1
|
Huo Y, Gao Y, Li B, Zhang P, Liu H, Wang G, Pang C, Wang Y, Bai L. Analysis of how melatonin-upregulated clock genes PER2 and CRY2 alleviate rheumatoid arthritis-associated interstitial lung disease. Eur J Pharmacol 2025; 986:177136. [PMID: 39551335 DOI: 10.1016/j.ejphar.2024.177136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Melatonin (Mel) serves as the central regulator for maintaining circadian rhythms and plays a crucial role not only in controlling the rhythmic clock, but also in several functional domains such as immunomodulation and anti-inflammation. In this study, we explored the clinical relevance of Mel and rheumatoid arthritis comorbid with interstitial lung disease (RA-ILD), and its potential therapeutic effects on arthropathy and pulmonary fibrosis (PF) in mice with collagen-induced arthritis (CIA). The results demonstrated that low serum levels of Mel were correlated with disease activity and severity of PF in RA-ILD patients. In addition, Mel was potentially efficacious in alleviating arthritis, bone destruction, and PF in a mouse model of CIA. Meanwhile, we observed that in lung tissues, the circadian-clock genes (CCGs) period circadian regulator 2 (PER2) and cryptochrome circadian regulator 2 (CRY2) were predominantly expressed in epithelial cells (ECs), and the regulation of their expression in ECs was closely correlated with Mel-mediated suppression of inflammatory responses and a significant reduction in macrophagic inflammatory activity. These results implied that Mel and its associated CCGs might play important regulatory roles in RA-ILD and its associated pathological processes.
Collapse
Affiliation(s)
- Yinping Huo
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Yajie Gao
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Bingle Li
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Peiyao Zhang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Huiyang Liu
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Guan Wang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Chunyan Pang
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| | - Li Bai
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| |
Collapse
|
2
|
Fang Y, Huang W, Zhu X, Wang X, Wu X, Wang H, Hong W, Yan S, Zhang L, Deng Y, Wei W, Tu J, Zhu C. Epigenetic Regulatory Axis MIR22-TET3-MTRNR2L2 Represses Fibroblast-Like Synoviocyte-Mediated Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:845-856. [PMID: 38221658 DOI: 10.1002/art.42795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The specific role of fibroblast-like synoviocytes (FLSs) in the pathogenesis of rheumatoid arthritis (RA) is still not fully elucidated. This study aimed to explore the molecular mechanisms of epigenetic pathways, including three epigenetic factors, microRNA (miRNA)-22 (MIR22), ten-eleven translocation methylcytosine dioxygenase 3 (TET3), and MT-RNR2 like 2 (MTRNR2L2), in RA-FLSs. METHODS The expression of MIR22, TET3, and MTRNR2L2 in the synovium of patients with RA and arthritic mice were determined by fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), immunohistochemistry, and Western blot. Mir22-/- and Tet3+/- mice were used to establish a collagen antibody-induced arthritis (CAIA) model. Mir22 angomir and Tet3 small interfering RNA (siRNA) were used to illustrate the therapeutic effects on arthritis using a collagen-induced (CIA) model. Bioinformatics, luciferase reporter assay, 5-hydroxymethylcytosine (5hmC) dot blotting, chromatin immunoprecipitation-qPCR, and hydroxymethylated DNA immunoprecipitation were conducted to show the direct repression of MIR22 on the TET3 and transcriptional activation of TET3 on MTRNR2L2. RESULTS The Mir22-/- CAIA model and RA-FLS-related in vitro experiments demonstrated the inhibitory effect of MIR22 on inflammation. MIR22 can directly inhibit the translation of TET3 in RA-FLSs by binding to its 3' untranslated region in TET3. The Tet3+/- mice-established CAIA model showed less severe symptoms of arthritis in vivo. In vitro experiments further confirmed the proinflammatory effect of TET3 in RA. In addition, the CIA model was used to validate the therapeutic effects of Mir22 angomir and Tet3 siRNA. Finally, TET3 exerts its proinflammatory effect by promoting 5hmC production in the promoter of its target MTRNR2L2 in RA-FLSs. CONCLUSION The key role of the MIR22-TET3-MTRNR2L2 pathway in RA-FLSs provided an experimental basis for further studies into the pathogenesis and related targets of RA from the perspective of FLSs.
Collapse
Affiliation(s)
- Yilong Fang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Huang
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Xiangling Zhu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuming Wu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangxue Yan
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Lingling Zhang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, China
| | - Wei Wei
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Tu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chen Zhu
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
6
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
7
|
Du Z, You X, Wu D, Huang S, Zhou Z. Rhythm disturbance in osteoarthritis. Cell Commun Signal 2022; 20:70. [PMID: 35610652 PMCID: PMC9128097 DOI: 10.1186/s12964-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the main causes of disabilities among older people. To date, multiple disease-related molecular networks in OA have been identified, including abnormal mechanical loadings and local inflammation. These pathways have not, however, properly elucidated the mechanism of OA progression. Recently, sufficient evidence has suggested that rhythmic disturbances in the central nervous system (CNS) and local joint tissues affect the homeostasis of joint and can escalate pathological changes of OA. This is accompanied with an exacerbation of joint symptoms that interfere with the rhythm of CNS in reverse. Eventually, these processes aggravate OA progression. At present, the crosstalk between joint tissues and biological rhythm remains poorly understood. As such, the mechanisms of rhythm changes in joint tissues are worth study; in particular, research on the effect of rhythmic genes on metabolism and inflammation would facilitate the understanding of the natural rhythms of joint tissues and the OA pathology resulting from rhythm disturbance. Video Abstract
Collapse
Affiliation(s)
- Ze Du
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanhe You
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diwei Wu
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ursini F, De Giorgi A, D’Onghia M, De Giorgio R, Fabbian F, Manfredini R. Chronobiology and Chronotherapy in Inflammatory Joint Diseases. Pharmaceutics 2021; 13:1832. [PMID: 34834246 PMCID: PMC8621834 DOI: 10.3390/pharmaceutics13111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Circadian rhythm perturbations can impact the evolution of different conditions, including autoimmune diseases. This narrative review summarizes the current understanding of circadian biology in inflammatory joint diseases and discusses the potential application of chronotherapy. Proinflammatory cytokines are key players in the development and progression of rheumatoid arthritis (RA), regulating cell survival/apoptosis, differentiation, and proliferation. The production and secretion of inflammatory cytokines show a dependence on the human day-night cycle, resulting in changing cytokine plasma levels over 24 h. Moreover, beyond the circadian rhythm of cytokine secretion, disturbances in timekeeping mechanisms have been proposed in RA. Taking into consideration chronotherapy concepts, modified-release (MR) prednisone tablets have been introduced to counteract the negative effects of night-time peaks of proinflammatory cytokines. Low-dose MR prednisone seems to be able to improve the course of RA, reduce morning stiffness and morning serum levels of IL-6, and induce significant clinical benefits. Additionally, methotrexate (MTX) chronotherapy has been reported to be associated with a significant improvement in RA activity score. Similar effects have been described for polymyalgia rheumatica and gout, although the available literature is still limited. Growing knowledge of chronobiology applied to inflammatory joint diseases could stimulate the development of new drug strategies to treat patients in accordance with biological rhythms and minimize side effects.
