1
|
Wang YQ, Jiang YJ, Zou MS, Liu J, Zhao HQ, Wang YH. Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav Brain Res 2021; 420:113724. [PMID: 34929236 DOI: 10.1016/j.bbr.2021.113724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Depression has become one of the most commonly prevalent neuropsychiatric disorders, and the main characteristics of depression are sleep disorders and melatonin secretion disorders caused by circadian rhythm disorders. Abnormal endogenous melatonin alterations can contribute to the occurrence and development of depression. However, molecular mechanisms underlying this abnormality remain ambiguous. The present review summarizes the mechanisms underlying the antidepressant effects of melatonin, which is related to its functions in the regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation, inhibition of oxidative stress, alleviation of autophagy, and upregulation of neurotrophic, promotion of neuroplasticity and upregulation of the levels of neurotransmitters, etc. Also, melatonin receptor agonists, such as agomelatine, ramelteon, piromelatine, tasimelteon, and GW117, have received considerable critical attention and are highly implicated in treating depression and comorbid disorders. This review focuses on melatonin and various melatonin receptor agonists in the pathophysiology and treatment of depression, aiming to provide further insight into the pathogenesis of depression and explore potential targets for novel agent development.
Collapse
Affiliation(s)
- Ye-Qing Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ya-Jie Jiang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Man-Shu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Mulayim E, Karababa İF, Akbaş H, Bayazıt H, Selek S. Melatonin Receptor Gene Polymorphism in Bipolar-I Disorder. Arch Med Res 2021; 52:523-528. [DOI: 10.1016/j.arcmed.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/13/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
|
3
|
Moskaleva PV, Shnayder NA, Nasyrova RF. [Association of polymorphic variants of DDC (AADC), AANAT and ASMT genes encoding enzymes for melatonin synthesis with the higher risk of neuropsychiatric disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:151-157. [PMID: 34184492 DOI: 10.17116/jnevro2021121041151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Melatonin is the most well-known regulator of the circadian rhythms of all living organisms and the main substrate synthesized at night. There are 4 stages in the synthesis of melatonin. This review focuses on the 2nd, 3rd, and 4th stages. The review is aimed at analyzing publications on molecular genetic association studies on the role of single nucleotide polymorphisms (SNPs) of the DDC (AADC), AANAT and ASMT genes encoding melatonin synthesis enzymes in the pathogenesis of socially significant neuropsychiatric disorders in humans. The authors analyzed the available full-text articles from several databases, as well as materials from electronic resources. Search depth was 15 years. The analysis of these studies over the past decade show the association of some SNPs of the studied genes with the risk of neuropsychiatric disorders such as delayed sleep phase disorder, attention deficit hyperactivity disorder, autism spectrum disorder, migraine, Parkinson's disease, depression, anxiety, bipolar-affective disorder, schizophrenia.
Collapse
Affiliation(s)
- P V Moskaleva
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N A Shnayder
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - R F Nasyrova
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
4
|
Giri A, Srinivasan A, Sundar IK. COVID-19: Sleep, Circadian Rhythms and Immunity - Repurposing Drugs and Chronotherapeutics for SARS-CoV-2. Front Neurosci 2021; 15:674204. [PMID: 34220430 PMCID: PMC8249936 DOI: 10.3389/fnins.2021.674204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected nearly 28 million people in the United States and has caused more than five hundred thousand deaths as of February 21, 2021. As the novel coronavirus continues to take its toll in the United States and all across the globe, particularly among the elderly (>65 years), clinicians and translational researchers are taking a closer look at the nexus of sleep, circadian rhythms and immunity that may contribute toward a more severe coronavirus disease-19 (COVID-19). SARS-CoV-2-induced multi-organ failure affects both central and peripheral organs, causing increased mortality in the elderly. However, whether differences in sleep, circadian rhythms, and immunity between older and younger individuals contribute to the age-related differences in systemic dysregulation of target organs observed in SARS-CoV-2 infection remain largely unknown. Current literature demonstrates the emerging role of sleep, circadian rhythms, and immunity in the development of chronic pulmonary diseases and respiratory infections in human and mouse models. The exact mechanism underlying acute respiratory distress syndrome (ARDS) and other cardiopulmonary complications in elderly patients in combination with associated comorbidities remain unclear. Nevertheless, understanding the critical role of sleep, circadian clock dysfunction in target organs, and immune status of patients with SARS-CoV-2 may provide novel insights into possible therapies. Chronotherapy is an emerging concept that is gaining attention in sleep medicine. Accumulating evidence suggests that nearly half of all physiological functions follow a strict daily rhythm. However, healthcare professionals rarely take implementing timed-administration of drugs into consideration. In this review, we summarize recent findings directly relating to the contributing roles of sleep, circadian rhythms and immune response in modulating infectious disease processes, and integrate chronotherapy in the discussion of the potential drugs that can be repurposed to improve the treatment and management of COVID-19.
