1
|
Bruge C, Bourg N, Pellier E, Tournois J, Polentes J, Benabides M, Grossi N, Bigot A, Brureau A, Richard I, Nissan X. High-throughput screening identifies bazedoxifene as a potential therapeutic for dysferlin-deficient limb girdle muscular dystrophy. Br J Pharmacol 2025. [PMID: 40108832 DOI: 10.1111/bph.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Limb-girdle muscular dystrophy R2 (LGMD R2) is a rare genetic disorder characterised by progressive weakness and wasting of proximal muscles. LGMD R2 is caused by the loss of function of dysferlin, a transmembrane protein crucial for plasma membrane repair in skeletal muscles. This study aimed to identify drugs that could improve the localisation and restore the function of an aggregated mutant form of dysferlin (DYSFL1341P). EXPERIMENTAL APPROACH We developed an in vitro high-throughput assay to monitor the expression and reallocation of aggregated mutant dysferlin (DYSFL1341P) in immortalised myoblasts. After screening 2239 clinically approved drugs and bioactive compounds, the ability of the more promising candidates to improve cell survival following hypo-osmotic shock was assessed. Their protective effects were evaluated on immortalised myoblasts carrying other dysferlin mutations and on dysferlin-deficient muscle fibres from Bla/J mice. KEY RESULTS We identified two compounds, saracatinib and bazedoxifene, that increase dysferlin content in cells carrying the DYSFL1341P mutation. Both drugs improved cell survival and plasma membrane resistance following osmotic shock. Whereas saracatinib acts specifically on misfolded L1341P dysferlin, bazedoxifene shows an additional protective effect on dysferlin KO immortalised myoblasts and mice muscle fibres. Further analysis revealed that bazedoxifene induces autophagy flux, which may enhance the survival of LGMD R2 myofibres. CONCLUSION AND IMPLICATIONS Our drug screening identified saracatinib and bazedoxifene as potential treatments for LGMD R2, especially for patients with the L1341P mutation. The widespread protective effect of bazedoxifene reveals a new avenue toward genotype-independent treatment of LGMD R2 patients.
Collapse
Affiliation(s)
- Celine Bruge
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Nathalie Bourg
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Emilie Pellier
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Johana Tournois
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Jerome Polentes
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Noella Grossi
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anthony Brureau
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| |
Collapse
|
2
|
Anwar S, Roshmi RR, Woo S, Haque US, Arthur Lee JJ, Duddy WJ, Bigot A, Maruyama R, Yokota T. Antisense oligonucleotide-mediated exon 27 skipping restores dysferlin function in dysferlinopathy patient-derived muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102443. [PMID: 39967852 PMCID: PMC11834094 DOI: 10.1016/j.omtn.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Dysferlinopathies are debilitating autosomal recessive muscular dystrophies caused by mutations in the DYSF gene, encoding dysferlin, a protein crucial for sarcolemmal homeostasis and membrane resealing. Currently, no therapies exist for dysferlinopathies. Dysferlin features a modular structure with multiple calcium-dependent C2 lipid-binding domains. Clinical reports of mild, late-onset phenotypes suggest partial retention of functionality despite missing C2 domains, supporting exon-skipping therapies using antisense oligonucleotides (ASOs). In this study, we identified a patient-derived muscle cell line with a splice site mutation in DYSF intron 26, causing exon 26 exclusion, an out-of-frame transcript, and no detectable dysferlin protein. We hypothesized that skipping DYSF exon 27 could restore the reading frame and membrane repair function. Using an in-house in silico tool, we designed ASOs targeting exon 27. Treatment resulted in 65%-92% exon 27 skipping in myoblasts and myotubes, leading to a 39%-51% rescue of normal dysferlin expression, demonstrating robust efficacy of our designed ASOs. Two-photon laser-based assays indicated functional membrane repair. Additionally, we observed improved myotube fusion, cell vitality, and reduced apoptosis levels post-treatment. These findings provide proof of concept that DYSF exon 27 skipping restores functional dysferlin in patient-derived cells, paving the way for future in vivo and clinical studies.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Rohini Roy Roshmi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stanley Woo
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Umme Sabrina Haque
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Joshua James Arthur Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - William John Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, BT47 6SB Derry-Londonderry, UK
| | - Anne Bigot
- Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université–L’Institut National de la Santé et de la Recherche Médicale (INSERM), 75651 Paris Cedex, France
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada Endowed Research Chair and the Henri M. Toupin Chair in Neurological Science, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Wang D, Liu XY, He QF, Zheng FZ, Chen L, Zheng Y, Zeng MH, Lin YH, Lin X, Chen HZ, Lin MT, Wang N, Wang ZQ, Lin F. Comprehensive Proteomic Analysis of Dysferlinopathy Unveiling Molecular Mechanisms and Biomarkers Linked to Pathological Progression. CNS Neurosci Ther 2024; 30:e70065. [PMID: 39350328 PMCID: PMC11442333 DOI: 10.1111/cns.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Previous proteomics studies in dysferlinopathy muscle have been limited in scope, often utilizing 2D-electrophoresis and yielding only a small number of differential expression calls. To address this gap, this study aimed to employ high-resolution proteomics to explore the proteomic landscapes of dysferlinopathy and analyze the correlation between muscle pathological changes and alterations in protein expression in muscle biopsies. METHODS We conducted a comprehensive approach to investigate the proteomic profile and disease-associated changes in the muscle tissue proteome from 15 patients with dysferlinopathy, exhibiting varying degrees of dystrophic pathology, alongside age-matched controls. Our methodology encompasses tandem mass tag (TMT)-labeled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteomics, protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis, and differential expression analysis. Subsequently, we examined the correlation between the expression of key proteins and the clinical characteristics of the patients to identify pathogenic targets associated with DYSF mutations in dysferlinopathy. RESULTS A total of 1600 differentially expressed proteins were identified, with 1321 showing high expression levels and 279 expressed at lower levels. Our investigation yields a molecular profile delineating the altered protein networks in dysferlinopathy-afflicted skeletal muscle, uncovering dysregulation across numerous cellular pathways and molecular processes, including mRNA metabolic processes, regulated exocytosis, immune response, muscle system processes, energy metabolic processes, and calcium transmembrane transport. Moreover, we observe significant associations between the protein expression of ANXA1, ANXA2, ANXA4, ANXA5, LMNA, PYGM, and the extent of histopathologic changes in muscle biopsies from patients with dysferlinopathy, validated through immunoblotting and immunofluorescence assays. CONCLUSIONS Through the aggregation of expression data from dysferlinopathy-impacted muscles exhibiting a range of pathological alterations, we identified multiple key proteins associated with the dystrophic pathology of patients with dysferlinopathy. These findings provide novel insights into the pathogenesis of dysferlinopathy and propose promising targets for future therapeutic endeavors.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yi Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi-Fang He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ming-Hui Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Hua Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Muriel J, Lukyanenko V, Kwiatkowski TA, Li Y, Bhattacharya S, Banford KK, Garman D, Bulgart HR, Sutton RB, Weisleder N, Bloch RJ. Nanodysferlins support membrane repair and binding to TRIM72/MG53 but do not localize to t-tubules or stabilize Ca 2+ signaling. Mol Ther Methods Clin Dev 2024; 32:101257. [PMID: 38779337 PMCID: PMC11109471 DOI: 10.1016/j.omtm.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A. Kwiatkowski
