1
|
Zeng M, Zhan C, Li Y, Liao H, Liu W, Chen G, Wang J. Melatonin prevents the transgenerational toxicity of nanoplastics in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176043. [PMID: 39241878 DOI: 10.1016/j.scitotenv.2024.176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
As a novel pollutant, microplastic pollution has become a global environmental concern. Melatonin (MT) has a protective effect on the damage caused by pollutants. However, there is still a lack of research on the transgenerational toxicity of microplastics and the alleviation of microplastics toxicity by MT. In this study, the adult zebrafish was exposed to (0, 0.1 and 1 mg/L) polystyrene nanoplastics (PSNP) with or without (1 μM) MT for 14 days, and embryos (F1) were used for experiments. Our study found that long-term exposure of parents to 1 mg/L PSNP reduced fertilization rate and survival rate of offspring, increased the deformity rate and induced embryos to hatch in advance. The growth inhibition of offspring was related to the gene transcription of the growth hormone/insulin-like growth factor axis. Moreover, PSNP caused oxidative stress in offspring, damaged immune system, reduced antioxidant capacity and induced apoptosis. MT supplementation could effectively alleviate the developmental toxicity and oxidative damage of offspring, but the negative effects brought by PSNP could not be completely eliminated. Our research provided a new reference for the protective effect of MT on transgenerational toxicity induced by PSNP.
Collapse
Affiliation(s)
- Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunhua Zhan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
El Agaty SM, Khedr S, Mostafa DKM, Wanis NA, Abou-Bakr DA. Protective role of melatonin against diclofenac-induced acute kidney injury. Life Sci 2024; 353:122936. [PMID: 39094904 DOI: 10.1016/j.lfs.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population. AIM We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement. MATERIALS AND METHODS Thirty old male Wistar rats were allocated randomly into 3 groups: Control, DF and Mel-DF groups. KEY FINDINGS Melatonin provided nephroprotective effects against DF-induced AKI via attenuating the expression of renal miR-34a and subsequently promoting the signaling of Nrf2/HO-1 with elevation of the antioxidant defense capacity and suppressing NLRP3 inflammasomes. Melatonin alleviated DF-induced hypernatremia via decreasing the ENaC expression. Renal histopathological examination revealed significant reduction in vascular congestion, mononuclear infiltration, glomerulo-tubular damage, fibrosis and TNF-α optical density. SIGNIFICANCE It can be assumed that melatonin is a promising safe therapeutic agent in controlling DF-induced AKI in elderly.
Collapse
Affiliation(s)
- Sahar Mohamed El Agaty
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Physiology, Faculty of Medicine, Galala University, Suez, Egypt; Basic Medical Sciences Department, Faculty of Pharmacy, King Salman International University, Sinai, Egypt
| | - Sherif Khedr
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Nardine Alfonse Wanis
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Ahmed Abou-Bakr
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Physiology, Faculty of Medicine, Armed Forces College of Medicine (AFCM), Cairo, Egypt.
| |
Collapse
|
3
|
Pham TH, Tian X, Zhao H, Li T, Lu L. Genome-wide characterization of COMT family and regulatory role of CsCOMT19 in melatonin synthesis in Camellia sinensis. BMC PLANT BIOLOGY 2024; 24:51. [PMID: 38225581 PMCID: PMC10790539 DOI: 10.1186/s12870-023-04702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Caffeic acid O-methyltransferase (COMT) is a key enzyme that regulates melatonin synthesis and is involved in regulating the growth, development, and response to abiotic stress in plants. Tea plant is a popular beverage consumed worldwide, has been used for centuries for its medicinal properties, including its ability to reduce inflammation, improve digestion, and boost immune function. By analyzing genetic variation within the COMT family, while helping tea plants resist adversity, it is also possible to gain a deeper understanding of how different tea varieties produce and metabolize catechins, then be used to develop new tea cultivars with desired flavor profiles and health benefits. RESULTS In this study, a total of 25 CsCOMT genes were identified based on the high-quality tea (Camellia sinensis) plant genome database. Phylogenetic tree analysis of CsCOMTs with COMTs from other species showed that COMTs divided into four subfamilies (Class I, II, III, IV), and CsCOMTs was distributed in Class I, Class II, Class III. CsCOMTs not only undergoes large-scale gene recombination in pairs internally in tea plant, but also shares 2 and 7 collinear genes with Arabidopsis thaliana and poplar (Populus trichocarpa), respectively. The promoter region of CsCOMTs was found to be rich in cis-acting elements associated with plant growth and stress response. By analyzing the previously transcriptome data, it was found that some members of CsCOMT family exhibited significant tissue-specific expression and differential expression under different stress treatments. Subsequently, we selected six CsCOMTs to further validated their expression levels in different tissues organ using qRT-PCR. In addition, we silenced the CsCOMT19 through virus-induced gene silencing (VIGS) method and found that CsCOMT19 positively regulates the synthesis of melatonin in tea plant. CONCLUSION These results will contribute to the understanding the functions of CsCOMT gene family and provide valuable information for further research on the role of CsCOMT genes in regulating tea plant growth, development, and response to abiotic stress.
Collapse
Affiliation(s)
- Thanh Huyen Pham
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xingyu Tian
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Huimin Zhao
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tong Li
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Litang Lu
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
4
|
Bee R, Ahmad M, Verma S. A Review on Exploring the Potential of Vincamine and Melatonin as an Effective Anti-depressant Agent. Curr Drug Res Rev 2024; 16:395-402. [PMID: 37622717 DOI: 10.2174/2589977515666230825095036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder and one of the leading causes of disability around the world. Herbal and synthetic medications used to treat depression, may interrupt the therapy process and cause adverse effects. Currently, the use of medicinal and phytochemical plants, which have various therapeutic effects and has potential strategy for treating depression. According to the studies, medicinal plants have a variety of effects on the brain system and have antidepressant properties such as synaptic modulation of serotonin, noradrenalin and dopamine as well as inflammatory mediators. According to the literature review, Vinca Rosea extract has a variety of pharmacological activities, but there is no evidence of its antidepressant properties. OBJECTIVES The main aim of the present study is to gather data from the literature review regarding the antidepressant activity of vincamine alone and along with melatonin. METHODS According to the review antidepressant activity of various medications can be tested using two different types of studies, including in-vivo and in-vitro. RESULTS Clinical and preclinical research suggests that one of the main mediators in the pathophysiology of depression seems to be stress. Depression can be evaluated using experimental methods based on a variety of physical indicators, including locomotor activity, rearing, faeces, and the quantity of entries in the centre square (in-vivo and in-vitro). Biological conditions can be used to find it as well. It has been successfully concluded that vincamine, either alone or in combination with melatonin, may provide a potential role as an antidepressant. CONCLUSION According to the Globe Health Organization, depression will become the most common cause of loss of interest in working in the world. As a result, depression research is one of the most significant ways in which we might create new treatments in the form of vincamine and combination with melatonin for depression and improve existing therapies to make them work better for depressed people. It will also aid in the development and creation of novel ways for the better treatment of depression.
