1
|
Dhakal U, Kim HS, Toomajian C. The landscape and predicted roles of structural variants in Fusarium graminearum genomes. G3 (BETHESDA, MD.) 2024; 14:jkae065. [PMID: 38546739 DOI: 10.1093/g3journal/jkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/22/2024] [Indexed: 06/06/2024]
Abstract
Structural rearrangements, such as inversions, translocations, duplications, and large insertions and deletions, are large-scale genomic variants that can play an important role in shaping phenotypic variation and in genome adaptation and evolution. We used chromosomal-level assemblies from eight Fusarium graminearum isolates to study structural variants and their role in fungal evolution. We generated the assemblies of four of these genomes after Oxford Nanopore sequencing. A total of 87 inversions, 159 translocations, 245 duplications, 58,489 insertions, and 34,102 deletions were detected. Regions of high recombination rate are associated with structural rearrangements, and a significant proportion of inversions, translocations, and duplications overlap with the repeat content of the genome, suggesting recombination and repeat elements are major factors in the origin of structural rearrangements in F. graminearum. Large insertions and deletions introduce presence-absence polymorphisms for many genes, including secondary metabolite biosynthesis cluster genes and predicted effectors genes. Translocation events were found to be shuffling predicted effector-rich regions of the genomes and are likely contributing to the gain and loss of effectors facilitated by recombination. Breakpoints of some structural rearrangements fall within coding sequences and are likely altering the protein products. Structural rearrangements in F. graminearum thus have an important role to play in shaping pathogen-host interactions and broader evolution through genome reorganization, the introduction of presence-absence polymorphisms, and changing protein products and gene regulation.
Collapse
Affiliation(s)
- Upasana Dhakal
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL 61604, USA
| | | |
Collapse
|
2
|
Sladewski TE, Campbell PC, Billington N, D'Ordine A, Cole JL, de Graffenried CL. Cytokinesis in Trypanosoma brucei relies on an orphan kinesin that dynamically crosslinks microtubules. Curr Biol 2023; 33:899-911.e5. [PMID: 36787745 PMCID: PMC10023446 DOI: 10.1016/j.cub.2023.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Many single-celled eukaryotes have complex cell morphologies defined by microtubules arranged into higher-order structures. The auger-like shape of the parasitic protist Trypanosoma brucei (T. brucei) is mediated by a parallel array of microtubules that underlies the plasma membrane. The subpellicular array must be partitioned and segregated using a microtubule-based mechanism during cell division. We previously identified an orphan kinesin, KLIF, that localizes to the ingressing cleavage furrow and is essential for the completion of cytokinesis. We have characterized the biophysical properties of a truncated KLIF construct in vitro to gain mechanistic insight into the function of this novel kinesin. We find that KLIF is a non-processive dimeric kinesin that dynamically crosslinks microtubules. Microtubules crosslinked by KLIF in an antiparallel orientation are translocated relative to one another, while microtubules crosslinked parallel to one another remain static, resulting in the formation of organized parallel bundles. In addition, we find that KLIF stabilizes the alignment of microtubule plus ends. These features provide a mechanistic understanding for how KLIF functions to form a new pole of aligned microtubule plus ends that defines the shape of the new cell posterior, which is an essential requirement for the completion of cytokinesis in T. brucei.
Collapse
Affiliation(s)
- Thomas E Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Neil Billington
- Laboratory of Physiology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda 20892, USA
| | - Alexandra D'Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
3
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
4
|
Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 2014; 31:20-9. [PMID: 24727350 PMCID: PMC4071412 DOI: 10.1016/j.semcdb.2014.04.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
The endocytic pathway is essential for processes that define how cells interact with their environment, including receptor signalling, cell adhesion and migration, pathogen entry, membrane protein turnover and nutrient uptake. The spatial organisation of endocytic trafficking requires motor proteins that tether membranes or transport them along the actin and microtubule cytoskeletons. Microtubules, actin filaments and motor proteins also provide force to deform and assist in the scission of membranes, thereby facilitating endosomal sorting and the generation of transport intermediates.