Collapse
Affiliation(s)
| | | | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Melhuish Beaupre LM, Brown GM, Gonçalves VF, Kennedy JL. Melatonin's neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders. Transl Psychiatry 2021; 11:339. [PMID: 34078880 PMCID: PMC8172874 DOI: 10.1038/s41398-021-01464-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Melatonin is an ancient molecule that is evident in high concentrations in various tissues throughout the body. It can be separated into two pools; one of which is synthesized by the pineal and can be found in blood, and the second by various tissues and is present in these tissues. Pineal melatonin levels display a circadian rhythm while tissue melatonin does not. For decades now, melatonin has been implicated in promoting and maintaining sleep. More recently, evidence indicates that it also plays an important role in neuroprotection. The beginning of our review will summarize this literature. As an amphiphilic, pleiotropic indoleamine, melatonin has both direct actions and receptor-mediated effects. For example, melatonin has established effects as an antioxidant and free radical scavenger both in vitro and in animal models. This is also evident in melatonin's prominent role in mitochondria, which is reviewed in the next section. Melatonin is synthesized in, taken up by, and concentrated in mitochondria, the powerhouse of the cell. Mitochondria are also the major source of reactive oxygen species as a byproduct of mitochondrial oxidative metabolism. The final section of our review summarizes melatonin's potential role in aging and psychiatric disorders. Pineal and tissue melatonin levels both decline with age. Pineal melatonin declines in individuals suffering from psychiatric disorders. Melatonin's ability to act as a neuroprotectant opens new avenues of exploration for the molecule as it may be a potential treatment for cases with neurodegenerative disease.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Gonçalves
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
7
|
Genario R, Giacomini AC, Demin KA, dos Santos BE, Marchiori NI, Volgin AD, Bashirzade A, Amstislavskaya TG, de Abreu MS, Kalueff AV. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neurosci Biobehav Rev 2019; 99:117-127. [DOI: 10.1016/j.neubiorev.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
|
8
|
Paul MA, Love RJ, Jetly R, Richardson JD, Lanius RA, Miller JC, MacDonald M, Rhind SG. Blunted Nocturnal Salivary Melatonin Secretion Profiles in Military-Related Posttraumatic Stress Disorder. Front Psychiatry 2019; 10:882. [PMID: 31866882 PMCID: PMC6910089 DOI: 10.3389/fpsyt.2019.00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Sleep disturbances are a hallmark of posttraumatic stress disorder (PTSD), yet few studies have evaluated the role of dysregulated endogenous melatonin secretion in this condition. Methods: This study compared the sleep quality and nocturnal salivary melatonin profiles of Canadian Armed Forces (CAF) personnel diagnosed with PTSD, using the Clinician Administered PTSD Scale (CAPS score ≥50), with two healthy CAF control groups; comprising, a "light control" (LC) group with standardized evening light exposure and "normal control" (NC) group without light restriction. Participants were monitored for 1-week using wrist actigraphy to assess sleep quality, and 24-h salivary melatonin levels were measured (every 2h) by immunoassay on the penultimate day in a dim-light (< 5 lux) laboratory environment. Results: A repeated measures design showed that mean nocturnal melatonin concentrations for LC were higher than both NC (p = .03) and PTSD (p = .003) with no difference between PTSD and NC. Relative to PTSD, NC had significantly higher melatonin levels over a 4-h period (01 to 05 h), whereas the LC group had higher melatonin levels over an 8-h period (23 to 07 h). Actigraphic sleep quality parameters were not different between healthy controls and PTSD patients, likely due to the use of prescription sleep medications in the PTSD group. Conclusions: These results indicate that PTSD is associated with blunted nocturnal melatonin secretion, which is consistent with previous findings showing lower melatonin after exposure to trauma and suggestive of severe chronodisruption. Future studies targeting the melatonergic system for therapeutic intervention may be beneficial for treatment-resistant PTSD.
Collapse
Affiliation(s)
- Michel A Paul
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Ryan J Love
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - J Donald Richardson
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Operational Stress Injury Clinic, Parkwood Institute, London, ON, Canada.,MacDonald Franklin Operational Stress Injury Research Centre, Lawson Research Institute, London, ON, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Neuroscience, Western University, London, ON, Canada
| | - James C Miller
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Michael MacDonald
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - Shawn G Rhind
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| |
Collapse
|
9
|
Kurtulus Dereli A, Demırci GN, Dodurga Y, Özbal S, Cankurt U, Boz B, Adiguzel E, Acar K. Evaluation of human pineal gland acetylserotonin O-methyltransferase immunoreactivity in suicide: A preliminary study. MEDICINE, SCIENCE, AND THE LAW 2018; 58:233-238. [PMID: 30185109 DOI: 10.1177/0025802418797178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Disorders of the serotonergic system are especially known to be present in the neurobiology of suicidal behavior. Studies investigating melatonin levels show that changes in pineal gland functions may also play a role in the pathogenesis of suicide. However, to our knowledge, there are no studies evaluating the activity of pinealocytes responsible for melatonin synthesis in suicide. This preliminary study aimed to investigate the relationship among pinealocyte, acetylserotonin O-methyltransferase (ASMT) immunoreactivity, and suicide. Samples of pineal gland, cerebrospinal fluid, blood, and urine were obtained from 21 suicide and 21 non-suicide cases on which medicolegal autopsies were performed. Expression of ASMT in human pineal gland was evaluated by immunohistochemical methods. A scoring system was used to define the anti-ASMT-positive staining in the sections. Enzyme-linked immunosorbent assays were employed to assess serum and cerebrospinal fluid melatonin levels and blood and urine noradrenaline levels. The ASMT-immunopositive pinealocyte count was observed to be lower in suicide cases compared to the non-suicide cases. With the exception of two cases (with moderate staining), all graded scores were 3 (strong staining) in non-suicide group, whereas scores were 1 (mild staining) or 2 (moderate staining) in the suicide group. Melatonin levels in the blood were lower among the suicide victims. These results support decreased pineal gland activity in suicide. However, further studies are needed to assess whether these changes are related to a psychiatric disorder.
Collapse
|
10
|
Dmitrzak-Weglarz M, Reszka E. Pathophysiology of Depression: Molecular Regulation of Melatonin Homeostasis - Current Status. Neuropsychobiology 2018; 76:117-129. [PMID: 29898451 DOI: 10.1159/000489470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
Abstract
Circadian rhythm alterations resulting in disturbed sleep and disturbed melatonin secretion are flagship features of depression. Melatonin, known as a hormone of darkness, is secreted by the pineal gland located near to the center of the brain between the two hemispheres. Melatonin has an antidepressant effect by maintaining the body's circadian rhythm, by regulating the pattern of expression of the clock genes in the suprachiasmatic nucleus (SCN) and modifying the key genes of serotoninergic neurotransmission that are linked with a depressive mood. Melatonin is produced via the metabolism of serotonin in two steps which are catalyzed by serotonin N-acetyltransferase (SNAT) and acetylserotonin-O-methyltransferase (ASMT). Serotonin, SNAT, and ASMT are key melatonin level regulation factors. Melatonin acts mainly on the MT1 and MT2 receptors, which are present in the SCN, to regulate physiological and neuroendocrine functions including circadian entrainment, referred to as a chronobiotic effect. Although melatonin has been known about and refereed to for almost 50 years, the relationship between melatonin and depression is still not clear. In this review, we summarize current knowledge about the genetic and epigenetic regulation of enzymes involved in melatonin synthesis and metabolism as potential features of depression pathophysiology and treatment. Confirmation that melatonin metabolism in peripheral blood partially reflects a disorder in the brain could be a breakthrough in the standardization of measurements of melatonin level for the development of treatment standards, finding new therapeutic targets, and elaborating simple noninvasive clinical tests.