Collapse
Affiliation(s)
- Rizwana Bee
- Shri Ram Murti Smarak College of Engineering & Technology (Pharmacy) Bareilly, Uttar Pradesh, 243202, India
| | - Mohammad Ahmad
- Department of Pharmacy, Integral University Lucknow, Lucknow, India
| | - Shashi Verma
- Department of Pharmaceutics, Shri Ram Murti Smarak College of Engineering & Technology (Pharmacy) Bareilly, Uttar Pradesh, 243202, India
| |
Collapse
|
5
|
Lee K, Back K. Escherichia coli RimI Encodes Serotonin N-Acetyltransferase Activity and Its Overexpression Leads to Enhanced Growth and Melatonin Biosynthesis. Biomolecules 2023; 13:908. [PMID: 37371488 DOI: 10.3390/biom13060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) functions as the penultimate or final enzyme in melatonin biosynthesis, depending on the substrate. The Escherichia coli orthologue of archaeal SNAT from Thermoplasma volcanium was identified as RimI (EcRimI), with 42% amino acid similarity to archaeal SNAT. EcRimI has been reported to be an N-acetyltransferase enzyme. Here, we investigated whether EcRimI also exhibits SNAT enzyme activity. To achieve this goal, we purified recombinant EcRimI and examined its SNAT enzyme kinetics. As expected, EcRimI showed SNAT activity toward various amine substrates including serotonin and 5-methoxytryptamine, with Km and Vmax values of 531 μM and 528 pmol/min/mg protein toward serotonin and 201 μM and 587 pmol/min/mg protein toward 5-methoxytryptamine, respectively. In contrast to the rimI mutant E. coli strain that showed no growth defect, the EcRimI overexpression strain exhibited a 2-fold higher growth rate than the control strain after 24 h incubation in nutrient-rich medium. The EcRimI overexpression strain produced more melatonin than the control strain in the presence of 5-methoxytryptamine. The enhanced growth effect of EcRimI overexpression was also observed under cadmium stress. The higher growth rate associated with EcRimI expression was attributed to increased protein N-acetyltransferase activity, increased synthesis of melatonin, or the combined effects of both.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
7
|
Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. BIOLOGY 2023; 12:89. [PMID: 36671781 PMCID: PMC9855654 DOI: 10.3390/biology12010089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Throughout the history of melatonin research, almost exclusive focus has been on nocturnally-generated pineal melatonin production, which accounts for its circadian rhythm in the blood and cerebrospinal fluid; these light/dark melatonin cycles drive the daily and seasonal photoperiodic alterations in organismal physiology. Because pineal melatonin is produced and secreted primarily at night, it is referred to as the chemical expression of darkness. The importance of the other sources of melatonin has almost been ignored. Based on current evidence, there are at least four sources of melatonin in vertebrates that contribute to the whole-body melatonin pool. These include melatonin produced by (1) the pineal gland; (2) extrapineal cells, tissues, and organs; (3) the microbiota of the skin, mouth, nose, digestive tract, and vagina as well as (4) melatonin present in the diet. These multiple sources of melatonin exhibit differentially regulated mechanisms for its synthesis. Visible light striking the retina or an intense physical stimulus can suppress nocturnal pineal melatonin levels; in contrast, there are examples where extrapineal melatonin levels are increased during heavy exercise in daylight, which contains the whole range of NIR radiation. The cumulative impact of all cells producing augmented extrapineal melatonin is sufficient to elevate sweat concentrations, and potentially, if the exposure is sustained, to also increasing the circulating values. The transient increases in sweat and plasma melatonin support the premise that extrapineal melatonin has a production capacity that exceeds by far what can be produced by the pineal gland, and is used to maintain intercellular homeostasis and responds to rapid changes in ROS density. The potential regulatory mechanisms of near infrared light (NIR) on melatonin synthesis are discussed in detail herein. Combined with the discovery of high levels of melanopsin in most fat cells and their response to light further calls into question pineal centric theories. While the regulatory processes related to microbiota-derived melatonin are currently unknown, there does seem to be crosstalk between melatonin derived from the host and that originating from microbiota.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | | | - Ruediger Hardeland
- Johann Friedric Blumenbach Institute of Zoology and Anthropology, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
8
|
Ávila C, Vinay JI, Arese M, Saso L, Rodrigo R. Antioxidant Intervention against Male Infertility: Time to Design Novel Strategies. Biomedicines 2022; 10:biomedicines10123058. [PMID: 36551814 PMCID: PMC9775742 DOI: 10.3390/biomedicines10123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a highly prevalent condition, affecting 9-20% of couples worldwide. Among the identifiable causes, the male factor stands out in about half of infertile couples, representing a growing problem. Accordingly, there has been a decline in both global fertility rates and sperm counts in recent years. Remarkably, nearly 80% of cases of male infertility (MI) have no clinically identifiable aetiology. Among the mechanisms likely plausible to account for idiopathic cases, oxidative stress (OS) has currently been increasingly recognized as a key factor in MI, through phenomena such as mitochondrial dysfunction, lipid peroxidation, DNA damage and fragmentation and finally, sperm apoptosis. In addition, elevated reactive oxygen species (ROS) levels in semen are associated with worse reproductive outcomes. However, despite an increasing understanding on the role of OS in the pathophysiology of MI, therapeutic interventions based on antioxidants have not yet provided a consistent benefit for MI, and there is currently no clear consensus on the optimal antioxidant constituents or regimen. Therefore, there is currently no applicable antioxidant treatment against this problem. This review presents an approach aimed at designing an antioxidant strategy based on the particular biological properties of sperm and their relationships with OS.