Collapse
Affiliation(s)
- Elizabeth Granger
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Gavin McNee
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Philip Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
5
|
DREBLOW KERSTIN, KALCHISHKOVA NIKOLINA, BÖHM KONRADJ. KINESIN BYPASSING BLOCKAGES ON MICROTUBULE RAILS. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kinesins are motor proteins which convert the chemical energy of ATP into mechanical energy to move along proteinaceous microtubule rails and to transport different cargoes to defined intracellular destinations. It is well documented that following the track of a single protofilament is the thermodynamically most effective mechanism of kinesin movement along microtubules. However, the question arises what happens when a kinesin molecule encounters a hindrance along the protofilament. The present study describes a simple, cell-free approach which enables to study the effects of structural blockages on kinesin-based transport. This experimental approach uses dimeric conventional kinesin moving nanometre-sized gold beads along immobilized microtubules whose surface has been irreversibly decorated by blocking proteins. We demonstrated that the continuous bead transport temporarily stopped at sites of blockages, but usually continued after a certain resting time. Our results suggest that single dimeric kinesin molecules are able to change to another protofilament if the next tubulin dimer where the second head should bind is blocked. A bypassing mechanism is discussed which is considered to be one fundamental prerequisite to realize a kinesin-mediated cargo-transport along microtubules over long distances, required for e.g., the fast axonal transport in motor neurons.
Collapse
Affiliation(s)
- KERSTIN DREBLOW
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - NIKOLINA KALCHISHKOVA
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - KONRAD J. BÖHM
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
6
|
Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 2010; 13:1463-71. [PMID: 21037580 PMCID: PMC3059207 DOI: 10.1038/nn.2665] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/15/2010] [Indexed: 12/03/2022]
Abstract
Radial glial progenitor cells (RGPCs), have been long known to exhibit a striking form of bidirectional nuclear migration. The purpose and underlying mechanism for this unusual cell cycle-dependent “interkinetic” nuclear migration has remained poorly understood. We investigated the basis for this behavior by live imaging of nuclei, centrosomes, and microtubules in embryonic rat brain slices, coupled with blebbistatin and RNAi. We observed nuclei to migrate independent of centrosomes and unidirectionally away from or toward the ventricular surface along microtubules, which we found to be uniformly oriented from the ventricular to the pial surfaces of the brain. Cytoplasmic dynein RNAi specifically inhibited apically-directed nuclear movement. An RNAi screen for kinesin genes identified KIF1A, a member of the kinesin 3 family, as the motor for basally-directed nuclear movement. These observations provide the first direct evidence for a role for kinesins in nuclear migration and neurogenesis, and suggest that a novel cell cycle-dependent switch between distinct microtubule motors drives INM.
Collapse
|
7
|
Xue X, Jaulin F, Espenel C, Kreitzer G. PH-domain-dependent selective transport of p75 by kinesin-3 family motors in non-polarized MDCK cells. J Cell Sci 2010; 123:1732-41. [PMID: 20427314 DOI: 10.1242/jcs.056366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A key process during epithelial polarization involves establishment of polarized transport routes from the Golgi to distinct apical and basolateral membrane domains. To do this, the machinery involved in selective trafficking must be regulated during differentiation. Our previous studies showed that KIF5B selectively transports vesicles containing p75-neurotrophin receptors to the apical membrane of polarized, but not non-polarized MDCK cells. To identify the kinesin(s) responsible for p75 trafficking in non-polarized MDCK cells we expressed KIF-specific dominant-negative constructs and assayed for changes in post-Golgi transport of p75 by time-lapse fluorescence microscopy. Overexpression of the tail domains of kinesin-3 family members that contain a C-terminal pleckstrin homology (PH) domain, KIF1A or KIF1Bbeta, attenuated the rate of p75 exit from the Golgi in non-polarized MDCK cells but not in polarized cells. Analysis of p75 post-Golgi transport in cells expressing KIF1A or KIF1Bbeta with their PH domains deleted revealed that vesicle transport by these motors depends on the PH domains. Furthermore, purified KIF1A and KIF1Bbeta tails interact with p75 vesicles and these interactions require the PH domain. Knockdown of canine KIF1A also inhibited exit of p75 from the Golgi, and this was rescued by expression of human KIF1A. Together these data demonstrate that post-Golgi transport of p75 in non-polarized epithelial cells is mediated by kinesin-3 family motors in a PH-domain-dependent process.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The ER (endoplasmic reticulum) is a fascinating organelle that is highly dynamic, undergoing constant movement and reorganization. It has many key roles, including protein synthesis, folding and trafficking, calcium homoeostasis and lipid synthesis. It can expand in size when needed, and the balance between tubular and lamellar regions can be altered. The distribution and organization of the ER depends on both motile and static interactions with microtubules and the actin cytoskeleton. In the present paper, we review how the ER moves, and consider why this movement may be important for ER and cellular function.