Collapse
Affiliation(s)
- Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
11
|
|
12
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
13
|
Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7:2096. [PMID: 28522826 PMCID: PMC5437096 DOI: 10.1038/s41598-017-02152-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.
Collapse
|
14
|
Anderson G, Vaillancourt C, Maes M, Reiter RJ. Breast Feeding and Melatonin: Implications for Improving Perinatal Health. ACTA ACUST UNITED AC 2016. [DOI: 10.14302/issn.2644-0105.jbfb-16-1121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological underpinnings that drive the plethora of breastfeeding benefits over formula-feeding is an area of intense research, given the cognitive and emotional benefits as well as the offsetting of many childhood- and adult-onset medical conditions that breast-feeding provides. In this article, we review the research on the role of melatonin in driving some of these breastfeeding benefits. Melatonin is a powerful antioxidant, anti-inflammatory and antinociceptive as well as optimizing mitochondrial function. Melatonin is produced by the placenta and, upon parturition, maternal melatonin is passed to the infant upon breastfeeding with higher levels in night-time breast milk. As such, some of the benefits of breastfeeding may be mediated by the higher levels of maternal circulating night-time melatonin, allowing for circadian and antioxidant effects, as well as promoting the immune and mitochondrial regulatory aspects of melatonin; these actions may positively modulate infant development. Herein, it is proposed that some of the benefits of breastfeeding may be mediated by melatonin's regulation of the infant's gut microbiota and immune responses. As such, melatonin is likely to contribute to the early developmental processes that affect the susceptibility to a range of adult onset conditions. Early research on animal models has shown promising results for the regulatory role of melatonin.
Collapse
Affiliation(s)
| | - Cathy Vaillancourt
- INRS-Armand-Frappier Institute and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Laval, QC, Canada
| | - Michael Maes
- Deakin University, Department of Psychiatry, Geelong , Australia
| | | |
Collapse
|
15
|
Bumb JM, Enning F, Mueller JK, van der List T, Rohleder C, Findeisen P, Noelte I, Schwarz E, Leweke FM. Differential melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder. Compr Psychiatry 2016; 68:34-9. [PMID: 27234180 DOI: 10.1016/j.comppsych.2016.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Melatonin, which plays an important role for regulation of circadian rhythms and the sleep/wake cycle has been linked to the pathophysiology of major depressive and bipolar disorder. Here we investigated melatonin levels in cerebrospinal fluid (CSF) and serum of depression and bipolar patients to elucidate potential differences and commonalities in melatonin alterations across the two disorders. METHODS Using enzyme-linked immunosorbent assays, CSF and serum melatonin levels were measured in 108 subjects (27 healthy volunteers, 44 depressed and 37 bipolar patients). Covariate adjusted multiple regression analysis was used to investigate group differences in melatonin levels. RESULTS In CSF, melatonin levels were significantly decreased in bipolar (P<0.001), but not major depressive disorder. In serum, we observed a significant melatonin decrease in major depressive (P=0.003), but not bipolar disorder. No associations were found between serum and CSF melatonin levels or between melatonin and measures of symptom severity or sleep disruptions in either condition. CONCLUSION This study suggests the presence of differential, body fluid specific alterations of melatonin levels in bipolar and major depressive disorder. Further, longitudinal studies are required to explore the disease phase dependency of melatonin alterations and to mechanistically explore the causes and consequences of site-specific alterations.
Collapse
Affiliation(s)
- J M Bumb
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - F Enning
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - J K Mueller
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Till van der List
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Germany
| | - I Noelte
- Department of Neuroradiology, University Hospital Mannheim, Mannheim, Germany
| | - E Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F M Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
16
|
Maglione JE, Nievergelt CM, Parimi N, Evans DS, Ancoli-Israel S, Stone KL, Yaffe K, Redline S, Tranah GJ. Associations of PER3 and RORA Circadian Gene Polymorphisms and Depressive Symptoms in Older Adults. Am J Geriatr Psychiatry 2015; 23:1075-87. [PMID: 25892098 PMCID: PMC4568170 DOI: 10.1016/j.jagp.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depressive symptoms are common in older adults and associated with poor outcomes. Although circadian genes have been implicated in depression, the relationship between circadian genes and depressive symptoms in older adults is unclear. METHODS A cross-sectional genetic association study of 529 single nucleotide polymorphisms (SNPs) representing 30 candidate circadian genes was performed in two population-based cohorts: the Osteoporotic Fractures in Men Study (MrOS; N=270, age: 76.58±5.61 years) and the Study of Osteoporotic Fractures (SOF) in women (N=1740, 84.05±3.53 years) and a meta-analysis was performed. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as having none-few symptoms (0-2), some depressive symptoms (>2 to <6), or many depressive symptoms (≥6). RESULTS We found associations meeting multiple testing criteria for significance between the PER3 intronic SNP rs12137927 and decreased odds of reporting "some depressive symptoms" in the SOF sample (odds ratio [OR]: 0.61, 95% confidence interval [CI]: 0.48-0.78, df=1, Wald χ2=-4.04, p=0.000054) and the meta-analysis (OR: 0.61, CI: 0.48-0.78, z=-4.04, p=0.000054) and between the PER3 intronic SNPs rs228644 (OR: 0.74, CI: 0.63-0.86, z=3.82, p=0.00013) and rs228682 (OR: 0.74, CI: 0.86-0.63, z=3.81, p=0.00014) and decreased odds of reporting "some depressive symptoms" in the meta-analysis compared to endorsing none-few depressive symptoms. The RORA intronic SNP rs11632098 was associated with greater odds of reporting "many depressive symptoms" (OR: 2.16, CI: 1.45-3.23, df=1, Wald χ2=3.76, p=0.000168) in the men. In the meta-analysis the association was attenuated and nominally significant (OR: 1.63, CI: 1.24-2.16, z=3.45, p=0.00056). CONCLUSION PER3 and RORA may play important roles in the development of depressive symptoms in older adults.