Collapse
Affiliation(s)
- Cristóbal Ávila
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - José Ignacio Vinay
- Urology Department, University of Chile Clinical Hospital, Santiago 8380000, Chile
- Andrology Unit, Shady Grove Fertility, Santiago 7650672, Chile
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-229-786-126
| |
Collapse
|
9
|
Nandi S, Ahmed S, Saxena AK. Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites. Curr Top Med Chem 2022; 22:2029-2044. [PMID: 35382719 DOI: 10.2174/1568026622666220405121643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malaria, a global challenge, is a parasitic disease caused by Plasmodium species. Approximately 229 million cases of malaria were reported in 2019. Major incidences occur in various continents, including African and Eastern Mediterranean Continents and South-East Asia. INTRODUCTION Despite the overall decline in global incidence from 2010 to 2018, the rate of decline has been almost constant since 2014. The morbidity and mortality have been accelerated due to reactive oxygen species (ROS) caused by oxidative stress generated by the parasite responsible for the destruction of host metabolism and cell nutrients. METHODS The excessive release of free radicals is associated with the infection in the animal or human body by the parasites. This may be related to a reduction in nutrients required for the generation of antioxidants and the destruction of cells by parasite activity. Therefore, an intensive literature search has been carried out to find the natural antioxidants used to neutralize the free radicals generated during malarial infection. RESULTS The natural antioxidants may be useful as an adjuvant treatment along with the antimalarial chemotherapeutics to reduce the death rate and enhance the success rate of malaria treatment. CONCLUSION In this manuscript, an attempt has been made to provide significant insight into the antioxidant activities of herbal extracts against malaria parasites.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Anil Kumar Saxena
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| |
Collapse
|
10
|
Mannino G, Pernici C, Serio G, Gentile C, Bertea CM. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. Int J Mol Sci 2021; 22:ijms22189996. [PMID: 34576159 PMCID: PMC8469784 DOI: 10.3390/ijms22189996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Carlo Pernici
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| |
Collapse
|
11
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
12
|
Liu Y, Bian Y, Luo X, Wang C, Mu D, Pan G, Wu J, Shi H. Synergistic effect of docosahexaenoic acid or conjugated linoleic acid with caffeic acid on ameliorating oxidative stress of HepG2 cells. J Food Sci 2021; 86:3240-3251. [PMID: 34118075 DOI: 10.1111/1750-3841.15775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Exploring the synergistic effect of docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) with caffeic acid (CA) on ameliorating oxidative stress, thereby introducing CA to DHA or CLA will contribute significantly to enhance the bioactivity. We observed that DHA or CLA with CA promoted the recovery of intact individual morphology and the decline of cavities inside the nucleus and apoptosis under the observation of confocal laser scanning microscopy and fluorescent inverted microscope. The activity of intracellular antioxidant enzymes catalase (CAT) and glutathione peroxidase (GSH-Px), lactate dehydrogenase (LDH) leakage, pyruvate and malondialdehyde and reactive oxygen species (ROS), cellular morphology, and cell cycle were analyzed. Our results showed that DHA or CLA with CA enhanced the activity of CAT and GSH-Px, decreased LDH leakage and the number of apoptotic, significantly inhibited (ROS-induced cellular injury. Cell arrest in G1 and G2 phase during cell mitosis was reduced by the measurement of flow cytometry. DHA or CLA combined with CA could markedly strengthen the free radical scavenging and endogenous antioxidant defense capacity on HepG2 cells. This study provides a new direction in the application of synergies to antioxidant compounds. PRACTICAL APPLICATION: Caffeic acid (CA) can synergize with docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) to enhance antioxidant capacity. This study highlighted an effect of ameliorating oxidative stress injury DHA or CLA with CA on HepG2 cells. The data indicated that DHA or CLA with CA might be used to relieve oxidative stress damage.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
13
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
14
|
Hardeland R. Divergent Importance of Chronobiological Considerations in High- and Low-dose Melatonin Therapies. Diseases 2021; 9:18. [PMID: 33803450 PMCID: PMC8006026 DOI: 10.3390/diseases9010018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin has been used preclinically and clinically for different purposes. Some applications are related to readjustment of circadian oscillators, others use doses that exceed the saturation of melatonin receptors MT1 and MT2 and are unsuitable for chronobiological purposes. Conditions are outlined for appropriately applying melatonin as a chronobiotic or for protective actions at elevated levels. Circadian readjustments require doses in the lower mg range, according to receptor affinities. However, this needs consideration of the phase response curve, which contains a silent zone, a delay part, a transition point and an advance part. Notably, the dim light melatonin onset (DLMO) is found in the silent zone. In this specific phase, melatonin can induce sleep onset, but does not shift the circadian master clock. Although sleep onset is also under circadian control, sleep and circadian susceptibility are dissociated at this point. Other limits of soporific effects concern dose, duration of action and poor individual responses. The use of high melatonin doses, up to several hundred mg, for purposes of antioxidative and anti-inflammatory protection, especially in sepsis and viral diseases, have to be seen in the context of melatonin's tissue levels, its formation in mitochondria, and detoxification of free radicals.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
15
|
Back K. Melatonin metabolism, signaling and possible roles in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:376-391. [PMID: 32645752 DOI: 10.1111/tpj.14915] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 05/20/2023]
Abstract
Melatonin is a multifunctional biomolecule found in both animals and plants. In this review, the biosynthesis, levels, signaling, and possible roles of melatonin and its metabolites in plants is summarized. Tryptamine 5-hydroxylase (T5H), which catalyzes the conversion of tryptamine into serotonin, has been proposed as a target to create a melatonin knockout mutant presenting a lesion-mimic phenotype in rice. With a reduced anabolic capacity for melatonin biosynthesis and an increased catabolic capacity for melatonin metabolism, all plants generally maintain low melatonin levels. Some plants, including Arabidopsis and Nicotiana tabacum (tobacco), do not possess tryptophan decarboxylase (TDC), the first committed step enzyme required for melatonin biosynthesis. Major melatonin metabolites include cyclic 3-hydroxymelatonin (3-OHM) and 2-hydroxymelatonin (2-OHM). Other melatonin metabolites such as N1 -acetyl-N2 -formyl-5-methoxykynuramine (AFMK), N-acetyl-5-methoxykynuramine (AMK) and 5-methoxytryptamine (5-MT) are also produced when melatonin is applied to Oryza sativa (rice). The signaling pathways of melatonin and its metabolites act via the mitogen-activated protein kinase (MAPK) cascade, possibly with Cand2 acting as a melatonin receptor, although the integrity of Cand2 remains controversial. Melatonin mediates many important functions in growth stimulation and stress tolerance through its potent antioxidant activity and function in activating the MAPK cascade. The concentration distribution of melatonin metabolites appears to be species specific because corresponding enzymes such as M2H, M3H, catalases, indoleamine 2,3-dioxygenase (IDO) and N-acetylserotonin deacetylase (ASDAC) are differentially expressed among plant species and even among different tissues within species. Differential levels of melatonin and its metabolites can lead to differential physiological effects among plants when melatonin is either applied exogenously or overproduced through ectopic overexpression.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
16
|
Zhuang W, Liu T, Shu X, Wang H, Wang Z, Wang T, Zhang F, Qu S. Overexpression of MzASMT 1, a Gene From Malus zumi Mats, Enhances Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:561903. [PMID: 33193488 PMCID: PMC7649149 DOI: 10.3389/fpls.2020.561903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 05/13/2023]
Abstract
Melatonin, widely found in various plants as a new antioxidant, could protect plants from various biotic and/or abiotic stresses, including salt stress. MzASMT 1 (KJ123721), a gene from Malus zumi Mats, is a key enzyme required for melatonin synthesis. However, whether the overexpression of MzASMT 1 could regulate the synthesis of melatonin and improve the salt tolerance in tobacco remains unknown. In this study, the overexpression of MzASMT 1 in tobacco increased the melatonin content, and the transgenic lines owned higher salt tolerance capacity. The transgenic lines overexpressing MzASMT 1 exhibited lower degree of leaf wilting; much more fresh weight; higher plant height; longer root; higher relative water content (RWC) of leaves, stem, and root; and higher chlorophyll content and Fv/Fm, which makes transgenic lines better adapt to salt stress. The transgenic lines also had higher accumulation of proline, lower accumulation of malondialdehyde (MDA), and improved antioxidant systems, which protected plants from cell damage and oxidative stress due to excess reactive oxygen species (ROS) accumulation under salt treatment. The transcription of salt response genes was much more highly activated in transgenic lines than in wild type under salt stress. The above results contributed to the understanding of functions for MzASMT 1 in tobacco under salt stress and provided a new choice for the application of MzASMT 1 in improving plant salt tolerance.
