1
|
Huo Z, Zhu X, Peng Q, Chen C, Yang X, Huang C, Xiang Y, Tian Q, Liu J, Liu C, Zhang P. LINC08148 promotes the caveola-mediated endocytosis of Zika virus through upregulating transcription of Src. J Virol 2024; 98:e0170523. [PMID: 38742902 PMCID: PMC11237476 DOI: 10.1128/jvi.01705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.
Collapse
Affiliation(s)
- Zhiting Huo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanfeng Zhu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qinyu Peng
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Yang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yincheng Xiang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingju Tian
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingyu Liu
- Food and Cosmetics Institute, Guangzhou Customs Technology Center, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Höglsperger F, Vos BE, Hofemeier AD, Seyfried MD, Stövesand B, Alavizargar A, Topp L, Heuer A, Betz T, Ravoo BJ. Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene. Nat Commun 2023; 14:3760. [PMID: 37353493 PMCID: PMC10290115 DOI: 10.1038/s41467-023-39032-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Cellular membrane area is a key parameter for any living cell that is tightly regulated to avoid membrane damage. Changes in area-to-volume ratio are known to be critical for cell shape, but are mostly investigated by changing the cell volume via osmotic shocks. In turn, many important questions relating to cellular shape, membrane tension homeostasis and local membrane area cannot be easily addressed because experimental tools for controlled modulation of cell membrane area are lacking. Here we show that photoswitching an amphiphilic azobenzene can trigger its intercalation into the plasma membrane of various mammalian cells ranging from erythrocytes to myoblasts and cancer cells. The photoisomerization leads to a rapid (250-500 ms) and highly reversible membrane area change (ca 2 % for erythrocytes) that triggers a dramatic shape modulation of living cells.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Arne D Hofemeier
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Maximilian D Seyfried
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bastian Stövesand
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Azadeh Alavizargar
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Leon Topp
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Andreas Heuer
- Center for Soft Nanoscience, University of Münster, Münster, Germany
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Timo Betz
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| | - Bart Jan Ravoo
- Organic Chemistry Institute, University of Münster, Münster, Germany.
- Center for Soft Nanoscience, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Baker A, Khalid M, Uddin I, Khan MS. Targeted non AR mediated smart delivery of abiraterone to the prostate cancer. PLoS One 2022; 17:e0272396. [PMID: 36018864 PMCID: PMC9416994 DOI: 10.1371/journal.pone.0272396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the second-deadliest tumor in men all over the world. Different types of drugs with various delivery systems and pathways were developed, but no one showed prominent results against cancer. Meanwhile, nanoparticles have shown good results against cancer. Therefore, in the given study, citrate mediated synthesized gold nanoparticles (CtGNPs) with immobilized survivin antibodies (SvGNPs) were bioconjugated to the substantially potent drug abiraterone (AbSvGNPs) to develop as a combinatorial therapeutic against prostate cancer. The AbSvGNPs are made up of CtGNPs, survivin antibodies, and abiraterone. The selected drug abiraterone (Abira) possesses exceptionally good activity against prostate cancer, but cancer cells develop resistance against this drug and it also poses several severe side effects. Meanwhile, survivin antibodies were used to deliver AbSvGNPs specifically into cancer cells by considering survivin, an anti-apoptotic overexpressed protein in cancer cells, as a marker. The survivin antibodies have also been used to inhibit cancer cells as an immunotherapeutic agent. Similarly, CtGNPs were discovered to inhibit cancer cell proliferation via several transduction pathways. The given bioconjugated nanoparticles (AbSvGNPs) were found to be substantially effective against prostate cancer with an IC50 of 11.8 and 7.3 μM against DU145 and PC-3 cells, respectively. However, it was found safe against NRK and showed less than 25% cytotoxicity up to 20μM concentration. The as-synthesized nanoparticles CtGNPs, SvGNPs, and AbSvGNPs were characterized by several physical techniques to confirm their synthesis, whereas the immobilization of survivin antibodies and bioconjugation of Abira was confirmed by UV-visible spectroscopy, DLS, TEM, FTIR, and zeta-potential. The anticancer potential of AbSvGNPs was determined by MTT, DAPI, ROS, MITO, TUNEL ASSAY, and caspase-3 activity against DU145 and PC3 cells.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abduaziz University, Al-kharj, Saudi Arabia
| | - Imran Uddin
- Department of Physics, SRM University-AP, Amaravati, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Arini A, Gigault J, Venel Z, Bertucci A, Baudrimont M. The underestimated toxic effects of nanoplastics coming from marine sources: A demonstration on oysters (Isognomon alatus). CHEMOSPHERE 2022; 295:133824. [PMID: 35150702 DOI: 10.1016/j.chemosphere.2022.133824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This study aims to assess the potential toxicity of (1) nanoplastics (NPs) issued from the fragmentation of larger plastic particles collected on the Caribbean marine coast (NP-G), and (2) polystyrene NPs (NP-PS), commonly used in the literature, on Caribbean swamp oysters (Isognomon alatus). Oysters were exposed to 7.5 and 15 μg.L-1 of each type of NPs, combined or not with arsenic (As) at 1 mg.L-1 for one week before molecular analyses at gene levels. Overall, the NP-G triggered more significant changes than NP-PS, especially when combined with As. Genes involved in the mitochondrial metabolism were strongly up-regulated in most of the conditions tested (up to 11.6 fold change for the NP-PS exposure at 7.5 μg.L-1 for the 12s). NPs in combination with As or not triggered a response against oxidative stress, with an intense repression of cat and sod1 (0.01 fold-changes for the NP-G condition at 7.5 μg.L-1). Both NP-G and NP-PS combined or not with As led to an up-regulation of apoptotic genes p53 and bax (up to 59.3 fold-changes for bax in the NP-G condition with As). Our study reported very innovative molecular results on oysters exposed to NPs from environmental sources. Our results suggest that the composition, surface charge, size, and the adsorbed contaminants of plastics from the natural environment may have synergic effects with plastic, which are underestimated when using manufactured NPs as NP-PS in ecotoxicological studies.
