1
|
Das A, Mitra A, Ghosh S, Sarkar S, Pal PK, Bandyopadhyay D, Chattopadhyay S. Arsenic-induced transition of thymic inflammation-to-fibrosis involves Stat3-Twist1 interaction: Melatonin to the rescue. Biofactors 2025; 51:e2110. [PMID: 39096306 DOI: 10.1002/biof.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Palash Kumar Pal
- Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Solovev IA, Golubev DA. Chronobiotics: classifications of existing circadian clock modulators, future perspectives. BIOMEDITSINSKAIA KHIMIIA 2024; 70:381-393. [PMID: 39718101 DOI: 10.18097/pbmc20247006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The review summarizes recent achievements and future prospects in the use of chronobiotics for regulating circadian rhythms regulation. Special attention is paid to the mechanisms' action, their classification, and the impact of chemical interventions on the biological clock. Chronobiotics defined as a diverse group of compounds capable of restoring disrupted circadian functions, addressing challenges such as irregular work schedules, artificial light exposure or ageing. The review categorizes these compounds by their pharmacological effects, molecular targets, and chemical structures, underlining their ability to enhance or inhibit key circadian components like CLOCK, BMAL1, PER, and CRY. A particular focus is placed on the therapeutic applications of chronobiotics, including their potential for treating sleep disorders, metabolic issues, and age-related rhythm disturbances, underscoring their wide-ranging applicability in health care. Chronobiotic compounds have promising roles in maintaining physiological rhythms, supporting healthy aging, and enhancing personalised health care. Given their diverse therapeutic potential, chronobiotics are positioned as a significant avenue for further clinical application, marking them as a crucial area of ongoing research and innovation.
Collapse
Affiliation(s)
- I A Solovev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| | - D A Golubev
- Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia
| |
Collapse
|
3
|
Liu S, Yang TN, Wang YX, Ma XY, Shi YS, Zhao Y, Li JL. Parkin-TLR4-NLRP3 Axis Directs Melatonin to Alleviate Atrazine-Induced Immune Impairment in Splenic Macrophages. J Pineal Res 2024; 76:e70014. [PMID: 39648693 DOI: 10.1111/jpi.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Atrazine (ATR) is a widespread environmental herbicide that seriously affects agricultural work and human safety. Melatonin (MLT) as an endogenous neuroendocrine hormone is widely found in animals and plants, which have antioxidant and anti-inflammatory effects. Pink1/Parkin-mediated mitophagy keeps normal physiological processes by degrading damaged mitochondria in cells. Therefore, we investigated the potential role and mechanism of MLT in ATR-induced toxic injury of the spleen. The results showed that MLT alleviated ATR-induced unclear boundary between the white pulp and the red pulp of the spleen. It is also shown that ATR resulted in swollen mitochondria, partial extinction of mitochondrial membranes and cristae, and increased mitophagy under the action of MLT. ATR-induced reactive oxygen species (ROS) activates the Pink1/Parkin pathway, which guides mitophagy development and then causes the activation of TLR4/NF-κB inflammatory pathway. Meanwhile, these damages further exacerbated the production of NLRP3 inflammasomes, leading to spleen necrosis. Interestingly, these changes were improved after MLT treatment. Collectively, we found that MLT alleviates ATR-induced immune impairment in splenic macrophages via regulating Parkin-TLR4-NLRP3 axis which elucidates the effect of melatonin on the spleen and provides a novel perspective on melatonin in splenic inflammatory injury treatment.
Collapse
Affiliation(s)
- Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Arabacı Tamer S, Altınoluk T, Emran M, Korkmaz S, Yüksel RG, Baykal Z, Dur ZS, Levent HN, Ural MA, Yüksel M, Çevik Ö, Ercan F, Yıldırım A, Yeğen BÇ. Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1. Inflammation 2022; 45:2202-2222. [PMID: 35665875 DOI: 10.1007/s10753-022-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
We aimed to evaluate the impact of hormone replacement, melatonin, or exercise alone or their combination on oxidative damage and functional status of heart, brain, and aorta of ovariectomized (OVX) rats and to determine whether the signaling pathway is dependent on sirtuin-1 (SIRT1). Ovariectomized Sprague Dawley rats were orally given either a hormone replacement therapy (1 mg/kg/day,17β estradiol; HRT) or melatonin (4 mg/kg/day) or HRT + melatonin treatments or tap water, while each group was further divided into sedentary and exercise (30 min/5 days/week) groups. After the heart rate measurements and memory tests were performed, trunk blood was collected at the end of the 10th week to determine metabolic parameters in serum samples. Tissue samples of abdominal aorta, heart, and brain were taken for biochemical measurements and histopathological evaluation. Heart rates and memory performances of the OVX rats were not changed significantly by none of the applications. Melatonin treatment or its co-administration with HRT upregulated the expressions of IL-10 and SIRT1, reduced the expressions of IL-6 and TNF-α, and reduced DNA damage in the hearts and thoracic aortae of non-exercised rats. Co-administration of melatonin and HRT to exercised OVX rats reduced inflammatory response and upregulated SIRT1 expression in the aortic and cardiac tissues. The present study suggests that melatonin treatment, either alone or in combination with exercise and/or HRT, upregulates SIRT1 expression and alleviates oxidative injury and inflammation in the hearts and aortas of OVX rats. Melatonin should be considered in alleviating cardiovascular disease risk in postmenopausal women.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Tülin Altınoluk
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Miray Emran
- Marmara University School of Medicine, Istanbul, Turkey
| | - Seda Korkmaz
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Zeynep Baykal
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Hilal Nişva Levent
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Mürüvvet Abbak Ural
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.
| |
Collapse
|
7
|
Exogenous Melatonin Alleviates Skeletal Muscle Wasting by Regulating Hypothalamic Neuropeptides Expression in Endotoxemia Rats. Neurochem Res 2022; 47:885-896. [PMID: 35061163 PMCID: PMC8891201 DOI: 10.1007/s11064-021-03489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 10/25/2022]
Abstract
To investigate whether exogenous melatonin (MLT) could alleviate skeletal muscle wasting by regulating hypothalamic neuropeptides expression. Adult male Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg), followed by MLT (30 mg/kg/day) or saline for 3 days. Hypothalamic tissues and skeletal muscle were obtained on day 3. Skeletal muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box and muscle ring finger 1 as well as 3-methylhistidine (3-MH) and tyrosine release. Three hypothalamic neuropeptides (POMC, AgRP, CART) expression were detected in all groups. POMC expression knockdown was achieved by ARC injection of lentiviruses containing shRNA against POMC. Two weeks after ARC viruses injection, rats were i.p. injected with LPS (10 mg/kg) followed by MLT (30 mg/kg/day) or saline for 3 days. Brain tissues were harvested for immunostaining. In septic rats, 3-MH, tyrosine release and muscle atrophic gene expression were significantly decreased in MLT treated group. POMC and CART expression were lower while AgRP expression was higher in MLT treated group. Furthermore, in septic rats treated with MLT, muscle wasting in those with lower expression of neuropeptide POMC did not differ from those with normal POMC expression. Exogenous MLT could alleviate skeletal muscle wasting in septic rats by regulating hypothalamic neuropeptides.