Collapse
Affiliation(s)
- Jeanne E. Maglione
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, University of California, San Francisco, CA
| | - Susan Redline
- Departments of Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | |
Collapse
|
17
|
Cong Z, Li X, Lin A, Zhu G, Peng M, Wang Y, Huang Y, Jiang W, Zhao X, Peng L, Ma H. ASMT gene polymorphisms have no association with schizophrenia in a Han Chinese sample. Psychiatry Res 2015; 228:969-71. [PMID: 26154813 DOI: 10.1016/j.psychres.2015.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengtu Cong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ailu Lin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Gang Zhu
- epartment of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Miao Peng
- Department of Psychology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuan Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Department of Psychology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | - Xiwu Zhao
- The Third Hospital of Daqing, Daqing 163000, China
| | - Longyan Peng
- The Third Hospital of Daqing, Daqing 163000, China
| | - Hui Ma
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Center for Mental Health, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Genetic variation in melatonin pathway enzymes in children with autism spectrum disorder and comorbid sleep onset delay. J Autism Dev Disord 2015; 45:100-10. [PMID: 25059483 DOI: 10.1007/s10803-014-2197-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with comorbid expression of sleep onset delay. We evaluated variation in two melatonin pathway genes, acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2). We observed higher frequencies than currently reported (p < 0.04) for variants evidenced to decrease ASMT expression and related to decreased CYP1A2 enzyme activity (p ≤ 0.0007). We detected a relationship between genotypes in ASMT and CYP1A2 (r(2) = 0.63). Our results indicate that expression of sleep onset delay relates to melatonin pathway genes.
Collapse
|
19
|
The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders. Transl Psychiatry 2014; 4:e479. [PMID: 25386956 PMCID: PMC4259991 DOI: 10.1038/tp.2014.120] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/21/2014] [Accepted: 10/05/2014] [Indexed: 12/27/2022] Open
Abstract
Elevated whole-blood serotonin and decreased plasma melatonin (a circadian synchronizer hormone that derives from serotonin) have been reported independently in patients with autism spectrum disorders (ASDs). Here, we explored, in parallel, serotonin, melatonin and the intermediate N-acetylserotonin (NAS) in a large cohort of patients with ASD and their relatives. We then investigated the clinical correlates of these biochemical parameters. Whole-blood serotonin, platelet NAS and plasma melatonin were assessed in 278 patients with ASD, their 506 first-degree relatives (129 unaffected siblings, 199 mothers and 178 fathers) and 416 sex- and age-matched controls. We confirmed the previously reported hyperserotonemia in ASD (40% (35-46%) of patients), as well as the deficit in melatonin (51% (45-57%)), taking as a threshold the 95th or 5th percentile of the control group, respectively. In addition, this study reveals an increase of NAS (47% (41-54%) of patients) in platelets, pointing to a disruption of the serotonin-NAS-melatonin pathway in ASD. Biochemical impairments were also observed in the first-degree relatives of patients. A score combining impairments of serotonin, NAS and melatonin distinguished between patients and controls with a sensitivity of 80% and a specificity of 85%. In patients the melatonin deficit was only significantly associated with insomnia. Impairments of melatonin synthesis in ASD may be linked with decreased 14-3-3 proteins. Although ASDs are highly heterogeneous, disruption of the serotonin-NAS-melatonin pathway is a very frequent trait in patients and may represent a useful biomarker for a large subgroup of individuals with ASD.
Collapse
|
20
|
Talarowska M, Szemraj J, Zajączkowska M, Gałecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med Sci Monit 2014; 20:905-12. [PMID: 24881886 PMCID: PMC4052942 DOI: 10.12659/msm.890160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recurrent depressive disorder is a multifactorial disease; one of the typical features is cognitive impairment. The purpose of this study was analysis of ASMT gene expression both on mRNA and protein levels in patients with recurrent depressive disorder (rDD) and assessment of the relationship between plasma level of ASMT protein, gene expression on mRNA level, and cognitive performance. MATERIAL AND METHODS The study included 236 subjects: patients with rDD (n=131) and healthy subjects (n=105, CG). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test (VFT), and Auditory Verbal Learning Test (AVLT). RESULTS Both mRNA and protein expression levels of ASMT gene were significantly higher in healthy subjects when compared to rDD. The average ASMT mRNA expression level measured for the entire group was M=0.21 (SD=0.09), and the protein level was M=12.84 (SD=3.29). In patients with rDD, statistically significant correlations occurred between both mRNA and protein expression levels and part A of the TMT (negative correlation) and verbal fluency test (positive correlation). In the group CG, there was no statistically significant association between the analyzed variables. In the entire group there was a statistically significant correlation between both ASMT mRNA and protein expression levels and all the neuropsychological tests used in the survey. CONCLUSIONS 1. Our study confirms previous results showing decreased mRNA and protein expression levels of ASMT gene in depression. 2. Our data suggest a relationship between decreased mRNA and protein expression levels of ASMT gene and cognitive impairment.
Collapse
Affiliation(s)
- Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
21
|
Trent S, Fry JP, Ojarikre OA, Davies W. Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder. Mol Autism 2014; 5:21. [PMID: 24602487 PMCID: PMC3946266 DOI: 10.1186/2040-2392-5-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
Background The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. Methods Using microarray and quantitative gene expression analyses, and gas chromatography–mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. Results Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. Conclusions Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects.
Collapse
Affiliation(s)
| | | | | | - William Davies
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Liebrich LS, Schredl M, Findeisen P, Groden C, Bumb JM, Nölte IS. Morphology and function: MR pineal volume and melatonin level in human saliva are correlated. J Magn Reson Imaging 2013; 40:966-71. [PMID: 24214660 DOI: 10.1002/jmri.24449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 09/10/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. MATERIALS AND METHODS In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. RESULTS Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. CONCLUSION Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue.
