1
|
Bonazza S, Courtney DG. Influenza A virus RNA localisation and the interceding trafficking pathways of the host cell. PLoS Pathog 2025; 21:e1013090. [PMID: 40267083 PMCID: PMC12017568 DOI: 10.1371/journal.ppat.1013090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Viruses have evolved to efficiently navigate host cells to deliver, express, and replicate their genetic material. Understanding the mechanisms underlying viral RNA localisation is paramount to designing new antivirals. In this review, we discuss Influenza A Virus (IAV) as a model system to highlight some of the ways in which RNA viruses can hijack the endomembrane systems, as well as nuclear transporters, to achieve the correct localisation of their transcripts. IAV exemplifies a nuclear-replicating RNA virus with a complex and highly regulated RNA localisation and trafficking system within host cells. The virus subverts various vesicular transport systems and nuclear transporters, altering normal cellular functions. IAV RNA trafficking begins during entry; after clathrin-mediated endocytosis, the viral genome (vRNPs) is released into the cytosol after fusion with the endosomal membrane, and it is subsequently imported into the nucleus via the importin system. There, vRNPs engage with most major subnuclear structures and exploit host chromatin, the transcription machinery and splicing apparatus to achieve efficient viral mRNA synthesis and export. Subsequently, newly synthesised vRNPs are rapidly exported from the nucleus and contact the host's recycling endosome network for transport to the plasma membrane. We discuss the critical viral remodelling of the entire endomembrane system, particularly the Rab11 recycling endosome and the endoplasmic reticulum. Lastly, replicated genomes come together into bundles to be inserted in budding virions, and we discuss the current models being proposed and the evidence behind them. Despite advances in understanding these processes, several knowledge gaps remain, particularly regarding the specific export of unspliced IAV transcripts, the remodelling of the endomembrane system, and segment bundling.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David G. Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Madan V, Albacete‐Albacete L, Jin L, Scaturro P, Watson JL, Muschalik N, Begum F, Boulanger J, Bauer K, Kiebler MA, Derivery E, Bullock SL. HEATR5B associates with dynein-dynactin and promotes motility of AP1-bound endosomal membranes. EMBO J 2023; 42:e114473. [PMID: 37872872 PMCID: PMC10690479 DOI: 10.15252/embj.2023114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.
Collapse
Affiliation(s)
- Vanesa Madan
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
AbcamCambridgeUK
| | - Lucas Albacete‐Albacete
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Li Jin
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | | | - Joseph L Watson
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Nadine Muschalik
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Farida Begum
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Jérôme Boulanger
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Karl Bauer
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Emmanuel Derivery
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Simon L Bullock
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
4
|
Zehrbach NM, Dubois F, Turner CE. Paxillin regulates Rab5-mediated vesicle motility through modulating microtubule acetylation. Mol Biol Cell 2023; 34:ar65. [PMID: 37043310 PMCID: PMC10295489 DOI: 10.1091/mbc.e22-10-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Rab GTPase-mediated vesicle trafficking of cell surface proteins, including integrins, through endocytic and recycling pathways is important in controlling cell-extracellular matrix interactions during cell migration. The focal adhesion adaptor protein, paxillin, plays a central role in regulating adhesion dynamics and was previously shown to promote anterograde vesicle trafficking through modulation of microtubule acetylation via its inhibition of the deacetylase HDAC6. The role of paxillin in retrograde trafficking is unknown. Herein, we identified a role for paxillin in the modulation of the Rab5 GTPase, which is necessary for regulating early endosome dynamics and focal adhesion turnover. Using MDA-MB-231 breast cancer cells and paxillin (-/-) fibroblasts, paxillin was shown to impact Rab5-associated vesicle size and distribution, as well as Rab5 GTPase activity, through its modulation of HDAC6. Using a combination of real-time imaging and particle tracking analysis, paxillin was shown to promote Rab5-associated vesicle motility through inhibition of HDAC6-mediated micro-tubule deacetylation, along with the localization of active integrin to focal adhesions.
