
Collapse
Affiliation(s)
- Pongsathon Premratanachai
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
41
|
Malinowska P, Gliszczyńska-Świgło A, Szymusiak H. Protective effect of commercial acerola, willow, and rose extracts against oxidation of cosmetic emulsions containing wheat germ oil. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paulina Malinowska
- Faculty of Commodity Science; The Poznań University of Economics; Poznań Poland
| | | | - Henryk Szymusiak
- Faculty of Commodity Science; The Poznań University of Economics; Poznań Poland
| |
Collapse
|
42
|
Stockfleth E, Meyer T. Sinecatechins (Polyphenon E) ointment for treatment of external genital warts and possible future indications. Expert Opin Biol Ther 2014; 14:1033-43. [DOI: 10.1517/14712598.2014.913564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Barg M, Rezin GT, Leffa DD, Balbinot F, Gomes LM, Carvalho-Silva M, Vuolo F, Petronilho F, Dal-Pizzol F, Streck EL, Andrade VM. Evaluation of the protective effect of Ilex paraguariensis and Camellia sinensis extracts on the prevention of oxidative damage caused by ultraviolet radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:195-201. [PMID: 24361697 DOI: 10.1016/j.etap.2013.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 11/03/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
We evaluated the effects green and mate teas on oxidative and DNA damages in rats exposed to ultraviolet radiation. Were utilized 70 adult male Wistar rats that received daily oral or topic green or mate tea treatment during exposed to radiation by seven days. After, animals were killed by decapitation. Thiobarbituric acid-reactive species levels, protein oxidative damage were evaluated in skin and DNA damage in blood. Our results show that the rats exposed to ultraviolet radiation presented DNA damage in blood and increased protein carbonylation and lipid peroxidation in skin. Oral and topic treatment with green tea and mate tea prevented lipid peroxidation, both treatments with mate tea also prevented DNA damage. However, only topic treatment with green tea and mate tea prevented increases in protein carbonylation. Our findings contribute to elucidate the beneficial effects of green tea and mate tea, here in demonstrated by the antioxidant and antigenotoxic properties presented by these teas.
Collapse
Affiliation(s)
- Marlon Barg
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Daniela D Leffa
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Balbinot
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Vuolo
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| |
Collapse
|
44
|
Hong YH, Jung EY, Noh DO, Suh HJ. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities. Integr Med Res 2013; 3:25-33. [PMID: 28664075 PMCID: PMC5481706 DOI: 10.1016/j.imr.2013.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Background Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Methods Physical stability was evaluated by measuring the pH, precipitation, and colors at 25 ± 2 °C/ambient humidity and at 40 ± 2 °C/70% ± 5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. Results The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities (p < 0.05) compared with the formulation containing 5% normal green tea extract. Conclusion The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.
Collapse
Affiliation(s)
- Yang-Hee Hong
- Department of Food and Nutrition, Korea University, Seoul, Korea
| | - Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonju, Korea
| | - Dong Ouk Noh
- Department of Hotel Culinary Arts and Nutrition, Kaya University, Gyeongnam, Korea
| | - Hyung Joo Suh
- Department of Food and Nutrition, Korea University, Seoul, Korea
- Corresponding author. Department of Food and Nutrition, Korea University, Seoul 136-703, Korea
| |
Collapse
|
45
|
Badaboina S, Bai HW, Park CH, Jang DM, Choi BY, Chung BY. Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract. Altern Ther Health Med 2013; 13:350. [PMID: 24325618 PMCID: PMC3880216 DOI: 10.1186/1472-6882-13-350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/29/2013] [Indexed: 01/07/2023]
Abstract
Background Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such as anti-cancer activity, is unknown. Methods B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis. Results CGE inhibited skin cancer cell growth by arresting the cell cycle in the G2/M phase, and increased both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7 activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of p-AKT, p-glycogen synthase kinase-3β (GSK-3β), and p-BAD in a time-dependent manner. LY294002 inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an increase in CGE-induced apoptosis. Conclusions CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-3β signaling pathway and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE, and that CGE may be an effective therapeutic agent for treating skin cancer.