Collapse
Affiliation(s)
- Luisa-Sophie Liebrich
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34:605-19. [PMID: 24120229 PMCID: PMC3856231 DOI: 10.1016/j.tips.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, USA
| | | |
Collapse
|
24
|
Choi D. Potency of melatonin in living beings. Dev Reprod 2013; 17:149-77. [PMID: 25949131 PMCID: PMC4282293 DOI: 10.12717/dr.2013.17.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Republic of Korea
| |
Collapse
|
25
|
Sarti P, Magnifico MC, Altieri F, Mastronicola D, Arese M. New evidence for cross talk between melatonin and mitochondria mediated by a circadian-compatible interaction with nitric oxide. Int J Mol Sci 2013; 14:11259-76. [PMID: 23759982 PMCID: PMC3709731 DOI: 10.3390/ijms140611259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 01/24/2023] Open
Abstract
Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10−9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS) mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS) efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours’ incubation; both findings compatible with the melatonin circadian cycle.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
- CNR Institute of Molecular Biology and Pathology, Rome 00185, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-6-4450291 or +39-6-49910944; Fax: +39-6-4440062
| | - Maria Chiara Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| | | | - Marzia Arese
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| |
Collapse
|
26
|
Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:101-14. [PMID: 22930036 DOI: 10.1016/j.pnpbp.2012.07.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 02/08/2023]
Abstract
Schizophrenia and depression are two common and debilitating psychiatric conditions. Up to 61% of schizophrenic patients have comorbid clinical depression, often undiagnosed. Both share significant overlaps in underlying biological processes, which are relevant to the course and treatment of both conditions. Shared processes include changes in cell-mediated immune and inflammatory pathways, e.g. increased levels of pro-inflammatory cytokines and a Th1 response; activation of oxidative and nitrosative stress (O&NS) pathways, e.g. increased lipid peroxidation, damage to proteins and DNA; decreased antioxidant levels, e.g. lowered coenzyme Q10, vitamin E, glutathione and melatonin levels; autoimmune responses; and activation of the tryptophan catabolite (TRYCAT) pathway through induction of indoleamine-2,3-dioxygenase. Both show cognitive and neurostructural evidence of a neuroprogressive process. Here we review the interlinked nature of these biological processes, suggesting that schizophrenia is immunologically primed for an increased expression of depression. Such a conceptualization explains, and incorporates, many of the current perspectives on the nature of schizophrenia and depression, and has implications for the nature of classification and treatment of both disorders. An early developmental etiology to schizophrenia, driven by maternal infection, with subsequent impact on offspring immuno-inflammatory responses, creates alterations in the immune pathways, which although priming for depression, also differentiates the two disorders.
Collapse
|
27
|
Kripke DF, Nievergelt CM, Tranah GJ, Murray SS, Rex KM, Grizas AP, Hahn EK, Lee HJ, Kelsoe JR, Kline LE. FMR1, circadian genes and depression: suggestive associations or false discovery? J Circadian Rhythms 2013; 11:3. [PMID: 23521777 PMCID: PMC3627611 DOI: 10.1186/1740-3391-11-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/21/2013] [Indexed: 11/11/2022] Open
Abstract
Background There are several indications that malfunctions of the circadian clock contribute to depression. To search for particular circadian gene polymorphisms associated with depression, diverse polymorphisms were genotyped in two samples covering a range of depressed volunteers and participants with normal mood. Methods Depression mood self-ratings and DNA were collected independently from a sample of patients presenting to a sleep disorders center (1086 of European origin) and from a separate sample consisting of 399 participants claiming delayed sleep phase symptoms and 406 partly-matched controls. A custom Illumina Golden Gate array of 768 selected single nucleotide polymorphisms (SNPs) was assayed in both samples, supplemented by additional SNPlex and Taqman assays, including assay of 41 ancestry-associated markers (AIMs) to control stratification. Results In the Sleep Clinic sample, these assays yielded Bonferroni-significant association with depressed mood in three linked SNPs of the gene FMR1: rs25702 (nominal P=1.77E-05), rs25714 (P=1.83E-05), and rs28900 (P=5.24E-05). This FMR1 association was supported by 8 SNPs with nominal significance and a nominally-significant gene-wise set test. There was no association of depressed mood with FMR1 in the delayed sleep phase case–control sample or in downloaded GWAS data from the GenRED 2 sample contrasting an early-onset recurrent depression sample with controls. No replication was located in other GWAS studies of depression. Our data did weakly replicate a previously-reported association of depression with PPARGC1B rs7732671 (P=0.0235). Suggestive associations not meeting strict criteria for multiple testing and replication were found with GSK3B, NPAS2, RORA, PER3, CRY1, MTNR1A and NR1D1. Notably, 16 SNPs nominally associated with depressed mood (14 in GSK3B) were also nominally associated with delayed sleep phase syndrome (P=3E10-6). Conclusions Considering the inconsistencies between samples and the likelihood that the significant three FMR1 SNPs might be linked to complex polymorphisms more functionally related to depression, large gene resequencing studies may be needed to clarify the import for depression of these circadian genes.
Collapse
Affiliation(s)
- Daniel F Kripke
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hardeland R. Chronobiology of Melatonin beyond the Feedback to the Suprachiasmatic Nucleus-Consequences to Melatonin Dysfunction. Int J Mol Sci 2013; 14:5817-41. [PMID: 23481642 PMCID: PMC3634486 DOI: 10.3390/ijms14035817] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/28/2022] Open
Abstract
The mammalian circadian system is composed of numerous oscillators, which gradually differ with regard to their dependence on the pacemaker, the suprachiasmatic nucleus (SCN). Actions of melatonin on extra-SCN oscillators represent an emerging field. Melatonin receptors are widely expressed in numerous peripheral and central nervous tissues. Therefore, the circadian rhythm of circulating, pineal-derived melatonin can have profound consequences for the temporal organization of almost all organs, without necessarily involving the melatonin feedback to the suprachiasmatic nucleus. Experiments with melatonin-deficient mouse strains, pinealectomized animals and melatonin receptor knockouts, as well as phase-shifting experiments with explants, reveal a chronobiological role of melatonin in various tissues. In addition to directly steering melatonin-regulated gene expression, the pineal hormone is required for the rhythmic expression of circadian oscillator genes in peripheral organs and to enhance the coupling of parallel oscillators within the same tissue. It exerts additional effects by modulating the secretion of other hormones. The importance of melatonin for numerous organs is underlined by the association of various diseases with gene polymorphisms concerning melatonin receptors and the melatonin biosynthetic pathway. The possibilities and limits of melatonergic treatment are discussed with regard to reductions of melatonin during aging and in various diseases.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, Göttingen D-37073, Germany.