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Li
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Roger B. Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Wang L, Zhou Y, Wei T, Huang H. Two homozygous adjacent novel missense mutations in DYSF gene caused dysferlinopathy due to splicing abnormalities. Front Genet 2024; 15:1404611. [PMID: 38903757 PMCID: PMC11188463 DOI: 10.3389/fgene.2024.1404611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Dysferlinopathy is an autosomal recessive disorder caused by mutations in the DYSF gene. This study reported two homozygous adjacent missense mutations in the DYSF gene, presenting clinically with bilateral lower limb weakness and calf swelling. Two homozygous adjacent missense mutations in the DYSF gene may be associated with the development of dysferlinopathy, but the exact mechanism needs further investigation. Methods: A retrospective analysis of clinical data from a dysferlinopathy-affected family was conducted. Peripheral blood samples were collected from members of this family for whole-exome sequencing (WES) and copy number variation analysis. Sanger sequencing was employed to confirm potential pathogenic variants. The Human Splicing Finder, SpliceAI, and varSEAK database were used to predict the effect of mutations on splicing function. The pathogenic mechanism of aberrant splicing in dysferlinopathy due to two homozygous adjacent missense mutations in the DYSF gene was determined by an in vivo splicing assay and an in vitro minigene assay. Results: The proband was a 42-year-old woman who presented with weakness of the lower limbs for 2 years and edema of the lower leg. Two homozygous DYSF variants, c.5628C>A p. D1876E and c.5633A>T p. Y1878F, were identified in the proband. Bioinformatics databases suggested that the mutation c.5628C>A of DYSF had no significant impact on splicing signals. Human Splicing Finder Version 2.4.1 suggested that the c.5633A>T of DYSF mutation caused alteration of auxiliary sequences and significant alteration of the ESE/ESS motif ratio. VarSEAK and SpliceAI suggested that the c.5633A>T of DYSF mutation had no splicing effect. Both an in vivo splicing assay and an in vitro minigene assay showed two adjacent mutations: c.5628C>A p. D1876E and c.5633A>T p. Y1878F in the DYSF gene leading to an Exon50 jump that resulted in a 32-aa amino acid deletion within the protein. Point mutation c.5628C>A p. D1876E in the DYSF gene affected splicing in vitro, while point mutation c.5633A>T p. Y1878F in the DYSF gene did not affect splicing function. Conclusion: This study confirmed for the first time that two homozygous mutations of DYSF were associated with the occurrence of dysferlinopathy. The c.5628C>A p. D1876E mutation in DYSF affected the splicing function and may be one of the contributing factors to the pathogenicity.
Collapse
Affiliation(s)
- Lun Wang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
| | - Yan Zhou
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, Hubei, China
| | - Tiantian Wei
- Daytime Surgical Ward, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Hongyao Huang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
- Department of Laboratory, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
7
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Bolano-Diaz C, Verdú-Díaz J, Gonzalez-Chamorro A, Fitzsimmons S, Veeranki G, Straub V, Diaz-Manera J. Magnetic resonance imaging-based criteria to differentiate dysferlinopathy from other genetic muscle diseases. Neuromuscul Disord 2024; 34:54-60. [PMID: 38007344 DOI: 10.1016/j.nmd.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
The identification of disease-characteristic patterns of muscle fatty replacement in magnetic resonance imaging (MRI) is helpful for diagnosing neuromuscular diseases. In the Clinical Outcome Study of Dysferlinopathy, eight diagnostic rules were described based on MRI findings. Our aim is to confirm that they are useful to differentiate dysferlinopathy (DYSF) from other genetic muscle diseases (GMD). The rules were applied to 182 MRIs of dysferlinopathy patients and 1000 MRIs of patients with 10 other GMD. We calculated sensitivity (S), specificity (Sp), positive and negative predictive values (PPV/NPV) and accuracy (Ac) for each rule. Five of the rules were more frequently met by the DYSF group. Patterns observed in patients with FKRP, ANO5 and CAPN3 myopathies were similar to the DYSF pattern, whereas patterns observed in patients with OPMD, laminopathy and dystrophinopathy were clearly different. We built a model using the five criteria more frequently met by DYSF patients that obtained a S 95.9%, Sp 46.1%, Ac 66.8%, PPV 56% and NPV 94% to distinguish dysferlinopathies from other diseases. Our findings support the use of MRI in the diagnosis of dysferlinopathy, but also identify the need to externally validate "disease-specific" MRI-based diagnostic criteria using MRIs of other GMD patients.
Collapse
Affiliation(s)
- Carla Bolano-Diaz
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - Alejandro Gonzalez-Chamorro
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - Sam Fitzsimmons
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - Gopi Veeranki
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK
| | - Jordi Diaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE13BZ, UK; Laboratori de Malalties Neuromusculars, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau de Barcelona, Barcelona 08041, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid 28029, Spain.
| |
Collapse
|
9
|
Whitlock JM. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Results Probl Cell Differ 2024; 71:257-279. [PMID: 37996682 DOI: 10.1007/978-3-031-37936-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Skeletal muscle possesses a resident, multipotent stem cell population that is essential for its repair and maintenance throughout life. Here I highlight the role of this stem cell population in muscle repair and regeneration and review the genetic control of the process; the mechanistic steps of activation, migration, recognition, adhesion, and fusion of these cells; and discuss the novel recognition of the membrane signaling that coordinates myogenic cell-cell fusion, as well as the identification of a two-part fusogen system that facilitates it.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Section on Membrane Biology, Eunice Kennedy Shrive National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Scott IL, Dominguez MJ, Snow A, Harsini FM, Williams J, Fuson KL, Thapa R, Bhattacharjee P, Cornwall GA, Keyel PA, Sutton RB. Pathogenic Mutations in the C2A Domain of Dysferlin form Amyloid that Activates the Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538129. [PMID: 37163031 PMCID: PMC10168229 DOI: 10.1101/2023.04.24.538129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Limb-Girdle Muscular Dystrophy Type-2B/2R is caused by mutations in the dysferlin gene ( DYSF ). This disease has two known pathogenic missense mutations that occur within dysferlin's C2A domain, namely C2A W52R and C2A V67D . Yet, the etiological rationale to explain the disease linkage for these two mutations is still unclear. In this study, we have presented evidence from biophysical, computational, and immunological experiments which suggest that these missense mutations interfere with dysferlin's ability to repair cells. The failure of C2A W52R and C2A V67D to initiate membrane repair arises from their propensity to form stable amyloid. The misfolding of the C2A domain caused by either mutation exposes β-strands, which are predicted to nucleate classical amyloid structures. When dysferlin C2A amyloid is formed, it triggers the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines, including IL-1β. The present study suggests that the muscle dysfunction and inflammation evident in Limb-Girdle Muscular Dystrophy types-2B/2R, specifically in cases involving C2A W52R and C2A V67D , as well as other C2 domain mutations with considerable hydrophobic core involvement, may be attributed to this mechanism.