Collapse
|
9
|
Brownhill K, Wood L, Allan V. Molecular motors and the Golgi complex: staying put and moving through. Semin Cell Dev Biol 2009; 20:784-92. [PMID: 19446479 DOI: 10.1016/j.semcdb.2009.03.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/19/2022]
Abstract
The Golgi apparatus is a highly dynamic organelle through which nascent proteins released from the endoplasmic reticulum (ER) are trafficked. Proteins are post-translationally modified within the Golgi and subsequently packaged into carriers for transport to a variety of cellular destinations. This transit of proteins, as well as the maintenance of Golgi structure and position, is highly dependent upon the actin and microtubule cytoskeletons and their associated molecular motors. Here we review how motors contribute to the correct functioning of the Golgi in higher eukaryotes and discuss the secretory pathway as a model system for studying cooperation between motor proteins.
Collapse
Affiliation(s)
- Kim Brownhill
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
10
|
Kaposi's sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLoS Pathog 2009; 5:e1000332. [PMID: 19282970 PMCID: PMC2647735 DOI: 10.1371/journal.ppat.1000332] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 02/06/2009] [Indexed: 01/13/2023] Open
Abstract
Open reading frame (ORF) 45 of Kaposi's sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen. The association was confirmed by both co-immunoprecipitation and immunoflorescence approaches in primary effusion lymphoma cells following virus reactivation. ORF45 principally mediated the docking of entire viral capsid-tegument complexes onto the cargo-binding domain of KIF3A. Microtubules served as the major highways for transportation of these complexes as evidenced by drastically reduced viral titers upon treatment of cells with a microtubule depolymerizer, nocodazole. Confocal microscopic images further revealed close association of viral particles with microtubules. Inhibition of KIF3A–ORF45 interaction either by the use of a headless dominant negative (DN) mutant of KIF3A or through shRNA-mediated silencing of endogenous KIF3A expression noticeably decreased KSHV egress reflecting as appreciable reductions in the release of extracellular virions. Both these approaches, however, failed to impact HSV-1 egress, demonstrating the specificity of KIF3A in KSHV transportation. This study thus reports on transportation of KSHV viral complexes on microtubules by KIF3A, a kinesin motor thus far not implicated in virus transportation. All these findings shed light on the understudied but significant events in the KSHV life cycle, delineating a crucial role of a KSHV tegument protein in cellular transport of viral particles. Kaposi's sarcoma–associated herpesvirus (KSHV) is a tumor virus associated with Kaposi's sarcoma (KS) and a spectrum of other lymphomas. These tumor cells are usually latently infected with this virus. The inactive virus in cells can get reactivated, whereupon there is viral DNA replication and viral protein synthesis. Newly synthesized proteins assemble in an orderly fashion to form viral complexes that need to be transported to the cell periphery for release and to further infect fresh cells to maintain the infection. Events that make up this important phase in the viral life cycle, however, have been much less studied. In this study, we show that a KSHV protein called the open reading frame (ORF) 45 anchors newly assembled viruses onto a cellular motor protein, namely KIF3A. These viruses are then transported by KIF3A along microtubules which act as major cellular highways (tracks), allowing for efficient transportation of viral complexes toward the cell periphery. Inhibition of any of these steps resulted in a reduced transport of viral complexes reflecting as reduced viral levels. Thus, this study has helped to delineate crucial events involved in the transportation of newly assembled KSHV virions and provides for attractive viral and cellular targets that could be inhibited to reduce the virus burden.
Collapse
|
11
|
Martinez NW, Xue X, Berro RG, Kreitzer G, Resh MD. Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein. J Virol 2008; 82:9937-50. [PMID: 18684836 PMCID: PMC2566262 DOI: 10.1128/jvi.00819-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.