Collapse
Affiliation(s)
- Adeline Arini
- University of Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station Marine D'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Julien Gigault
- Université Laval, Département de BiologiePavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec, G1V 0A6, Canada
| | - Zélie Venel
- University of Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station Marine D'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Anthony Bertucci
- University of Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station Marine D'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Magalie Baudrimont
- University of Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station Marine D'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France.
| |
Collapse
|
6
|
Zhang M, Kim DS, Patel R, Wu Q, Kim K. Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells. NANOMATERIALS 2022; 12:nano12091517. [PMID: 35564224 PMCID: PMC9104504 DOI: 10.3390/nano12091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa as a control. Our XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) viability assay (Cell Proliferation Kit II) showed that ML-1 cells and non-cancerous mouse fibroblast cells exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest that HeLa cells are more sensitive to the QDs compared to ML-1 cells. To test the possibility that transporting rates of QDs are different between HeLa and ML-1 cells, we performed a QD subcellular localization assay by determining Pearson’s Coefficient values and found that HeLa cells showed faster QDs transporting towards the lysosome. Consistently, the ICP-OES test showed the uptake of CdSe/ZnS QDs in HeLa cells was significantly higher than in ML-1 cells. Together, we conclude that high levels of toxicity in HeLa are positively correlated with the traffic rate of QDs in the treated cells.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| | - Daniel S. Kim
- Emory College of Arts and Science, Emory University, 201 Dowman Dr., Atlanta, GA 30322, USA;
| | - Rishi Patel
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
7
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
8
|
Hu E, Zhang Q, Shang S, Jiang Y, Lu X. Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules. iScience 2022; 25:103966. [PMID: 35281735 PMCID: PMC8914550 DOI: 10.1016/j.isci.2022.103966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The bioeffects of terahertz (THz) radiation received growing attention because of its influence on the interactions between biomolecules. Our work aimed to investigate the effects of THz irradiation on cell membrane, especially cell membrane permeability. We found that 0.1 THz irradiation promoted the endocytosis of FM4-64-labeled cells and the inhibition of dynamin attenuated but did not fully abolish the THz promoted endocytosis. Moreover, 0.1 THz irradiation also promoted the transmembrane of the rhodamine, as well as the chemical compounds GDC0941 and H89, evidenced by the confocal microscope observation and the western blotting analysis, respectively. These findings demonstrated 0.1 THz irradiation facilitated the transmembrane transport of small molecules by promoting both the cellular endocytosis and the diffusion process. Our study provided direct evidence that THz could affect the cell membrane permeability, broadened the THz affected cellular physiological processes, and implied its potential application in regulating the cell membrane functions. THz irradiation enhances endocytic activity of neuronal cells THz irradiation increases the permeation of rhodamine derivatives into cells THz irradiation promotes the cellular uptake of small drugs GDC0941 and H89
Collapse
Affiliation(s)
- Erling Hu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yinan Jiang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
9
|
Wangngae S, Chansaenpak K, Weeranantanapan O, Piyanuch P, Sumphanapai T, Yamabhai M, Noisa P, Lai RY, Kamkaew A. Effect of morpholine and charge distribution of cyanine dyes on cell internalization and cytotoxicity. Sci Rep 2022; 12:4173. [PMID: 35264603 PMCID: PMC8907291 DOI: 10.1038/s41598-022-07533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
To improve the potency of Heptamethine cyanines (Hcyanines) in cancer research, we designed and synthesized two novel Hcyanines based theranostic probes, IR794-Morph and IR794-Morph-Mpip, to enhance cancer cell internalization and targeting. In acidic conditions that resemble to tumour environment, both IR794 derivatives exhibited broad NIR absorption band (704‒794 nm) and fluorescence emission (798‒828 nm) that is suitable for deep seated tumour imaging. Moreover, in vitro study revealed that IR794-Morph-Mpip exhibited better cancer targetability towards various cancer cell lines under physiological and slightly acidic conditions compared to normal cells. IR794-Morph-Mpip was fast internalized into the cancer cells within the first 5 min and mostly localized in lysosomes and mitochondria. In addition, the internalized signal was brighter when the cells were in the hypoxic environment. Furthermore, cellular uptake mechanism of both IR794 dyes, investigated via flow cytometry, revealed that endocytosis through OATPs receptors and clathrin-mediated endocytosis were the main routes. Moreover, IR794-Morph-Mpip, displayed anti-cancer activity towards all tested cancer cell types with IC50 below 7 μM (at 6 h incubation), which is approximately three times lower than that of the normal cells. Therefore, increasing protonated cites in tumour environment of Hcyanines together with incorporating morpholine in the molecule can enhance structure-inherent targeting of these dyes.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Oratai Weeranantanapan
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pornthip Piyanuch
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
10
|
Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. The Factors Determining the Skin Penetration and Cellular Uptake of Nanocarriers: New Hope for Clinical Development. Curr Pharm Des 2021; 27:4315-4329. [PMID: 34779364 DOI: 10.2174/1381612827666210810091745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The skin provides a protective barrier against toxic environments and also offers a valuable route for topical drug delivery. The stratum corneum (SC) is the outermost layer of the skin and serves as the major barrier to chemical transfer through the skin. The human skin barrier is particularly difficult to overcome because of the complex composition and structure of the SC. Nanoparticulate carriers have gained widespread attention in topical drug delivery due to their tunable and versatile properties. The present review summarizes the main factors involved in skin penetration of nanocarriers containing the drug. Employment of nanotechnology in topical delivery has grown progressively during recent years; however, it is important to monitor the skin penetration of nanocarriers prior to their use to avoid possible toxic effects. Nanocarriers can act as a means to increase skin permeation of drugs by supporting direct interaction with the SC and increasing the period of permanence on the skin. Skin penetration is influenced by the physicochemical characteristics of nanocarriers such as composition, size, shape, surface chemistry, as well as skin features. Considering that the target of topical systems based on nanocarriers is the penetration of therapeutic agents in the skin layers, so a detailed understanding of the factors influencing skin permeability of nanocarriers is essential for safe and efficient therapeutic applications.