Collapse
|
12
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
14
|
Puwanant A, Živković SA, Clemens PR. Muscular dystrophy. NEUROBIOLOGY OF BRAIN DISORDERS 2023:147-164. [DOI: 10.1016/b978-0-323-85654-6.00055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
16
|
Lloyd EM, Pinniger GJ, Grounds MD, Murphy RM. Dysferlin Deficiency Results in Myofiber-Type Specific Differences in Abundances of Calcium-Handling and Glycogen Metabolism Proteins. Int J Mol Sci 2022; 24:ijms24010076. [PMID: 36613515 PMCID: PMC9820290 DOI: 10.3390/ijms24010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by a genetic deficiency of the membrane-associated protein dysferlin, which usually manifest post-growth in young adults. The disease is characterized by progressive skeletal muscle wasting in the limb-girdle and limbs, inflammation, accumulation of lipid droplets in slow-twitch myofibers and, in later stages, replacement of muscles by adipose tissue. Previously we reported myofiber-type specific differences in muscle contractile function of 10-month-old dysferlin-deficient BLAJ mice that could not be fully accounted for by altered myofiber-type composition. In order to further investigate these findings, we examined the impact of dysferlin deficiency on the abundance of calcium (Ca2+) handling and glucose/glycogen metabolism-related proteins in predominantly slow-twitch, oxidative soleus and fast-twitch, glycolytic extensor digitorum longus (EDL) muscles of 10-month-old wild-type (WT) C57BL/6J and dysferlin-deficient BLAJ male mice. Additionally, we compared the Ca2+ activation properties of isolated slow- and fast-twitch myofibers from 3-month-old WT and BLAJ male mice. Differences were observed for some Ca2+ handling and glucose/glycogen metabolism-related protein levels between BLAJ soleus and EDL muscles (compared with WT) that may contribute to the previously reported differences in function in these BLAJ muscles. Dysferlin deficiency did not impact glycogen content of whole muscles nor Ca2+ activation of the myofilaments, although soleus muscle from 10-month-old BLAJ mice had more glycogen than EDL muscles. These results demonstrate a further impact of dysferlin deficiency on proteins associated with excitation-contraction coupling and glycogen metabolism in skeletal muscles, potentially contributing to altered contractile function in dysferlinopathy.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J. Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| | - Robyn M. Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
17
|
Lukyanenko V, Muriel J, Garman D, Breydo L, Bloch RJ. Elevated Ca 2+ at the triad junction underlies dysregulation of Ca 2+ signaling in dysferlin-null skeletal muscle. Front Physiol 2022; 13:1032447. [PMID: 36406982 PMCID: PMC9669649 DOI: 10.3389/fphys.2022.1032447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Leonid Breydo
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Singhal R, Lukose R, Carr G, Moktar A, Gonzales-Urday AL, Rouchka EC, Vajravelu BN. Differential Expression of Long Noncoding RNAs in Murine Myoblasts After Short Hairpin RNA-Mediated Dysferlin Silencing In Vitro: Microarray Profiling. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e33186. [PMID: 38935964 PMCID: PMC11135227 DOI: 10.2196/33186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/02/2022] [Accepted: 05/10/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are noncoding RNA transcripts greater than 200 nucleotides in length and are known to play a role in regulating the transcription of genes involved in vital cellular functions. We hypothesized the disease process in dysferlinopathy is linked to an aberrant expression of lncRNAs and messenger RNAs (mRNAs). OBJECTIVE In this study, we compared the lncRNA and mRNA expression profiles between wild-type and dysferlin-deficient murine myoblasts (C2C12 cells). METHODS LncRNA and mRNA expression profiling were performed using a microarray. Several lncRNAs with differential expression were validated using quantitative real-time polymerase chain reaction. Gene Ontology (GO) analysis was performed to understand the functional role of the differentially expressed mRNAs. Further bioinformatics analysis was used to explore the potential function, lncRNA-mRNA correlation, and potential targets of the differentially expressed lncRNAs. RESULTS We found 3195 lncRNAs and 1966 mRNAs that were differentially expressed. The chromosomal distribution of the differentially expressed lncRNAs and mRNAs was unequal, with chromosome 2 having the highest number of lncRNAs and chromosome 7 having the highest number of mRNAs that were differentially expressed. Pathway analysis of the differentially expressed genes indicated the involvement of several signaling pathways including PI3K-Akt, Hippo, and pathways regulating the pluripotency of stem cells. The differentially expressed genes were also enriched for the GO terms, developmental process and muscle system process. Network analysis identified 8 statistically significant (P<.05) network objects from the upregulated lncRNAs and 3 statistically significant network objects from the downregulated lncRNAs. CONCLUSIONS Our results thus far imply that dysferlinopathy is associated with an aberrant expression of multiple lncRNAs, many of which may have a specific function in the disease process. GO terms and network analysis suggest a muscle-specific role for these lncRNAs. To elucidate the specific roles of these abnormally expressed noncoding RNAs, further studies engineering their expression are required.