Collapse
|
8
|
Jafari-Vayghan H, Moludi J, Saleh-Ghadimi S, Enamzadeh E, Seyed-Mohammadzad MH, Alizadeh M. Impact of Melatonin and Branched-Chain Amino Acids Cosupplementation on Quality of Life, Fatigue, and Nutritional Status in Cachectic Heart Failure Patients: A Randomized Controlled Trial. Am J Lifestyle Med 2022; 16:130-140. [PMID: 35185435 PMCID: PMC8848111 DOI: 10.1177/1559827619874044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/23/2024] Open
Abstract
Background: Cardiac cachexia (CC) adversely affects the lifestyle of heart failure (HF) patients. The current study examined the impact of melatonin cosupplementation and branched-chain amino acids (BCAAs) on quality of life (QoL), fatigue, and nutritional status in cachectic HF patients. Methods: In this trial, 84 CC patients were randomized to melatonin, BCAAs, or coadministration (both) as intervention groups and a control group over 8 weeks. At baseline and postintervention, QoL, fatigue, and nutritional status were assessed. Results: After intervention, improvement in the overall and physical dimensions of QoL and appetite score were found to be statistically significant in the BCAAs (P < .001) and the melatonin+BCAAs (P < .001) groups compared with the placebo group. The emotional dimension score was significantly lower in the BCAAs group compared with the placebo group (P = .001). There was a statistically significant improvement in fatigue severity in all 3 intervention groups compared with the placebo group. The nutrition risk index (NRI) score increased significantly only in the melatonin group (P = .015), and there was no significant difference between the other groups (P = .804). Conclusions: Cosupplementation with BCAAs and melatonin improved QoL, fatigue status, and appetite in cachectic HF patients but did not affect NRI.
Collapse
Affiliation(s)
- Hamed Jafari-Vayghan
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Jalal Moludi
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Sevda Saleh-Ghadimi
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Elgar Enamzadeh
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Mir Hossein Seyed-Mohammadzad
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Mohammad Alizadeh
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| |
Collapse
|
9
|
Mogheiseh A, Nazifi S, Gharibnavaz M, Zamani R, Nikahval B, Khanbazi MH. Effects of short-term administration of melatonin before gonadectomy on oxidative stress, cortisol and sex hormones in male dogs. Andrologia 2021; 54:e14354. [PMID: 34918360 DOI: 10.1111/and.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to investigate gonadectomy stress, steroid hormones and serotonin in male dogs treated with melatonin before gonadectomy. Twenty-five mixed breed adult dogs were divided into five equal groups. The melatonin and melatonin + gonadectomized groups received melatonin treatment (3 mg/10 Kg, PO, TID) the day before gonadectomy; the gonadectomized and anaesthesia groups did not receive melatonin; and the control group just received the melatonin vehicle. Blood sampling was performed before melatonin administration (day -1) and on days 0 (gonadectomy), 1, 3 and 6 after gonadectomy. Superoxide dismutase and glutathione peroxidase concentrations decreased significantly in gonadectomized dogs compared with dogs treated with melatonin before gonadectomy and intact dogs. Gonadectomy led to a significant decrease in catalase concentration in gonadectomized dogs compared with other study groups. Malondialdehyde levels increased significantly in gonadectomized dogs compared with other groups. Melatonin administration before gonadectomy led to decreased malondialdehyde concentration in gonadectomized and intact dogs compared to the control group. Cortisol concentration increased significantly in gonadectomized dogs compared to the control dogs. Serotonin levels decreased in gonadectomized dogs, but melatonin treatment increased serotonin concentration in gonadectomized and intact dogs. Melatonin treatment before gonadectomy suppressed oxidative stress and the cortisol but increased serotonin level.
Collapse
Affiliation(s)
- Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohsen Gharibnavaz
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Reza Zamani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Behrooz Nikahval
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
10
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
11
|
Protective Effects of A. sativa against Oxidative Stress-Induced Liver Damage in Ovariectomized Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5577498. [PMID: 34337029 PMCID: PMC8298160 DOI: 10.1155/2021/5577498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Postmenopausal women express great failure in their ovarian hormone production, especially estrogen. This deficiency may promote hypercholesterolemia and accelerate the redox imbalance. The present study was designed to evaluate the protective effect of Avena sativa against estrogen deficiency-induced liver and uterus oxidative injury in experimental ovariectomized mice. Female mice were randomly divided into five groups: group one (negative control) received normal diet and distilled water (C), group two (positive control) received daily enriched diet with oat grains and was kept on tap distilled water at a dose of 200 mg kg−1 d−1 (A), group three (ovariectomized mice) was nontreated fed with normal diet (O), group four includes ovariectomized mice treated daily with estradiol given by intraperitoneal injection at a dose of 100 μg kg−1 d−1 (OE), and the fifth group also includes ovariectomized mice which received enriched diet with oat grain parts with the same dose given to group two. The treatment period lasted two consecutive months. Both oat and hormonal treatments of ovariectomized groups resulted in a significant reduction in triglycerides and total cholesterol and increased high-density lipoprotein (HDL) levels in the plasma after 21 and 60 days of treatment. Besides, the coadministration of A. sativa has decreased the activities of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) and increased transaminase activities after 21 and 60 days of treatment. On the other hand, this cereal has restored the enzymatic (SOD, CAT, and GPx) and nonenzymatic antioxidant activities (GSH) as well as the elevated thiobarbituric acid reactive substances (AOPP and PCO) to near-normal values. The beneficial effects of this cereal were confirmed by a histological study of the liver and uterus of all previous cited groups. Our finding emphasized the antioxidant and antilipidemic effect of oat grain part, suggesting the use of this cereal in the prevention of liver and uterus diseases that occurred in postmenopausal women.