Collapse
Affiliation(s)
- Weibing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Tianyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Hongxue Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-sen), Nanjing, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Hosseinzadeh A, Kamrava SK, Moore BCJ, Reiter RJ, Ghaznavi H, Kamali M, Mehrzadi S. Molecular Aspects of Melatonin Treatment in Tinnitus: A Review. Curr Drug Targets 2020; 20:1112-1128. [PMID: 30892162 DOI: 10.2174/1389450120666190319162147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Tinnitus is a hearing disorder characterized by the perception of sound without external acoustic stimuli, which is caused by damage to the auditory system in response to excessive levels of noise, ototoxic agents and aging. Neural plasticity, oxidative/nitrosative stress and apoptosis play important roles in the pathogenesis of tinnitus. The expression of neural plasticity related to excessive glutamatergic neurotransmission leads to generation of abnormal sound in one's ears or head. Furthermore, hyperactivation and over-expression of NMDA receptors in response to excessive release of glutamate contribute to the calcium overload in the primary auditory neurons and subsequent cytotoxicity. Reactive oxygen/nitrogen species are endogenously produced by different type of cochlear cells under pathological conditions, which cause direct damage to the intracellular components and apoptotic cell death. Cochlear hair-cell death contributes to the progressive deafferentation of auditory neurons, which consequently leads to the aberrant activity in several parts of the auditory pathway. Therefore, targeting neural plasticity, oxidative/nitrosative stress, apoptosis and autophagy may ameliorate tinnitus. Melatonin is an endogenously produced indoleamine synchronizing circadian and circannual rhythms. Based on laboratory studies indicating the protective effect of melatonin against cochlear damage induced by acoustic trauma and ototoxic agents, and also clinical studies reporting the ability of melatonin to minimize the severity of tinnitus, melatonin is suggested to be a treatment option for the patient with tinnitus. Herein, we describe the ameliorative effect of melatonin on tinnitus, focusing on neural plasticity, oxidative/nitrosative stress, apoptotsis and autophagy.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Kamali
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ilyasov I, Beloborodov V, Antonov D, Dubrovskaya A, Terekhov R, Zhevlakova A, Saydasheva A, Evteev V, Selivanova I. Flavonoids with Glutathione Antioxidant Synergy: Influence of Free Radicals Inflow. Antioxidants (Basel) 2020; 9:antiox9080695. [PMID: 32756351 PMCID: PMC7465956 DOI: 10.3390/antiox9080695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
This report explores the antioxidant interaction of combinations of flavonoid–glutathione with different ratios. Two different 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS•+)-based approaches were applied for the elucidation of the antioxidant capacity of the combinations. Despite using the same radical, the two approaches employ different free radical inflow systems: An instant, great excess of radicals in the end-point decolorization assay, and a steady inflow of radicals in the lag-time assay. As expected, the flavonoid–glutathione pairs showed contrasting results in these two approaches. All the examined combinations showed additive or light subadditive antioxidant capacity effects in the decolorization assay. This effect showed slight dilution dependence and did not change when the initial ABTS•+ concentration was two times as high or low. However, in the lag-time assay, different types of interaction were detected, from subadditivity to considerable synergy. Taxifolin–glutathione combinations demonstrated the greatest synergy, at up to 112%; quercetin and rutin, in combination with glutathione, revealed moderate synergy in the 30–70% range; while morin–glutathione appeared to be additive or subadditive. In general, this study demonstrated that, on the one hand, the effect of flavonoid–glutathione combinations depends both on the flavonoid structure and molar ratio; on the other hand, the manifestation of the synergy of the combination strongly depends on the mode of inflow of the free radicals.
Collapse
Affiliation(s)
- Igor Ilyasov
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
- Correspondence: ; Tel.: +7-985-764-0744
| | - Vladimir Beloborodov
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Daniil Antonov
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Anna Dubrovskaya
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Roman Terekhov
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Anastasiya Zhevlakova
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Asiya Saydasheva
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| | - Vladimir Evteev
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, Petrovsky blvd. 8/2, 127051 Moscow, Russia;
| | - Irina Selivanova
- Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; (V.B.); (D.A.); (A.D.); (R.T.); (A.Z.); (A.S.); (I.S.)
| |
Collapse
|
19
|
Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int J Mol Sci 2020; 21:ijms21031131. [PMID: 32046308 PMCID: PMC7037303 DOI: 10.3390/ijms21031131] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation-based assays are among the most abundant antioxidant capacity assays, together with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-based assays according to the Scopus citation rates. The main objective of this review was to elucidate the reaction pathways that underlie the ABTS/potassium persulfate decolorization assay of antioxidant capacity. Comparative analysis of the literature data showed that there are two principal reaction pathways. Some antioxidants, at least of phenolic nature, can form coupling adducts with ABTS•+, whereas others can undergo oxidation without coupling, thus the coupling is a specific reaction for certain antioxidants. These coupling adducts can undergo further oxidative degradation, leading to hydrazindyilidene-like and/or imine-like adducts with 3-ethyl-2-oxo-1,3-benzothiazoline-6-sulfonate and 3-ethyl-2-imino-1,3-benzothiazoline-6-sulfonate as marker compounds, respectively. The extent to which the coupling reaction contributes to the total antioxidant capacity, as well as the specificity and relevance of oxidation products, requires further in-depth elucidation. Undoubtedly, there are questions as to the overall application of this assay and this review adds to them, as specific reactions such as coupling might bias a comparison between antioxidants. Nevertheless, ABTS-based assays can still be recommended with certain reservations, particularly for tracking changes in the same antioxidant system during storage and processing.