Collapse
|
46
|
Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism. J Invest Dermatol 2013; 134:1710-1717. [PMID: 24326454 PMCID: PMC4020975 DOI: 10.1038/jid.2013.530] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer.
Collapse
|
47
|
Shin SW, Jung E, Kim S, Kim JH, Kim EG, Lee J, Park D. Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS One 2013; 8:e61971. [PMID: 23626759 PMCID: PMC3633960 DOI: 10.1371/journal.pone.0061971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities.
Collapse
Affiliation(s)
- Seoung Woo Shin
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Seungbeom Kim
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
| | - Jang-Hyun Kim
- Dermiskin Life Science Institute, Pyeongtaek City, Gyunggi Do, Korea
| | - Eui-Gyun Kim
- ChiroChem Co., Ltd. Hannam University Science Park, Daejeon, Korea
| | - Jongsung Lee
- Department of Dermatological Health Management, Eulji University, Seongnam, Korea
- * E-mail: (JL); (DP)
| | - Deokhoon Park
- Biospectrum Life Science Institute, Seoungnam City, Gyunggi Do, Korea
- * E-mail: (JL); (DP)
| |
Collapse
|
48
|
|
49
|
Yoon JY, Kwon HH, Min SU, Thiboutot DM, Suh DH. Epigallocatechin-3-Gallate Improves Acne in Humans by Modulating Intracellular Molecular Targets and Inhibiting P. acnes. J Invest Dermatol 2013; 133:429-40. [DOI: 10.1038/jid.2012.292] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Scalia S, Marchetti N, Bianchi A. Comparative evaluation of different co-antioxidants on the photochemical- and functional-stability of epigallocatechin-3-gallate in topical creams exposed to simulated sunlight. Molecules 2013; 18:574-87. [PMID: 23292326 PMCID: PMC6270548 DOI: 10.3390/molecules18010574] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 11/16/2022] Open
Abstract
The catechin (−)-epigallocatechin-3-gallate (EGCG) exhibits high antioxidant activity and it has been reported to provide protection of the skin against damage induced by solar UV radiation. However, EGCG is highly unstable under sunlight. The present study aimed to compare the effectiveness of the co-antioxidant agents vitamin E, butylated hydroxytoluene, vitamin C and α-lipoic acid for their potential to protect the catechin from photochemical degradation. Model creams (oil-in-water emulsions) containing EGCG (1%, w/w) alone or combined with equimolar concentrations of co-antioxidant were exposed to a solar simulator at an irradiance corresponding to natural sunlight. Photodegradation was evaluated by HPLC-UV and HPLC-ESI-MS/MS. Addition of the co-antioxidants vitamin C and α-lipoic acid to the formulation significantly reduced the light-induced decomposition of EGCG from 76.9 ± 4.6% to 20.4 ± 2.7% and 12.6 ± 1.6%, respectively. Conversely, butylated hydroxytoluene had no effect (EGCG loss, 78.1 ± 4.6%) and vitamin E enhanced the EGCG photolysis to 84.5 ± 3.4%. The functional stability of the catechin in the creams exposed to the solar simulator was also evaluated by measuring the in vitro antioxidant activity. Following irradiation, the reduction of the EGCG formulation antioxidant power was lower (21.8%) than the extent of degradation (76.9%), suggesting the formation of photoproducts with antioxidant properties. The influence of the examined co-antioxidants on the functional stability of the catechin under simulated sunlight paralleled that measured for the EGCG photodecomposition, α-lipoic acid exerting the greatest stabilising effect (antioxidant activity decrease, 1.4%). These results demonstrated that α-lipoic acid is an effective co-antioxidant agent for the stabilization of EGCG in dermatological products for skin photoprotection.
Collapse
Affiliation(s)
- Santo Scalia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | | | | |
Collapse
|