Collapse
|
12
|
Melatonin Alleviated Potassium Dichromate-Induced Oxidative Stress and Reprotoxicity in Male Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3565360. [PMID: 34222468 PMCID: PMC8221856 DOI: 10.1155/2021/3565360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 01/24/2023]
Abstract
Melatonin (ML) is a potent antioxidant that reduces oxidative stress. This study was designed to examine the protective effect of melatonin on potassium dichromate- (PDC-) induced male reproductive toxicity. Forty rats were divided into five groups: the control group, rats administered PDC orally (10 mg/kg body weight) for eight weeks, rats administered ML intraperitoneally at doses of either 2.5 or 5 mg/kg followed by the administration of PDC, and rats administered 5 mg/kg ML only. The treatment of rats with PDC led to a decrease in the levels of plasma sex hormones, glutathione, superoxide dismutase, catalase, carnitine, sperm count, and motility. Testicular malondialdehyde levels, nitric oxide concentrations, and abnormalities increased significantly in the PDC group. Melatonin administration to the PDC-treated rats reduced the increase of malondialdehyde and restored the activity of antioxidant enzymes (superoxide dismutase and catalase), glutathione, and sex hormone levels. Moreover, ML attenuated PDC-induced increase in levels of tumor necrosis factor-alpha or interleukin-6. ML alleviated histopathological changes and an increase of p53-positive immune reaction due to PDC. Furthermore, ML inhibited PDC-induced decrease in the DNA content of spermatogenic cells. This study proposed that melatonin may be useful in mitigating oxidative stress-induced testicular damage due to potassium dichromate toxicity.
Collapse
|
13
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
ÖZTÜRK G, AKBULUT KG, GÜNEY Ş. Melatonin, aging, and COVID-19: Could melatonin be beneficial for COVID-19 treatment in the elderly? Turk J Med Sci 2020; 50:1504-1512. [PMID: 32777902 PMCID: PMC7605095 DOI: 10.3906/sag-2005-356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to summarize current studies on the relationship between melatonin and aging. Nowadays, age-related diseases come into prominence, and identifying age-related changes and developing proper therapeutic approaches are counted as some of the major issues regarding community health. Melatonin is the main hormone of the pineal gland. Melatonin is known to influence many biological processes in the body, including circadian rhythms, the immune system, and neuroendocrine and cardiovascular functions.Melatoninrhythms also reflect the biological process of aging. Aging is an extremely complex and multifactorial process. Melatonin levels decline considerably with aging and its decline is associated with several age-related diseases. Aging is closely associated with oxidative damage and mitochondrial dysfunction. Free radical reactions initiated by the mitochondria constitute the inherent aging process. Melatonin plays a pivotal role in preventing age-related oxidative stress. Coronavirus disease 2019 (COVID-19) fatality rates increase with chronic diseases and age, where melatonin levels decrease. For this reason, melatonin supplementation in elderly could be beneficial in COVID-19 treatment. Therefore, studies on the usage of melatonin in COVID-19 treatment are needed.
Collapse
Affiliation(s)
- Güler ÖZTÜRK
- Department of Physiology, Faculty of Medicine, İstanbul Medeniyet University, İstanbulTurkey
| | | | - Şevin GÜNEY
- Department of Physiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| |
Collapse
|
15
|
El Kotb SM, El-ghazouly DES, Ameen O. The potential cytoprotective effect of Vitamin C and Vitamin E on monosodium glutamate-induced testicular toxicity in rats. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1804311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | | | - Omnia Ameen
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
16
|
Amelioration of age-related alterations in rat liver: Effects of curcumin C3 complex, Astragalus membranaceus and blueberry. Exp Gerontol 2020; 137:110982. [DOI: 10.1016/j.exger.2020.110982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
|
17
|
Mansoori A, Salimi Z, Hosseini SA, Hormoznejad R, Jafarirad S, Bahrami M, Asadi M. The effect of melatonin supplementation on liver indices in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2020; 52:102398. [DOI: 10.1016/j.ctim.2020.102398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
|
18
|
Ameen O, Yassien RI, Naguib YM. Activation of FoxO1/SIRT1/RANKL/OPG pathway may underlie the therapeutic effects of resveratrol on aging-dependent male osteoporosis. BMC Musculoskelet Disord 2020; 21:375. [PMID: 32532246 PMCID: PMC7293127 DOI: 10.1186/s12891-020-03389-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Age-dependent male osteoporosis remains a poorly studied medical problem despite its significance. It is estimated that at least 1 of 5 men will suffer from osteoporotic consequences. Given that multiple mechanisms are involved in the process of senescence, much attention has been given to compounds with polymodal actions. To challenge such a health problem, we tested here the therapeutic potential of resveratrol in male osteoporosis. We also studied the possible molecular mechanisms that may underlie resveratrol effects. Methods Thirty male Wistar albino rats were used in the present study. Rats were divided (10/group) into: control (3–4 months old weighing 150–200 g receiving vehicle), aged (18–20 months old, weighing 350–400 g and receiving vehicle), and resveratrol treated aged (18–20 months old, weighing 350–400 g and receiving resveratrol 20 mg/kg/day for 6 weeks) groups. Assessment of serum calcium, phosphate, bone specific alkaline phosphatase, inflammatory cytokines, oxidative stress markers, and rat femur gene expression of FoxO1, SIRT1, RANKL and OPG proteins was carried out. Histopathological assessment of different levels of rat femur was also performed. Results Age-dependent osteoporosis resulted in significant increase in serum levels of phosphate, bone specific alkaline phosphatase, hsCRP, IL-1β, IL-6, TNF-α, MDA, NO, and RANKL gene expression. However, there was significant decrease in serum level of GSH, and gene expression of FoxO1, SIRT1 and OPG. Osteoporotic changes were seen in femur epiphysis, metaphysis and diaphysis. Resveratrol restored significantly age-dependent osteoporotic changes. Conclusion We concluded that resveratrol can play an important role in the prevention of male osteoporosis. Resveratrol can counter the molecular changes in male osteoporosis via anti-inflammatory, anti-oxidant and gene modifying effects.