Collapse
Affiliation(s)
- Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahmoudian
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Yan N, Tang BZ, Wang WX. Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS NANO 2021; 15:12237-12248. [PMID: 34156825 DOI: 10.1021/acsnano.1c03879] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) for delivering chemotherapeutic drugs are now in clinical trials, and cellular uptake of NPs plays an important role in determining the drug delivery efficiency. Herein, we reported that the bioaccumulation and internalization of NPs were governed by the cell cycle. Specifically, we found that the bioaccumulation of NPs was more favored in the G2/M stages, followed by the S and G0/G1 stages. We demonstrated that three key parameters-clathrin-mediated endocytosis capacity, algal cell membrane permeability, and exopolymer substance (EPS) thickness-were critical in the bioaccumulation of NPs during the cell cycling process. Over the 24-h average duration of cell cycle, clathrin-mediated endocytosis capacity was much higher at the S stage than that at the G0/G1 and G2/M stages. Besides, cell membrane permeability was measured to be higher in S and G2/M stages while the lowest in G0/G1 stage. We have also identified the change of EPS thickness during the 24-h cell cycle. Transition from G0/G1 to S and G2/M induced the attenuation in EPS thickness, and the thinnest EPS was found at the end of mitosis. The cell cycle control NPs internalization were further verified by exposing Ag nanoparticles to algae at different cell cycle stages, confirming the important roles of EPS thickness and cell cycle control in the dynamic internalization processes. The present study highlights the important roles of cell cycle controlling the NPs bioaccumulation and internalization, with possible implications in maximizing NPs internalization efficiency while reducing the cost.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Energy-Dependent Endocytosis Is Responsible for Skin Penetration of Formulations Based on a Combination of Indomethacin Nanoparticles and l-Menthol in Rat and Göttingen Minipig. Int J Mol Sci 2021; 22:ijms22105137. [PMID: 34066280 PMCID: PMC8152063 DOI: 10.3390/ijms22105137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
We previously designed a Carbopol gel formulation (N-IND/MEN) based on a combination of indomethacin solid nanoparticles (IND-NPs) and l-menthol, and we reported that the N-IND/MEN showed high transdermal penetration. However, the detailed mechanism for transdermal penetration of IND-NPs was not clearly defined. In this study, we investigated whether endocytosis in the skin tissue of rat and Göttingen minipig is related to the transdermal penetration of IND-NPs using pharmacological inhibitors of endocytosis. The pharmacological inhibitors used in this study are as follows: 54 µM nystatin, a caveolae-mediated endocytosis (CavME) inhibitor; 40 µM dynasore, a clathrin-mediated endocytosis (CME) inhibitor; and 2 µM rottlerin, a micropinocytosis (MP) inhibitor. The N-IND/MEN was prepared by a bead mill method, and the particle size of solid indomethacin was 79–216 nm. In both rat and Göttingen minipig skin, skin penetration of approximately 80% IND-NPs was limited by the stratum corneum (SC), although the penetration of SC was improved by the combination of l-menthol. On the other hand, the treatment of nystatin and dynasore decreased the transdermal penetration of indomethacin in rats and Göttingen minipigs treated with N-IND/MEN. Moreover, in addition to nystatin and dynasore, rottlerin attenuated the transdermal penetration of IND-NPs in the Göttingen minipigs’ skin. In conclusion, we found that l-menthol enhanced the SC penetration of IND-NPs. In addition, this study suggests that the SC-passed IND-NPs are absorbed into the skin tissue by energy-dependent endocytosis (CavME, CME, and/or MP pathways) on the epidermis under the SC, resulting in an enhancement in transdermal penetration of IND-NPs. These findings provide significant information for the design of nanomedicines in transdermal formulations.
Collapse
|
13
|
Lim MSH, Nishiyama Y, Ohtsuki T, Watanabe K, Kobuchi H, Kobayashi K, Matsuura E. Lactosome-Conjugated siRNA Nanoparticles for Photo-Enhanced Gene Silencing in Cancer Cells. J Pharm Sci 2021; 110:1788-1798. [PMID: 33529684 DOI: 10.1016/j.xphs.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
The A3B-type Lactosome comprised of poly(sarcosine)3-block-poly(l-lactic acid), a biocompatible and biodegradable polymeric nanomicelle, was reported to accumulate in tumors in vivo via the enhanced permeability and retention (EPR) effect. Recently, the cellular uptake of Lactosome particles was enhanced through the incorporation of a cell-penetrating peptide (CPP), L7EB1. However, the ability of Lactosome as a drug delivery carrier has not been established. Herein, we have developed a method to conjugate the A3B-type Lactosome with ATP-binding cassette transporter G2 (ABCG2) siRNA for inducing in vitro apoptosis in the cancer cell lines PANC-1 and NCI-H226. The L7EB1 peptide facilitates the cellular uptake efficiency of Lactosome but does not deliver siRNA into cytosol. To establish the photoinduced cytosolic dispersion of siRNA, a photosensitizer loaded L7EB1-Lactosome was prepared, and the photosensitizer 5,10,15,20-tetra-kis(pentafluorophenyl)porphyrin (TPFPP) showed superiority in photoinduced cytosolic dispersion. We exploited the combined effects of enhanced cellular uptake by L7EB1 and photoinduced endosomal escape by TPFPP to efficiently deliver ABCG2 siRNA into the cytosol for gene silencing. Moreover, the silencing of ABCG2, a protoporphyrin IX (PpIX) transporter, also mediated photoinduced cell death via 5-aminolevulinic acid (ALA)-mediated PpIX accumulated photodynamic therapy (PDT). The synergistic capability of the L7EB1/TPFPP/siRNA-Lactosome complex enabled both gene silencing and PDT.
Collapse
Affiliation(s)
- Melissa Siaw Han Lim
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuki Nishiyama
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuko Kobayashi
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Eiji Matsuura
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Neutron Therapy Research Centre, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
14
|
Rasgado LAV, Urbieta AT, Jiménez JMM. Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta. AIMS Neurosci 2020; 7:344-359. [PMID: 32995492 PMCID: PMC7519963 DOI: 10.3934/neuroscience.2020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Senile plaques, a hallmark of Alzheimer's disease, are composed by Amyloid-Beta (Aβ). Aβ 25-35 toxicity is caused mainly by increasing reactive oxygen species (ROS), which is reversed by albumin preventing Aβ internalization. In addition, key cellular processes and basic cell functions require of endocytosis, particularly relevant in neurons. To understand the protective effect of albumin and the toxicity mechanism of Aβ, the need of albumin uptake for neurons protection as well as the possible influence of Aβ on albumin endocytosis were investigated. With this aim the influence of lectin from soybeans (LEC), which prevents albumin endocytosis, on the effects of Aβ 25-35 on cellular morphology and viability, ROS generation and Aβ uptake with and without albumin in neurons in primary culture was investigated. Influence of Aβ on albumin endocytosis was studied using FITC-labelled albumin. LEC did not modify Aβ effects with or without albumin on neuronal morphology, but increased cell viability. LEC increased ROS generation with and without Aβ in the same magnitude. Diminished Aβ internalization observed with albumin was not affected by LEC. In presence of Aβ albumin is internalized, but endosomes did not deliver their cargo to the lysosomes for degradation. It is concluded that formation of Aβ-albumin complex does not require of albumin internalization, thus is extracellular. Aβ affects albumin endocytosis preventing late endosomes and lysosomes degradation, probably caused by changes in albumin structure or deregulation in vesicular transport. Considering the consequences such as its osmotic effects, the inability to exert its antioxidant properties, its effects on neuronal plasticity and excitability albumin affected endocytosis induced by Aβ is proposed as a new physiopathology mechanism in AD. It is hypothesized that there is critical intraneuronal level above which albumin becomes toxic.