| |
Collapse
|
29
|
Wang L, Li J, Ruan Y, Lu T, Liu C, Jia M, Yue W, Liu J, Bourgeron T, Zhang D. Sequencing ASMT identifies rare mutations in Chinese Han patients with autism. PLoS One 2013; 8:e53727. [PMID: 23349736 PMCID: PMC3547942 DOI: 10.1371/journal.pone.0053727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.
Collapse
Affiliation(s)
- Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
- * E-mail: (LW); (DZ)
| | - Jun Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Chenxing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Meixiang Jia
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Jing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institute Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
- * E-mail: (LW); (DZ)
| |
Collapse
|
30
|
Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes. Neurotox Res 2012; 23:267-300. [DOI: 10.1007/s12640-012-9337-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
|
31
|
Etain B, Dumaine A, Bellivier F, Pagan C, Francelle L, Goubran-Botros H, Moreno S, Deshommes J, Moustafa K, Le Dudal K, Mathieu F, Henry C, Kahn JP, Launay JM, Mühleisen TW, Cichon S, Bourgeron T, Leboyer M, Jamain S. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum Mol Genet 2012; 21:4030-7. [PMID: 22694957 DOI: 10.1093/hmg/dds227] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression. In this paper, we analysed rare and common variants of ASMT in patients with BD and unaffected control subjects and performed functional analysis of these variants by assaying the ASMT activity in their B-lymphoblastoid cell lines. We sequenced the coding and the regulatory regions of the gene in a discovery sample of 345 patients with BD and 220 controls. We performed an association study on this discovery sample using common variants located in the promoter region and showed that rs4446909 was significantly associated with BD (P= 0.01) and associated with a lower mRNA level (P< 10(-4)) and a lower enzymatic activity (P< 0.05) of ASMT. A replication study and a meta-analysis using 480 independent patients with BD and 672 controls confirmed the significant association between rs4446909 and BD (P= 0.002). These results correlate with the general lower ASMT enzymatic activity observed in patients with BD (P= 0.001) compared with controls. Finally, several deleterious ASMT mutations identified in patients were associated with low ASMT activity (P= 0.01). In this study, we determined how rare and common variations in ASMT might play a role in BD vulnerability and suggest a general role of melatonin as susceptibility factor for BD.
Collapse
Affiliation(s)
- Bruno Etain
- Psychiatrie Génétique, INSERM U 955, Créteil 94000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Current antidepressants are ineffective in many depressed patients. Thus there is an urgent need to develop treatment strategies which have significantly faster response, can be sustained and have minimal side-effects. This paper reviews clinical data, potential biomarkers, mechanisms of action and future research directions for two proven strategies that produce marked improvement in severe depressive symptoms within 48 h, ketamine and sleep deprivation therapy (SDT). These treatments provide unequivocal evidence that the depressive process can be rapidly reversed in a subgroup of patients. Seventeen ketamine studies in over 150 patients showed a rapid response. Low-dose intravenous ketamine produced mild psychotomimetic effects but response has not been effectively sustained. SDT has been investigated in over 60 studies with a 40-60% response rate within 48 h. Although SDT is often used in Europe to initiate a rapid response, it is less utilized within the USA, in part, because it has a short duration when administered alone. We review data concerning chronotherapeutic strategies of bright-light therapy (BLT) and sleep-phase advance (SPA) which successfully sustain the antidepressant efficacy of SDT. Evidence is further discussed that a significant group of mood disorders have abnormal circadian rhythms which are known to be controlled by clock genes. It is hypothesized that chronotherapeutic manipulations can reset clock genes and thus, abnormalities in circadian rhythms. Further findings are reviewed that ketamine, in addition to its role as an NMDA antagonist, can also alter circadian rhythms. Thus, ketamine may share a critical mechanism with SDT.
Collapse
|
33
|
Neuroimmunomodulation in unipolar depression: a focus on chronobiology and chronotherapeutics. J Neural Transm (Vienna) 2012; 119:1147-66. [PMID: 22653515 DOI: 10.1007/s00702-012-0819-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/05/2012] [Indexed: 12/21/2022]
Abstract
The rising burden of unipolar depression along with its often related sleep disturbances, as well as increasing rates of sleep restriction in modern society, make the search for an extended understanding of the aetiology and pathophysiology of depression necessary. Accumulating evidence suggests an important role for the immune system in mediating disrupted neurobiological and chronobiological processes in depression. This review aims to provide an overview of the neuroimmunomodulatory processes involved with depression and antidepressant treatments with a special focus on chronobiology, chronotherapeutics and the emerging field of immune-circadian bi-directional crosstalk. Increasing evidence suggests that chronobiological disruption can mediate immune changes in depression, and likewise, immune processes can mediate chronobiological disruption. This may suggest a bi-directional relationship in immune-circadian crosstalk. Furthermore, given the immunomodulatory effects of antidepressants and chronotherapeutics, as well as their associated beneficial effects on circadian disturbance, we--and others--suggest that these therapeutic agents may exert their chronobiotic effects partially via the neuroimmune system. Further research is required to better elucidate the mechanisms of immune involvement in the chronobiology of depression.