Collapse
Affiliation(s)
- Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.U.); (M.D.)
| | - Alfredo De Giorgi
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| | - Martina D’Onghia
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.U.); (M.D.)
| | - Roberto De Giorgio
- Internal Medicine II Unit, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Fabbian
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| | - Roberto Manfredini
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| |
Collapse
|
9
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther 2021; 14:2019-2052. [PMID: 33776451 PMCID: PMC7987311 DOI: 10.2147/ott.s298512] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a large group of diseases and the second leading cause of death worldwide. Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in men, whereas breast, colorectal, lung, cervical, and thyroid cancers are the most common among women. Presently, various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, nanotherapy, and immunotherapy, have been used as conventional treatments for patients with cancer. However, the clinical outcomes of advanced-stage disease remain relatively unfavorable owing to the emergence of chemoresistance, toxicity, and other undesired detrimental side effects. Therefore, new therapies to overcome these limitations are indispensable. Recently, there has been considerable evidence from experimental and clinical studies suggesting that melatonin can be used to prevent and treat cancer. Studies have confirmed that melatonin mitigates the pathogenesis of cancer by directly affecting carcinogenesis and indirectly disrupting the circadian cycle. Melatonin (MLT) is nontoxic and exhibits a range of beneficial effects against cancer via apoptotic, antiangiogenic, antiproliferative, and metastasis-inhibitory pathways. The combination of melatonin with conventional drugs improves the drug sensitivity of cancers, including solid and liquid tumors. In this manuscript, we will comprehensively review some of the cellular, animal, and human studies from the literature that provide evidence that melatonin has oncostatic and anticancer properties. Further, this comprehensive review compiles the available experimental and clinical data analyzing the history, epidemiology, risk factors, therapeutic effect, clinical significance, of melatonin alone or in combination with chemotherapeutic agents or radiotherapy, as well as the underlying molecular mechanisms of its anticancer effect against lung, breast, prostate, colorectal, skin, liver, cervical, and ovarian cancers. Nonetheless, in the interest of readership clarity and ease of reading, we have discussed the overall mechanism of the anticancer activity of melatonin against different types of cancer. We have ended this report with general conclusions and future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
11
|
Han N, Wang Z, Li X. Melatonin alleviates d-galactose-decreased hyaluronic acid production in synovial membrane cells via Sirt1 signalling. Cell Biochem Funct 2021; 39:488-495. [PMID: 33432584 DOI: 10.1002/cbf.3613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) exerts a critical role in the lubricating and buffering properties of synovial fluid in joints. The production of HA is regulated by growth factors, hormones, inflammatory cytokines and mechanical load. The reduction of HA contributes to the progression of osteoarthritis. Herein, we found that d-galactose (d-gal) induced the senescence of rabbit synovial membrane cells, accompanied by decreased HA production. The mRNA level of HA synthase 2 (HAS2) was downregulated by d-gal, as analysed by real-time polymerase chain reaction. Melatonin, an endocrine hormone, can regulate the homeostasis of bone and cartilage. We found that melatonin treatment attenuated d-gal-induced cell senescence and decreased the expression of p21, p16 and pp65 proteins. Melatonin could reverse HA production and maintain HAS2 expression. Furthermore, we revealed that Sirt1 signalling was required for melatonin effects. Sirt1 inhibitor could counteract melatonin-mediated HA production and HAS2 expression. Additionally, Sirt1 overexpression directly antagonized d-gal-induced cell aging and HA downregulation. Taken together, our results suggest that melatonin-Sirt1 signal has a protective effect on synovial membrane cells, enhancing HA synthesis and interrupting cell senescence.