Collapse
|
20
|
Hancı F, Ünal H, Arslan A. Effects of L-Tryptophan and Melatonin on Seed Germination Performance of Radish and Spinach in Low and High Temperature Conditions. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2019. [DOI: 10.24180/ijaws.570673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
22
|
Oxidative stress and stroke: a review of upstream and downstream antioxidant therapeutic options. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02940-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Jou MJ, Peng TI, Reiter RJ. Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca 2+ stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res 2019; 66:e12538. [PMID: 30415481 DOI: 10.1111/jpi.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Cyclic 3-hydroxymelatonin (C3-OHM) and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) are two major cascade metabolites of melatonin. We previously showed melatonin provides multiple levels of mitochondria-targeted protection beyond as a mitochondrial antioxidant during ionomycin-induced mitochondrial Ca2+ (mCa2+ ) stress in RBA1 astrocytes. Using noninvasive laser scanning fluorescence coupled time-lapse digital imaging microscopy, this study investigated whether C3-OHM and AFMK also provide mitochondrial levels of protection during ionomycin-induced mCa2+ stress in RBA1 astrocytes. Interestingly, precise temporal and spatial dynamic live mitochondrial images revealed that C3-OHM and AFMK prevented specifically mCa2+ -mediated mitochondrial reactive oxygen species (mROS) formation and hence mROS-mediated depolarization of mitochondrial membrane potential (△Ψm ) and permanent lethal opening of the MPT (p-MPT). The antioxidative effects of AFMK, however, were less potent than that of C3-OHM. Whether C3-OHM and AFMK targeted directly the MPT was investigated under a condition of "oxidation free-Ca2+ stress" using a classic antioxidant vitamin E to remove mCa2+ -mediated mROS stress and the potential antioxidative effects of C3-OHM and AFMK. Intriguingly, two compounds still effectively postponed "oxidation free-Ca2+ stress"-mediated depolarization of △Ψm and p-MPT. Measurements using a MPT pore-specific indicator Calcein further identified that C3-OHM and AFMK, rather than inhibiting, stabilized the MPT in its transient protective opening mode (t-MPT), a critical mechanism to reduce overloaded mROS and mCa2+ . These multiple layers of mitochondrial protection provided by C3-OHM and AFMK thus crucially allow melatonin to extend its metabolic cascades of mitochondrial protection during mROS- and mCa2+ -mediated MPT-associated apoptotic stresses and may provide therapeutic benefits against astrocyte-mediated neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Mei-Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
24
|
Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, García IM, Cuello-Carrión FD, Fornés MW, Ferder L, Diez ER, Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70-VDR increase. J Pineal Res 2018; 65:e12513. [PMID: 29851143 DOI: 10.1111/jpi.12513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis/drug effects
- Fibrosis/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Male
- Melatonin/therapeutic use
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myocardium/metabolism
- NADPH Oxidases/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Tachycardia, Ventricular/drug therapy
- Tachycardia, Ventricular/metabolism
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Mariana Casarotto
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan Pablo Calvo
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Isabel Mercedes García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
25
|
Barlow KM, Esser MJ, Veidt M, Boyd R. Melatonin as a Treatment after Traumatic Brain Injury: A Systematic Review and Meta-Analysis of the Pre-Clinical and Clinical Literature. J Neurotrauma 2018; 36:523-537. [PMID: 29901413 DOI: 10.1089/neu.2018.5752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is common; however, effective treatments of the secondary brain injury are scarce. Melatonin is a potent, nonselective neuroprotective and anti-inflammatory agent that is showing promising results in neonatal brain injury. The aim of this study was to systematically evaluate the pre-clinical and clinical literature on the effectiveness of melatonin in improving outcome after TBI. Using the systematic review protocol for animal intervention studies (SYRCLE) and Cochrane methodology for clinical studies, a search of English-language articles was performed. Eligible studies were identified and data were extracted. Quality assessment was performed using the SYRCLE risk of bias tool. Meta-analyses were performed using standardized mean differences (SMD). Seventeen studies (15 pre-clinical, 2 clinical) met inclusion criteria. There was heterogeneity in the studies, and all had moderate-to-low risk of bias. Meta-analysis of pre-clinical data revealed an overall positive effect on neurobehavioural outcome with SMD of 1.51 (95% CI: 1.06-1.96). Melatonin treatment had a favorable effect on neurological status, by an SMD of 1.35 (95% CI: 0.83-1.88), and on cognition by an SMD of 1.16 (95% CI: 0.4-1.92). Melatonin decreased the size of the contusion by an SMD of 2.22 (95% CI: 0.8--3.59) and of cerebral edema by an SMD of 1.91 (95% CI: 1.08-2.74). Only two clinical studies were identified. They were of low quality, were used for symptom management, and were of uncertain significance. In conclusion, there is evidence that melatonin treatment after TBI significantly improves both behavioral outcomes and pathological outcomes; however, significant research gaps exist, especially in clinical populations.