Collapse
|
34
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
35
|
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52:167-202. [PMID: 22107053 DOI: 10.1111/j.1600-079x.2011.00937.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder of the aged that has multiple factors which contribute to its etiology in terms of initiation and progression. This review summarizes these diverse aspects of this form of dementia. Several hypotheses, often with overlapping features, have been formulated to explain this debilitating condition. Perhaps the best-known hypothesis to explain AD is that which involves the role of the accumulation of amyloid-β peptide in the brain. Other theories that have been invoked to explain AD and summarized in this review include the cholinergic hypothesis, the role of neuroinflammation, the calcium hypothesis, the insulin resistance hypothesis, and the association of AD with peroxidation of brain lipids. In addition to summarizing each of the theories that have been used to explain the structural neural changes and the pathophysiology of AD, the potential role of melatonin in influencing each of the theoretical processes involved is discussed. Melatonin is an endogenously produced and multifunctioning molecule that could theoretically intervene at any of a number of sites to abate the changes associated with the development of AD. Production of this indoleamine diminishes with increasing age, coincident with the onset of AD. In addition to its potent antioxidant and anti-inflammatory activities, melatonin has a multitude of other functions that could assist in explaining each of the hypotheses summarized above. The intent of this review is to stimulate interest in melatonin as a potentially useful agent in attenuating and/or delaying AD.
Collapse
Affiliation(s)
- Sergio A Rosales-Corral
- Centro de Investigación Biomédica de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Antidepressant pharmacotherapy is to date the most often used treatment for depression, but the exact mechanism of action underlying its therapeutic effect is still unclear. Many theories have been put forward to account for depression, as well as antidepressant activity, but none of them is exhaustive. Neuroimmune endocrine impairment is found in depressed patients; high levels of circulating corticosteroids along with hyperactivation of the immune system, high levels of proinflammatory cytokines, low levels of melatonin in plasma and urine, and disentrainment of circadian rhythms have been demonstrated. Moreover, antidepressant treatment seems to correct or at least to interfere with these alterations. In this review, we summarize the complex neuroimmune endocrine and chronobiological alterations found in patients with depression and how these systems interact with each other. We also explain how antidepressant therapy can modify these systems, along with some possible mechanisms of action shown in animal and human models.
Collapse
Affiliation(s)
- Marco Antonioli
- Psychoimmunology Translational Laboratory, Health Science Research Centre, Roehampton University, London, UK
| | | | | |
Collapse
|
37
|
Chaste P, Clement N, Botros HG, Guillaume JL, Konyukh M, Pagan C, Scheid I, Nygren G, Anckarsäter H, Rastam M, Ståhlberg O, Gillberg IC, Melke J, Delorme R, Leblond C, Toro R, Huguet G, Fauchereau F, Durand C, Boudarene L, Serrano E, Lemière N, Launay JM, Leboyer M, Jockers R, Gillberg C, Bourgeron T. Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders. J Pineal Res 2011; 51:394-9. [PMID: 21615493 DOI: 10.1111/j.1600-079x.2011.00902.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration in melatonin signaling has been reported in a broad range of diseases, but little is known about the genetic variability of this pathway in humans. Here, we sequenced all the genes of the melatonin pathway -AA-NAT, ASMT, MTNR1A, MTNR1B and GPR50 - in 321 individuals from Sweden including 101 patients with attention-deficit/hyperactivity disorder (ADHD) and 220 controls from the general population. We could find several damaging mutations in patients with ADHD, but no significant enrichment compared with the general population. Among these variations, we found a splice site mutation in ASMT (IVS5+2T>C) and one stop mutation in MTNR1A (Y170X) - detected exclusively in patients with ADHD - for which biochemical analyses indicated that they abolish the activity of ASMT and MTNR1A. These genetic and functional results represent the first comprehensive ascertainment of melatonin signaling deficiency in ADHD.
Collapse
Affiliation(s)
- Pauline Chaste
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Single nucleotide polymorphisms and mRNA expression for melatonin MT(2) receptor in depression. Psychiatry Res 2011; 189:472-4. [PMID: 21353709 DOI: 10.1016/j.psychres.2011.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 11/20/2022]
Abstract
Polymorphisms (rs 4753426 and rs 794837) and expression of the melatonin MT(2) receptor gene were evaluated in 181 patients with recurrent depressive disorder (rDD) and 149 healthy subjects of Polish origin. We found an increased risk for rDD in patients with the C allele and a decreased risk in patients with the T allele (rs4753426). Patients with the AT heterozygote (rs794837) had an increased mRNA level. The significance of the MT(2) receptor gene and the risk of rDD are suggested.
Collapse
|
39
|
Genetics of circadian rhythms and mood spectrum disorders. Eur Neuropsychopharmacol 2011; 21 Suppl 4:S676-82. [PMID: 21835597 DOI: 10.1016/j.euroneuro.2011.07.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
Abstract
Mood spectrum disorders (bipolar disorder, recurrent depressive disorder and seasonal affective disorder) are accompanied by circadian deregulations, which can occur during acute mood episodes as well as during euthymic periods, and are particularly common among bipolar patients in remission. This suggests that altered circadian rhythms may be biological markers of these disorders. Rhythm dysfunctions have been observed in mood disorder patients by using actigraphic measures and by assessing social metric rhythms, diurnal preferences and melatonin secretion. Since many of these markers are heritable and therefore driven by clock genes, these genes may represent susceptibility factors for mood spectrum disorders. Indeed, several genetic association studies have suggested that certain circadian gene variants play a role in susceptibility to these disorders. Such connections to circadian genes such as CLOCK, ARNTL1, NPAS2, PER3 and NR1D1 have been repeatedly demonstrated for bipolar disorders, and to a lesser extent for recurrent depressive disorders and seasonal affective disorders. The study of circadian phenotypes and circadian genes in mood spectrum disorders represents a major field of research that may yet reveal the pathophysiological determinants of these disorders.