Collapse
Affiliation(s)
- Richa Singhal
- Department of Biochemistry and Molecular Genetics, KY IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Rachel Lukose
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Gwenyth Carr
- Department of Medical and Molecular Biology, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Afsoon Moktar
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Ana Lucia Gonzales-Urday
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, KY IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Bathri N Vajravelu
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| |
Collapse
|
19
|
Muriel J, Lukyanenko V, Kwiatkowski T, Bhattacharya S, Garman D, Weisleder N, Bloch RJ. The C2 domains of dysferlin: roles in membrane localization, Ca 2+ signalling and sarcolemmal repair. J Physiol 2022; 600:1953-1968. [PMID: 35156706 PMCID: PMC9285653 DOI: 10.1113/jp282648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tom Kwiatkowski
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Bhattacharya S, Silkunas M, Gudvangen E, Mangalanathan U, Pakhomova ON, Pakhomov AG. Ca 2+ dependence and kinetics of cell membrane repair after electropermeabilization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183823. [PMID: 34838875 DOI: 10.1016/j.bbamem.2021.183823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023]
Abstract
Electroporation, in particular with nanosecond pulses, is an efficient technique to generate nanometer-size membrane lesions without the use of toxins or other chemicals. The restoration of the membrane integrity takes minutes and is only partially dependent on [Ca2+]. We explored the impact of Ca2+ on the kinetics of membrane resealing by monitoring the entry of a YO-PRO-1 dye (YP) in BPAE and HEK cells. Ca2+ was promptly removed or added after the electric pulse (EP) by a fast-step perfusion. YP entry increased sharply after the EP and gradually slowed down following either a single- or a double-exponential function. In BPAE cells permeabilized by a single 300- or 600-ns EP at 14 kV/cm in a Ca2+-free medium, perfusion with 2 mM of external Ca2+ advanced the 90% resealing and reduced the dye uptake about twofold. Membrane restoration was accomplished by a combination of fast, Ca2+-independent resealing (τ = 13-15 s) and slow, Ca2+-dependent processes (τ ~70 s with Ca2+ and ~ 110 s or more without it). These time constants did not change when the membrane damage was doubled by increasing EP duration from 300 to 600 ns. However, injury by microsecond-range EP (300 and 600 μs) took longer to recover even when the membrane initially was less damaged, presumably because of the larger size of pores made in the membrane. Full membrane recovery was not prevented by blocking both extra- and intracellular Ca2+ (by loading cells with BAPTA or after Ca2+ depletion from the reticulum), suggesting the recruitment of unknown Ca2+-independent repair mechanisms.
Collapse
Affiliation(s)
- Sayak Bhattacharya
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Mantas Silkunas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
21
|
Kurdi M, Alshareef A, Bamaga AK, Fadel ZT, Alrawaili MS, Hakamy S, Mohamed F, Abuzinadah AR, Addas BMJ, Butt NS. The Assessment of Major Histocompatibility Complex (MHC) Class-I Expression in Different Neuromuscular Diseases. Degener Neurol Neuromuscul Dis 2022; 11:61-68. [PMID: 35002356 PMCID: PMC8727622 DOI: 10.2147/dnnd.s340117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Major histocompatibility complex (MHC) class-1 antigen is a glycoprotein expressed in all nucleated cells. The aim of this study was to assess MHC class-I expression in different neuromuscular diseases. Methods The authors reviewed the data of 54 patients with neuromuscular diseases. Anti MHC class-I antibody was performed on the frozen muscle tissues using immunohistochemistry. MHC class-I was scored based on its expression on muscle fibers (0: normal, 1: expression <5 fibers, 2: expression in 5–10 fibers, 3: expression in >10 fibers). The pattern was only assessed in cases with MHC class-I scored 3 as: (1: Sarcocapillary, 2: Sarcocapillary and necrotic fibers, 3: Perifascicular). The relationship between MHC class-I expression and neuromuscular diseases was statistically analyzed. Results The mean age of the patients was 39.1 ± 18.5 years. Around 50% of patients showed normal CK levels and 5% of the cases showed elevated CK levels. There was a significance difference in MHC class-I expression between cases with normal and elevated CK levels when MHC class-I score was 3 (p= 0.020). There was a significant difference in MHC class-I expression among different neuromuscular diseases (p<0.001). All cases with idiopathic inflammatory myopathies (IIMs) have expressed MHC class-I in more than 10 fibers. MHC class-I was expressed in 15 cases of non-IIMs. Conclusion MHC class-I cannot be solely used as a biomarker to distinguish IIMs from non-IIMs. The presence of MHC class-I molecules in non-IIMs might be related to immunoproteasomes mechanism. Further studies, with different muscle proteins expression and genomic sequencing, must be conducted to understand the role of MHC Class-I in neuromuscular diseases.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.,Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aysha Alshareef
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed K Bamaga
- Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Zahir T Fadel
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moafaq S Alrawaili
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fawaz Mohamed
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.,Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad R Abuzinadah
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam M J Addas
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Shafique Butt
- Department of Family Medicine and Community, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
22
|
Ballouhey O, Courrier S, Kergourlay V, Gorokhova S, Cerino M, Krahn M, Lévy N, Bartoli M. The Dysferlin Transcript Containing the Alternative Exon 40a is Essential for Myocyte Functions. Front Cell Dev Biol 2021; 9:754555. [PMID: 34888307 PMCID: PMC8650162 DOI: 10.3389/fcell.2021.754555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing. We were interested in dysferlin transcripts containing the exon 40a, and among them the transcript 11 which contains all the canonical exons and exon 40a. This alternative exon encodes a protein region that is cleaved by calpains during the muscle membrane repair mechanism. Firstly, we tested the impact of mutations in exon 40a on its cleavability by calpains. We showed that the peptide encoded by the exon 40a domain is resistant to mutations and that calpains cleaved dysferlin in the first part of DYSF exon 40a. To further explore the implication of this transcript in cell functions, we performed membrane repair, osmotic shock, and transferrin assay. Our results indicated that dysferlin transcript 11 is a key factor in the membrane repair process. Moreover, dysferlin transcript 11 participates in other cell functions such as membrane protection and vesicle trafficking. These results support the need to restore the dysferlin transcript containing the alternative exon 40a in patients affected with dysferlinopathy.
Collapse
Affiliation(s)
| | | | | | - Svetlana Gorokhova
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Mathieu Cerino
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Martin Krahn
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
| | - Nicolas Lévy
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France.,AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France.,GIPTIS, Genetics Institute for Patients Therapies Innovation and Science, Marseille, France
| | - Marc Bartoli
- INSERM, MMG, U1251, Aix Marseille University, Marseille, France
| |
Collapse
|
23
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
24
|
Muratori C, Silkuniene G, Mollica PA, Pakhomov AG, Pakhomova ON. The role of ESCRT-III and Annexin V in the repair of cell membrane permeabilization by the nanosecond pulsed electric field. Bioelectrochemistry 2021; 140:107837. [PMID: 34004548 DOI: 10.1016/j.bioelechem.2021.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive Research, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Peter A Mollica
- Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
25
|
Choudhary V, Schneiter R. A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Front Cell Dev Biol 2021; 9:650186. [PMID: 33898445 PMCID: PMC8060488 DOI: 10.3389/fcell.2021.650186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Calcium binds and rigidifies the dysferlin C2A domain in a tightly coupled manner. Biochem J 2021; 478:197-215. [DOI: 10.1042/bcj20200773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
The membrane protein dysferlin (DYSF) is important for calcium-activated plasma membrane repair, especially in muscle fibre cells. Nearly 600 mutations in the DYSF gene have been identified that are causative for rare genetic forms of muscular dystrophy. The dysferlin protein consists of seven C2 domains (C2A–C2G, 13%–33% identity) used to recruit calcium ions and traffic accessory proteins and vesicles to injured membrane sites needed to reseal a wound. Amongst these, the C2A is the most prominent facilitating the calcium-sensitive interaction with membrane surfaces. In this work, we determined the calcium-free and calcium-bound structures of the dysferlin C2A domain using NMR spectroscopy and X-ray crystallography. We show that binding two calcium ions to this domain reduces the flexibility of the Ca2+-binding loops in the structure. Furthermore, calcium titration and mutagenesis experiments reveal the tight coupling of these calcium-binding sites whereby the elimination of one site abolishes calcium binding to its partner site. We propose that the electrostatic potential distributed by the flexible, negatively charged calcium-binding loops in the dysferlin C2A domain control first contact with calcium that promotes subsequent binding. Based on these results, we hypothesize that dysferlin uses a ‘calcium-catching’ mechanism to respond to calcium influx during membrane repair.