Collapse
Affiliation(s)
- Na Han
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Zhiqiang Wang
- Special Medical Center, Logistics University of People's Armed Police Force, Tianjin, China
| | - Xianhui Li
- Department of Clinical Medicine, Logistics University of People's Armed Police Force, Tianjin, China
| |
Collapse
|
12
|
Faghani M, Mohammadghasemi F, Rafat Z, Sasani E. Serum melatonin level in patients with rheumatoid arthritis: A systematic review and meta-analysis. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_331_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Lee JH, Yoo YM, Lee B, Jeong S, Tran DN, Jeung EB. Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells. J Vet Sci 2021; 22:e54. [PMID: 34313039 PMCID: PMC8318788 DOI: 10.4142/jvs.2021.22.e54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/20/2021] [Indexed: 01/26/2023] Open
Abstract
Background Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Yeong Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Bonn Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - SunHwa Jeong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dinh Nam Tran
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Eui Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
14
|
CypB-CD147 Signaling Is Involved in Crosstalk between Cartilage and FLS in Collagen-Induced Arthritis. Mediators Inflamm 2020; 2020:6473858. [PMID: 32908452 PMCID: PMC7475760 DOI: 10.1155/2020/6473858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022] Open
Abstract
To investigate the crosstalk between cartilage and fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA), we adopted an in vitro coculture system model of collagen-induced arthritis (CIA) cartilage and CIA FLS monolayer. CIA rat samples of the synovium and femur head were collected for isolation of FLS and coculture system. Cartilages were treated with vehicle (Ctrl group), 10 ng/mL interleukin- (IL-) 1α (IL-1α group), and 10 ng/mL IL-1α plus 10 μM dexamethasone (Dex group) for 3 days before coculture with FLS for further 2 days. After the coculture, FLS were collected to determine the influences of articular cartilage on synoviocytes. Whether the CypB-CD147 signaling pathway is involved in the interactions between cartilage and FLS is assayed. Results showed that IL-1α-stimulated CIA cartilage promoted the proliferation and reduced the apoptosis of FLS. Increased inflammatory cytokines and decreased p57 expression were found in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. Upregulation of NF-κB and I-κB kinase β (IKK-β) and downregulation of the inhibitor of NF-κBα (I-κBα) protein were observed in cocultured FLS. After coculture, significant increases in the expression of cyclophilin B (CypB) and CD147 were observed in CIA cartilage and FLS, respectively. Furthermore, results of immunofluorescence staining showed that the anti-CD147 antibody significantly suppressed p65 nuclear translocation in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. In conclusion, inflammatory effects in the cartilage-FLS coculture system are associated with the CypB-CD147 mediating NF-κB pathway which may further enhance the inflammation in RA.
Collapse
|
15
|
MacDonald IJ, Huang CC, Liu SC, Tang CH. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21082877. [PMID: 32326031 PMCID: PMC7215432 DOI: 10.3390/ijms21082877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disorder characterized by synovial proliferation and inflammation, with eventual joint destruction if inadequately treated. Modern therapies approved for RA target the proinflammatory cytokines or Janus kinases that mediate the initiation and progression of the disease. However, these agents fail to benefit all patients with RA, and many lose therapeutic responsiveness over time. More effective or adjuvant treatments are needed. Melatonin has shown beneficial activity in several animal models and clinical trials of inflammatory autoimmune diseases, but the role of melatonin is controversial in RA. Some research suggests that melatonin enhances proinflammatory activities and thus promotes disease activity in RA, while other work has documented substantial anti-inflammatory and immunoregulatory properties of melatonin in preclinical models of arthritis. In addition, disturbance of the circadian rhythm is associated with RA development and melatonin has been found to affect clock gene expression in joints of RA. This review summarizes current understanding about the immunopathogenic characteristics of melatonin in RA disease. Comprehensive consideration is required by clinical rheumatologists to balance the contradictory effects.
Collapse
Affiliation(s)
- Iona J. MacDonald
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +(886)-2205-2121 (ext. 7726)
| |
Collapse
|
16
|
Zhao CN, Wang P, Mao YM, Dan YL, Wu Q, Li XM, Wang DG, Davis C, Hu W, Pan HF. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev 2019; 48:1-10. [DOI: 10.1016/j.cytogfr.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
|
17
|
Huang CC, Chiou CH, Liu SC, Hu SL, Su CM, Tsai CH, Tang CH. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res 2019; 66:e12560. [PMID: 30648758 DOI: 10.1111/jpi.12560] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
The hormone melatonin has many properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has been demonstrated to be beneficial in several inflammatory autoimmune diseases, but its effects in rheumatoid arthritis (RA) remain controversial. We sought to determine how melatonin regulates inflammation in RA. We found that melatonin dose-dependently inhibits tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β expression through the PI3K/AKT, ERK, and NF-κB signaling pathways. We also identified that melatonin inhibits TNF-α and IL-1β production by upregulating miR-3150a-3p expression. Synovial tissue specimens from RA patients and culture of human rheumatoid fibroblast-like synoviocytes confirmed that the MT1 receptor is needed for the anti-inflammatory activities of melatonin. Importantly, melatonin also significantly reduced paw swelling, cartilage degradation, and bone erosion in the collagen-induced arthritis mouse model. Our results indicate that melatonin ameliorates RA by inhibiting TNF-α and IL-1β production through downregulation of the PI3K/AKT, ERK, NF-κB signaling pathways, as well as miR-3150a-3p overexpression. The role of melatonin as an adjuvant treatment in patients with RA deserves further clinical studies.
Collapse
Affiliation(s)
- Chien-Chung Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Hsiang Chiou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B, Sadeghpour A. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol 2018; 175:3230-3238. [PMID: 28585236 PMCID: PMC6057898 DOI: 10.1111/bph.13898] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most prevalent joint diseases. A such, they are important causes of pain and disability in a substantial proportion of the human population. A common characteristic of these diseases is the erosion of articular cartilage and consequently joint dysfunction. Melatonin has been proposed as a link between circadian rhythms and joint diseases including RA and OA. This hormone exerts a diversity of regulatory actions through binding to specific receptors and intracellular targets as well as having receptor-independent actions as a free radical scavenger. Cytoprotective effects of melatonin involve a myriad of prominent receptor-mediated pathways/molecules associated with inflammation, of which the role of omnipresent NF-κB signalling is crucial. Likewise, disturbance of circadian timekeeping is closely involved in the aetiology of inflammatory arthritis. Melatonin is shown to stimulate cartilage destruction/regeneration through direct/indirect modulation of the expression of the main circadian clock genes, such as BMAL, CRY and/or DEC2. In the current article, we review the effects of melatonin on RA and OA, focusing on its ability to regulate inflammatory pathways and circadian rhythms. We also review the possible protective effects of melatonin on RA and OA pathogenesis. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Saeed Mehrzadi
- Razi Drug Research CenterIran University of Medical SciencesTehranIran
| | - Russel J Reiter
- Department of Cellular and Structural BiologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | | | - Nasrin Khatami
- Students Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research Group, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Alireza Sadeghpour
- Department of Orthopaedic Surgery, School of Medicine and Shohada Educational HospitalTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
19
|
Jiang H, Zhu Y, Zhou Z, Xu J, Jin S, Xu K, Zhang H, Sun Q, Wang J, Xu J. PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med 2018; 7:869-882. [PMID: 29441724 PMCID: PMC5852340 DOI: 10.1002/cam4.1360] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that PRMT5, a protein arginine methyltransferase, has roles in cell growth regulation and cancer development. However, the role of PRMT5 in hepatocellular carcinoma (HCC) progression remains unclear. Here, we showed that PRMT5 expression was frequently upregulated in HCC tissues, and its expression was inversely correlated with overall survival in HCC patients. PRMT5 knockdown markedly inhibited in vitro HCC proliferation and in vivo tumorigenesis. We revealed that the mechanism of PRMT5‐induced proliferation was partially mediated by BTG downregulation, leading to cell cycle arrest during the G1 phase in HCC cells. Ectopic BTG2 overexpression decreased HCC growth, caused cell cycle arrest at the G1 phase, and downregulated Cyclin D1 and Cyclin E1 protein expression. Furthermore, we found that PRMT5‐induced ERK phosphorylation regulated BTG2 expression in HCC cells, whereas pretreatment with a selective ERK1/2 inhibitor (PD184352) significantly reversed the effect of PRMT5 on BTG2 expression. Our results indicated that PRMT5 promotes HCC proliferation by downregulating BTG2 expression via the ERK pathway.