Collapse
Affiliation(s)
- Nicholas M. Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
5
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
6
|
Wong CH, Wingett SW, Qian C, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based trafficking revealed by a high-content arrayed CRISPR screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530592. [PMID: 36909483 PMCID: PMC10002790 DOI: 10.1101/2023.03.01.530592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Discovery Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
- Current address: Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven W. Wingett
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
7
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
8
|
Beaudet D, Hendricks AG. Reconstitution of Organelle Transport Along Microtubules In Vitro. Methods Mol Biol 2023; 2623:113-132. [PMID: 36602683 DOI: 10.1007/978-1-0716-2958-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter, we describe methods for reconstituting and analyzing the transport of isolated endogenous cargoes in vitro. Intracellular cargoes are transported along microtubules by teams of kinesin and dynein motors and their cargo-specific adaptor proteins. Observations from living cells show that organelles and vesicular cargoes exhibit diverse motility characteristics. Yet, our knowledge of the molecular mechanisms by which intracellular transport is regulated is not well understood. Here, we describe step-by-step protocols for the extraction of phagosomes from cells at different stages of maturation, and reconstitution of their motility along microtubules in vitro. Quantitative immunofluorescence and photobleaching techniques are also described to measure the number of motors and adaptor proteins on these isolated cargoes. In addition, we describe techniques for tracking the motility of isolated cargoes along microtubules using TIRF microscopy and quantitative force measurements using an optical trap. These methods enable us to study how the sets of motors and adaptors that drive the transport of endogenous cargoes regulate their trafficking in cells.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Balabanian L, Lessard DV, Swaminathan K, Yaninska P, Sébastien M, Wang S, Stevens PW, Wiseman PW, Berger CL, Hendricks AG. Tau differentially regulates the transport of early endosomes and lysosomes. Mol Biol Cell 2022; 33:ar128. [PMID: 36129768 PMCID: PMC9634973 DOI: 10.1091/mbc.e22-01-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microtubule-associated proteins (MAPs) modulate the motility of kinesin and dynein along microtubules to control the transport of vesicles and organelles. The neuronal MAP tau inhibits kinesin-dependent transport. Phosphorylation of tau at Tyr-18 by fyn kinase results in weakened inhibition of kinesin-1. We examined the motility of early endosomes and lysosomes in cells expressing wild-type (WT) tau and phosphomimetic Y18E tau. We quantified the effects on motility as a function of the tau expression level. Lysosome motility is strongly inhibited by tau. Y18E tau preferentially inhibits lysosomes in the cell periphery, while centrally located lysosomes are less affected. Early endosomes are more sensitive to tau than lysosomes and are inhibited by both WT and Y18E tau. Our results show that different cargoes have disparate responses to tau, likely governed by the types of kinesin motors driving their transport. In support of this model, kinesin-1 and -3 are strongly inhibited by tau while kinesin-2 and dynein are less affected. In contrast to kinesin-1, we find that kinesin-3 is strongly inhibited by phosphorylated tau.
Collapse
Affiliation(s)
- Linda Balabanian
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Dominique V. Lessard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | | | - Pamela Yaninska
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Muriel Sébastien
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Samuel Wang
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Piper W. Stevens
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Paul W. Wiseman
- Chemistry and Physics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Adam G. Hendricks
- Departments of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada,*Address correspondence to: Adam G. Hendricks ()
| |
Collapse
|
10
|
Gicking AM, Ma TC, Feng Q, Jiang R, Badieyan S, Cianfrocco MA, Hancock WO. Kinesin-1, -2, and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport. eLife 2022; 11:e82228. [PMID: 36125250 PMCID: PMC9545524 DOI: 10.7554/elife.82228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Bidirectional cargo transport in neurons requires competing activity of motors from the kinesin-1, -2, and -3 superfamilies against cytoplasmic dynein-1. Previous studies demonstrated that when kinesin-1 attached to dynein-dynactin-BicD2 (DDB) complex, the tethered motors move slowly with a slight plus-end bias, suggesting kinesin-1 overpowers DDB but DDB generates a substantial hindering load. Compared to kinesin-1, motors from the kinesin-2 and -3 families display a higher sensitivity to load in single-molecule assays and are thus predicted to be overpowered by dynein complexes in cargo transport. To test this prediction, we used a DNA scaffold to pair DDB with members of the kinesin-1, -2, and -3 families to recreate bidirectional transport in vitro, and tracked the motor pairs using two-channel TIRF microscopy. Unexpectedly, we find that when both kinesin and dynein are engaged and stepping on the microtubule, kinesin-1, -2, and -3 motors are able to effectively withstand hindering loads generated by DDB. Stochastic stepping simulations reveal that kinesin-2 and -3 motors compensate for their faster detachment rates under load with faster reattachment kinetics. The similar performance between the three kinesin transport families highlights how motor kinetics play critical roles in balancing forces between kinesin and dynein, and emphasizes the importance of motor regulation by cargo adaptors, regulatory proteins, and the microtubule track for tuning the speed and directionality of cargo transport in cells.