Collapse
|
27
|
MG53, A Tissue Repair Protein with Broad Applications in Regenerative Medicine. Cells 2021; 10:cells10010122. [PMID: 33440658 PMCID: PMC7827922 DOI: 10.3390/cells10010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Under natural conditions, injured cells can be repaired rapidly through inherent biological processes. However, in the case of diabetes, cardiovascular disease, muscular dystrophy, and other degenerative conditions, the natural repair process is impaired. Repair of injury to the cell membrane is an important aspect of physiology. Inadequate membrane repair function is implicated in the pathophysiology of many human disorders. Recent studies show that Mitsugumin 53 (MG53), a TRIM family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. Clarifying the role of MG53 and its molecular mechanism are important for the application of MG53 in regenerative medicine. In this review, we analyze current research dissecting MG53′s function in cell membrane repair and tissue regeneration, and highlight the development of recombinant human MG53 protein as a potential therapeutic agent to repair multiple-organ injuries.
Collapse
|
28
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
29
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
30
|
Benissan-Messan DZ, Zhu H, Zhong W, Tan T, Ma J, Lee PHU. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front Physiol 2020; 11:583393. [PMID: 33240103 PMCID: PMC7677405 DOI: 10.3389/fphys.2020.583393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Since its identification in 2009, multiple studies have indicated the importance of MG53 in muscle physiology. The protein is produced in striated muscles but has physiologic implications reaching beyond the confines of striated muscles. Roles in muscle regeneration, calcium homeostasis, excitation-contraction coupling, myogenesis, and the mitochondria highlight the protein's wide-reaching impact. Numerous therapeutic applications could potentially emerge from these physiologic roles. This review summarizes the current literature regarding the role of MG53 in the skeletal muscle. Therapeutic applications are discussed.
Collapse
Affiliation(s)
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peter H. U. Lee
- Department of Surgery, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
| |
Collapse
|
31
|
Novel splicing dysferlin mutation causing myopathy with intra-familial heterogeneity. Mol Biol Rep 2020; 47:5755-5761. [PMID: 32666437 DOI: 10.1007/s11033-020-05643-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular disorders, caused by mutations in the dysferlin gene and characterized by a high degree of clinical variability even though within the same family. This study aims to describe three cases, belonging to a consanguineous Tunisian family, sharing a new splicing mutation in the dysferlin gene and presenting intra-familial variability of dysferlinopathies: Proximal-distal weakness and distal myopathy with anterior tibial onset. We performed the next generation sequencing for mutation screening and reverse transcriptase-PCR for gene expression analysis. Routine muscle histology was used for muscle biopsy processing. The clinical presentation demonstrated heterogeneous phenotypes between the three cases: Two presented intermediate phenotypes of dysferlinopathy with proximal-distal weakness and the third had a distal myopathy with anterior tibial onset. Genetic analysis yielded a homozygous splicing mutation (c.4597-2A>G) in the dysferlin gene, giving rise to the suppression of 28 bp of the exon 43. The splicing mutation found in our family (c.4597-2A>G) is responsible for the suppression of 28 bp of the exon 43 and a wide clinical intra-familial variability.
Collapse
|
32
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
33
|
Barton ER, Pham J, Brisson BK, Park S, Smith LR, Liu M, Tian Z, Hammers DW, Vassilakos G, Sweeney HL. Functional muscle hypertrophy by increased insulin-like growth factor 1 does not require dysferlin. Muscle Nerve 2019; 60:464-473. [PMID: 31323135 PMCID: PMC6771521 DOI: 10.1002/mus.26641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dysferlin loss-of-function mutations cause muscular dystrophy, accompanied by impaired membrane repair and muscle weakness. Growth promoting strategies including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause strength loss or be ineffective. The objective of this study was to determine whether locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null (Dysf-/- ) mice. METHODS Muscle-specific transgenic expression and postnatal viral delivery of Igf1 were used in Dysf-/- and control mice. Increased IGF-1 levels were confirmed by enzyme-linked immunosorbent assay. Testing for skeletal muscle mass and function was performed in male and female mice. RESULTS Muscle hypertrophy occurred in response to increased IGF-1 in mice with and without dysferlin. Male mice showed a more robust response compared with females. Increased IGF-1 did not cause loss of force per cross-sectional area in Dysf-/- muscles. DISCUSSION We conclude that increased local IGF-1 promotes functional hypertrophy when dysferlin is absent and reestablishes IGF-1 as a potential therapeutic for dysferlinopathies.