Collapse
Affiliation(s)
- Karen M Barlow
- 1 Department of Paediatric Neurology, Queensland Cerebral Palsy and Rehabilitation Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland , Queensland, Australia
| | - Michael J Esser
- 2 Department of Paediatric Neurology, Neurocritical Care Program, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada
| | - Myra Veidt
- 2 Department of Paediatric Neurology, Neurocritical Care Program, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada
| | - Roslyn Boyd
- 3 Department of Cerebral Palsy and Rehabilitation Research, Queensland Cerebral Palsy and Rehabilitation Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland , Queensland, Australia
| |
Collapse
|
26
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
27
|
Zheng M, Tong J, Li WP, Chen ZJ, Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures. Gynecol Endocrinol 2018; 34:446-450. [PMID: 29185361 DOI: 10.1080/09513590.2017.1409713] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of the present study was to evaluate the possible relationship between melatonin levels in the follicular fluid (FF) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive treatment. Sixty-three females (20 to 40 years old) scheduled for IVF were divided into three groups based on their antral follicle count (AFC). We determined FF melatonin concentrations in group A (AFC≦6, n = 21), group B (7≦AFC≦14, n = 22), group C (AFC≧15, n = 20) on oocyte retrieval day. Patients in group C had significantly higher melatonin levels as compared to patients in groups A and B (p < .001). Melatonin levels of the patients were significantly positively correlated with antral follicle count (AFC, p < .001), serum anti-Müllerian hormone(AMH) levels (p =.001), serum estradiol (E2) levels on human chorionic gonadotropin (HCG) administration day (p = .001), total follicle-stimulating hormone (FSH) dose (p = .002), starting FSH dose (p = .035), number of retrieved oocytes (p < .001), total fertilized oocytes (p < .001), normally fertilized oocytes (p < .001), cleaved oocytes (p < .001), number of high-quality day 3 embryos (p = .004), blastocysts obtained (p = .007) and total embryos obtained (day3 embryos + day5/6 blastocysts) (p = .005). The levels were significantly negatively correlated with age (p < .001), basal serum FSH levels (p = .003), serum FSH (p = .001) and serum luteinizing hormone (LH) levels (p = .003) on HCG administration day. This is the first demonstration of a significant positive correlation of melatonin concentrations with AFC in patients undergoing IVF. We propose that FF melatonin levels may influence the IVF outcomes.
Collapse
Affiliation(s)
- Min Zheng
- a Center for Reproductive Medicine , Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Jing Tong
- a Center for Reproductive Medicine , Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Wei-Ping Li
- a Center for Reproductive Medicine , Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Zi-Jiang Chen
- a Center for Reproductive Medicine , Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Cong Zhang
- a Center for Reproductive Medicine , Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
- c Key Laboratory of Animal Resistance Research College of Life Science , Shandong Normal University , Ji'nan , Shandong , China
| |
Collapse
|
28
|
Sliwiak J, Sikorski M, Jaskolski M. PR-10 proteins as potential mediators of melatonin-cytokinin cross-talk in plants: crystallographic studies of LlPR-10.2B isoform from yellow lupine. FEBS J 2018; 285:1907-1922. [PMID: 29630775 DOI: 10.1111/febs.14455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022]
Abstract
LlPR-10.2B, a Pathogenesis-related class 10 (PR-10) protein from yellow lupine (Lupinus luteus) was crystallized in complex with melatonin, an emerging important plant regulator and antioxidant. The structure reveals two molecules of melatonin bound in the internal cavity of the protein, plus a very well-defined electron density near the cavity entrance, corresponding to an unknown ligand molecule comprised of two flat rings, which is most likely a product of melatonin transformation. In a separate LlPR-10.2B co-crystallization experiment with an equimolar mixture of melatonin and trans-zeatin, which is a cytokinin phytohormone well recognized as a PR-10-binding partner, a quaternary 1 : 1 : 1 : 1 complex was formed, in which one of the melatonin-binding sites has been substituted with trans-zeatin, whereas the binding of melatonin at the second binding site and binding of the unknown ligand are undisturbed. This unusual complex, when compared with the previously described PR-10/trans-zeatin complexes and with the emerging structural information about melatonin binding by PR-10 proteins, provides intriguing insights into the role of PR-10 proteins in phytohormone regulation in plants, especially with the involvement of melatonin, and implicates the PR-10 proteins as low-affinity melatonin binders under the conditions of elevated melatonin concentration. DATABASES Atomic coordinates and processed structure factors corresponding to the final models of the LlPR-10.2B/melatonin and LlPR-10.2B/melatonin + trans-zeatin complexes have been deposited with the Protein Data Bank (PDB) under the accession codes 5MXB and 5MXW. The corresponding raw X-ray diffraction images have been deposited in the RepOD Repository at the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw, Poland, and are available for download with the following Digital Object Identifiers (DOI): https://doi.org/10.18150/repod.9923638 and https://doi.org/10.18150/repod.6621013.
Collapse
Affiliation(s)
- Joanna Sliwiak
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michal Sikorski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
29
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
30
|
Erland LAE, Saxena PK, Murch SJ. Melatonin in plant signalling and behaviour. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:58-69. [PMID: 32291021 DOI: 10.1071/fp16384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 05/23/2023]
Abstract
Melatonin is an indoleamine neurotransmitter that has recently become well established as an important multi-functional signalling molecule in plants. These signals have been found to induce several important physiological responses that may be interpreted as behaviours. The diverse processes in which melatonin has been implicated in plants have expanded far beyond the traditional roles for which it has been implicated in mammals, which include sleep, tropisms and reproduction. These functions, however, appear to also be important melatonin mediated processes in plants, though the mechanisms underlying these functions have yet to be fully elucidated. Mediation or redirection of plant physiological processes induced by melatonin can be summarised as a series of behaviours including, among others: herbivore defence, avoidance of undesirable circumstances or attraction to opportune conditions, problem solving and response to environmental stimulus. As the mechanisms of melatonin action are elucidated, its involvement in plant growth, development and behaviour is likely to expand beyond the aspects discussed in this review and hold promise for applications in diverse fundamental and applied plant sciences including conservation, cryopreservation, morphogenesis, industrial agriculture and natural health products.
Collapse
Affiliation(s)
- Lauren A E Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
31
|
Reina M, Martínez A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Hardeland R. Taxon- and Site-Specific Melatonin Catabolism. Molecules 2017; 22:molecules22112015. [PMID: 29160833 PMCID: PMC6150314 DOI: 10.3390/molecules22112015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023] Open
Abstract
Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT) plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO), which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Bürgerstr 50, D-37073 Göttingen, Germany.
| |
Collapse
|
33
|
Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci 2017; 74:3883-3896. [PMID: 28785805 PMCID: PMC11107625 DOI: 10.1007/s00018-017-2615-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO2, hydroxyl (·OH) and carbonate radicals (CO3·-) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O2·-). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach, Institute of Zoology and Anthropology, University of Göttingen, Bürgerstr. 50, 37073, Göttingen, Germany.