Collapse
Affiliation(s)
- Allison M Gicking
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| | - Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| | - Qingzhou Feng
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| | - Rui Jiang
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
11
|
Xie S, Zhang Q, Jiang L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. MEMBRANES 2022; 12:498. [PMID: 35629824 PMCID: PMC9144303 DOI: 10.3390/membranes12050498] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles released by donor cells that can be taken up by recipient cells. The study of EVs has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and disease. Exosomes, with an average diameter of ≈100 nanometers, are a subset of EVs. Different molecular families have been shown to be involved in the formation of exosomes and subsequent secretion of exosomes, which largely leads to the complexity of the form, structure and function of exosomes. In addition, because of their low immunogenicity and ability to transfer a variety of bioactive components to recipient cells, exosomes are regarded as effective drug delivery systems. This review summarizes the known mechanisms of exosomes biogenesis, cargo loading, exosomes release and bioengineering, which is of great importance for further exploration into the clinical applications of EVs.
Collapse
Affiliation(s)
- Shenmin Xie
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| |
Collapse
|
12
|
Santos MF, Rappa G, Karbanová J, Fontana S, Bella MAD, Pope MR, Parrino B, Cascioferro SM, Vistoli G, Diana P, Cirrincione G, Arena GO, Woo G, Huang K, Huynh T, Moschetti M, Alessandro R, Corbeil D, Lorico A. Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum. J Extracell Vesicles 2021; 10:e12132. [PMID: 34429859 PMCID: PMC8363911 DOI: 10.1002/jev2.12132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pathological conditions, including the induction of pro-metastatic traits, but it is not yet known how and where functional cargoes of EVs are delivered to their targets in host cell compartments. We have described that after endocytosis, EVs reach Rab7+ late endosomes and a fraction of these enter the nucleoplasmic reticulum and transport EV biomaterials to the host cell nucleoplasm. Their entry therein and docking to outer nuclear membrane occur through a tripartite complex formed by the proteins VAP-A, ORP3 and Rab7 (VOR complex). Here, we report that the antifungal compound itraconazole (ICZ), but not its main metabolite hydroxy-ICZ or ketoconazole, disrupts the binding of Rab7 to ORP3-VAP-A complexes, leading to inhibition of EV-mediated pro-metastatic morphological changes including cell migration behaviour of colon cancer cells. With novel, smaller chemical drugs, inhibition of the VOR complex was maintained, although the ICZ moieties responsible for antifungal activity and interference with intracellular cholesterol distribution were removed. Knowing that cancer cells hijack their microenvironment and that EVs derived from them determine the pre-metastatic niche, small-sized inhibitors of nuclear transfer of EV cargo into host cells could find cancer therapeutic applications, particularly in combination with direct targeting of cancer cells.
Collapse
Affiliation(s)
- Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Germana Rappa
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Jana Karbanová
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | | | | | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Stella Maria Cascioferro
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Giulio Vistoli
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Goffredo O. Arena
- Department of SurgeryMcGill UniversityMontréalQuébecCanada
- Fondazione Istituto G. GiglioCefalùItaly
| | - Gyunghwi Woo
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Kevin Huang
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Tony Huynh
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| | - Denis Corbeil
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
- Mediterranean Institute of OncologyViagrandeItaly
| |
Collapse
|
13
|
Gudi R, Palanisamy V, Vasu C. Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR. Sci Rep 2021; 11:12689. [PMID: 34135376 PMCID: PMC8209166 DOI: 10.1038/s41598-021-91818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Centrosomal P4.1-associated protein (CPAP) plays a critical role in restricting the centriole length in human cells. Here, we report a novel, positive regulatory influence for CPAP on endocytic vesicular transport (EVT) and lysosome targeting of internalized-cell surface receptor EGFR. We observed that higher CPAP levels cause an increase in the abundance of multi-vesicular body (MVB) and EGFR is detectable in CPAP-overexpression induced puncta. The surface and cellular levels of EGFR are higher under CPAP deficiency and lower under CPAP overexpression. While ligand-engagement induced internalization or routing of EGFR into early endosomes is not influenced by cellular levels of CPAP, we found that targeting of ligand-activated, internalized EGFR to lysosome is impacted by CPAP levels. Transport of ligand-bound EGFR from early endosome to late endosome/MVB and lysosome is diminished in CPAP-depleted cells. Moreover, CPAP depleted cells appear to show a diminished ability to form MVB structures upon EGFR activation. These observations suggest a positive regulatory effect of CPAP on EVT of ligand-bound EGFR-like cell surface receptors to MVB and lysosome. Overall, identification of a non-centriolar function of CPAP in endocytic trafficking provides new insights in understanding the non-canonical cellular functions of CPAP.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
14
|
Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. MEMBRANES 2020; 10:E406. [PMID: 33316913 PMCID: PMC7764620 DOI: 10.3390/membranes10120406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| |
Collapse
|
15
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady‐state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin‐14 KIFC1, a MT minus end‐directed motor involved in cancer progression. Mechanistically, the Ser‐x‐Ile‐Pro (SxIP) motif‐mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end‐binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued‐mediated simultaneous engagement with dynein and SxIP motif‐containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end‐directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Enrico Bena