Collapse
Affiliation(s)
- Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyang Xu
- Department of Neurology, Forth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Shaowen Jin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kang Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Heyun Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qing Sun
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyao Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
20
|
Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M, Sarmiento-Soto H, Medrano-Campillo P, Martínez-López A, Lardone PJ, Guerrero JM, Carrillo-Vico A. Melatonin reduces inflammatory response in peripheral T helper lymphocytes from relapsing-remitting multiple sclerosis patients. J Pineal Res 2017; 63. [PMID: 28793364 DOI: 10.1111/jpi.12442] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system in which the immune system plays a central role. In particular, effector populations such as T helper (Th) 1, Th9, Th17, and Th22 cells are involved in disease development, whereas T regulatory cells (Tregs) are associated with the resolution of the disease. Melatonin levels are impaired in patients with MS, and exogenous melatonin ameliorates the disease in MS animal models by modulating the Th1/Th17/Treg responses and also improves quality of life and several symptoms in patients with MS. However, no study has examined melatonin's effect on T cells from relapsing-remitting MS (RR-MS) patients. Therefore, the objectives of the present study were to evaluate the effects of the in vitro administration of melatonin to peripheral blood mononuclear cells (PBMCs) from 64 RR-MS patients and 64 sex- and age-matched healthy subjects on Th1, Th9, Th17, Th22, and Treg responses and to analyze the expression of the melatonin effector/receptor system in these cells. Melatonin decreased Th1 and Th22 responses in patients, whereas it did not affect the Th17 and Treg subsets. Melatonin also promoted skewing toward a more protective cytokine microenvironment, as shown by an increased anti-inflammatory/Th1 ratio. Furthermore, for the first time, we describe the overexpression of the melatonin effector/receptor system in PBMCs from patients with MS; this alteration might be relevant to the disease because acetylserotonin O-methyltransferase expression significantly correlates with disease progression and T effector/regulatory responses in patients. Therefore, our data suggest that melatonin may be an effective treatment for MS.
Collapse
Affiliation(s)
- Nuria Álvarez-Sánchez
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Ivan Cruz-Chamorro
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - María Díaz-Sánchez
- Unidad de Gestión Clínica de Neurociencias, Servicio de Neurología del Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Helia Sarmiento-Soto
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Pablo Medrano-Campillo
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Alicia Martínez-López
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Patricia J Lardone
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Juan M Guerrero
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Department of Clinical Biochemistry, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Carrillo-Vico
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
21
|
Guo J, Zhao W, Cao X, Yang H, Ding J, Ding J, Tan Z, Ma X, Hao C, Wu L, Ma Z, Xie J, Wang Z. SIRT1 promotes tumor-like invasion of fibroblast-like synoviocytes in rheumatoid arthritis via targeting TIMP1. Oncotarget 2017; 8:88965-88973. [PMID: 29179491 PMCID: PMC5687661 DOI: 10.18632/oncotarget.21628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Suppression of tissue inhibitor of matrix metalloproteinase (TIMP) is associated with the tumor-like invasion of fibroblast-like synoviocytes (FLSs) that occurs during rheumatoid arthritis-related cartilage destruction. Silent information regulator 2 homolog1 (SIRT1), a histone deacetylase, is widely involved in transcriptional regulation, genomic stability, metabolism and DNA repair. Recent studies suggest that SIRT1 may also impact inflammatory response and the proliferation of FLSs in rheumatoid arthritis (RA). However, it is unknown whether SIRT1 has a role in the tumor-like invasion of FLSs in rheumatoid arthritis. Herein we report that SIRT1 contributes to FLS invasion and cartilage destruction via a TIMP1-dependent mechanism. Elevated SIRT1 in RA synovia suppresses TIMP1 expression via deacetylation of TIMP1-associated histones, thereby disrupting the binding of the transcription factor specificity protein 1 (Sp1) to the TIMP1 promoter. In rats with collagen-induced arthritis, depletion of SIRT1 remarkably promoted TIMP1 expression in synovial tissues and ameliorated cartilage destruction. These results describe a new role for SIRT1 and demonstrate its potential value as a therapeutic target for rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiangtao Guo
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Wei Zhao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuqing Cao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Huiying Yang
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Juan Ding
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jingbin Ding
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Zifang Tan
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Xiaoli Ma
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Chunfang Hao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Lili Wu
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Zhengjuan Ma
- The Fifth People's Hospital of Ningxia, Shizuishan, China
| | | | - Zhijun Wang
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
22
|
Guo Q, Wang Z, Dong Y, Cao J, Chen Y. Physiological crosstalk between the AC/PKA and PLC/PKC pathways modulates melatonin-mediated, monochromatic-light-induced proliferation of T-lymphocytes in chickens. Cell Tissue Res 2017; 369:555-565. [PMID: 28660299 DOI: 10.1007/s00441-017-2644-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Previous study has demonstrated that melatonin plays a critical role in monochromatic-light-induced lymphocyte proliferation in response to T cell mitogen concanavalin A (ConA). However, its intracellular mechanism is still unclear. In this study, we investigate the intracellular signal pathways of melatonin receptor-mediated T-lymphocyte proliferation in the spleens of chicks exposed to different light wavelengths. Results showed that green light enhanced T-lymphocyte proliferation by 2.46-6.83% and increased splenic mRNA and protein expressions of melatonin receptor subtypes (Mel1a, Mel1b and Mel1c) by 16.05-40.43% compared with the white, red and blue light groups. However, pinealectomy resulted in a decrease in T-lymphocyte proliferation and melatonin receptor expression with no statistically significant differences between the different light groups. In vitro experiments showed that the Mel1b selective antagonist 4P-PDOT, the Mel1c selective antagonist prazosin and the mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor PD98059 suppressed both melatonin-induced lymphocyte proliferation in response to ConA and melatonin- and ConA-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) activity but that the Mel1a/Mel1b non-selective antagonist luzindole did not. In addition, pretreatment with forskolin (FSK, the adenylyl cyclase activator), H89 (the PKA inhibitor), U73122 (the PLC inhibitor) or Go6983 (the broad spectrum PKC inhibitor) markedly attenuated melatonin- and ConA-stimulated T-lymphocyte proliferation and ERK1/2 activity. These results demonstrate that melatonin mediates green-light-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors by triggering crosstalk between the cAMP/PKA and PLC/PKC signal pathways followed by ERK1/2 activation.