Collapse
Affiliation(s)
- Nathaniel W Martinez
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
12
|
Mamdouh Z, Kreitzer GE, Muller WA. Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. ACTA ACUST UNITED AC 2008; 205:951-66. [PMID: 18378793 PMCID: PMC2292231 DOI: 10.1084/jem.20072328] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Diapedesis of leukocytes across endothelial cells is a crucial step in both the innate and adaptive immune responses. Surface molecules on leukocytes and endothelial cells critical for diapedesis have been identified, but the mechanisms underlying this process are not understood. Homophilic interaction between platelet/endothelial cell adhesion molecule (PECAM) on leukocytes and PECAM at the endothelial border triggers targeted recycling of membrane from a reticulum localized close to the endothelial cell lateral border. This membrane surrounds the transmigrating leukocyte (Mamdouh, Z., X. Chen, L.M. Pierini, F.R. Maxfield, and W.A. Muller. 2003. Nature. 421:748-753). How this process occurs and whether it is required for diapedesis independent of PECAM are not known. We now report that targeted recycling from this lateral border recycling compartment (LBRC) is required for diapedesis, is mediated by kinesin family molecular motors, and requires normally functioning endothelial microtubules. Selective disruption of microtubules or inhibition of kinesin motor domain blocked targeted recycling and diapedesis of monocytes. Furthermore, targeted recycling of membrane from the LBRC was required for transmigration of lymphocytes, which migrate independently of PECAM. Thus, trafficking of membrane from the LBRC to surround leukocytes may be a general requirement for migration of leukocytes across the endothelial cell border. Furthermore, these data provide the first demonstration of a role for endothelial microtubules and kinesins in promoting diapedesis, and a mechanism to explain targeted recycling.
Collapse
Affiliation(s)
- Zahra Mamdouh
- Department of Pathology and Laboratory Medicine and the Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
13
|
Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL. Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18:35-51. [PMID: 17992661 DOI: 10.1002/rmv.560] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of axonal transport of the alphaherpesviruses, HSV and pseudorabies virus (PrV), in neuronal axons are of fundamental interest, particularly in comparison with other viruses, and offer potential sites for antiviral intervention or development of gene therapy vectors. These herpesviruses are transported rapidly along microtubules (MTs) in the retrograde direction from the axon terminus to the dorsal root ganglion and then anterogradely in the opposite direction. Retrograde transport follows fusion and deenvelopment of the viral capsid at the axonal membrane followed by loss of most of the tegument proteins and then binding of the capsid via one or more viral proteins (VPs) to the retrograde molecular motor dynein. The HSV capsid protein pUL35 has been shown to bind to the dynein light chain Tctex1 but is likely to be accompanied by additional dynein binding of an inner tegument protein. The mechanism of anterograde transport is much more controversial with different processes being claimed for PrV and HSV: separate transport of HSV capsid/tegument and glycoproteins versus PrV transport as an enveloped virion. The controversy has not been resolved despite application, in several laboratories, of confocal microscopy (CFM), real-time fluorescence with viruses dual labelled on capsid and glycoprotein, electron microscopy in situ and immuno-electron microscopy. Different processes for each virus seem counterintuitive although they are the most divergent in the alphaherpesvirus subfamily. Current hypotheses suggest that unenveloped HSV capsids complete assembly in the axonal growth cones and varicosities, whereas with PrV unenveloped capsids are only found travelling in a retrograde direction.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and the University of Sydney, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
14
|
Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell 2008; 13:511-22. [PMID: 17925227 DOI: 10.1016/j.devcel.2007.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 05/13/2007] [Accepted: 08/01/2007] [Indexed: 02/01/2023]
Abstract
Microtubule-based vesicular transport is well documented in epithelial cells, but the specific motors involved and their regulation during polarization are largely unknown. We demonstrate that KIF5B mediates post-Golgi transport of an apical protein in epithelial cells, but only after polarity has developed. Time-lapse imaging of EB1-GFP in polarized MDCK cells showed microtubule plus ends growing toward the apical membrane, implying that plus end-directed N-kinesins might be used to transport apical proteins. Indeed, time-lapse microscopy revealed that expression of a KIF5B dominant negative or microinjection of function-blocking KIF5 antibodies inhibited selectively post-Golgi transport of the apical marker, p75-GFP, after polarization of MDCK cells. Expression of other KIF dominant negatives did not alter p75-GFP trafficking. Immunoprecipitation experiments demonstrated an interaction between KIF5B and p75-GFP in polarized, but not in subconfluent, MDCK cells. Our results demonstrate that apical protein transport depends on selective microtubule motors and that epithelial cells switch kinesins for post-Golgi transport during acquisition of polarity.