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Marco Del Giudice
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Sandri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Carla Bosia
- IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy.,Department of Applied Science and Technology, Polytechnic of Torino, Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| |
Collapse
|
16
|
Tang T, Yang ZY, Wang D, Yang XY, Wang J, Li L, Wen Q, Gao L, Bian XW, Yu SC. The role of lysosomes in cancer development and progression. Cell Biosci 2020; 10:131. [PMID: 33292489 PMCID: PMC7677787 DOI: 10.1186/s13578-020-00489-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Lysosomes are an important component of the inner membrane system and participate in numerous cell biological processes, such as macromolecular degradation, antigen presentation, intracellular pathogen destruction, plasma membrane repair, exosome release, cell adhesion/migration and apoptosis. Thus, lysosomes play important roles in cellular activity. In addition, previous studies have shown that lysosomes may play important roles in cancer development and progression through the abovementioned biological processes and that the functional status and spatial distribution of lysosomes are closely related to cancer cell proliferation, energy metabolism, invasion and metastasis, immune escape and tumor-associated angiogenesis. Therefore, identifying the factors and mechanisms that regulate the functional status and spatial distribution of lysosomes and elucidating the relationship between lysosomes and the development and progression of cancer can provide important information for cancer diagnosis and prognosis prediction and may yield new therapeutic targets. This study briefly reviews the above information and explores the potential value of lysosomes in cancer therapy.
Collapse
Affiliation(s)
- Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xiu-Wu Bian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Toth AE, Holst MR, Nielsen MS. Vesicular Transport Machinery in Brain Endothelial Cells: What We Know and What We Do not. Curr Pharm Des 2020; 26:1405-1416. [PMID: 32048959 DOI: 10.2174/1381612826666200212113421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
The vesicular transport machinery regulates numerous essential functions in cells such as cell polarity, signaling pathways, and the transport of receptors and their cargoes. From a pharmaceutical perspective, vesicular transport offers avenues to facilitate the uptake of therapeutic agents into cells and across cellular barriers. In order to improve receptor-mediated transcytosis of biologics across the blood-brain barrier and into the diseased brain, a detailed understanding of intracellular transport mechanisms is essential. The vesicular transport machinery is a highly complex network and involves an array of protein complexes, cytosolic adaptor proteins, and the subcellular structures of the endo-lysosomal system. The endo-lysosomal system includes several types of vesicular entities such as early, late, and recycling endosomes, exosomes, ectosomes, retromer-coated vesicles, lysosomes, trans-endothelial channels, and tubules. While extensive research has been done on the trafficking system in many cell types, little is known about vesicular trafficking in brain endothelial cells. Consequently, assumptions on the transport system in endothelial cells are based on findings in polarised epithelial cells, although recent studies have highlighted differences in the endothelial system. This review highlights aspects of the vesicular trafficking machinery in brain endothelial cells, including recent findings, limitations, and opportunities for further studies.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Mikkel R Holst
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Arnold J, Schattschneider J, Blechner C, Krisp C, Schlüter H, Schweizer M, Nalaskowski M, Oliveira-Ferrer L, Windhorst S. Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis. J Exp Clin Cancer Res 2020; 39:205. [PMID: 32998758 PMCID: PMC7528497 DOI: 10.1186/s13046-020-01712-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The survival rate is poor in breast cancer patients with brain metastases. Thus, new concepts for therapeutic approaches are required. During metastasis, the cytoskeleton of cancer cells is highly dynamic and therefore cytoskeleton-associated proteins are interesting targets for tumour therapy. METHODS Screening for genes showing a significant correlation with brain metastasis formation was performed based on microarray data from breast cancer patients with long-term follow up information. Validation of the most interesting target was performed by MTT-, Scratch- and Transwell-assay. In addition, intracellular trafficking was analyzed by live-cell imaging for secretory vesicles, early endosomes and multiple vesicular bodies (MVB) generating extracellular vesicles (EVs). EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western blotting, mass spectrometry, and ingenuity pathway analysis (IPA). Effect of EVs on the blood-brain-barrier (BBB) was examined by incubating endothelial cells of the BBB (hCMEC/D3) with EVs, and permeability as well as adhesion of breast cancer cells were analyzed. Clinical data of a breast cancer cohort was evaluated by χ2-tests, Kaplan-Meier-Analysis, and log-rank tests while for experimental data Student's T-test was performed. RESULTS Among those genes exhibiting a significant association with cerebral metastasis development, the only gene coding for a cytoskeleton-associated protein was Tubulin Tyrosine Ligase Like 4 (TTLL4). Overexpression of TTLL4 (TTLL4plus) in MDA-MB231 and MDA-MB468 breast cancer cells (TTLL4plus cells) significantly increased polyglutamylation of β-tubulin. Moreover, trafficking of secretory vesicles and MVBs was increased in TTLL4plus cells. EVs derived from TTLL4plus cells promote adhesion of MDA-MB231 and MDA-MB468 cells to hCMEC/D3 cells and increase permeability of hCMEC/D3 cell layer. CONCLUSIONS These data suggest that TTLL4-mediated microtubule polyglutamylation alters exosome homeostasis by regulating trafficking of MVBs. The TTLL4plus-derived EVs may provide a pre-metastatic niche for breast cancer cells by manipulating endothelial cells of the BBB.