Collapse
Affiliation(s)
- Elisabeth R. Barton
- Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFlorida
| | - Jennifer Pham
- Department of Physiology, Perleman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania
| | - Becky K. Brisson
- Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - SooHyun Park
- Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Lucas R. Smith
- Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Min Liu
- Department of Physiology, Perleman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania
| | - Zuozhen Tian
- Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - David W. Hammers
- Department of Pharmacology and Therapeutics, College of Medicine, University of FloridaGainesvilleFlorida
| | - Georgios Vassilakos
- Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFlorida
| | - H. Lee Sweeney
- Department of Physiology, Perleman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania
- Department of Pharmacology and Therapeutics, College of Medicine, University of FloridaGainesvilleFlorida
| |
Collapse
|
34
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
35
|
Ishiba R, Santos ALF, Almeida CF, Caires LC, Ribeiro AF, Ayub-Guerrieri D, Fernandes SA, Souza LS, Vainzof M. Faster regeneration associated to high expression of Fam65b and Hdac6 in dysferlin-deficient mouse. J Mol Histol 2019; 50:375-387. [DOI: 10.1007/s10735-019-09834-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
|
36
|
Haynes VR, Keenan SN, Bayliss J, Lloyd EM, Meikle PJ, Grounds MD, Watt MJ. Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. J Lipid Res 2019; 60:1350-1364. [PMID: 31203232 DOI: 10.1194/jlr.m090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jackie Bayliss
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Erin M Lloyd
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart Institute, Melbourne, Australia
| | - Miranda D Grounds
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
Dominov JA, Uyan Ö, McKenna‐Yasek D, Nallamilli BRR, Kergourlay V, Bartoli M, Levy N, Hudson J, Evangelista T, Lochmuller H, Krahn M, Rufibach L, Hegde M, Brown RH. Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation. Ann Clin Transl Neurol 2019; 6:642-654. [PMID: 31019989 PMCID: PMC6469257 DOI: 10.1002/acn3.738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions. METHODS We sequenced RNA from myogenic cells to identify a novel dysferlin pathogenic variant in two affected siblings that previously had only one disease-causing variant identified. We designed antisense oligonucleotides (AONs) to bypass the effects of this mutation on RNA splicing. RESULTS We identified a new pathogenic point mutation deep within dysferlin intron 50i. This intronic variant causes aberrant mRNA splicing and inclusion of an additional pseudoexon (PE, we term PE50.1) within the mature dysferlin mRNA. PE50.1 inclusion alters the protein sequence, causing premature translation termination. We identified this mutation in 23 dysferlinopathy patients (seventeen families), revealing it to be one of the more prevalent dysferlin mutations. We used AON-mediated exon skipping to correct the aberrant PE50.1 splicing events in vitro, which increased normal mRNA production and significantly restored dysferlin protein expression. INTERPRETATION Deep intronic mutations can be a common underlying cause of dysferlinopathy, and importantly, could be treatable with AON-based exon-skipping strategies.
Collapse
Affiliation(s)
- Janice A. Dominov
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Özgün Uyan
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Diane McKenna‐Yasek
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Babi Ramesh Reddy Nallamilli
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgia
- Present address:
Perkin Elmer GenomicsWalthamMassachusetts
| | - Virginie Kergourlay
- Marseille Medical Genetics ‐ Translational NeuromyologyAix‐Marseille UnivINSERMMMGMarseilleFrance
| | - Marc Bartoli
- Marseille Medical Genetics ‐ Translational NeuromyologyAix‐Marseille UnivINSERMMMGMarseilleFrance
| | - Nicolas Levy
- Marseille Medical Genetics ‐ Translational NeuromyologyAix‐Marseille UnivINSERMMMGMarseilleFrance
- Département de Génétique MédicaleAPHMHôpital Timone EnfantsMarseilleFrance
| | - Judith Hudson
- Northern Molecular Genetics ServiceNewcastle upon TyneUnited Kingdom
| | - Teresinha Evangelista
- Newcastle University John Walton Centre for Muscular Dystrophy ResearchMRC Centre for Neuromuscular DiseasesInstitute of Genetic MedicineNewcastle upon TyneUnited Kingdom
| | - Hanns Lochmuller
- Newcastle University John Walton Centre for Muscular Dystrophy ResearchMRC Centre for Neuromuscular DiseasesInstitute of Genetic MedicineNewcastle upon TyneUnited Kingdom
- Department of Neuropediatrics and Muscle DisordersFaculty of MedicineMedical Center–University of FreiburgFreiburgGermany
- Centro Nacional de Análisis Genómico (CNAG‐CRG)Center for Genomic RegulationBarcelona Institute of Science and Technology (BIST)BarcelonaCataloniaSpain
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
- Division of NeurologyDepartment of MedicineThe Ottawa HospitalOttawaCanada
| | - Martin Krahn
- Marseille Medical Genetics ‐ Translational NeuromyologyAix‐Marseille UnivINSERMMMGMarseilleFrance
- Département de Génétique MédicaleAPHMHôpital Timone EnfantsMarseilleFrance
| | | | - Madhuri Hegde
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgia
| | - Robert H. Brown
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| |
Collapse
|
38
|
Barzilai-Tutsch H, Dewulf M, Lamaze C, Butler Browne G, Pines M, Halevy O. A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice. Hum Mol Genet 2019; 27:2817-2829. [PMID: 29771357 DOI: 10.1093/hmg/ddy185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 11/14/2022] Open
Abstract
In the absence of dysferlin, skeletal muscle cells fail to reseal properly after injury, resulting in slow progress of the dysferlinopathy muscular dystrophy (MD). Halofuginone, a leading agent in preventing fibrosis in MDs, was tested for its effects on membrane resealing post-injury. A hypo-osmotic shock assay on myotubes derived from wild-type (Wt) and dysferlin-null (dysf-/-) mice revealed that pre-treatment with halofuginone reduces the percentage of membrane-ruptured myotubes only in dysf-/- myotubes. In laser-induced injury of isolated myofibers, halofuginone decreased the amount of FM1-43 at the injury site of dysf-/- myofibers while having no effect on Wt myofibers. These results implicate halofuginone in ameliorating muscle-cell membrane integrity in dysf-/- mice. Halofuginone increased lysosome scattering across the cytosol of dysf-/- primary myoblasts, in a protein kinase/extracellular signal-regulated protein kinase and phosphoinositide 3 kinase/Akt-dependent manner, in agreement with an elevation in lysosomal exocytotic activity in these cells. A spatial- and age-dependent synaptotagmin-7 (Syt-7) expression pattern was shown in dysf-/- versus Wt mice, suggesting that these pattern alterations are related to the disease progress and that sytnaptotagmin-7 may be compensating for the lack of dysferlin at least with regard to membrane resealing post-injury. While halofuginone did not affect patch-repair-complex key proteins, it further enhanced Syt-7 levels and its spread across the cytosol in dysf-/- myofibers and muscle tissue, and increased its co-localization with lysosomes. Together, the data imply a novel role for halofuginone in membrane-resealing events with Syt-7 possibly taking part in these events.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Melissa Dewulf
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Christophe Lamaze
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Gillian Butler Browne
- Center for Research in Myology, CNRS FRE 3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, Paris, France
| | - Mark Pines
- The Volcani Center, Institute of Animal Science, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
39
|
Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends Pharmacol Sci 2018; 39:982-994. [PMID: 30282590 DOI: 10.1016/j.tips.2018.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
Clinical implementation of two recently approved antisense RNA therapeutics - Exondys51® to treat Duchenne muscular dystrophy (Duchenne MD) and Spinraza® as a treatment for spinal muscular atrophy (SMA) - highlights the therapeutic potential of antisense oligonucleotides (ASOs). As shown in the Duchenne and Becker cases, the identification and specific removal of 'dispensable' exons by exon-skipping ASOs could potentially bypass lethal mutations in other genes and bring clinical benefits to affected individuals carrying amenable mutations. In this review, we discuss the potential of therapeutic alternative splicing, with a particular focus on targeted exon skipping using Duchenne MD as an example, and speculate on new applications for other inherited rare diseases where redundant or dispensable exons may be amenable to exon-skipping ASO intervention as precision medicine.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia.