Collapse
|
40
|
Kripke DF, Nievergelt CM, Tranah GJ, Murray SS, McCarthy MJ, Rex KM, Parimi N, Kelsoe JR. Polymorphisms in melatonin synthesis pathways: possible influences on depression. J Circadian Rhythms 2011; 9:8. [PMID: 21827647 PMCID: PMC3177871 DOI: 10.1186/1740-3391-9-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/09/2011] [Indexed: 11/14/2022] Open
Abstract
Background It has been reported that rs4446909, a single nucleotide polymorphism (SNP) in the promoter of acetylserotonin methyltransferase (ASMT), influences the expression of the ASMT enzyme. The common G allele is associated with lower ASMT activity, and therefore, diminishes conversion of N-acetylserotonin to melatonin. The G allele was associated with recurrent depressive disorder in a Polish group. ASMT might also affect bipolar relapse, given evidence that N-acetylserotonin might stimulate TRKB receptors, and TRKB may influence mood relapse in bipolar disorder. Additionally, arylalkylamine N-acetyltransferase (AANAT) polymorphisms have been reported associated with depression, perhaps through their influence upon N-acetylserotonin or melatonin synthesis. Results To replicate and further explore these ideas, rs4446909 was genotyped in four research groups, as part of a panel of 610 SNPs surveyed by an Illumina Golden Gate assay. In 768 cases with delayed sleep phase disorder or matched controls, rs4446909 was indeed associated with the depressive symptoms on a self-report scale (P = 0.01, R2 = 0.007). However, there was no significant association of rs4446909 with self-reported depression in a sleep clinic patient group or with two groups of elderly men and women from multicenter studies, nor was the response to lithium treatment associated with rs4446909 in bipolar patients. No associations of two AANAT SNPs with depression were found. Conclusions The evidence did not support a strong influence of rs4446909 upon mood, but the partial replication may be consistent with a modest effect. It is possible that larger or younger subject groups with improved phenotype ascertainment might demonstrate more persuasive replication.
Collapse
Affiliation(s)
- Daniel F Kripke
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011; 2011:326320. [PMID: 21629741 PMCID: PMC3100547 DOI: 10.4061/2011/326320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/02/2011] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R), septic shock, and neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical, Educational and Research Foundation, Prashanthi Nilayam 40, Kovai Thirunagar Coimbatore 641014, India
| | | | | | - Gregory M. Brown
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Daniel P. Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Avenida Alicia Moreau de Justo 1500, 4 Piso, 1107 Buenos Aires, Argentina
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
42
|
Abstract
Fibromyalgia syndrome (FMS) is a chronic musculoskeletal disorder characterized by generalized muscular pain accompanied by fatigue and tenderness at specific anatomic sites called tender points. Although preliminary evidence indicates that melatonin may be effective in treating the pain associated with FMS, no definitive evidence supports this claim. This study was designed to evaluate the significance of using different doses of melatonin, alone or in combination with fluoxetine for the management of FMS. A double-blind, placebo-controlled clinical study was performed on 101 patients (95 women and 6 men) who fulfilled the criteria of the American College of Rheumatology (ACR) of FMS. The patients were randomized into four groups: group A (24 patients) treated with 20 mg/day fluoxetine alone; group B (27 patients) treated with melatonin 5 mg alone; group C (27 patients) treated with 20 mg fluoxetine plus 3 mg melatonin; group D (23 patients) treated with 20 mg fluoxetine plus 5 mg melatonin. Both drugs were given once daily in the morning and night time, respectively, for 8 wk. Each patient was clinically evaluated through direct interview with the patients using the Fibromyalgia Impact Questionnaire (FIQ) at zero time and after 8 wk. Using melatonin (3 mg or 5 mg/day) in combination with 20 mg/day fluoxetine resulted in significant reduction in both total and different components of FIQ score compared to the pretreatment values. In conclusion, administration of melatonin, alone or in a combination with fluoxetine, was effective in the treatment of patients with FMS.
Collapse
Affiliation(s)
- Saad Abdul-Rehman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq.
| | | | | | | |
Collapse
|
43
|
Pagan C, Botros HG, Poirier K, Dumaine A, Jamain S, Moreno S, de Brouwer A, Van Esch H, Delorme R, Launay JM, Tzschach A, Kalscheuer V, Lacombe D, Briault S, Laumonnier F, Raynaud M, van Bon BW, Willemsen MH, Leboyer M, Chelly J, Bourgeron T. Mutation screening of ASMT, the last enzyme of the melatonin pathway, in a large sample of patients with intellectual disability. BMC MEDICAL GENETICS 2011; 12:17. [PMID: 21251267 PMCID: PMC3034665 DOI: 10.1186/1471-2350-12-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
Abstract
Background Intellectual disability (ID) is frequently associated with sleep disorders. Treatment with melatonin demonstrated efficacy, suggesting that, at least in a subgroup of patients, the endogenous melatonin level may not be sufficient to adequately set the sleep-wake cycles. Mutations in ASMT gene, coding the last enzyme of the melatonin pathway have been reported as a risk factor for autism spectrum disorders (ASD), which are often comorbid with ID. Thus the aim of the study was to ascertain the genetic variability of ASMT in a large cohort of patients with ID and controls. Methods Here, we sequenced all exons of ASMT in a sample of 361 patients with ID and 440 controls. We then measured the ASMT activity in B lymphoblastoid cell lines (BLCL) of patients with ID carrying an ASMT variant and compared it to controls. Results We could identify eleven variations modifying the protein sequence of ASMT (ID only: N13H, N17K, V171M, E288D; controls only: E61Q, D210G, K219R, P243L, C273S, R291Q; ID and controls: L298F) and two deleterious splice site mutations (IVS5+2T>C and IVS7+1G>T) only observed in patients with ID. We then ascertained ASMT activity in B lymphoblastoid cell lines from patients carrying the mutations and showed significantly lower enzyme activity in patients carrying mutations compared to controls (p = 0.004). Conclusions We could identify patients with deleterious ASMT mutations as well as decreased ASMT activity. However, this study does not support ASMT as a causative gene for ID since we observed no significant enrichment in the frequency of ASMT variants in ID compared to controls. Nevertheless, given the impact of sleep difficulties in patients with ID, melatonin supplementation might be of great benefit for a subgroup of patients with low melatonin synthesis.
Collapse
Affiliation(s)
- Cecile Pagan
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
An inducible nitric oxide synthase polymorphism is associated with the risk of recurrent depressive disorder. Neurosci Lett 2010; 486:184-7. [DOI: 10.1016/j.neulet.2010.09.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/18/2022]
|