Collapse
|
15
|
Zhang Y, Wang R, Jefferson H, Sperry AO. Identification of motor protein cargo by yeast 2-hybrid and affinity approaches. Methods Mol Biol 2008; 392:97-116. [PMID: 17951713 DOI: 10.1007/978-1-59745-490-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Identification of the molecular composition of the cargo transported by individual kinesin motors is critical to an understanding of both motor function and regulation of the proper intracellular placement of numerous cellular components including proteins, RNA, and organelles. In this chapter, we describe methods to identify the motor tail sequences responsible for cargo binding by expression of green fluorescent protein (GFP)-motor tail fusion proteins in mammalian cells. In addition, we detail two complementary approaches to identify specific proteins associated with these targeting sequences: a yeast 2-hybrid screen and affinity chromatography.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
16
|
Ems-McClung SC, Hertzer KM, Zhang X, Miller MW, Walczak CE. The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly. Mol Biol Cell 2007; 18:282-94. [PMID: 17093055 PMCID: PMC1751331 DOI: 10.1091/mbc.e06-08-0724] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 09/27/2006] [Accepted: 10/30/2006] [Indexed: 11/11/2022] Open
Abstract
Spindle assembly and accurate chromosome segregation require the proper regulation of microtubule dynamics. MCAK, a Kinesin-13, catalytically depolymerizes microtubules, regulates physiological microtubule dynamics, and is the major catastrophe factor in egg extracts. Purified GFP-tagged MCAK domain mutants were assayed to address how the different MCAK domains contribute to in vitro microtubule depolymerization activity and physiological spindle assembly activity in egg extracts. Our biochemical results demonstrate that both the neck and the C-terminal domain are necessary for robust in vitro microtubule depolymerization activity. In particular, the neck is essential for microtubule end binding, and the C-terminal domain is essential for tight microtubule binding in the presence of excess tubulin heterodimer. Our physiological results illustrate that the N-terminal domain is essential for regulating microtubule dynamics, stimulating spindle bipolarity, and kinetochore targeting; whereas the C-terminal domain is necessary for robust microtubule depolymerization activity, limiting spindle bipolarity, and enhancing kinetochore targeting. Unexpectedly, robust MCAK microtubule (MT) depolymerization activity is not needed for sperm-induced spindle assembly. However, high activity is necessary for proper physiological MT dynamics as assayed by Ran-induced aster assembly. We propose that MCAK activity is spatially controlled by an interplay between the N- and C-terminal domains during spindle assembly.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Department of Biology, Indiana University, Bloomington, IN 47405; and
| | - Mill W. Miller
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | | |
Collapse
|
17
|
Woźniak MJ, Allan VJ. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 2006; 25:5457-68. [PMID: 17093494 PMCID: PMC1679764 DOI: 10.1038/sj.emboj.7601427] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/16/2006] [Indexed: 12/25/2022] Open
Abstract
Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures.
Collapse
Affiliation(s)
- Marcin J Woźniak
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Victoria J Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK. Tel.: +44 161 275 5646; Fax: +44 161 275 5082; E-mail:
| |
Collapse
|
18
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|
19
|
Kerssemakers J, Howard J, Hess H, Diez S. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc Natl Acad Sci U S A 2006; 103:15812-7. [PMID: 17035506 PMCID: PMC1595308 DOI: 10.1073/pnas.0510400103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-1 is a motor protein that carries cellular cargo such as membrane-bounded organelles along microtubules (MTs). The homodimeric motor molecule contains two N-terminal motor domains (the motor "heads"), a long coiled-coil domain (the "rod" or "stalk"), and two small globular "tail" domains. Much has been learned about how kinesin's heads step along a MT and how the tail is involved in cargo binding and autoinhibition. However, little is known about the role of the rod. Here, we investigate the extension of the rod during active transport by measuring the height at which MTs glide over a kinesin-coated surface in the presence of ATP. To perform height measurements with nanometer precision, we used fluorescence interference contrast microscopy, which is based on the self-interference of fluorescent light from objects near a reflecting surface. Using an in situ calibrating method, we determined that kinesin-1 molecules elevate gliding MTs 17 +/- 2 nm (mean +/- SEM) above the surface. When varying the composition of the surrounding nucleotides or removing the negatively charged -COOH termini of the MTs by subtilisin digestion, we found no significant changes in the measured distance. Even though this distance is significantly shorter than the contour length of the motor molecule ( approximately 60 nm), it may be sufficient to prevent proteins bound to the MTs or prevent the organelles from interfering with transport.