Collapse
Affiliation(s)
- Qingyun Guo
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Zixu Wang
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Calvo J, Maldonado M. The role of melatonin in autoimmune and atopic diseases. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Vriend J, Reiter RJ. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system--a review. Mol Cell Endocrinol 2015; 417:1-9. [PMID: 26363225 DOI: 10.1016/j.mce.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatonin and breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center San Antonio, TX, USA
| |
Collapse
|
25
|
Kim HJ, Lee S, Lee HY, Won H, Chang SH, Nah SS. 15-hydroxyprostaglandin dehydrogenase is upregulated by hydroxychloroquine in rheumatoid arthritis fibroblast-like synoviocytes. Mol Med Rep 2015; 12:4141-4148. [PMID: 26082314 PMCID: PMC4526038 DOI: 10.3892/mmr.2015.3931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/13/2015] [Indexed: 01/16/2023] Open
Abstract
15-Hydroxyprostaglandin dehydrogenase (HPGD) is the key enzyme responsible for the metabolic inactivation of prostaglandin E2 (PGE2) catabolism. PGE2 is one of the predominant catabolic factors involved in rheumatoid arthritis (RA). However, the expression and regulation of HPGD in RA fibroblast-like synoviocyte (FLS) remain to be elucidated. Disease-modifying anti-rheumatic drugs (DMARDs) are the most important anti-arthritic drugs, which reduce the effect of joint injury. The aim of the present study was to assess the expression of HPGD in RA tissues and cells, and normal synovial tissues and cells. The effect of the most popular DMARDs, hydroxychloroquine, on the expression of HPGD in RA-FLS was also investigated. Western blotting and immuno-histochemical analysis demonstrated that the expression levels of HPGD in human synovium were lower in RA synovium compared with the normal and OA synovium. In RA-FLS, the expression of HPGD was increased following treatment with several DMARDs, including sulfasalazine, methotrexate, and hydroxychloroquine. Hydroxychloroquine (10 µM) treatment induced the phosphorylation of ERK, SAPK/JNK and p38. Hydroxychloroquine induced a decrease in the release of PGE2, which was restored by mitogen-activated protein (MAP) kinase pathway inhibitors. Hydroxychloroquine may therefore, affect the pathogenesis of RA through the MAP kinase pathway by regulating the expression of HPGD.
Collapse
Affiliation(s)
- Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Sora Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Haw-Yong Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Hansol Won
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Sung-Hae Chang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| |
Collapse
|
26
|
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58:1-11. [PMID: 25369242 DOI: 10.1111/jpi.12189] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
27
|
Afkhamizadeh M, Sahebari M, Seyyed-Hoseini SR. Morning melatonin serum values do not correlate with disease activity in rheumatoid arthritis: a cross-sectional study. Rheumatol Int 2014; 34:1145-1151. [PMID: 24487422 DOI: 10.1007/s00296-013-2930-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA), the most prevalent autoimmune arthritis worldwide, usually presents with a circannual manner and, meanwhile, follows a circadian rhythm for symptoms like morning stiffness. Therefore, association between RA and some hormones such as melatonin (MLT) and vitamin D, whose serum values are related to body circadian rhythms or seasonal variations, has become more noticeable recently. Since some studies proposed that RA patients show altered MLT circadian rhythms, especially in concordance with symptoms, in this research, we present the correlation between MLT serum values and RA disease activity score (DAS28ESR). The current cross-sectional study was carried out on 80 volunteers (60 patients and 20 healthy controls). Fifty percent of the participants in each group were sampled in cold, and the same percentage were sampled in warm seasons at 8 a.m. Disease activity was estimated utilizing DAS28ESR. Patients with possible known confounders of MLT secretion were excluded. A commercial MLT ELISA kit was employed to measure MLT. Statistical analysis was conducted by SPSS-11 software. This study outlined higher serum values of MLT in RA patients compared with controls (P = 0.006, z = -2.73). However, MLT did not correlate with DAS in patients (P = 0.45, r = -0.09). GLM analysis demonstrated that DAS28ESR, age, disease duration, medications, gender, and season of sampling had no influence on serum MLT. However, newly diagnosed RA patients presented higher MLT values than established ones (P = 0.03, t = -2.2). A cutoff point value of 23 pg/mL (63.3 % sensitivity and 90 % specificity) for MLT was computed between patients and controls. This study denoted that morning MLT serum values are higher in RA patients than in healthy volunteers. However, MLT and RA disease activity or other disease characteristics do not correlate. MLT serum values were higher in newly diagnosed RA patients than established ones.