Collapse
Affiliation(s)
- Julia Arnold
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Juliana Schattschneider
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility Morphology und Electron Microscopy, Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Marcus Nalaskowski
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Block MR, Brunner M, Ziegelmeyer T, Lallemand D, Pezet M, Chevalier G, Rondé P, Gauthier-Rouviere C, Wehrle-Haller B, Bouvard D. The mechano-sensitive response of β1 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. J Biol Chem 2020; 295:13474-13487. [PMID: 32690605 DOI: 10.1074/jbc.ra120.013503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, β1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.
Collapse
Affiliation(s)
- Marc R Block
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Molly Brunner
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Théo Ziegelmeyer
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Genevieve Chevalier
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Philippe Rondé
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Strasbourg, France
| | - Cécile Gauthier-Rouviere
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Daniel Bouvard
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France.
| |
Collapse
|
20
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
21
|
Belabed M, Mauvais FX, Maschalidi S, Kurowska M, Goudin N, Huang JD, Fischer A, de Saint Basile G, van Endert P, Sepulveda FE, Ménasché G. Kinesin-1 regulates antigen cross-presentation through the scission of tubulations from early endosomes in dendritic cells. Nat Commun 2020; 11:1817. [PMID: 32286311 PMCID: PMC7156633 DOI: 10.1038/s41467-020-15692-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/25/2020] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) constitute a specialized population of immune cells that present exogenous antigen (Ag) on major histocompatibility complex (MHC) class I molecules to initiate CD8 + T cell responses against pathogens and tumours. Although cross-presentation depends critically on the trafficking of Ag-containing intracellular vesicular compartments, the molecular machinery that regulates vesicular transport is incompletely understood. Here, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in their DCs exhibit a major impairment in cross-presentation and thus a poor in vivo anti-tumour response. We find that kinesin-1 critically regulates antigen cross-presentation in DCs, by controlling Ag degradation, the endosomal pH, and MHC-I recycling. Mechanistically, kinesin-1 appears to regulate early endosome maturation by allowing the scission of endosomal tubulations. Our results highlight kinesin-1’s role as a molecular checkpoint that modulates the balance between antigen degradation and cross-presentation. Kinesin-1 is a motor protein transporting cargo along microtubules. Here the authors show that kinesin-1 is required for antigen cross-presentation and coordinates endosome scission from early endosomes to allow sorting internalized cargoes towards the recycling endosomal or lysosomal compartments.
Collapse
Affiliation(s)
- Meriem Belabed
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - François-Xavier Mauvais
- Université de Paris, INSERM, U1151, Institut Necker Enfants Malades; Université de Paris; CNRS, UMR8253, F-75015, Paris, France
| | - Sophia Maschalidi
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Mathieu Kurowska
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Nicolas Goudin
- Cell Imaging Facility, Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alain Fischer
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.,Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015, Paris, France.,Collège de France, F-75005, Paris, France
| | - Geneviève de Saint Basile
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France
| | - Peter van Endert
- Université de Paris, INSERM, U1151, Institut Necker Enfants Malades; Université de Paris; CNRS, UMR8253, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.,Centre national de la recherche scientifique (CNRS), F-75015, Paris, France
| | - Gaël Ménasché
- Université de Paris, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015, Paris, France.