| |
Collapse
|
34
|
Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 2017; 175:3209-3219. [PMID: 28967098 DOI: 10.1111/bph.14058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin, the primary indoleamine hormone of the mammalian pineal gland, is known to have a plethora of neuroregulatory, neuroprotective and other properties. Melatonergic signalling is mediated by its two GPCRs, MT1 and MT2 , which are widely expressed in the mammalian CNS. Melatonin levels and receptor expression often show a decrease during normal ageing, and this reduction may be accelerated in some disease states. Depleted melatonergic signalling has been associated with neuropsychiatric dysfunction and impairments in cognition, memory, neurogenesis and neurorestorative processes. The anticonvulsant and mood stabilizer, valproic acid (VPA), up-regulates melatonin MT1 and/or MT2 receptor expression in cultured cells and in the rat brain. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. Interestingly, other HDAC inhibitors, such as trichostatin A, which are structurally distinct from VPA, can also up-regulate melatonin receptor expression, unlike a VPA analogue, valpromide, which lacks HDAC inhibitory activity. Moreover, VPA increases histone H3 acetylation along the length of the MT1 gene promoter in rat C6 cells. These findings indicate that an epigenetic mechanism, linked to histone hyperacetylation/chromatin remodelling and associated changes in gene transcription, is involved in the up-regulation of melatonin receptors by VPA. Epigenetic induction of MT1 and/or MT2 receptor expression, in areas where these receptors are lost because of ageing, injury or disease, may be a promising therapeutic avenue for the management of CNS dysfunction and other disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Sarra G Bahna
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
35
|
Yaghmaei P, Dehestani B, Ghorbani S, Abbasi F, Ebrahim-Habibi A. Indole-based derivatives effect on rats with polycystic ovary syndrome. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
|
37
|
Sarkar S, Mukherjee A, Das N, Swarnakar S. Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators. Exp Gerontol 2017; 92:13-22. [PMID: 28285147 DOI: 10.1016/j.exger.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
Cerebral ischemia-reperfusion (CIR) injury occurs as a result of oxygen occlusion in the carotid artery through embolus or thrombus formation or cerebrovascular hemorrhage. The oxygen thrust during reperfusion causes the generation of reactive oxidative species (ROS) which exert a potential threat to neuronal survival. ROS may possibly be arrested by antioxidants. After CIR, extracellular matrix remodeling takes place, which is governed by matrix metalloproteinases (MMPs). Augmentation of lipid per oxidation, perturbation of antioxidant enzyme activities and the loss of pyramidal neuronal cells in rat brain were attributed to CIR injury. Melatonin can readily cross the blood-brain barrier (BBB) to exert protective effects as an antioxidant but it is quickly cleared by the circulating blood. Also melatonin is easily degraded by light and hence is found to be ineffective during daytime. Results of the present study showed that unlike free melatonin (FM), the application of nanocapsulated melatonin (NM) exhibited significantly higher potential even at much lower concentrations to rescue neuronal cells and mitochondria during CIR insult and also restored the activities of antioxidative enzymes and MMPs to their normal levels. Hence, nanoencapsulated melatonin may be considered as a suitable drug delivery system for brain to exert protection against CIR injury.
Collapse
Affiliation(s)
- Sibani Sarkar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Mukherjee
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nirmalendu Das
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Snehasikta Swarnakar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
38
|
Soleimani E, Goudarzi I, Abrari K, Lashkarbolouki T. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure. Physiol Behav 2017; 173:200-208. [PMID: 28209536 DOI: 10.1016/j.physbeh.2017.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- Faculty of Biology, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
39
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
40
|
Scheuer C, Pommergaard HC, Rosenberg J, Gögenur I. Dose dependent sun protective effect of topical melatonin: A randomized, placebo-controlled, double-blind study. J Dermatol Sci 2016; 84:178-185. [DOI: 10.1016/j.jdermsci.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/12/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022]
|
41
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
42
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1115] [Impact Index Per Article: 123.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
43
|
Hardeland R. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions. FRONTIERS IN PLANT SCIENCE 2016; 7:198. [PMID: 26925091 PMCID: PMC4759497 DOI: 10.3389/fpls.2016.00198] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.
Collapse
|
44
|
Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders. Rejuvenation Res 2015; 19:21-40. [PMID: 26087000 DOI: 10.1089/rej.2015.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Tanveer Ali Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Aashiq Hussain Bhat
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Khalid B Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Suhail Anees
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | | | - Akbar Masood
- 2 Department of Biochemistry, University of Kashmir Srinagar , India
| |
Collapse
|
45
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 667] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
46
|
Bazrgar M, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M. Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups. Physiol Behav 2015. [PMID: 26197271 DOI: 10.1016/j.physbeh.2015.06.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During the particular period of cerebellum development, exposure to lead (Pb) decreases cerebellum growth and can result in selective loss of neurons. The detection and prevention of Pb toxicity is a major international public health priorities. This research study was conducted to evaluate the effects of melatonin, an effective antioxidant and free radical scavenger, on Pb induced neurotoxicity and oxidative stress in the cerebellum. Pb exposure was initiated on gestation day 5 with the addition of daily doses of 0.2% lead acetate to distilled drinking water and continues until weaning. Melatonin (10mg/kg) was given once daily at the same time. 21 days after birth, several antioxidant enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GPx) were assayed. Thiobarbituric acid reactive substance (TBARS) levels were measured as a marker of lipid peroxidation. Rotarod and locomotor activity tests were performed on postnatal days (PDs) 31-33 and a histological study was performed after completion of behavioral measurements on PD 33. The results of the present work demonstrated that Pb could induce lipid peroxidation, increase TBARS levels and decrease GPx and SOD activities in the rat cerebellum. We also observed that Pb impaired performance on the rotarod and locomotor activities of rats. However, treatment with melatonin significantly attenuated the motoric impairment and lipid peroxidation process and restored the levels of antioxidants. Histological analysis indicated that Pb could decrease Purkinje cell count and melatonin prevented this toxic effect. These results suggest that treatment with melatonin can improve motor deficits and oxidative stress by protecting the cerebellum against Pb toxicity.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
47
|
Bagheri F, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M. Melatonin prevents oxidative damage induced by maternal ethanol administration and reduces homocysteine in the cerebellum of rat pups. Behav Brain Res 2015; 287:215-25. [PMID: 25797213 DOI: 10.1016/j.bbr.2015.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