Collapse
Affiliation(s)
- Lourdes A Vega Rasgado
- Laboratorio de Neuroquímica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arantxa Tabernero Urbieta
- Instituto de Neurociencias de Castilla y León (INCYL), c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - José María Medina Jiménez
- Instituto de Neurociencias de Castilla y León (INCYL), c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
17
|
Kanwal U, Bukhari NI, Rana NF, Rehman M, Hussain K, Abbas N, Mehmood A, Raza A. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. Int J Nanomedicine 2018; 14:1-15. [PMID: 30587981 PMCID: PMC6302811 DOI: 10.2147/ijn.s176868] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE This study was aimed to develop doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan (DOX-GCPQ) nanoformulation that could enable DOX delivery and noninvasive monitoring of drug accumulation and biodistribution at tumor site utilizing self-florescent property of doxorubicin. MATERIALS AND METHODS DOX-GCPQ amphiphilic polymeric nanoformulations were prepared and optimized using artificial neural network (ANN) and characterized for surface morphology by atomic force microscopy, particle size with polydispersity index (PDI), and zeta potential by dynamic light scattering. Fourier transformed infrared (FTIR) and X-ray diffractometer studies were performed to examine drug polymer interaction. The ANN-optimized nanoformulation was investigated for in vitro release, cellular, tumor, and tissue uptake. RESULTS The optimized DOX-GCPQ nanoformulation was anionic spherical micelles with the hydrodynamic particle size of 97.8±1.5 nm, the PDI of <0.3, the zeta potential of 28±2 mV, and the encapsulation efficiency of 80%±1.5%. Nanoformulation demonstrated a sustained release pattern over 48 h, assuming Weibull model. Fluorescence microscopy revealed higher uptake of DOX-GCPQ in human rhabdomyosarcoma (RD) cells as compared to free DOX. In vitro cytotoxicity assay indicated a significant cytotoxicity of DOX-GCPQ against RD cells as compared to DOX and blank GCPQ (P<0.05). DOX-GCPQ exhibited low IC50 (1.7±0.404 µmol) when compared to that of DOX (3.0±0.968 µmol). In skin tumor xenografts, optical imaging revealed significantly lower DOX-GCPQ in heart and liver (P<0.05) and accumulated mainly in tumor (P<0.05) as compared to other tissues. CONCLUSION The features of nanoformulation, ie, small particle size, sustained drug release, and enhanced cellular uptake, potential to target tumor passively coupled with the possibility of monitoring of tumor localization by optical imaging may make DOX-GCPQ an efficient nanotheranostic system.
Collapse
Affiliation(s)
- Ummarah Kanwal
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics, Pakistan Institute of Engineering and Applied Sciences Islamabad, Pakistan,
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan,
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan,
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mehreen Rehman
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics, Pakistan Institute of Engineering and Applied Sciences Islamabad, Pakistan,
| | - Khalid Hussain
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan,
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan,
| | - Arshad Mehmood
- Material Division, National Institute of Lasers and Optronics, Pakistan Institute of Engineering and Applied Sciences Islamabad, Islamabad, Pakistan
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics, Pakistan Institute of Engineering and Applied Sciences Islamabad, Pakistan,
| |
Collapse
|
18
|
Chen J, Hu J, Zuo P, Shi J, Yang M. Facile preparation of recombinant spider eggcase silk spheres via an HFIP-on-Oil approach. Int J Biol Macromol 2018; 116:1146-1152. [DOI: 10.1016/j.ijbiomac.2018.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
|
19
|
Nagai N, Ogata F, Ishii M, Fukuoka Y, Otake H, Nakazawa Y, Kawasaki N. Involvement of Endocytosis in the Transdermal Penetration Mechanism of Ketoprofen Nanoparticles. Int J Mol Sci 2018; 19:E2138. [PMID: 30041452 PMCID: PMC6073289 DOI: 10.3390/ijms19072138] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
We previously designed a novel transdermal formulation containing ketoprofen solid nanoparticles (KET-NPs formulation), and showed that the skin penetration from the KET-NPs formulation was higher than that of a transdermal formulation containing ketoprofen microparticles (KET-MPs formulation). However, the precise mechanism for the skin penetration from the KET-NPs formulation was not clear. In this study we investigated whether energy-dependent endocytosis relates to the transdermal delivery from a 1.5% KET-NPs formulation. Transdermal formulations were prepared by a bead mill method using additives including methylcellulose and carbopol 934. The mean particle size of the ketoprofen nanoparticles was 98.3 nm. Four inhibitors of endocytosis dissolved in 0.5% DMSO (54 μM nystatin, a caveolae-mediated endocytosis inhibitor; 40 μM dynasore, a clathrin-mediated endocytosis inhibitor; 2 μM rottlerin, a macropinocytosis inhibitor; 10 μM cytochalasin D, a phagocytosis inhibitor) were used in this study. In the transdermal penetration study using a Franz diffusion cell, skin penetration through rat skin treated with cytochalasin D was similar to the control (DMSO) group. In contrast to the results for cytochalasin D, skin penetration from the KET-NPs formulation was significantly decreased by treatment with nystatin, dynasore or rottlerin with penetrated ketoprofen concentration-time curves (AUC) values 65%, 69% and 73% of control, respectively. Furthermore, multi-treatment with all three inhibitors (nystatin, dynasore and rottlerin) strongly suppressed the skin penetration from the KET-NPs formulation with an AUC value 13.4% that of the control. In conclusion, we found that caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis are all related to the skin penetration from the KET-NPs formulation. These findings provide significant information for the design of nanomedicines in transdermal formulations.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Miyu Ishii
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yuya Fukuoka
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
20
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Ammar HO, Ibrahim M, Mahmoud AA, Shamma RN, El Hoffy NM. Non-ionic Surfactant Based In Situ Forming Vesicles as Controlled Parenteral Delivery Systems. AAPS PharmSciTech 2018; 19:1001-1010. [PMID: 29110291 DOI: 10.1208/s12249-017-0897-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022] Open
Abstract
Non-ionic surfactant (NIS) based in situ forming vesicles (ISVs) present an affordable alternative to the traditional systems for the parenteral control of drug release. In this work, NIS based ISVs encapsulating tenoxicam were prepared using the emulsion method. Tenoxicam-loaded ISVs were prepared using a 22.31 full factorial experimental design, where three factors were evaluated as independent variables; type of NIS (A), molar ratio of NIS to Tween®80 (B), and phase ratio of the internal ethyl acetate to the external Captex® oil phase (C). Percentage drug released after 1 h, particle size of the obtained vesicles and mean dissolution time were chosen as the dependent variables. Selected formulation was subjected to morphological investigation, injectability, viscosity measurements, and solid state characterization. Optimum formulation showed spherical nano-vesicles in the size of 379.08 nm with an initial drug release of 37.32% in the first hour followed by a sustained drug release pattern for 6 days. DSC analysis of the optimized formulation confirmed the presence of the drug in an amorphous form with the nano-vesicles. Biological evaluation of the selected formulation was performed on New Zealand rabbits by IM injection. The prepared ISVs exhibited a 45- and 28-fold larger AUC and MRT values, respectively, compared to those of the drug suspension. The obtained findings boost the use of ISVs for the treatment of many chronic inflammatory conditions.