Collapse
Affiliation(s)
- Omnia Ameen
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Rania I Yassien
- Histology and Cell Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Yahya M Naguib
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt. .,Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
19
|
Mogheiseh A, Koohi F, Nazifi S, Shojaee Tabrizi A, Taheri P, Salavati S. Oxidative-antioxidative status and hepatic and renal factors following melatonin administration in castrated and intact dogs. Basic Clin Androl 2019; 29:14. [PMID: 31788315 PMCID: PMC6858660 DOI: 10.1186/s12610-019-0094-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Backgrounds Melatonin has significant antioxidant and hepatoprotective effects in normal and oxidative stress conditions. The aim of the present study was to assess the effects of melatonin on antioxidant, hepatic, and renal factors in intact and castrated dogs. Twenty male mixed-breed adult dogs were aligned in an experimental randomized and controlled trial. The dogs were randomly divided into four equal groups: melatonin, castrated, castrated and melatonin, and control. They were treated with melatonin (0.3 mg/Kg, once daily, orally) immediately after the castration for 1 month and their blood samples were collected weekly from 2 days after treatment with melatonin. Results Treating castrated dogs with melatonin increased the level of glutathione peroxidase, superoxide dismutase, and catalase compared with that of the control and castrated groups. The malondialdehyde level increased significantly following castration. Melatonin treatment decreased malondialdehyde concentration in the castrated dogs. Castration increased the level of alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase significantly in comparison with that of the control group. Treating the castrated dogs with melatonin decreased significantly liver enzymes compared with those of the castrated dogs. Blood urea nitrogen and creatinine levels increased in the castrated dogs in comparison with that of the control group. Conclusions The administration of melatonin in castrated dogs increased antioxidant activity and decreased oxidation products, compared with those of the castrated and untreated dogs, without adverse effects on liver enzymes and kidney function.
Collapse
Affiliation(s)
- Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| | - Farzaneh Koohi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| | - Aidin Shojaee Tabrizi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| | - Pegah Taheri
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| | - Sina Salavati
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O.Box 71441-69155, Shiraz, Iran
| |
Collapse
|
20
|
de Farias TDSM, Cruz MM, de Sa RCDC, Severi I, Perugini J, Senzacqua M, Cerutti SM, Giordano A, Cinti S, Alonso-Vale MIC. Melatonin Supplementation Decreases Hypertrophic Obesity and Inflammation Induced by High-Fat Diet in Mice. Front Endocrinol (Lausanne) 2019; 10:750. [PMID: 31749764 PMCID: PMC6848267 DOI: 10.3389/fendo.2019.00750] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity results from critical periods of positive energy balance characterized by caloric intake greater than energy expenditure. This disbalance promotes adipose tissue dysfunction which is related to other comorbidities. Melatonin is a low-cost therapeutic agent and studies indicate that its use may improve obesity-related disorders. To evaluate if the melatonin is efficient in delaying or even blocking the damages caused by excessive ingestion of a high-fat diet (HFD) in mice, as well as improving the inflammatory profile triggered by obesity herein, male C57BL/6 mice of 8 weeks were induced to obesity by a HFD and treated for 10 weeks with melatonin. The results demonstrate that melatonin supplementation attenuated serum triglyceride levels and total and LDL cholesterol and prevented body mass gain through a decreased lipogenesis rate and increased lipolytic capacity in white adipocytes, with a concomitant increment in oxygen consumption and Pgc1a and Prdm16 expression. Altogether, these effects prevented adipocyte hypertrophy caused by HFD and reflected in decreased adiposity. Finally, melatonin supplementation reduced the crown-like-structure (CLS) formation, characteristic of the inflammatory process by macrophage infiltration into white adipose tissue of obese subjects, as well as decreased the gene expression of inflammation-related factors, such as leptin and MCP1. Thus, the melatonin can be considered a potential therapeutic agent to attenuate the metabolic and inflammatory disorders triggered by obesity.
Collapse
Affiliation(s)
- Talita da Silva Mendes de Farias
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Maysa Mariana Cruz
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Roberta Cavalcante da Cunha de Sa
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Suzete Maria Cerutti
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica Delle Marche), Ancona, Italy
- Center of Obesity, University of Ancona (Politecnica Delle Marche), Ancona, Italy
| | - Maria Isabel Cardoso Alonso-Vale
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo-UNIFESP, Diadema, Brazil
| |
Collapse
|
21
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
24
|
Santos RMD, Marani F, Chiba FY, Mattera MSDLC, Tsosura TVS, Tessarin GWL, Pereira RF, Belardi BE, Pinheiro BCES, Sumida DH. Melatonin promotes reduction in TNF levels and improves the lipid profile and insulin sensitivity in pinealectomized rats with periodontal disease. Life Sci 2018; 213:32-39. [PMID: 30321542 DOI: 10.1016/j.lfs.2018.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023]
Abstract
AIM This study aimed to investigate the effects of melatonin (ME) on insulin resistance (IR) and signaling (IS), proinflammatory cytokine levels, and lipid profiles in pinealectomyzed (PNX) rats with periodontal disease (PD). MAIN METHODS One hundred and forty-four rats (age = 40 days) were distributed into 8 groups: 1) control (CN); 2) PD only; 3) PNX only; 4) PNX and PD (PNXPD); 5) CN treated with ME (CNM); 6) PD treated with ME (PDM); 7) PNX treated with ME(PNXM); 8) PNX and PD treated with ME(PNXPDM). The PNX groups were subjected to pinealectomy at 40 and at 60 days of age. The animals were then subjected to PD induction in the mandibular first molars. After PD induction, the ME replacement therapy (MERT-5 mg/kg body weight) was performed using water for 28 days. After this period, the plasma concentration of glucose, insulin, TNF, IL-6, triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol, and VLDL-cholesterol and the HOMA-IR index were determined. Akt serine phosphorylation status in the white adipose tissue, gastrocnemius muscle, and rat liver were also evaluated. KEY FINDINGS PD, PNX, and PNXPD groups showed an increase in IR with elevated plasma levels of insulin and TNF compared to CN group. PNX and PNXPD groups presented alteration in lipid profile compared to CN group. MERT improved all of the analyzed parameters. No difference was observed in the IS among different groups. SIGNIFICANCE The results suggest that MERT efficiently prevents IR, improves lipid profile, and increases plasma levels of insulin and TNF in PD and PNX rats.