Collapse
Affiliation(s)
- Jacob Kerssemakers
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; and
| | - Jonathon Howard
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; and
| | - Henry Hess
- Department of Materials Science and Engineering, University of Florida, 160 Rhines Hall, Gainesville, FL 32611
| | - Stefan Diez
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Gaillard S, Bailly Y, Benoist M, Rakitina T, Kessler JP, Fronzaroli-Molinières L, Dargent B, Castets F. Targeting of Proteins of the Striatin Family to Dendritic Spines: Role of the Coiled-Coil Domain. Traffic 2005; 7:74-84. [PMID: 16445688 DOI: 10.1111/j.1600-0854.2005.00363.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Striatin, SG2NA and zinedin, the three mammalian members of the striatin family are multimodular WD-repeat, calmodulin and calveolin-binding proteins. These scaffolding proteins, involved in both signaling and trafficking, are highly expressed in neurons. Using ultrastructural immunolabeling, we showed that, in Purkinje cells and hippocampal neurons, SG2NA is confined to the somatodendritic compartment with the highest density in dendritic spines. In cultured hippocampal neurons, SG2NA is also highly concentrated in dendritic spines. By expressing truncated forms of HA-tagged SG2NAbeta, we demonstrated that the coiled-coil domain plays an essential role in the targeting of SG2NA within spines. Furthermore, co-immunoprecipitation experiments indicate that this coiled-coil domain is also crucial for the homo- and hetero-oligomerization of these proteins. Thus, oligomerization of the striatin family proteins is probably an obligatory step for their routing to the dendritic spines, and hetero-oligomerization explains why all these proteins are often co-expressed in the neurons of the rat brain and spinal cord.
Collapse
Affiliation(s)
- Stéphane Gaillard
- INSERM-UMR 641, Institut Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur-Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA. Kinesin-2 is a Motor for Late Endosomes and Lysosomes. Traffic 2005; 6:1114-24. [PMID: 16262723 DOI: 10.1111/j.1600-0854.2005.00347.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The bidirectional nature of late endosome/lysosome movement suggests involvement of at least two distinct motors, one minus-end directed and one plus-end directed. Previous work has identified dynein as the minus-end-directed motor for late endosome/lysosome localization and dynamics. Conventional kinesin (kinesin-1) has been implicated in plus-end-directed late endosome/lysosome movement, but other kinesin family members may also be involved. Kinesin-2 is known to drive the movement of pigment granules, a type of lysosomally derived organelle, and was recently found to be associated with purified late endosomes. To determine whether kinesin-2 might also power endosome movement in non-pigmented cells, we overexpressed dominant negative forms of the KIF3A motor subunit and KAP3 accessory subunit and knocked down KAP3 levels using RNAi. We found kinesin-2 to be required for the normal steady-state localization of late endosomes/lysosomes but not early endosomes or recycling endosomes. Despite the abnormal subcellular distribution of late endosomes/lysosomes, the uptake and trafficking of molecules through the conventional endocytic pathway appeared to be unaffected. The slow time-course of inhibition suggests that both kinesin-2 itself and its attachment to membranes do not turn over quickly.
Collapse
Affiliation(s)
- Christa L Brown
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R. The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 2005; 6:35. [PMID: 16225668 PMCID: PMC1266353 DOI: 10.1186/1471-2121-6-35] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022] Open
Abstract
Background Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens. Results KBP was identified by using the yeast-two-hybrid system with an amino-terminal fragment of KIF1C as a bait that is strongly homologous to KIF1B. Here we investigated the interaction of KBP and KIF1B. The full length proteins coimmunoprecipitated after overexpression and in untransfected 293 cells. Immunofluorescence experiments revealed that KBP was mainly localized to mitochondria, as has been described for KIF1Bα. Overexpression of a deletion mutant or reduction of the KBP protein level using an anti-sense construct led to an aggregation of mitochondria. Such an effect is probably due to the lower activity of KIF1Bα in the absence of KBP, as was revealed in motility assays. Conclusion KBP is a new binding partner for KIF1Bα that is a regulator of its transport function and thus represents a new type of kinesin interacting protein.