Collapse
|
22
|
Chen J, Hu J, Zuo P, Su X, Liu Z, Yang M. Tailor-made spider-eggcase-silk spheres for efficient lysosomal drug delivery. RSC Adv 2018; 8:9394-9401. [PMID: 35541844 PMCID: PMC9078666 DOI: 10.1039/c8ra00232k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Spider silks are attractive biopolymers due to their excellent mechanical properties and biomimetic potential. To optimize the electrostatic interaction for lysosomal drug delivery, a spider-eggcase-silk protein was genetically engineered using 5× His Tag with a tailor-made isoelectric point of 4.8. By a facile HFIP-on-oil method, silk spheres were assembled as rapidly as 10 s. After the post-treatment of ethanol, silk spheres were determined with an improved compressive modulus by AFM indentation. Under incubation of silk spheres in a Doxorubicin solution, a maximum of 35% loading and average of 30% loading efficiency were determined. In the cytotoxicity experiment, silk spheres exhibited intrinsic biocompatibility and showed good control of the loaded drug in the neutral PBS solution. Significantly, by 96 h, the accumulative drug release at pH 4.5 was approximately 4.5-fold higher than that at pH 7.4. By conducting the platelet adhesion and hemolysis assay, Doxorubicin-loaded silk spheres exhibited good hemocompatibility. To further demonstrate this release behavior, within 24 h, Doxorubicin-loaded silk spheres were efficiently delivered to lysosomes and then released the payload to the nuclei of Hela cells. Recombinant spider-eggcase-silk spheres are facilely prepared as drug carriers with a tailor-made isoelectric point specifically for lysosomal delivery.![]()
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Jinlian Hu
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Peijun Zuo
- Nano and Advanced Materials Institute
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Xiaoqian Su
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Zhigao Liu
- Shenzhen PKU-HKUST Medical Center
- Shenzhen
- China
| | - Mo Yang
- Department of Biomedical Engineering
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| |
Collapse
|
23
|
Dallet L, Decossas M, Taveau JC, Lecomte S, Poussard S, Lambert O, Pitard B. Single lipoaminoglycoside promotes efficient intracellular antibody delivery: A comprehensive insight into the mechanism of action. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:141-151. [PMID: 28939489 DOI: 10.1016/j.nano.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Delivery of biologically active proteins into cells is emerging as important strategy for many applications. Previous experiments have shown that lipoaminoglycosides were capable of delivery of the anti-cytokeratin8 antibody (anti-K8) but only when formulated with lipid helpers potentially leading to toxicity from excess lipids. Here, we optimized anti-K8 delivery with various lipoaminoglycosides in the absence of a lipid helper. Results led to the identification of the aminoglycoside lipid dioleyl phosphoramido ribostamycin (DOPRI) as a potent intracellular delivery system for anti-K8. Electron microscopy revealed that delivered anti-K8 molecules were bound to intermediate filaments in cells. Anti-K8 was bound to the surface of DOPRI vesicles without perturbing lipid organization. Macropinocytosis and caveolin mediated endocytosis contributed to anti-K8 internalization and to filament labeling with a major contribution being made by the caveolin pathway. The results showed that the unique properties of DOPRI were sufficient for efficient intracellular protein delivery without requiring lipid helpers.
Collapse
Affiliation(s)
- Laurence Dallet
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France; CRCINA, INSERM Université d'Angers, Université de Nantes, France
| | - Marion Decossas
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | | | - Sophie Lecomte
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | - Sylvie Poussard
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France
| | - Olivier Lambert
- CBMN UMR-CNRS 5248, Université de Bordeaux IPB, Pessac, France.
| | | |
Collapse
|
24
|
Iram S, Zahera M, Khan S, Khan I, Syed A, Ansary AA, Ameen F, Shair OHM, Khan MS. Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surf B Biointerfaces 2017; 160:254-264. [PMID: 28942160 DOI: 10.1016/j.colsurfb.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
Osteosarcoma or osteogenic sarcoma is the most common and prevalent cancerous tumor of bone and occurs especially in children and teens. Recent treatment strategy includes a combination of both chemotherapy and surgeries. Although, the use of single drug-based chemotherapy treatment remains unsatisfactory. Therefore, combinatorial therapy has emerged as a potential strategy for treatment with limited side- effects. Here, we evaluated the combinatorial anticancerous effect of cisplatin (CIS) and doxorubicin (DOX) bioconjugated bromelain encapsulated gold nanoparticles (B-AuNPs conjugated CIS and DOX) in the treatment of osteosarcoma. The synthesized B-AuNPs conjugated CIS and DOX were characterized by various characterization techniques like UV-vis spectroscopy, TEM, DLS and zeta potential to ensure the synthesis, size, shape, size distribution and stability. Drug loading efficiency bioconjugation of CIS and DOX was ensured by UV-vis spectroscopy. Bioconjugation of CIS and DOX was further confirmed using UV-vis spectroscopy, TEM, DLS, Zeta potential and FT-IR analysis. The combinatorial effect of CIS and DOX in B-AuNPs conjugated CIS and DOX showed highly improved potency against MG-63 and Saos-2 cells at a very low concentration where primary osteoblasts didn't show any cytotoxic effect. The apoptotic effect of B-AuNPs conjugated CIS and DOX on osteosarcoma and primary osteoblasts cells were analyzed by increased permeability of the cell membrane, condensed chromatin and deep blue fluorescent condensed nucleus. The results clearly showed that B-AuNPs conjugated CIS and DOX significantly improved the potency of both the chemotherapeutic drugs by delivering them specifically into the nucleus of cancer cells through caveolae-dependent endocytosis. Thus, the greater inhibitory effect of combinatorial drugs (B-AuNPs conjugated CIS and DOX) over single drug based chemotherapy would be of great advantage during osteosarcoma treatment.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Salman Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Imran Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abu Ayoobul Ansary
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
25
|
Yamamoto H, Umeda D, Matsumoto S, Kikuchi A. LDL switches the LRP6 internalization route from flotillin dependent to clathrin dependent in hepatic cells. J Cell Sci 2017; 130:3542-3556. [PMID: 28821575 DOI: 10.1242/jcs.202135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) was originally identified as a co-receptor of the Wnt signalling pathway and has been shown to be involved in LDL transport. In polarized hepatocytes, many apical proteins are sorted to the basolateral membrane and then internalized and transported to the apical bile canalicular membrane - a process known as transcytosis. We show that LRP6 is transcytosed to the apical membrane of polarized hepatic HepG2 cells via a flotillin-dependent manner in the absence of LDL. LRP6 formed a complex with Niemann-Pick type C1-like 1 (NPC1L1), which is localized to the bile canalicular membrane of the liver and is involved in cholesterol absorption from the bile. LRP6 was required for apical membrane localization of NPC1L1 in the absence of LDL. Clathrin-dependent LRP6 internalization occurred in the presence of LDL, which resulted in trafficking of LRP6 to the lysosome, thereby reducing apical sorting of LRP6 and NPC1L1. These results suggest that LRP6 endocytosis proceeds by two routes, depending on the presence of LDL, and that LRP6 controls the intracellular destination of NPC1L1 in hepatocytes.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Umeda
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
27
|
Das J, Choi YJ, Yasuda H, Han JW, Park C, Song H, Bae H, Kim JH. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 2016; 6:33784. [PMID: 27677463 PMCID: PMC5039411 DOI: 10.1038/srep33784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023] Open
Abstract
The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications.