Collapse
Affiliation(s)
- Rodrigo Martins Dos Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Fernando Marani
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Fernando Yamamoto Chiba
- Preventive and Social Dentistry Post-Graduation Program School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Maria Sara de Lima Coutinho Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Thais Verônica Saori Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Gestter Willian Lattari Tessarin
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil; Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Renato Felipe Pereira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Bianca Elvira Belardi
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Beatriz Costa E Silva Pinheiro
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Doris Hissako Sumida
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| |
Collapse
|
25
|
Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI JOURNAL 2018; 17:634-646. [PMID: 30108467 PMCID: PMC6088215 DOI: 10.17179/excli2017-654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023]
Abstract
Aging is often accompanied by a decline in cognitive function in conjunction with a variety of neurobiological changes, including neuroinflammation. Melatonin is a key endogenous indoleamine secreted by the pineal gland that plays a crucial role in the regulation of circadian rhythms, is a potent free radical scavenger, has anti-inflammatory activity and serves numerous other functions. However, the role of melatonin in sterile inflammation in the brain has not been fully investigated. In the present study, we investigated the neuroinflammation status in aged mouse brains. The results showed that the protein levels of integrin αM (CD11b), glial fibrillary acidic protein (GFAP), the major pro-inflammatory cytokines (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and phosphor-nuclear factor kappa B (pNFκB) were significantly increased, while N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and brain-derived neurotrophic factor (BDNF) were down-regulated in the hippocampus and prefrontal cortex (PFC) of 22-months-old (aged) mice compared with 2-months-old (young adult) mice. Melatonin was administered in the drinking water to a cohort of the aged mice at a dose of 10 mg/kg/day, beginning at an age of 16 months for 6 months. Our results revealed that melatonin significantly attenuated the alterations in these protein levels. The present study suggests an advantageous role for melatonin in anti-inflammation, and this may lead to the prevention of memory impairment in aging.
Collapse
Affiliation(s)
| | - Patlada Tangweerasing
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand.,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Thailand.,Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| |
Collapse
|
26
|
Guerra-Santos B, López-Olmeda JF, Pereira DSP, Ruiz CE, Sánchez-Vázquez FJ, Esteban MÁ, Cerqueira RB, Fortes-Silva R. Daily rhythms after vaccination on specific and non-specific responses in Nile tilapia (Oreochromis niloticus). Chronobiol Int 2018; 35:1305-1318. [DOI: 10.1080/07420528.2018.1477791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bartira Guerra-Santos
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia (UFBA), Bahia, Brazil
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Denise Soledade Peixoto Pereira
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| | - Cristóbal Espinossa Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Robson Bahia Cerqueira
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| | - Rodrigo Fortes-Silva
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| |
Collapse
|
27
|
Beneficial role of biochanin A on cutaneous and renal tissues of ovariectomized rats treated with anastrozole. Life Sci 2018; 201:9-16. [DOI: 10.1016/j.lfs.2018.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 11/18/2022]
|
28
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74:3941-3954. [PMID: 28819865 PMCID: PMC11107716 DOI: 10.1007/s00018-017-2611-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina.
| | - Daniel E Vigo
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina
| |
Collapse
|
30
|
|
31
|
The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide. Mech Ageing Dev 2017; 164:49-60. [DOI: 10.1016/j.mad.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
|
32
|
Borniger JC, Cisse YM, Surbhi, Nelson RJ. Reciprocal Regulation of Circadian Rhythms and Immune Function. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Khaksar M, Oryan A, Sayyari M, Rezabakhsh A, Rahbarghazi R. Protective effects of melatonin on long-term administration of fluoxetine in rats. ACTA ACUST UNITED AC 2017; 69:564-574. [PMID: 28552630 DOI: 10.1016/j.etp.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
The degree and consequence of tissue injury are highly regarded during long-term exposure to selective antidepressant fluoxetine. Melatonin has been shown to palliate different lesions by scavenging free radicals, but its role in the reduction of the fluoxetine-induced injuries has been little known. Thirty-six mature male Wistar rats were randomly assigned into control and experimental groups. The experimental rats were included as following; 24mg/kg/bw fluoxetine for 4 weeks; 1mg/kg/bw melatonin for 4 weeks; fluoxetine+1-week melatonin, fluoxetine+2-week melatonin and fluoxetine+4-week melatonin. In the current experiment, we investigated weight gain, hematological and biochemical parameters, pathological injuries and oxidative status. We noted the positive effect of melatonin in weight loss of fluoxetine-treated rats (p<0.05). The significant reduction of superoxide dismutase, glutathione peroxidase, catalase activities in blood, liver, and kidneys and changes in serum total antioxidant capacity caused by fluoxetine were reversed by melatonin (p<0.05). Melatonin reduced the increased lipid peroxidation and transaminase activity in rats received fluoxetine (p<0.05). We also showed the potency of fluoxetine in inducing leukopenia, thrombocytopenia and hypochromic and macrocytic anemia which was blunted by melatonin. Both RBCs and platelets indices were also corrected. Rats received melatonin in combination with fluoxetine showed a reduction in the severity of degeneration and inflammatory changes in different tissues, brain, heart, liver, lungs, testes and kidneys as compared to the fluoxetine group. Therefore, melatonin fundamentally reversed the side effects of fluoxetine in the rat model which is comparable to human medicine.
Collapse
Affiliation(s)
- Majid Khaksar
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Oryan
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mansour Sayyari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Aysa Rezabakhsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
35
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MLT) is a neuroendocrine hormone, which is primarily synthesized by the pineal gland in vertebrates. Melatonin is a remarkable molecule with diverse biological and physiological actions and is involved in the regulation of various important functions such as circadian rhythm, energy metabolism, the reproductive system, the cardiovascular system, and the neuropsychiatric system. It also plays a role in disease by having anti-neoplastic and anti-osteoarthritic effects among others. Recently, research has focused on the roles of melatonin in oxidative stress, lipid metabolism, and hepatic steatosis and its potential therapeutic roles.