Chronic alcoholism leads to elevated plasma and brain homocysteine (Hcy) levels, as demonstrated by animal experiments. This study was designed to evaluate the alterations in offspring rat cerebellum following increase of plasma Hcy level induced by maternal exposure to ethanol and to investigate the possible protective role of melatonin administration upon cerebellar ethanol-induced neurotoxicity. The adult female rats were divided randomly into 4 groups, including one control and three experimental groups, after vaginal plagues. Group I received normal saline, group II received ethanol (4 g/kg), group III received ethanol+melatonin (10mg/kg) and group IV received melatonin on day 6 of gestation until weaning. 21 days after birth, plasma Hcy level, level of lipid peroxidation, the activities of several antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and levels of bcl-2 and bax mRNA expression in cerebellum were determined. Our results demonstrated that ethanol could induce lipid peroxidation, and decrease antioxidants activities and increase plasma total Hcy level. We also observed that ethanol impaired performance on the rotarod and locomotor activities of rats. However, treatment with melatonin significantly attenuated motoric impairment, the lipid peroxidation process and restored the levels of antioxidant activities and significantly reduced plasma total Hcy levels. Moreover, melatonin reduced bax/bcl-2 ratio in the presence of ethanol. We conclude that these results provide evidence that ethanol neurotoxicity in part is related to increase of plasma Hcy levels and melatonin with reducing of plasma Hcy level has neuroprotective effects against ethanol toxicity in cerebellum.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
48
|
da Silva DGH, Ricci O, de Almeida EA, Bonini-Domingos CR. Potential utility of melatonin as an antioxidant therapy in the management of sickle cell anemia. J Pineal Res 2015; 58:178-88. [PMID: 25545035 DOI: 10.1111/jpi.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
This study aimed to assess antioxidant effects of melatonin treatment compared to N-acetylcysteine (NAC) and to their combination in a sickle cell suspension. Sickle erythrocytes were suspended in phosphate-buffered saline, pH 7.4, composing external control group. They were also suspended and incubated at 37°C either in the absence (experimental control group) or in the presence of NAC, melatonin and their combination at concentrations of 100 pm, 100 nm and 100 μm for 1 hr (treatment groups). The melatonin influences were evaluated by spectrophotometric [hemolysis degree, catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), and superoxide dismutase (SOD) activities] and chromatographic methods [glutathione (GSH) and malondialdehyde (MDA) levels]. Incubation period was able to cause a rise about 64% on hemolysis degree as well as practically doubled the lipid peroxidation levels (P < 0.01). However, almost all antioxidants tested treatments neutralized this incubation effect observed in MDA levels. Among the antioxidant biomarkers evaluated, we observed a modulating effect of combined treatment on GPx and SOD activities (P < 0.01), which showed ~25% decrease in their activities. In addition, we found an antioxidant dose-dependent effect for melatonin on lipid peroxidation (r = -0.29; P = 0.03) and for combined antioxidant treatments also on MDA levels (r = -0.37; P = 0.01) and on SOD activity (r = -0.54; P < 0.01). Hence, these findings contribute with important insight that melatonin individually or in combination with NAC may be useful for sickle cell anemia management.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, UNESP - Sao Paulo State University, Sao Paulo, Brazil; Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
49
|
Egea J, Buendia I, Parada E, Navarro E, Rada P, Cuadrado A, López MG, García AG, León R. Melatonin-sulforaphane hybrid ITH12674 induces neuroprotection in oxidative stress conditions by a 'drug-prodrug' mechanism of action. Br J Pharmacol 2015; 172:1807-21. [PMID: 25425158 DOI: 10.1111/bph.13025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/03/2014] [Accepted: 11/19/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Neurodegenerative diseases are a major problem afflicting ageing populations; however, there are no effective treatments to stop their progression. Oxidative stress and neuroinflammation are common factors in their pathogenesis. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of oxidative stress, and melatonin is an endogenous hormone with antioxidative properties that reduces its levels with ageing. We have designed a new compound that combines the effects of melatonin with Nrf2 induction properties, with the idea of achieving improved neuroprotective properties. EXPERIMENTAL APPROACH Compound ITH12674 is a hybrid of melatonin and sulforaphane designed to exert a dual drug-prodrug mechanism of action. We obtained the proposed hybrid in a single step. To test its neuroprotective properties, we used different in vitro models of oxidative stress related to neurodegenerative diseases and brain ischaemia. KEY RESULTS ITH12674 showed an improved neuroprotective profile compared to that of melatonin and sulforaphane. ITH12674 (i) mediated a concentration-dependent protective effect in cortical neurons subjected to oxidative stress; (ii) decreased reactive oxygen species production; (iii) augmented GSH concentrations in cortical neurons; (iv) enhanced the Nrf2-antioxidant response element transcriptional response in transfected HEK293T cells; and (v) protected organotypic cultures of hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation from stress by increasing the expression of haem oxygenase-1 and reducing free radical production. CONCLUSION AND IMPLICATIONS ITH12674 combines the signalling pathways of the parent compounds to improve its neuroprotective properties. This opens a new line of research for such hybrid compounds to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Egea
- Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando de I + D del medicamento Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hardeland R. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:627-46. [PMID: 25240067 DOI: 10.1093/jxb/eru386] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Melatonin is synthesized in Alphaproteobacteria, Cyanobacteria, Dinoflagellata, Euglenoidea, Rhodophyta, Phae ophyta, and Viridiplantae. The biosynthetic pathways have been identified in dinoflagellates and plants. Other than in dinoflagellates and animals, tryptophan is not 5-hydroxylated in plants but is first decarboxylated. Serotonin is formed by 5-hydroxylation of tryptamine. Serotonin N-acetyltransferase is localized in plastids and lacks homology to the vertebrate aralkylamine N-acetyltransferase. Melatonin content varies considerably among species, from a few picograms to several micrograms per gram, a strong hint for different actions of this indoleamine. At elevated levels, the common and presumably ancient property as an antioxidant may prevail. Although melatonin exhibits nocturnal maxima in some phototrophs, it is not generally a mediator of the signal 'darkness'. In various plants, its formation is upregulated by visible and/or UV light. Increases are often induced by high or low temperature and several other stressors including drought, salinity, and chemical toxins. In Arabidopsis, melatonin induces cold- and stress-responsive genes. It has been shown to support cold resistance and to delay experimental leaf senescence. Transcriptome data from Arabidopsis indicate upregulation of genes related to ethylene, abscisic acid, jasmonic acid, and salicylic acid. Auxin-like actions have been reported concerning root growth and inhibition, and hypocotyl or coleoptile lengthening, but effects caused by melatonin and auxins can be dissected. Assumptions on roles in flower morphogenesis and fruit ripening are based mainly on concentration changes. Whether or not melatonin will find a place in the phytohormone network depends especially on the identification of molecular signals regulating its synthesis, high-affinity binding sites, and signal transduction pathways.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| |
Collapse
|