Collapse
Affiliation(s)
- Joydeep Das
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hideyo Yasuda
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hojae Bae
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
28
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
29
|
Pandey MS, Miller CM, Harris EN, Weigel PH. Activation of ERK and NF-κB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs. PLoS One 2016; 11:e0154124. [PMID: 27100626 PMCID: PMC4839745 DOI: 10.1371/journal.pone.0154124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis), which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is targeted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID 524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068-79, 2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hep-mediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A) lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respectively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•Hep•ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA, dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells. We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB signaling and that Tyr2519 is critical for these functions.
Collapse
Affiliation(s)
- Madhu S. Pandey
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Colton M. Miller
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Paul H. Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
- * E-mail:
| |
Collapse
|
30
|
Uram Ł, Szuster M, Filipowicz A, Gargasz K, Wołowiec S, Wałajtys-Rode E. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin-pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro. Int J Nanomedicine 2015; 10:5647-61. [PMID: 26379435 PMCID: PMC4567239 DOI: 10.2147/ijn.s87307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin-pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander's coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%-35% of the total nuclei area at all investigated concentrations, with lower level (15%-25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%-20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity.
Collapse
Affiliation(s)
- Łukasz Uram
- Bioorganic Chemistry Laboratory, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Magdalena Szuster
- Bioorganic Chemistry Laboratory, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Aleksandra Filipowicz
- Cosmetology Department, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Krzysztof Gargasz
- Institute of Nursery and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Stanisław Wołowiec
- Institute of Nursery and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
31
|
Betbeder D, Lipka E, Howsam M, Carpentier R. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties. Int J Nanomedicine 2015; 10:5355-66. [PMID: 26345627 PMCID: PMC4554401 DOI: 10.2147/ijn.s84760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity.
Collapse
Affiliation(s)
- Didier Betbeder
- U995-LIRIC, Inserm (Institut National de la Recherche Médicale), Lille, France ; U995-LIRIC, CHRU de Lille, Lille, France ; U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France ; Faculté des Sciences du Sport, Université d'Artois, Arras, France
| | - Emmanuelle Lipka
- U995-LIRIC, Inserm (Institut National de la Recherche Médicale), Lille, France ; U995-LIRIC, CHRU de Lille, Lille, France ; Faculté de Pharmacie, Université de Lille, Lille, France
| | - Mike Howsam
- Faculté de Pharmacie, Université de Lille, Centre Universitaire de Mesures et d'Analyses, Lille, France
| | - Rodolphe Carpentier
- U995-LIRIC, Inserm (Institut National de la Recherche Médicale), Lille, France ; U995-LIRIC, CHRU de Lille, Lille, France ; U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France
| |
Collapse
|
32
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
33
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
34
|
Krishnan V, Xu X, Kelly D, Snook A, Waldman SA, Mason RW, Jia X, Rajasekaran AK. CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Mol Pharm 2015; 12:2101-11. [PMID: 25898125 DOI: 10.1021/acs.molpharmaceut.5b00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanomedicine has advanced to clinical trials for adult cancer therapy. However, the field is still in its infancy for treatment of childhood malignancies such as acute lymphoblastic leukemia (ALL). Nanotherapy offers multiple advantages over conventional therapy. It facilitates targeted delivery and enables controlled release of drugs to reduce treatment-related side effects. Here, we demonstrate that doxorubicin (DOX) encapsulated in polymeric nanoparticles (NPs) modified with targeting ligands against CD19 (CD19-DOX-NPs) can be delivered in a CD19-specific manner to leukemic cells. The CD19-DOX-NPs were internalized via receptor-mediated endocytosis and imparted cytotoxicity in a CD19-dependent manner in CD19-positive ALL cells. Leukemic mice treated with CD19-DOX-NPs survived significantly longer and manifested a higher degree of agility, indicating reduced apparent systemic toxicity during treatment compared to mice treated with free DOX. We suggest that targeted delivery of drugs used in childhood cancer treatment should improve therapeutic efficacy and reduce treatment-related side effects in children.
Collapse
Affiliation(s)
- Vinu Krishnan
- ⊥Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, Delaware 19803, United States
| | | | | | - Adam Snook
- #Pharmacology and Experimental Therapeutics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Scott A Waldman
- #Pharmacology and Experimental Therapeutics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Robert W Mason
- ⊥Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, Delaware 19803, United States
| | | | - Ayyappan K Rajasekaran
- ∇Therapy Architects, LLC, 2700 Silverside Road, Wilmington, Delaware 19810, United States
| |
Collapse
|
35
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|
36
|
Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Vet Res 2014; 45:17. [PMID: 24517254 PMCID: PMC3937040 DOI: 10.1186/1297-9716-45-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.