Collapse
Affiliation(s)
- Hang Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Fang-fang Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
36
|
Tresguerres IF, Tamimi F, Eimar H, Barralet J, Torres J, Blanco L, Tresguerres JAF. Resveratrol as anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:439-45. [PMID: 24956408 DOI: 10.1089/rej.2014.1551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Previous studies have indicated that resveratrol, a natural phytoestrogen, can act as an anti-aging therapy to resist age-related changes of several body tissues. However, the anti-aging effects of resveratrol on bone have been poorly investigated in this natural aging population. Accordingly, this study was design to evaluate the effects of resveratrol on bone mass and biomechanical properties in old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups (n=10). The first group was treated for 10 weeks with resveratrol (10 mg/kg per day) and the second group was left untreated (control). Rat femora were collected. Bone mass and bone microestructure were investigated by microcomputed tomography and histomorphometry. Biomechanical properties were determined by a three-point bending test. Plasma levels of CTX (carboxy-terminal telopeptide of type I collagen) and osteocalcin were also determined. Statistical analyses were performed by a Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Microcomputed tomography analyses demonstrated that resveratrol-treated rats had significant higher bone volume, bone trabecular number, and cortical thickness and lower spacing between trabeculae in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in resveratrol-treated rats compared to controls. Resveratrol-treated rats had significant higher bone flexural modulus, stiffness, and ultimate load compared to control group. Treatment was not associated with changes in plasma CTX or osteocalcin. CONCLUSION These findings demonstrate that resveratrol increases bone microstructure and bone mechanical properties in old male rats, suggesting that resveratrol might be used as anti-aging therapy to resist age-induced bone loss.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery. School of Dentistry. Complutense University , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Tresguerres IF, Tamimi F, Eimar H, Barralet JE, Prieto S, Torres J, Calvo-Guirado JL, Tresguerres JAF. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:341-6. [PMID: 24617902 DOI: 10.1089/rej.2013.1542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Previous studies have shown that melatonin, an anti-oxidant molecule secreted from the pineal gland, is a positive regulator of bone mass. However, the potential effects of melatonin on bone mass have never been investigated in an old population. The aim of this study was to assess the effects of dietary melatonin supplementation on mass accrual and biomechanical properties of old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups. The first group was treated for 10 weeks with melatonin, whereas the second group was untreated (control). Rat femurs were collected, and their phenotypes and biomechanical properties were investigated by micro-computed tomography, histomorphometry, and a three-point-bending test. Statistical analyses were performed by the Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Rats treated with melatonin had higher bone volume, bone trabecular number, trabecular thickness, and cortical thickness in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in melatonin-treated rats. In agreement with these findings, melatonin-treated rats showed higher bone stiffness, flexural modulus, and ultimate load compared to controls. CONCLUSION These compelling results are the first evidence indicating that dietary melatonin supplementation is able to exert beneficial effects against age-related bone loss in old rats, improving the microstructure and biomechanical properties of aged bones.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery, School of Dentistry, Complutense University , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
39
|
Tresguerres JAF, Cuesta S, Kireev RA, Garcia C, Acuña-Castroviejo D, Vara E. Beneficial effect of melatonin treatment on age-related insulin resistance and on the development of type 2 diabetes. Horm Mol Biol Clin Investig 2015; 16:47-54. [PMID: 25436746 DOI: 10.1515/hmbci-2013-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/07/2013] [Indexed: 01/28/2023]
Abstract
Abstract This paper will review the effect of aging on glucose metabolism and insulin resistance in pancreas and in peripheral tissues and how melatonin administration could affect these parameters. In SAMP8 mice insulin levels in plasma were found to be increased together with enhanced HOMA-IR values, whereas insulin content in pancreas showed a decrease with aging. Aging in SAMP8 mice was also associated with a significant increase in the relative expression of both protein and mRNA of different pro-inflammatory mediators. Furthermore, aging was associated with a decrease in the expression of Pdx-1, FoxO 1 and FoxO 3A and Sirt 1 in pancreas SAMP8 samples. Melatonin administration was able to reduce these age-related alterations, decreasing plasma insulin levels and increasing its pancreatic content in SAMP8 mice. HOMA-IR was decreased with melatonin treatment in all animals. Conversely, in SAMP8 mice, melatonin treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin. Furthermore it was also able to increase the expression of Sirt 1, Pdx-1 and FoxO 3A. The present study has shown that aging is associated with significant alterations in the relative expression of pancreatic genes involved in both insulin secretion and glucose metabolism and that these are associated with an increase in inflammation and oxidative stress. Melatonin administration was able to reduce oxidative stress and inflammation and thus to improve pancreatic function in old mice. By doing so, insulin resistance is diminished and plasma insulin is reduced, enhancing insulin pancreatic content and reducing plasma glucose levels and HOMA index.
Collapse
|
40
|
Cano Barquilla P, Pagano ES, Jiménez-Ortega V, Fernández-Mateos P, Esquifino AI, Cardinali DP. Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats. J Pineal Res 2014; 57:280-90. [PMID: 25113124 DOI: 10.1111/jpi.12168] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the efficacy of melatonin to affect mild inflammation in the metabolic syndrome (MS) induced by a high-fat diet in rats. Adult Wistar male rats were divided into four groups (n = 16/group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet + melatonin; and (iv) melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions for 10 wk: (a) tap water; (b) 25 μg/mL of melatonin. Plasma interleukin (IL)-1β, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and C-reactive protein (CRP) were measured at two time intervals, that is, the middle of daylight period and the middle of the scotophase. In addition, a number of somatic and metabolic components employed clinically to monitor the MS were measured. Melatonin decreased the augmented circulating levels of IL-1β, IL-6, TNF-α, IFN-γ, and CRP seen in obese rats and restored the depressed levels of IL-4 and IL-10. Rats fed with the high-fat diet showed significantly higher body weights and augmented systolic blood pressure from the third and fourth week onwards, respectively, melatonin effectively preventing these changes. In high-fat-fed rats, circulating low-density lipoprotein-cholesterol, total cholesterol, and triglyceride concentration augmented significantly, melatonin being effective to counteract these changes. Melatonin-treated rats showed a decreased insulin resistance, the highest values of plasma high-density lipoprotein-cholesterol, and the lowest values of plasma uric acid. The results indicate that melatonin is able to normalize the altered biochemical pro-inflammatory profile seen in rats fed with a high-fat diet.