Collapse
Affiliation(s)
- Marcin J Wozniak
- Medical Clinic IV, Otfried-Müller Str.10, Tübingen, Germany
- University of Manchester, Manchester, UK
| | - Martina Melzer
- Medical Clinic IV, Otfried-Müller Str.10, Tübingen, Germany
| | - Cornelia Dorner
- Medical Clinic IV, Otfried-Müller Str.10, Tübingen, Germany
- Boehringer Ingelheim Pharma KG, Biberach an der Riss, Germany
| | | | - Reiner Lammers
- Medical Clinic IV, Otfried-Müller Str.10, Tübingen, Germany
| |
Collapse
|
23
|
Luboshits G, Benayahu D. MS-KIF18A, new kinesin; structure and cellular expression. Gene 2005; 351:19-28. [PMID: 15878648 DOI: 10.1016/j.gene.2005.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/06/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
The present study describes the cloning and molecular analysis of a new gene, MS-KIF18A, a member of the kinesin family. MS-KIF18A was cloned from a marrow stromal cells expression library. Transcripts derived from this gene were also detected in testis and trachea, although they differed from the stroma mesenchymal cell transcript in the open reading frame (ORF) as well as in the untranslated regions (UTRs). The existence of various transcripts suggests alternative regulation of gene expression and defines tissue specific function of the new kinesin. The cDNA from the marrow stroma, MS-KIF18A, encodes a predicted protein of 898 amino acids with a molecular weight of 100 kDa. Kinesins are motor proteins that consist of a motor domain with microtubule-binding and ATPase sites, a coiled coil region and a cargo-binding domain. Examination of a three-dimensional model of the MS-KIF18A motor domain suggested that this protein associates with microtubules, which was confirmed by immunofluorescence (IF) experiments in stromal cells.
Collapse
Affiliation(s)
- G Luboshits
- Sackler School of Medicine, Tel-Aviv University, Department of Cell and Developmental Biology, Israel
| | | |
Collapse
|
24
|
Leduc C, Campàs O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, Goud B, Joanny JF, Bassereau P, Prost J. Cooperative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci U S A 2004; 101:17096-101. [PMID: 15569933 PMCID: PMC535380 DOI: 10.1073/pnas.0406598101] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, nanotubes represent a substantial fraction of transport intermediates between organelles. They are extracted from membranes by molecular motors walking along microtubules. We previously showed that kinesins fixed on giant unilamellar vesicles in contact with microtubules are sufficient to form nanotubes in vitro. Motors were attached to the membrane through beads, thus facilitating cooperative effects. Koster et al. proposed that motors could dynamically cluster at the tip of tubes when they are individually attached to the membrane. We demonstrate, in a recently designed experimental system, the existence of an accumulation of motors allowing tube extraction. We determine the motor density along a tube by using fluorescence intensity measurements. We also perform a theoretical analysis describing the dynamics of motors and tube growth. The only adjustable parameter is the motor binding rate onto microtubules, which we measure to be 4.7 +/- 2.4 s(-1). In addition, we quantitatively determine, for a given membrane tension, the existence of a threshold in motor density on the vesicle above which nanotubes can be formed. We find that the number of motors pulling a tube can range from four at threshold to a few tens away from it. The threshold in motor density (or in membrane tension at constant motor density) could be important for the understanding of membrane traffic regulation in cells.
Collapse
Affiliation(s)
- Cécile Leduc
- Institut Curie, Unité Mixte de Recherche 168, 26 Rue d'Ulm, F-75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee YRJ, Liu B. Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. PLANT PHYSIOLOGY 2004; 136:3877-83. [PMID: 15591445 PMCID: PMC535821 DOI: 10.1104/pp.104.052621] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/28/2004] [Accepted: 11/01/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Yuh-Ru Julie Lee
- Section of Plant Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|