| |
Collapse
|
40
|
Whitlock JM, Yu K, Cui YY, Hartzell HC. Anoctamin 5/TMEM16E facilitates muscle precursor cell fusion. J Gen Physiol 2018; 150:1498-1509. [PMID: 30257928 PMCID: PMC6219693 DOI: 10.1085/jgp.201812097] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2L arises from mutations in the anoctamin ANO5, whose role in muscle physiology is unknown. Whitlock et al. show that loss of ANO5 perturbs phosphatidylserine exposure and cell–cell fusion in muscle precursor cells, which is an essential step in muscle repair. Limb-girdle muscular dystrophy type 2L (LGMD2L) is a myopathy arising from mutations in ANO5; however, information about the contribution of ANO5 to muscle physiology is lacking. To explain the role of ANO5 in LGMD2L, we previously hypothesized that ANO5-mediated phospholipid scrambling facilitates cell–cell fusion of mononucleated muscle progenitor cells (MPCs), which is required for muscle repair. Here, we show that heterologous overexpression of ANO5 confers Ca2+-dependent phospholipid scrambling to HEK-293 cells and that scrambling is associated with the simultaneous development of a nonselective ionic current. MPCs isolated from adult Ano5−/− mice exhibit defective cell fusion in culture and produce muscle fibers with significantly fewer nuclei compared with controls. This defective fusion is associated with a decrease of Ca2+-dependent phosphatidylserine exposure on the surface of Ano5−/− MPCs and a decrease in the amplitude of Ca2+-dependent outwardly rectifying ionic currents. Viral introduction of ANO5 in Ano5−/− MPCs restores MPC fusion competence, ANO5-dependent phospholipid scrambling, and Ca2+-dependent outwardly rectifying ionic currents. ANO5-rescued MPCs produce myotubes having numbers of nuclei similar to wild-type controls. These data suggest that ANO5-mediated phospholipid scrambling or ionic currents play an important role in muscle repair.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Yuan Yuan Cui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
41
|
Croissant C, Bouvet F, Tan S, Bouter A. Imaging Membrane Repair in Single Cells Using Correlative Light and Electron Microscopy. ACTA ACUST UNITED AC 2018; 81:e55. [PMID: 30085404 DOI: 10.1002/cpcb.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many cells possess the ability to repair plasma membrane disruption in physiological conditions. Growing evidence indicates a correlation between membrane repair and many human diseases. For example, a negative correlation is observed in muscle where failure to reseal sarcolemma may contribute to the development of muscular dystrophies. Instead, a positive correlation is observed in cancer cells where membrane repair may be exacerbated during metastasis. Here we describe a protocol that combines laser technology for membrane damage, immunostaining with gold nanoparticles and imaging by fluorescence microscopy and transmission electron microscopy (TEM), which allows the characterization of the molecular machinery involved in membrane repair. Fluorescence microscopy enables to determine the subcellular localization of candidate proteins in damaged cells while TEM offers high-resolution ultrastructural analysis of the µm²-disruption site, which enables to decipher the membrane repair mechanism. Here we focus on the study of human skeletal muscle cells, for obvious clinical interest, but this protocol is also suitable for other cell types. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
42
|
Urao N, Mirza RE, Corbiere TF, Hollander Z, Borchers CH, Koh TJ. Thrombospondin-1 and disease progression in dysferlinopathy. Hum Mol Genet 2018; 26:4951-4960. [PMID: 29206970 DOI: 10.1093/hmg/ddx378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/30/2023] Open
Abstract
The purpose of this study was to determine whether thrombospondin (TSP)-1 promotes macrophage activity and disease progression in dysferlinopathy. First, we found that levels of TSP-1 are elevated in blood of non-ambulant dysferlinopathy patients compared with ambulant patients and healthy controls, supporting the idea that TSP-1 levels are correlated with disease progression. We then crossed dysferlinopathic BlaJ mice with TSP-1 knockout mice and assessed disease progression longitudinally with magnetic resonance imaging (MRI). In these mice, deletion of TSP-1 ameliorated loss in volume and mass of the moderately affected gluteal muscle but not of the severely affected psoas muscle. T2 MRI parameters revealed that loss of TSP-1 modestly inhibited inflammation only in gluteal muscle of male mice. Histological assessment indicated that deletion of TSP-1 reduced inflammatory cell infiltration of muscle fibers, but only early in disease progression. In addition, flow cytometry analysis revealed that, in males, TSP-1 knockout reduced macrophage infiltration and phagocytic activity, which is consistent with TSP-1-enhanced phagocytosis and pro-inflammatory cytokine induction in cultured macrophages. In summary, TSP-1 appears to play an accessory role in modulating Mp activity in BlaJ mice in a gender, age and muscle-dependent manner, but is unlikely a primary driver of disease progression of dysferlinopathy.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Thomas F Corbiere
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zsuzsanna Hollander
- PROOF Center of Excellence, Vancouver, BC, Canada.,UBC James Hogg Research Centre, Vancouver, BC, Canada
| | - Christoph H Borchers
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Dong X, Gao X, Dai Y, Ran N, Yin H. Serum exosomes can restore cellular function in vitro and be used for diagnosis in dysferlinopathy. Am J Cancer Res 2018; 8:1243-1255. [PMID: 29507617 PMCID: PMC5835933 DOI: 10.7150/thno.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Purpose: It is challenging to deliver the full-length dysferlin gene or protein to restore cellular functions of dysferlin-deficient (DYSF-/-) myofibres in dysferlinopathy, a disease caused by the absence of dysferlin, which is currently without effective treatment. Exosomes, efficient membranous nanoscale carriers of biological cargoes, could be useful. Experimental design: Myotube- and human serum-derived exosomes were investigated for their capabilities of restoring dysferlin protein and cellular functions in murine and human DYSF-/- cells. Moreover, dysferlinopathic patient serum- and urine-derived exosomes were assessed for their abilities as diagnostic tools for dysferlinopathy. Results: Here we show that exosomes from dysferlin-expressing myotubes carry abundant dysferlin and enable transfer of full-length dysferlin protein to DYSF-/- myotubes. Exogenous dysferlin correctly localizes on DYSF-/- myotube membranes, enabling membrane resealing in response to injury. Human serum exosomes also carry dysferlin protein and improve membrane repair capabilities of human DYSF-/- myotubes irrespective of mutations. Lack of dysferlin in dysferlinopathic patient serum and urine exosomes enables differentiation between healthy controls and dysferlinopathic patients. Conclusions: Our findings provide evidence that exosomes are efficient carriers of dysferlin and can be employed for the treatment and non-invasive diagnosis of dysferlinopathy.