Collapse
Affiliation(s)
- Pilar Cano Barquilla
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Tordjman S, Najjar I, Bellissant E, Anderson GM, Barburoth M, Cohen D, Jaafari N, Schischmanoff O, Fagard R, Lagdas E, Kermarrec S, Ribardiere S, Botbol M, Fougerou C, Bronsard G, Vernay-Leconte J. Advances in the research of melatonin in autism spectrum disorders: literature review and new perspectives. Int J Mol Sci 2013; 14:20508-42. [PMID: 24129182 PMCID: PMC3821628 DOI: 10.3390/ijms141020508] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/03/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in melatonin physiology may be involved or closely linked to the pathophysiology and behavioral expression of autistic disorder, given its role in neurodevelopment and reports of sleep-wake rhythm disturbances, decreased nocturnal melatonin production, and beneficial therapeutic effects of melatonin in individuals with autism. In addition, melatonin, as a pineal gland hormone produced from serotonin, is of special interest in autistic disorder given reported alterations in central and peripheral serotonin neurobiology. More specifically, the role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators opens interesting perspectives to ascertain better the mechanisms underlying the significant relationship found between lower nocturnal melatonin excretion and increased severity of autistic social communication impairments, especially for verbal communication and social imitative play. In this article, first we review the studies on melatonin levels and the treatment studies of melatonin in autistic disorder. Then, we discuss the relationships between melatonin and autistic behavioral impairments with regard to social communication (verbal and non-verbal communication, social interaction), and repetitive behaviors or interests with difficulties adapting to change. In conclusion, we emphasize that randomized clinical trials in autism spectrum disorders are warranted to establish potential therapeutic efficacy of melatonin for social communication impairments and stereotyped behaviors or interests.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
- Laboratory of Psychology of Perception, CNRS UMR 8158, Paris 75270, France; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-6-15-38-07-48; Fax: +33-2-99-64-18-07
| | - Imen Najjar
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Eric Bellissant
- Inserm CIC 0203 Clinical Investigation Centre, University Hospital, Rennes 1 University, Rennes 35033, France; E-Mails: (E.B.); (C.F.)
- Department of Clinical Pharmacology, University Hospital, Rennes 1 University, Rennes 35033, France
| | - George M. Anderson
- Laboratory of Developmental Neurochemistry, Yale Child Study Center, New Haven, CT 06519, USA; E-Mail:
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Marianne Barburoth
- Laboratory of Psychology of Perception, CNRS UMR 8158, Paris 75270, France; E-Mail:
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-SalpétrièreHospital, Paris 6 University, Paris 75013, France; E-Mail:
| | - Nemat Jaafari
- CIC INSERM U 802, CHU de Poitiers, Unité de recherche clinique intersectorielle en psychiatrie du Centre Hospitalier Henri Laborit, Poitiers 86022, France; E-Mail:
| | - Olivier Schischmanoff
- INSERM UMR U978, University of Paris 13, Bobigny 93009, France; E-Mails: (O.S.); (R.F.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Avicenne, APHP, Bobigny 93009, France
| | - Rémi Fagard
- INSERM UMR U978, University of Paris 13, Bobigny 93009, France; E-Mails: (O.S.); (R.F.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Avicenne, APHP, Bobigny 93009, France
| | - Enas Lagdas
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Solenn Kermarrec
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Sophie Ribardiere
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Michel Botbol
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent de Brest, UBO, Brest 29238, France; E-Mail:
| | - Claire Fougerou
- Inserm CIC 0203 Clinical Investigation Centre, University Hospital, Rennes 1 University, Rennes 35033, France; E-Mails: (E.B.); (C.F.)
- Department of Clinical Pharmacology, University Hospital, Rennes 1 University, Rennes 35033, France
| | - Guillaume Bronsard
- Maison Départementale de l’Adolescent et Centre Médico-Psycho-Pédagogique, Conseil Général des Bouches-du-Rhône; Laboratoire de Santé Publique EA3279, Faculté de Médecine de la Timone, Marseille 13256, France; E-Mail:
| | - Julie Vernay-Leconte
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| |
Collapse
|
43
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
44
|
Morceli G, Honorio-França AC, Fagundes DLG, Calderon IMP, França EL. Antioxidant effect of melatonin on the functional activity of colostral phagocytes in diabetic women. PLoS One 2013; 8:e56915. [PMID: 23437270 PMCID: PMC3577679 DOI: 10.1371/journal.pone.0056915] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca(2+) release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca(2+) release. Phagocytes treated with TMB-8 (intracellular Ca(2+) inhibitor) decreased superoxide, bactericidal activity and intracellular Ca(2+) release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity.
Collapse
Affiliation(s)
- Gliciane Morceli
- Post Graduate Program in Gynecology, Obstetrics and Mastology of Botucatu Medical School, São Paulo State University/Unesp, Botucatu, São Paulo, Brazil
| | - Adenilda C. Honorio-França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Danny L. G. Fagundes
- Post Graduate Program in Gynecology, Obstetrics and Mastology of Botucatu Medical School, São Paulo State University/Unesp, Botucatu, São Paulo, Brazil
| | - Iracema M. P. Calderon
- Post Graduate Program in Gynecology, Obstetrics and Mastology of Botucatu Medical School, São Paulo State University/Unesp, Botucatu, São Paulo, Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
45
|
Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54:1-14. [PMID: 22725668 DOI: 10.1111/j.1600-079x.2012.01014.x] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melatonin is a highly evolutionary conserved endogenous molecule that is mainly produced by the pineal gland, but also by other nonendocrine organs, of most mammals including man. In the recent years, a variety of anti-inflammatory and antioxidant effects have been observed when melatonin is applied exogenously under both in vivo and in vitro conditions. A number of studies suggest that this indole may exert its anti-inflammatory effects through the regulation of different molecular pathways. It has been documented that melatonin inhibits the expression of the isoforms of inducible nitric oxide synthase and cyclooxygenase and limits the production of excessive amounts of nitric oxide, prostanoids, and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines, and adhesion molecules. Melatonin's anti-inflammatory effects are related to the modulation of a number of transcription factors such as nuclear factor kappa B, hypoxia-inducible factor, nuclear factor erythroid 2-related factor 2, and others. Melatonin's effects on the DNA-binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen-activated protein kinases. This review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by melatonin and the effects on cell signaling pathways responsible for the indole's anti-inflammatory activity. Although there are a numerous published reports that have analyzed melatonin's anti-inflammatory properties, further studies are necessary to elucidate its complex regulatory mechanisms in different cellular types and tissues.