| |
Collapse
|
22
|
van der Wal T, Lambooij JP, van Amerongen R. TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. PLoS One 2020; 15:e0227435. [PMID: 31961879 PMCID: PMC6974163 DOI: 10.1371/journal.pone.0227435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt/ß-catenin signalling is crucial for maintaining the balance between cell proliferation and differentiation, both during tissue morphogenesis and in tissue maintenance throughout postnatal life. Whereas the signalling activities of the core Wnt/ß-catenin pathway components are understood in great detail, far less is known about the precise role and regulation of the many different modulators of Wnt/ß-catenin signalling that have been identified to date. Here we describe TMEM98, a putative transmembrane protein of unknown function, as an interaction partner and regulator of the GSK3-binding protein FRAT2. We show that TMEM98 reduces FRAT2 protein levels and, accordingly, inhibits the FRAT2-mediated induction of ß-catenin/TCF signalling. We also characterize the intracellular trafficking of TMEM98 in more detail and show that it is recycled between the plasma membrane and the Golgi. Together, our findings not only reveal a new layer of regulation for Wnt/ß-catenin signalling, but also a new biological activity for TMEM98.
Collapse
Affiliation(s)
- Tanne van der Wal
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan-Paul Lambooij
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
23
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
24
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
25
|
A new role of anterograde motor Kif5b in facilitating large clathrin-coated vesicle mediated endocytosis via regulating clathrin uncoating. Cell Discov 2019; 4:65. [PMID: 30603101 PMCID: PMC6305376 DOI: 10.1038/s41421-018-0067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
Kif5b-driven anterograde transport and clathrin-mediated endocytosis (CME) are responsible for opposite intracellular trafficking, contributing to plasma membrane homeostasis. However, whether and how the two trafficking processes coordinate remain unclear. Here, we show that Kif5b directly interacts with clathrin heavy chain (CHC) at a region close to that for uncoating catalyst (Hsc70) and preferentially localizes on relatively large clathrin-coated vesicles (CCVs). Uncoating in vitro is decreased for CCVs from the cortex of kif5b conditional knockout (mutant) mouse and facilitated by adding Kif5b fragments containing CHC-binding site, while cell peripheral distribution of CHC or Hsc70 keeps unaffected by Kif5b depletion. Furthermore, cellular entry of vesicular stomatitis virus that internalizes into large CCV is inhibited by Kif5b depletion or introducing a dominant-negative Kif5b fragment. These findings showed a new role of Kif5b in regulating large CCV-mediated CME via affecting CCV uncoating, indicating Kif5b as a molecular knot connecting anterograde transport to CME.
Collapse
|
26
|
Mohan N, Sorokina EM, Verdeny IV, Alvarez AS, Lakadamyali M. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion. J Cell Biol 2018; 218:632-643. [PMID: 30567713 PMCID: PMC6363446 DOI: 10.1083/jcb.201807124] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Detyrosinated microtubules constitute a minor subpopulation of microtubules in epithelial cells. Lysosomes are specifically enriched on detyrosinated microtubules through a kinesin-1–dependent mechanism. This spatial constraining of lysosomes to a subset of microtubules enables them to efficiently encounter and fuse with autophagosomes to initiate autophagy. Microtubule post-translational modifications impart functional diversity to microtubules by affecting their dynamics, organization, and interaction with proteins. Using super-resolution microscopy, we show that only a small subpopulation of microtubules are detyrosinated in epithelial cells, while acetylated and tyrosinated microtubules comprise the majority of all microtubules. Surprisingly, lysosomes are enriched by approximately threefold on detyrosinated microtubules. Further, their motility on detyrosinated microtubules is impaired, showing shorter runs and more frequent and longer pauses. Lysosome enrichment is mediated through a kinesin-1–dependent mechanism, since knocking down this motor abolishes enrichment. Finally, correlative live-cell and super-resolution microscopy showed that lysosomes interact with autophagosomes on detyrosinated microtubules. Removal of detyrosinated microtubules or knockdown of kinesin-1 leads to a decrease in the percentage of autolysosomes, a fusion intermediate of autophagosomes and lysosomes. Taken together, our data reveal a new role of detyrosinated microtubules as hubs that spatially concentrate lysosomes on a small subset of microtubules and facilitate their interaction and fusion with autophagosomes to initiate autophagy.
Collapse
Affiliation(s)
- Nitin Mohan
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elena M Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ione Vilanova Verdeny
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel Sandoval Alvarez
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA .,Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
27
|
Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis. Int J Mol Sci 2018; 19:ijms19092575. [PMID: 30200238 PMCID: PMC6163544 DOI: 10.3390/ijms19092575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
RAB5 is a small GTPase that belongs to the wide family of Rab proteins and localizes on early endosomes. In its active GTP-bound form, RAB5 recruits downstream effectors that, in turn, are responsible for distinct aspects of early endosome function, including their movement along microtubules. We previously reported that, at the onset of mitosis, RAB5positive vesicles cluster around the spindle poles and, during metaphase, move along spindle microtubules. RNAi-mediated depletion of the three RAB5 isoforms delays nuclear envelope breakdown at prophase and severely affects chromosome alignment and segregation. Here we show that depletion of the Kinesin-2 motor complex impairs long-range movement of RAB5 endosomes in interphase cells and prevents localization of these vesicles at the spindle during metaphase. Similarly to the effect caused by RAB5 depletion, functional ablation of Kinesin-2 delays nuclear envelope breakdown resulting in prolonged prophase. Altogether these findings suggest that endosomal transport at the onset of mitosis is required to control timing of nuclear envelope breakdown.