Collapse
Affiliation(s)
| | | | | | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
37
|
Meng J, Zhang T, Agrahari V, Ezoulin MJ, Youan BBC. Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine (Lond) 2014; 9:1595-612. [PMID: 24405490 DOI: 10.2217/nnm.13.136] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM This study is designed to test the hypothesis that tenofovir-loaded (an anti-HIV microbicide) chitosan-thioglycolic acid-conjugated (CS-TGA) nanoparticles (NPs) exhibit superior biophysical properties for mucoadhesion compared with those of native CS NPs. MATERIALS & METHODS The NPs are prepared by ionotropic gelation. The particle mean diameter, encapsulation efficiency and release profile are analyzed by dynamic light scattering and UV spectroscopy, respectively. The cytotoxicity, cellular uptake and uptake mechanism are assessed on VK2/E6E7 and End1/E6E7 cell lines by colorimetry/fluorimetry, and percentage mucoadhesion is assessed using porcine vaginal tissue. RESULTS The mean diameter of the optimal NP formulations ranges from 240 to 252 nm, with a maximal encapsulation efficiency of 22.60%. Tenofovir release from CS and CS-TGA NPs follows first-order and Higuchi models, respectively. Both NPs are noncytotoxic in 48 h. The cellular uptake, which is time dependent, mainly occurs via the caveolin-mediated pathway. The percentage of mucoadhesion of CS-TGA NPs is fivefold higher than that of CS NPs, and reached up to 65% after 2 h. CONCLUSION Collectively, CS-TGA NPs exhibit superior biophysical properties and can potentially maximize the retention time of a topical microbicide, such as tenofovir, intended for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
38
|
Pieper-Fürst U, Lammert F. Low-density lipoprotein receptors in liver: old acquaintances and a newcomer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1191-8. [PMID: 24046859 DOI: 10.1016/j.bbalip.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lipoprotein receptors low-density lipoprotein receptor (LDLR), the low-density lipoprotein receptor-related protein 1 (LRP1) and megalin/LRP2 share characteristic structural elements. In addition to their well-known roles in endocytosis of lipoproteins and systemic lipid homeostasis, it has been established that LRP1 mediates the endocytotic clearance of a multitude of extracellular ligands and regulates diverse signaling processes such as growth factor signaling, inflammatory signaling pathways, apoptosis, and phagocytosis in liver. Here, possible functions of LRP1 expression in hepatocytes and non-parenchymal cells in healthy and injured liver are discussed. Recent studies indicate the expression of megalin (LRP2) by hepatic stellate cells, myofibroblasts and Kupffer cells and hypothesize that LRP2 might represent another potential regulator of hepatic inflammatory processes. These observations provide the experimental framework for the systematic and dynamic analysis of the LDLR family during chronic liver injury and fibrogenesis.
Collapse
|
39
|
6-o- and N-sulfated syndecan-1 promotes baculovirus binding and entry into Mammalian cells. J Virol 2013; 87:11148-59. [PMID: 23926339 DOI: 10.1128/jvi.01919-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Baculoviruses are insect-specific viruses commonly found in nature. They are not able to replicate in mammalian cells but can transduce them when equipped with an appropriate mammalian cell active expression cassette. Although the viruses have been studied in several types of mammalian cells from different origins, the receptor that baculovirus uses to enter or interact with mammalian cells has not yet been identified. Due to the wide tropism of the virus, the receptor has been suggested to be a generally found cell surface molecule. In this article, we investigated the interaction of baculovirus and mammalian cell surface heparan sulfate proteoglycans (HSPG) in more detail. Our data show that baculovirus requires HSPG sulfation, particularly N- and 6-O-sulfation, to bind to and transduce mammalian cells. According to our results, baculovirus binds specifically to syndecan-1 (SDC-1) but does not interact with SDC-2 to SDC-4 or with glypicans. Competition experiments performed with SDC-1 antibody or recombinant SDC-1 protein inhibited baculovirus binding, and SDC-1 overexpression enhanced baculovirus-mediated transduction. In conclusion, we show that SDC-1, a commonly found cell surface HSPG molecule, has a role in the binding and entry of baculovirus in vertebrate cells. The results presented here reveal important aspects of baculovirus entry and can serve as a basis for next-generation baculovirus vector development for gene delivery.
Collapse
|
40
|
Chen K, Williams KJ. Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem 2013; 288:13988-13999. [PMID: 23525115 DOI: 10.1074/jbc.m112.444737] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis via rafts has attracted considerable recent interest, but the molecular mediators remain incompletely characterized. Here, we focused on the syndecan-1 heparan sulfate proteoglycan, a highly conserved, multifunctional receptor that we previously showed to undergo raft-dependent endocytosis upon clustering. Alanine scanning mutagenesis of three to five consecutive cytoplasmic residues at a time revealed that a conserved juxtamembrane motif, MKKK, was the only region required for efficient endocytosis after clustering. Endocytosis of clustered syndecan-1 occurs in two phases, each requiring a kinase and a corresponding cytoskeletal partner. In the initial phase, ligands trigger rapid MKKK-dependent activation of ERK and the localization of syndecan-1 into rafts. Activation of ERK drives the dissociation of syndecan-1 from α-tubulin, a molecule that may act as an anchor for syndecan-1 at the plasma membrane in the basal state. In the second phase, Src family kinases phosphorylate tyrosyl residues within the transmembrane and cytoplasmic regions of syndecan-1, a process that also requires MKKK. Tyrosine phosphorylation of syndecan-1 triggers the robust recruitment of cortactin, which we found to be an essential mediator of efficient actin-dependent endocytosis. These findings represent the first detailed characterization of the molecular events that drive endocytosis of a raft-dependent receptor and identify a novel endocytic motif, MKKK. Moreover, the results provide new tools to study syndecan function and regulation during uptake of its biologically and medically important ligands, such as HIV-1, atherogenic postprandial remnant lipoproteins, and molecules implicated in Alzheimer disease.
Collapse
Affiliation(s)
- Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
41
|
Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.07.001] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Szalinski CM, Guerriero CJ, Ruiz WG, Docter BE, Rbaibi Y, Pastor-Soler NM, Apodaca G, Puthenveedu MA, Weisz OA. PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells. PLoS One 2013; 8:e53790. [PMID: 23342003 PMCID: PMC3547069 DOI: 10.1371/journal.pone.0053790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022] Open
Abstract
Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis.
Collapse
Affiliation(s)
- Christina M. Szalinski
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Christopher J. Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wily G. Ruiz
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Brianne E. Docter
- Grand Valley State University, Allendale, Michigan, United States of America
| | - Youssef Rbaibi
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Núria M. Pastor-Soler
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Gerard Apodaca
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Manojkumar A. Puthenveedu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ora A. Weisz
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Adam T, Bouhidel K, Der C, Robert F, Najid A, Simon-Plas F, Leborgne-Castel N. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells. FEBS Lett 2012; 586:3293-8. [PMID: 22796492 DOI: 10.1016/j.febslet.2012.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associated genes.