Collapse
Affiliation(s)
- José L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, León, Spain Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
46
|
Macias B, Gomez-Pinilla PJ, Camello-Almaraz C, Pascua P, Tresguerres JA, Camello PJ, Pozo MJ. Aging impairs Ca2+ sensitization pathways in gallbladder smooth muscle. AGE (DORDRECHT, NETHERLANDS) 2012; 34:881-893. [PMID: 21748275 PMCID: PMC3682072 DOI: 10.1007/s11357-011-9285-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/19/2011] [Indexed: 05/31/2023]
Abstract
Calcium sensitization is an important physiological process in agonist-induced contraction of smooth muscle. In brief, calcium sensitization is a pathway that leads to smooth muscle contraction independently of changes in [Ca(2+)](i) by mean of inhibition of myosin light chain phosphatase. Aging has negative impacts on gallbladder contractile response due to partial impairment in calcium signaling and alterations in the contractile machinery. However, information regarding aging-induced alterations in calcium sensitization is scanty. We hypothesized that the calcium sensitization system is negatively affected by age. To investigate this, gallbladders were collected from adult (4 months old) and aged (22-24 months old) guinea pigs. To evaluate the contribution of calcium sensitization pathways we assayed the effect of the specific inhibitors Y-27632 and GF109203X on the "in vitro" isometric gallbladder contractions induced by agonist challenges. In addition, expression and phosphorylation (as activation index) of proteins participating in the calcium sensitization pathways were quantified by Western blotting. Aging reduced bethanechol- and cholecystokinin-evoked contractions, an effect associated with a reduction in MLC20 phosphorylation and in the effects of both Y-27632 and GF109203X. In addition, there was a drop in ROCK I, ROCK II, MYPT-1 and PKC expression and in the activation/phosphorylation of MYPT-1, PKC and CPI-17 in response to agonists. Interestingly, melatonin treatment for 4 weeks restored gallbladder contractile responses due to re-establishment of calcium sensitization pathways. These results demonstrate that age-related gallbladder hypocontractility is associated to alterations of calcium sensitization pathways and that melatonin treatment exerts beneficial effects in the recovery of gallbladder contractility.
Collapse
Affiliation(s)
- Beatriz Macias
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| | - Pedro J. Gomez-Pinilla
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| | - Cristina Camello-Almaraz
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| | - Patricia Pascua
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| | - Jesus Af. Tresguerres
- />Department of Physiology, Medical School, University Complutense of Madrid, 28040 Madrid, Spain
| | - Pedro J. Camello
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| | - Maria J. Pozo
- />Department of Physiology, Nursing School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres, Spain
| |
Collapse
|
47
|
Baxi DB, Singh PK, Vachhrajani KD, Ramachandran AV. Melatonin supplementation in rat ameliorates ovariectomy-induced oxidative stress. Climacteric 2012; 16:274-83. [DOI: 10.3109/13697137.2012.682108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Ji YL, Wang H, Meng C, Zhao XF, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res 2012; 52:71-9. [PMID: 21793897 DOI: 10.1111/j.1600-079x.2011.00921.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increasing evidence demonstrates that melatonin has an anti-apoptotic effect in somatic cells. However, whether melatonin can protect against germ cell apoptosis remains obscure. Cadmium (Cd) is a testicular toxicant and induces germ cell apoptosis. In this study, we investigated the effects of melatonin on Cd-evoked germ cell apoptosis in testes. Male ICR mice were intraperitoneally (i.p.) injected with melatonin (5 mg/kg) every 8 hr, beginning at 8 hr before CdCl(2) (2.0 mg/kg, i.p.). As expected, acute Cd exposure resulted in germ cell apoptosis in testes, as determined by terminal dUTP nick-end labeling (TUNEL) staining. Melatonin significantly alleviated Cd-induced testicular germ cell apoptosis. An additional experiment showed that spliced form of XBP-1, the target of the IRE-1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an endoplasmic reticulum (ER) chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly increased testicular eIF2α and JNK phosphorylation, indicating that the unfolded protein response (UPR) pathway was activated by CdCl(2). Interestingly, melatonin almost completely inhibited Cd-induced ER stress and the UPR in testes. In addition, melatonin obviously attenuated Cd-induced heme oxygenase (HO)-1 expression and protein nitration in testes. Taken together, these results suggest that melatonin alleviates Cd-induced cellular stress and germ cell apoptosis in testes. Melatonin may be useful as pharmacological agents to protect against Cd-induced testicular toxicity.
Collapse
Affiliation(s)
- Yan-Li Ji
- Department of Toxicology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ochoa JJ, Díaz-Castro J, Kajarabille N, García C, Guisado IM, De Teresa C, Guisado R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J Pineal Res 2011; 51:373-80. [PMID: 21615492 DOI: 10.1111/j.1600-079x.2011.00899.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strenuous exercise induces inflammatory reactions together with high production of free radicals and subsequent muscle damage. This study was designed to investigate for the first time and simultaneously whether over-expression of inflammatory mediators, oxidative stress, and alterations in biochemical parameters induced by acute exercise could be prevented by melatonin. This indoleamine is a potent, endogenously produced free radical scavenger and a broad-spectrum antioxidant; consequently, it might have positive effects on the recovery following an exercise session. The participants were classified into two groups: melatonin-treated men (MG) and placebo-treated individuals (controls group, CG). The physical test consisted in a constant run that combined several degrees of high effort (mountain run and ultra-endurance). The total distance of the run was 50 km with almost 2800 m of ramp in permanent climbing and very changeable climatic conditions. Exercise was associated with a significant increase in TNF-α, IL-6, IL-1ra (in blood), and also an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) and isoprostane levels (in urine), and indicated the degree of oxidative stress and inflammation induced. Oral supplementation of melatonin during high-intensity exercise proved efficient in reducing the degree of oxidative stress (lower levels of lipid peroxidation, with a significant increase in antioxidative enzyme activities); this would lead to the maintenance of the cellular integrity and reduce secondary tissue damage. Data obtained also indicate that melatonin has potent protective effects, by preventing over-expression of pro-inflammatory mediators and inhibiting the effects of several pro-inflammatory cytokines. In summary, melatonin supplementation before strenuous exercise reduced muscle damage through modulation of oxidative stress and inflammation signaling associated with this physical challenge.
Collapse
Affiliation(s)
- Julio J Ochoa
- Department of Physiology, University of Granada, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 2011; 132:573-82. [DOI: 10.1016/j.mad.2011.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/30/2022]
|