Collapse
|
28
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
29
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
30
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
31
|
Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division. ENDOCYTOSIS AND SIGNALING 2018; 57:301-329. [DOI: 10.1007/978-3-319-96704-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Chaudhary AR, Berger F, Berger CL, Hendricks AG. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 2017; 19:111-121. [PMID: 29077261 DOI: 10.1111/tra.12537] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single-molecule assays indicate that kinesin-1 is more strongly inhibited than kinesin-2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin-1, kinesin-2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus-end in a dose-dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin-1, kinesin-2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor-specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus- and minus-end directed transport.
Collapse
Affiliation(s)
| | - Florian Berger
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
33
|
Aoyama M, Yoshioka Y, Arai Y, Hirai H, Ishimoto R, Nagano K, Higashisaka K, Nagai T, Tsutsumi Y. Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. J Control Release 2017; 260:183-193. [DOI: 10.1016/j.jconrel.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 02/04/2023]
|
34
|
Goo MS, Sancho L, Slepak N, Boassa D, Deerinck TJ, Ellisman MH, Bloodgood BL, Patrick GN. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 2017. [PMID: 28630145 PMCID: PMC5551717 DOI: 10.1083/jcb.201704068] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
How are membrane proteins in distal dendrites degraded by the lysosome? Goo et al. provide the first evidence that lysosomes are positioned locally at dendritic spines in an activity-dependent manner to facilitate the remodeling of synapses through local degradation. In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins.
Collapse
Affiliation(s)
- Marisa S Goo
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Laura Sancho
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Natalia Slepak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA.,Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Salk Institute for Biological Studies, San Diego, CA
| | - Brenda L Bloodgood
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
35
|
Arumugam S, Kaur A. The Lipids of the Early Endosomes: Making Multimodality Work. Chembiochem 2017; 18:1053-1060. [PMID: 28374483 DOI: 10.1002/cbic.201700046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 01/21/2023]
Abstract
Early endosomes are dynamic intracellular compartments that fuse with incoming endocytic carrier vesicles and associated cargoes from the plasma membrane. It has been long known that the chemical structures of lipids confer striking properties and rich biochemistry on bilayers. Although the organisational principles of the plasma membrane are relatively better understood, understanding endosomal membranes has been challenging. It has become increasingly apparent that endosomal membranes, because of their lipid compositions and interactions, use distinct lipid chemistries. We discuss the biochemical and biophysical phenomena in play at the early endosomal membrane. We focus on cholesterol, phosphoinositides, and phosphatidylserine and their clear roles in endosome functions. We discuss the various principles and mechanisms underpinning how these lipids are implicated at the functional level in the working of endosomes, and we summarise early endosomes as a multimodal organelle employing distinct lipid-specific mechanisms.
Collapse
Affiliation(s)
- Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Amandeep Kaur
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
36
|
Hendricks AG, Goldman YE. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells. Methods Mol Biol 2017; 1486:537-552. [PMID: 27844443 DOI: 10.1007/978-1-4939-6421-5_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.
Collapse
Affiliation(s)
- Adam G Hendricks
- Department of Bioengineering, McGill University, 817 Sherbrooke ST. West, 270 Macdonald Engineering, Montreal, QC, Canada, H3A 0C3.
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci 2016; 129:4329-4339. [PMID: 27799357 DOI: 10.1242/jcs.196287] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysosomes have been classically considered terminal degradative organelles, but in recent years they have been found to participate in many other cellular processes, including killing of intracellular pathogens, antigen presentation, plasma membrane repair, cell adhesion and migration, tumor invasion and metastasis, apoptotic cell death, metabolic signaling and gene regulation. In addition, lysosome dysfunction has been shown to underlie not only rare lysosome storage disorders but also more common diseases, such as cancer and neurodegeneration. The involvement of lysosomes in most of these processes is now known to depend on the ability of lysosomes to move throughout the cytoplasm. Here, we review recent findings on the mechanisms that mediate the motility and positioning of lysosomes, and the importance of lysosome dynamics for cell physiology and pathology.