Collapse
Affiliation(s)
- Mozhgan Afkhamizadeh
- Endocrine Research Center, School of Medicine, Iman Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | | | | |
Collapse
|
28
|
Liu L, Xu Y, Reiter RJ. Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone 2013; 55:432-8. [PMID: 23470834 DOI: 10.1016/j.bone.2013.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/03/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
It seems established that the onset of osteosarcoma and the reduction in melatonin production run in parallel; this suggests that the decline in the cancer-inhibiting agent, melatonin, may contribute to the occurrence of osteosarcoma and that melatonin supplementation may have promise for preventing the development and progression of this condition. There is, however, no direct evidence regarding an antiproliferative effect of melatonin in osteosarcoma cells. In the current study, we examined whether melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. MTT staining showed that at 4 mM-10 mM concentrations, melatonin significantly reduced the MG-63 cell proliferation in a dose-dependent and time-dependent manner. Flow cytometry documented that 4 mM melatonin significantly increased the fraction of cells in the G(0)/G(1) phase of the cell cycle, while simultaneously reducing the proportion in the S and G(2)/M phases. Western blot and real-time PCR analyses further confirmed that melatonin's inhibitory effect was possibly because of downregulation of cyclin D1 and CDK4, related to the G(1) phase, and of cyclin B1 and CDK1, related to the G(2)/M phase. There was no downregulation of cyclin E, CDK2, and cyclin A, which are related to G(1)/S transition and S phase. These findings provide evidence that melatonin may significantly inhibit human osteosarcoma cell proliferation in a dose-dependent and time-dependent manner and this inhibition involves the downregulation of cyclin D1, CDK4, cyclin B1 and CDK1.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Orthopaedics, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | |
Collapse
|
29
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
30
|
Abstract
Rheumatoid arthritis exhibits diurnal variation in symptoms, with patients suffering with increased painful joint stiffness in the early morning. This correlates with an early morning rise in circulating levels of pro-inflammatory cytokines, such as interleukin-6. This temporal variation in disease pathology is directed by the circadian clock, both at a systemic level, through signalling pathways derived in the central clock, and at a local level by autonomous clocks found within inflammatory organs and cells. Indeed, many cellular components of the immune system, which are involved in the pathogenesis of rheumatoid arthritis, possess independent clocks that facilitate temporal gating of their functions. Furthermore, the circadian clock regulates the expression and activity of several genes and proteins that have demonstrated roles in progression of this autoimmune disease. These include a number of nuclear receptors and also fat-derived adipokines. Employing the knowledge we have about how the inflammatory response is regulated by the clock will facilitate the development of chronotherapy regimens to improve the efficacy of current treatment strategies. Furthermore, a full understanding of the mechanisms by which the clock couples to the immune system may provide novel therapeutic targets for the treatment of this debilitating disease.
Collapse
|
31
|
A Comparison of B16 Melanoma Cells and 3T3 Fibroblasts Concerning Cell Viability and ROS Production in the Presence of Melatonin, Tested Over a Wide Range of Concentrations. Int J Mol Sci 2013; 14:3901-20. [PMID: 23434670 PMCID: PMC3588077 DOI: 10.3390/ijms14023901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic molecule with many cellular and systemic actions, including chronobiotic effects. Beneficial effects are widely documented concerning the treatment of neoplastic diseases in vivo as well as reductions in viability of cultured cells from melanoma, one of the most aggressive cancers in humans. However, studies of its effects on non-tumor cells in vitro have not focused on viability, except for experiments aiming to protect against oxidotoxicity or other toxicological insults. Furthermore, there is no agreement on the range of effective melatonin concentrations in vitro, and the mechanisms that reduce cell viability have remained unclear. Tumor cell-specific increases in the production of reactive oxygen and nitrogen species (ROS/RNS) may provide a possible explanation. Our aim was to analyze the potential inhibition of tumor (B16 melanoma 4A5) and non-tumor cell (3T3 Swiss albino) viability using a wide range of melatonin concentrations (10−11–10−2 M), and to determine whether intracellular ROS enhancement was involved in this process. In the absence of fetal bovine serum (FBS), low melatonin concentrations (10−9–10−5 M) reduced the proliferation of melanoma cells with no effect in fibroblasts, whereas, in the presence of FBS, they had no effect or even increased the proliferation of both fibroblast and melanoma cells. Melatonin concentrations in the upper millimolar range increased ROS levels and reduced the viability of both cell types, but more markedly so in non-tumor cells. Thus, low melatonin concentrations reduce proliferation in this specific melanoma cell line, whereas high concentrations affect the viability of both tumor (B16 4A5 melanoma) and non-tumor (3T3 fibroblasts) cells. Increased ROS levels in both lines indicate a role for ROS production in the reduction of cell viability at high—but not low—melatonin concentrations, although the mechanism of action still remains to be elucidated.