Collapse
Affiliation(s)
- T Adam
- UMR Agroécologie 1347, AgroSup/INRA/Université de Bourgogne, Pôle Interaction Plantes Microorganismes, ERL6300 CNRS, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Stautz D, Leyme A, Grandal MV, Albrechtsen R, van Deurs B, Wewer U, Kveiborg M. Cell-surface metalloprotease ADAM12 is internalized by a clathrin- and Grb2-dependent mechanism. Traffic 2012; 13:1532-46. [PMID: 22882974 DOI: 10.1111/j.1600-0854.2012.01405.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
ADAM12 (A Disintegrin And Metalloprotease 12), a member of the ADAMs family of transmembrane proteins, is involved in ectodomain shedding, cell-adhesion and signaling, with important implications in cancer. Therefore, mechanisms that regulate the levels and activity of ADAM12 at the cell-surface are possibly crucial in these contexts. We here investigated internalization and subsequent recycling or degradation of ADAM12 as a potentially important regulatory mechanism. Our results show that ADAM12 is constitutively internalized primarily via the clathrin-dependent pathway and is subsequently detected in both early and recycling endosomes. The protease activity of ADAM12 does not influence this internalization mechanism. Analysis of essential elements for internalization established that proline-rich regions in the cytoplasmic domain of ADAM12, previously shown to interact with Src-homology 3 domains, were necessary for proper internalization. These sites in the ADAM12 cytoplasmic domain interacted with the adaptor protein growth factor receptor-bound protein 2 (Grb2) and knockdown of Grb2 markedly reduced ADAM12 internalization. These studies establish that internalization is indeed a mechanism that regulates ADAM cell surface levels and show that ADAM12 internalization involves the clathrin-dependent pathway and Grb2.
Collapse
Affiliation(s)
- Dorte Stautz
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Whittenton J, Pitchumani R, Thevananther S, Mohanty K. Evaluation of asymmetric immunoliposomal nanoparticles for cellular uptake. J Microencapsul 2012; 30:55-63. [PMID: 22742513 DOI: 10.3109/02652048.2012.696152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective and targeted in vivo delivery of polynucleotide therapeutics is the key for the treatment of many diseases. Asymmetric immunoliposomes can be used as vehicles to deliver polynucleotides effectively because the two leaflets of the bilayer can have different compositions, which enhance the delivery capacity. The formation and in vitro cellular uptake of asymmetric immunoliposomes containing polynucleotide cargoes were studied here. Maleimide-functionalised DSPE-PEG (2000) were incorporated into the outer leaflet to produce asymmetric liposomes capable of covalently attaching antibodies. Thiolated antibodies from both human and rabbit origin were conjugated to produce asymmetric pendant-type immunoliposomes that retain their specificity towards detection antibodies through the formation process. Human IgG-conjugated asymmetric immunoliposomes were readily internalised (>20 per cell) by macrophage, HEPG2, and CV-1 monkey kidney cells. The cells internalised the liposomal nanoparticles by the endocytic pathway. The immunoliposome-encapsulated endosomes were intact for at least 5 days and sequestered the plasmid from expression by the cell.
Collapse
Affiliation(s)
- Jeremiah Whittenton
- Department of Chemical and Biomolecular Engineering, University of Houston, 5000 Gulf Freeway, Bldg 9, Rm 219, Houston, TX 77204-0945, USA
| | | | | | | |
Collapse
|
46
|
Vázquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martín-Acebes MA. Acid-dependent viral entry. Virus Res 2012; 167:125-37. [PMID: 22683298 DOI: 10.1016/j.virusres.2012.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022]
Abstract
Virus infection of host cells requires that entry into the cell results in efficient genome release leading to translation and replication. These initial steps revolving around the entry and genomic release processes are crucial for viral progeny generation. Despite the variety of receptors used by viruses to initiate entry, evidence from both enveloped and non-enveloped viral infections is highlighting the important role played by intracellular acidic compartments in the entry of many viruses. These compartments provide connecting nodes within the endocytic network, presenting multiple viral internalization pathways. Endosomal compartments employing an internal acidic pH can trigger molecular mechanisms leading to disassembly of viral particles, thus providing appropriate genome delivery. Accordingly, viruses have evolved to select optimal intracellular conditions for promoting efficient genome release, leading to propagation of the infectious agent. This review will address the implications of cellular compartment involvement in virus infectious processes, and the roles played by the viruses' own machinery, including pH sensing mechanisms and the methodologies applied for studying acid-dependent viral entry into host cells.
Collapse
Affiliation(s)
- Angela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Gonnord P, Blouin CM, Lamaze C. Membrane trafficking and signaling: two sides of the same coin. Semin Cell Dev Biol 2011; 23:154-64. [PMID: 22085846 DOI: 10.1016/j.semcdb.2011.11.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Recent findings on clathrin-dependent and non clathrin-dependent endocytic routes are currently changing our classical view of endocytosis. Originally seen as a way for the cell to internalize membrane, receptors or various soluble molecules, this process is in fact directly linked to complex signaling pathways. Here, we review new insights in endocytosis and present latest development in imaging techniques that allow us to visualize and follow the dynamics of membrane-associated signaling events at the plasma membrane and other intracellular compartments. The immune synapse is taken as an illustration of the importance of membrane reorganization and proteins clustering to initiate and maintain signaling. Future challenges include understanding the crosslink between traffic and signaling and how all compartmentalized signals are integrated inside the cell at a higher level.
Collapse
Affiliation(s)
- Pauline Gonnord
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
49
|
Mattheyses AL, Atkinson CE, Simon SM. Imaging single endocytic events reveals diversity in clathrin, dynamin and vesicle dynamics. Traffic 2011; 12:1394-406. [PMID: 21689254 DOI: 10.1111/j.1600-0854.2011.01235.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of clathrin-mediated endocytosis can be assayed using fluorescently tagged proteins and total internal reflection fluorescence microscopy. Many of these proteins, including clathrin and dynamin, are soluble and changes in fluorescence intensity can be attributed either to membrane/vesicle movement or to changes in the numbers of individual molecules. It is important for assays to discriminate between physical membrane events and the dynamics of molecules. Two physical events in endocytosis were investigated: vesicle scission from the plasma membrane and vesicle internalization. Single vesicle analysis allowed the characterization of dynamin and clathrin dynamics relative to scission and internalization. We show that vesicles remain proximal to the plasma membrane for variable amounts of time following scission, and that uncoating of clathrin can occur before or after vesicle internalization. The dynamics of dynamin also vary with respect to scission. Results from assays based on physical events suggest that disappearance of fluorescence from the evanescent field should be re-evaluated as an assay for endocytosis. These results illustrate the heterogeneity of behaviors of endocytic vesicles and the importance of establishing suitable evaluation criteria for biophysical processes.
Collapse
Affiliation(s)
- Alexa L Mattheyses
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
50
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|