Collapse
|
44
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
45
|
Nagy N, Nonneman RJ, Llanga T, Dial CF, Riddick NV, Hampton T, Moy SS, Lehtimäki KK, Ahtoniemi T, Puoliväli J, Windish H, Albrecht D, Richard I, Hirsch ML. Hip region muscular dystrophy and emergence of motor deficits in dysferlin-deficient Bla/J mice. Physiol Rep 2017; 5:5/6/e13173. [PMID: 28320887 PMCID: PMC5371557 DOI: 10.14814/phy2.13173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 11/24/2022] Open
Abstract
The identification of a dysferlin‐deficient animal model that accurately displays both the physiological and behavior aspects of human dysferlinopathy is critical for the evaluation of potential therapeutics. Disease progression in dysferlin‐deficient mice is relatively mild, compared to the debilitating human disease which manifests in impairment of particular motor functions. Since there are no other known models of dysferlinopathy in other species, locomotor proficiency and muscular anatomy through MRI (both lower leg and hip region) were evaluated in dysferlin‐deficient B6.A‐Dysfprmd/GeneJ (Bla/J) mice to define disease parameters for therapeutic assessment. Despite the early and progressive gluteal muscle dystrophy and significant fatty acid accumulation, the emergence of significant motor function deficits was apparent at approximately 1 year of age for standard motor challenges including the rotarod, a marble bury test, grip strength, and swimming speed. Earlier observations of decreased performance for Bla/J mice were evident during extended monitoring of overall exploration and rearing activity. Comprehensive treadmill gait analyses of the Bla/J model indicated significant differences in paw placement angles and stance in relation to speed and platform slope. At 18 months of age, there was no significant difference in the life expectancy of Bla/J mice compared to wild type. Consistent with progressive volume loss and fatty acid accumulation in the hip region observed by MRI, mass measurement of individual muscles confirmed gluteal and psoas muscles were the only muscles demonstrating a significant decrease in muscle mass, which is analogous to hip‐girdle weakness observed in human dysferlin‐deficient patients. Collectively, this longitudinal analysis identifies consistent disease parameters that can be indicators of efficacy in studies developing treatments for human dysferlin deficiency.
Collapse
Affiliation(s)
- Nadia Nagy
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Randal J Nonneman
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Telmo Llanga
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Catherine F Dial
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Natallia V Riddick
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | | | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | - Isabelle Richard
- Généthon [IR1] INSERM, U951, INTEGRARE Research Unit, Evry, France
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina .,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
46
|
Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Mol Ther 2017; 25:2360-2371. [PMID: 28750735 DOI: 10.1016/j.ymthe.2017.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Limb girdle muscular dystrophy type 2B (LGMD2B) and other dysferlinopathies are degenerative muscle diseases that result from mutations in the dysferlin gene and have limited treatment options. The dysferlin protein has been linked to multiple cellular functions including a Ca2+-dependent membrane repair process that reseals disruptions in the sarcolemmal membrane. Recombinant human MG53 protein (rhMG53) can increase the membrane repair process in multiple cell types both in vitro and in vivo. Here, we tested whether rhMG53 protein can improve membrane repair in a dysferlin-deficient mouse model of LGMD2B (B6.129-Dysftm1Kcam/J). We found that rhMG53 can increase the integrity of the sarcolemmal membrane of isolated muscle fibers and whole muscles in a Ca2+-independent fashion when assayed by a multi-photon laser wounding assay. Intraperitoneal injection of rhMG53 into mice before acute eccentric treadmill exercise can decrease the release of intracellular enzymes from skeletal muscle and decrease the entry of immunoglobulin G and Evans blue dye into muscle fibers in vivo. These results indicate that short-term rhMG53 treatment can ameliorate one of the underlying defects in dysferlin-deficient muscle by increasing sarcolemmal membrane integrity. We also provide evidence that rhMG53 protein increases membrane integrity independently of the canonical dysferlin-mediated, Ca2+-dependent pathway known to be important for sarcolemmal membrane repair.
Collapse
|
47
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Aguennouz M, Lo Giudice C, Licata N, Rodolico C, Musumeci O, Fanin M, Migliorato A, Ragusa M, Macaione V, Di Giorgio RM, Angelini C, Toscano A. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B. Cell Biochem Funct 2017; 34:414-22. [PMID: 27558075 DOI: 10.1002/cbf.3202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
Abstract
miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - C Lo Giudice
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - N Licata
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - C Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - O Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - M Fanin
- Neurological Clinic, University of Padua, Italy
| | - A Migliorato
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - M Ragusa
- Department of Biomedical and Biotechnological Sciences Biology, Genetics and Bioinformatics Unit, University of Catania, Italy
| | - V Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - R M Di Giorgio
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - C Angelini
- Neurological Clinic, University of Padua, Italy
| | - A Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
49
|
Tan T, Ko YG, Ma J. Dual function of MG53 in membrane repair and insulin signaling. BMB Rep 2017; 49:414-23. [PMID: 27174502 PMCID: PMC5070728 DOI: 10.5483/bmbrep.2016.49.8.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423]
Collapse
Affiliation(s)
- Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Annexin A2 is involved in Ca 2+-dependent plasma membrane repair in primary human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1046-1053. [PMID: 27956131 DOI: 10.1016/j.bbamcr.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022]
Abstract
Many cells in an organism are exposed to constant and acute mechanical stress that can induce plasma membrane injuries. These plasma membrane wounds have to be resealed rapidly to guarantee cell survival. Plasma membrane resealing in response to mechanical strain has been studied in some detail in muscle, where it is required for efficient recovery after insult. However, less is known about the capacity of other cell types and tissues to perform membrane repair and the underlying molecular mechanisms. Here we show that vascular endothelial cells, which are subject to profound mechanical burden, can reseal plasma membrane holes inflicted by laser ablation. Resealing in endothelial cells is a Ca2+-dependent process, as it is inhibited when cells are wounded in Ca2+-free medium. We also show that annexin A1 (AnxA1), AnxA2 and AnxA6, Ca2+-regulated membrane binding proteins previously implicated in membrane resealing in other cell types, are rapidly recruited to the site of plasma membrane injury. S100A11, a known protein ligand of AnxA1, is also recruited to endothelial plasma membrane wounds, albeit with a different kinetic. Mutant expression experiments reveal that Ca2+ binding to AnxA2, the most abundant endothelial annexin, is required for translocation of the protein to the wound site. Furthermore, we show by knock-down and rescue experiments that AnxA2 is a positive regulator of plasma membrane resealing. Thus, vascular endothelial cells are capable of active, Ca2+-dependent plasma membrane resealing and this process requires the activity of AnxA2.
Collapse
|