Collapse
|
32
|
Zhong ZM, Li T, Xu ZX, Meng TT, Zeng JH, Zheng S, Ye WB, Wu Q, Chen JT. Effect of melatonin on the proliferation and differentiation of chondrocytes from rat vertebral body growth plate in vitro. Int J Med Sci 2013; 10:1392-8. [PMID: 23983601 PMCID: PMC3752726 DOI: 10.7150/ijms.5645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/29/2013] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Abnormal growth of vertebral body growth plate (VBGP) is considered as one of the etiologic factors in the adolescent idiopathic scoliosis (AIS). It was well-known that melatonin was correlated with the emergence and development of AIS. This study aimed to investigate the effect of melatonin on rat VBGP chondrocytes in vitro. METHODS Chondrocytes were isolated from rat VBGP, and treated with or without melatonin. Cell proliferation was measured by the Alamar Blue assay. Gene expression of collagen type II and aggrecan were evaluated by real-time PCR. Expression of the melatonin receptors (MT1, MT2), proliferating cell nuclear antigen (PCNA, a cell proliferation marker), Sox9 (a chondrocytic differentiation marker) and Smad4 (a common mediator in regulating the proliferation and differentiation of chondrocytes) were detected by Western blotting. RESULTS Expression of melatonin receptors (MT1, MT2) were detected in the rat VBGP chondrocytes. Melatonin, at 10 and 100 µg/mL concentration, significantly inhibited the proliferation of VBGP-chondrocytes and the gene expression of collagen type II and aggrecan, and down-regulated the protein expression of PCNA, Sox9 and Smad4. In addition, the inhibitory effect of melatonin was reversed by luzindole, a melatonin receptor antagonist. CONCLUSIONS These results suggest that melatonin at high concentrations can inhibit the proliferation and differentiation of VBGP chondrocytes, which might give some new insight into the pathogenic mechanism of AIS.
Collapse
Affiliation(s)
- Zhao-Ming Zhong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shimizu T, Kasamatsu A, Yamamoto A, Koike K, Ishige S, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Annexin A10 in human oral cancer: biomarker for tumoral growth via G1/S transition by targeting MAPK signaling pathways. PLoS One 2012; 7:e45510. [PMID: 23029062 PMCID: PMC3444476 DOI: 10.1371/journal.pone.0045510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Background Annexins are calcium and phospholipid binding proteins that form an evolutionary conserved multigene family. Considerable evidence indicates that annexin A10 (ANXA10) is involved in tumoral progression, although little is known about its role in human oral carcinogenesis. In this study, we investigated the involvement of ANXA10 in oral squamous cell carcinoma (OSCC). Methodology/Principal Findings ANXA10 mRNA and protein expressions were assessed by quantitative reverse transcriptase polymerase chain reaction and immunoblotting, and we conducted a proliferation assay and cell-cycle analysis in ANXA10 knockdown cells in vitro. We evaluated the correlation between the ANXA10 expression status in 100 primary OSCCs and the clinicopathological features by immunohistochemistry. ANXA10 mRNA and protein expression levels were up-regulated in all cellular lines examined (n = 7, p<0.05). ANXA10 knockdown cells showed that cellular proliferation decreased by inactivation of extracellular regulated kinase (ERK) (p<0.05), and cell-cycle arrest at the G1 phase resulted from up-regulation of cyclin-dependent kinase inhibitors. ANXA10 protein expression in primary OSCCs was also significantly greater than in normal counterparts (p<0.05), and higher expression was correlated with tumoral size (p = 0.027). Conclusions/Significance Our results proposed for the first time that ANXA10 is an indicator of cellular proliferation in OSCCs. Our results suggested that ANXA10 expression might indicate cellular proliferation and ANXA10 might be a potential therapeutic target for the development of new treatments for OSCCs.
Collapse
Affiliation(s)
- Toshihiro Shimizu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Ayumi Yamamoto
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Kazuyuki Koike
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shunsaku Ishige
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hiroaki Takatori
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yosuke Sakamoto
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Masashi Shiiba
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|
34
|
Liu L, Zhu Y, Xu Y, Reiter RJ. Prevention of ERK activation involves melatonin-induced G(1) and G(2) /M phase arrest in the human osteoblastic cell line hFOB 1.19. J Pineal Res 2012; 53:60-6. [PMID: 21988060 DOI: 10.1111/j.1600-079x.2011.00971.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin regulates mitogen-activated protein kinase (MAPK) and Akt signaling pathways. The MAPK family mainly includes extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Our previous study documented that melatonin delays osteoblast proliferation; however, the mechanism of action of melatonin remains unclear. Here, we demonstrate that melatonin significantly inhibited phosphorylation of ERK but not p38, JNK, or Akt in a human osteoblastic cell line 1.19 (hFOB), as measured by western blot. The expression of ERK, p38, JNK, and Akt was not altered. PD98059 (a selective inhibitor of MEK that disrupts downstream activation of ERK) and melatonin alone, and especially in combination, significantly induced an antiproliferative effect, G(1) and G(2) /M phase arrest of the cell cycle, and downregulation of the expression at both the protein and mRNA levels of cyclin D1 and CDK4, related to the G(1) phase, and of cyclin B1 and CDK1, related to the G(2) /M phase, as measured by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method, flow cytometry after propidium iodide staining, and both western blot and real-time PCR, respectively. Moreover, the combination of PD98059 and melatonin synergistically and markedly augmented the action of either agent alone. Coimmunoprecipitation further confirmed that there was an interaction between phosphorylation of ERK and cyclin D1, CDK4, cyclin B1, or CDK1, which was weaken in the presence of melatonin or PD98059. These results suggest that the prevention of ERK activation is involved in melatonin-induced G(1) and G(2) /M phase arrest, and this inhibitory effect is potentially via the ERK, but not p38, JNK, or Akt, pathway.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Orthopaedics, First Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | |
Collapse
|
35
|
Ben Soussia I, Mies F, Naeije R, Shlyonsky V. Melatonin down-regulates volume-sensitive chloride channels in fibroblasts. Pflugers Arch 2012; 464:273-85. [DOI: 10.1007/s00424-012-1139-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/01/2023]
|
36
|
ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-κB-dependent and Notch-independent mechanism. Life Sci 2012; 91:186-93. [PMID: 22781708 DOI: 10.1016/j.lfs.2012.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022]
Abstract
AIMS To analyze the combined impact of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) and the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 on gastric cancer (GC) cell line SGC7901 growth. MAIN METHODS SGC7901 cells were treated with TSA, PD98059 or with a TSA-PD98059 combination. Effects of drug treatment on tumor cell proliferation, apoptosis, cell cycle progression, and cell signaling pathways were investigated by MTS assay, flow cytometry, Western blotting, chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA), and luciferase reporter assay, respectively. KEY FINDINGS PD98059 enhanced TSA-induced cell growth arrest, apoptosis and activation of p21(WAF1/CIP1), but reversed TSA-induced activation of ERK1/2 and nuclear factor-κB (NF-κB). TSA alone up-regulated Notch1 and Hes1, and down-regulated Notch2, but PD98059 did not affect the trends of Notch1 and Notch2 induced by TSA. Particularly, PD98059 did potentiate the ability of TSA to down-regulate phospho-histone H3 protein, but increased levels of the acetylated forms of histone H3 bound to the p21(WAF1/CIP1) promoter, leading to enhanced expression of p21(WAF1/CIP1) in SGC7901 cells. SIGNIFICANCE PD98059 synergistically potentiates TSA-induced GC growth arrest and apoptosis by manipulating NF-κB and p21(WAF1/CIP1) independent of Notch. Therefore, concomitant administration of HDACIs and ERK1/2 inhibitors may be a promising treatment strategy for individuals with GC.
Collapse
|
37
|
Kim GD, Lee SE, Kim TH, Jin YH, Park YS, Park CS. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts. J Pineal Res 2012; 52:356-64. [PMID: 21951103 DOI: 10.1111/j.1600-079x.2011.00950.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Department of Microbiology (BK21), School of Medicine, Kyung Hee University, Hoegi-Dong, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Carbajo-Pescador S, García-Palomo A, Martín-Renedo J, Piva M, González-Gallego J, Mauriz JL. Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: role of the MT1 receptor. J Pineal Res 2011; 51:463-71. [PMID: 21718361 DOI: 10.1111/j.1600-079x.2011.00910.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. However, studies on the oncostatic effects of melatonin in hepatocarcinoma are limited. We have previously demonstrated that melatonin administration induces cycle arrest, apoptosis, and changes in the expression of its specific receptors in HepG2 human hepatocarcinoma cells. In this study, we used the receptor antagonist luzindole to assess the contribution of MT1 melatonin membrane receptor to melatonin effects on cell viability, mitogen-activated protein kinase (MAPKs) activation, and cAMP levels. Additionally, effects of MT1 inhibition on mRNA levels of cytosolic quinone reductase type-2 (NQO2) receptor and nuclear retinoic acid-related orphan receptor alpha (RORα) were tested. Melatonin, at 1000 and 2500 μm, significantly reduced cell viability. Pre-incubation with luzindole partially inhibited the effects of melatonin on cell viability. Melatonin at 2500 μm significantly reduced cAMP levels, and this effect was partially blocked by luzindole. Both melatonin concentrations increased the expression of phosphorylated p38, ERK, and JNK. ERK activation was completely abolished in the presence of luzindole. NQO2 but not RORα mRNA level significantly increased in luzindole-treated cells. Results obtained provide evidence that the melatonin effects on cell viability and proliferation in HepG2 cells are partially mediated through the MT1 membrane receptor, which seems to be related also with melatonin modulation of cAMP and ERK activation. This study also highlights a possible interplay between MT1 and NQO2 melatonin receptors in liver cancer cells.
Collapse
Affiliation(s)
- Sara Carbajo-Pescador
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas and Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Yan J, Chen Y, He C, Yang ZZ, Lü C, Chen XS. Andrographolide induces cell cycle arrest and apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Cell Biol Toxicol 2011; 28:47-56. [DOI: 10.1007/s10565-011-9204-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/27/2011] [Indexed: 01/05/2023]
|
40
|
Yang JJ, Lee YJ, Hung HH, Tseng WP, Tu CC, Lee H, Wu WJ. ZAK inhibits human lung cancer cell growth via ERK and JNK activation in an AP-1-dependent manner. Cancer Sci 2010; 101:1374-81. [PMID: 20331627 PMCID: PMC11159936 DOI: 10.1111/j.1349-7006.2010.01537.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 12/15/2022] Open
Abstract
Novel mixed-lineage kinase protein zipper sterile-alpha-motif kinase (ZAK) was first cloned by our laboratory. Lung cancer is the leading cause of cancer-related death in the world, including in Taiwan. Here, we wanted to investigate whether ZAK plays a potential role in lung cancer development. First, Western blot analysis results demonstrated that four cell lines expressed high levels of ZAK from among a panel of 10 lung cancer cell lines, and two of three normal lung cells expressed ZAK. ZAK gene expressions were down-regulated in lung cancers by real-time PCR analysis. Overexpression of ZAK suppressed cell proliferation in parallel with increased phosphorylated levels of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In contrast, ZAK silencing cells inhibited the expressions of phosphorylated ERK and JNK without affecting the expression of phosphorylated p38. The effect of the decreased cell growth rate was significantly but incompletely reversed when ZAK-overexpressing cells were treated with a specific ERK or JNK inhibitor. Moreover, c-Fos and c-Jun, the major downstream components of MAPKs, were up-regulated by ERK and JNK, respectively. When ZAK-overexpressing cells introduced with c-Jun RNA interference (RNAi), the activator protein-1 (AP-1) transcription activity detected by a secreted alkaline phosphatase (SEAP) assay was suppressed and the decreased cell number was reversed compared with the control RNAi-treated group. More importantly, ZAK significantly depressed tumor growth in in vivo study. Taken together, results from both in vitro and in vivo studies indicated that the decrease of lung cancer cell proliferation by ZAK may involve the ERK and JNK pathways via an AP-1 transcription factor.
Collapse
Affiliation(s)
- Jaw-Ji Yang
- Institutes of Oral Biology & Biomaterial Science, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Singh R, George J, Shukla Y. Role of senescence and mitotic catastrophe in cancer therapy. Cell Div 2010; 5:4. [PMID: 20205872 PMCID: PMC2827387 DOI: 10.1186/1747-1028-5-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/21/2010] [Indexed: 11/10/2022] Open
Abstract
Senescence and mitotic catastrophe (MC) are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control.
Collapse
Affiliation(s)
- Richa Singh
- Proteomics Laboratory, Indian Institute of Toxicology Research, (Council of Scientific & Industrial Research), PO Box 80, MG Marg, Lucknow-226001, India.
| | | | | |
Collapse
|