Collapse
Affiliation(s)
- Jing Pu
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tal Keren-Kaplan
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep 2016; 6:35376. [PMID: 27752092 PMCID: PMC5067517 DOI: 10.1038/srep35376] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
Photodynamic therapy is an emerging cancer treatment that is particularly adapted for localized malignant tumor. The phototherapeutic agent is generally injected in the bloodstream and circulates in the whole organism as a chemotherapeutic agent, but needs light triggering to induce localized therapeutic effects. We found that one of the responses of in vitro and in vivo cancer cells to photodynamic therapy was a massive production and emission of extracellular vesicles (EVs): only 1 hour after the photo-activation, thousands of vesicles per cell were emitted in the extracellular medium. A similar effect has been found after treatment with Doxorubicin (chemotherapy), but far less EVs were produced, even 24 hours after the treatment. Furthermore, we found that the released EVs could transfer extracellular membrane components, drugs and even large intracellular objects to naive target cells. In vivo, photodynamic treatment and chemotherapy increased the levels of circulating EVs several fold, confirming the vast induction of cancer cell vesiculation triggered by anti-cancer therapies.
Collapse
|
39
|
Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment. J Neurosci 2016; 36:4421-33. [PMID: 27098687 DOI: 10.1523/jneurosci.3219-15.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. SIGNIFICANCE STATEMENT Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity.
Collapse
|
40
|
Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y, Wilhelm C. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS NANO 2016; 10:7627-38. [PMID: 27419260 DOI: 10.1021/acsnano.6b02876] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, and we evidence a near-complete nanoparticle degradation over a month of tissue maturation, as confirmed by electron microscopy. Remarkably, the same massive degradation was measured at the endosome level by single-endosome nanomagnetophoretic tracking in cell-free endosomal extract. Interestingly, this spectacular nanoparticle breakdown barely affected iron homeostasis: only the genes coding for ferritin light chain (iron loading) and ferroportin (iron export) were up-regulated 2-fold by the degradation process. Besides, the magnetic and tissular tools developed here allow screening of the biostability of magnetic nanomaterials, as demonstrated with iron oxide nanocubes and nanodimers. Hence, stem-cell spheroids and purified endosomes are suitable models needed to monitor nanoparticle degradation in conjunction with magnetic, chemical, and biological characterizations at the cellular scale, quantitatively, in the long term, in situ, and in real time.
Collapse
Affiliation(s)
- François Mazuel
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Ana Espinosa
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Karine Desboeufs
- LISA, CNRS UMR 7583, Université Paris-Diderot and Université Paris-Est Créteil, 94400 Créteil, France
| | - Aude Michel
- Sorbonne Universités, Physicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), UMR 8234, Université Pierre et Marie Curie UPMC-CNRS, 75252 Cedex 05 Paris, France
| | | | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| |
Collapse
|
41
|
Miller KG. Keeping Neuronal Cargoes on the Right Track: New Insights into Regulators of Axonal Transport. Neuroscientist 2016; 23:232-250. [PMID: 27154488 DOI: 10.1177/1073858416648307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In neurons, a single motor (dynein) transports large organelles as well as synaptic and dense core vesicles toward microtubule minus ends; however, it is unclear why dynein appears more active on organelles, which are generally excluded from mature axons, than on synaptic and dense core vesicles, which are maintained at high levels. Recent studies in Zebrafish and Caenorhabditis elegans have shown that JIP3 promotes dynein-mediated retrograde transport to clear some organelles (lysosomes, early endosomes, and Golgi) from axons and prevent their potentially harmful accumulation in presynaptic regions. A JIP3 mutant suppressor screen in C. elegans revealed that JIP3 promotes the clearance of organelles from axons by blocking the action of the CSS system (Cdk5, SAD Kinase, SYD-2/Liprin). A synthesis of results in vertebrates with the new findings suggests that JIP3 blocks the CSS system from disrupting the connection between dynein and organelles. Most components of the CSS system are enriched at presynaptic active zones where they normally contribute to maintaining optimal levels of captured synaptic and dense core vesicles, in part by inhibiting dynein transport. The JIP3-CSS system model explains how neurons selectively regulate a single minus-end motor to exclude specific classes of organelles from axons, while at the same time ensuring optimal levels of synaptic and dense core vesicles.
Collapse
Affiliation(s)
- Kenneth G Miller
- 1 Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
42
|
Tavakol S, Mousavi SMM, Tavakol B, Hoveizi E, Ai J, Sorkhabadi SMR. Mechano-Transduction Signals Derived from Self-Assembling Peptide Nanofibers Containing Long Motif of Laminin Influence Neurogenesis in In-Vitro and In-Vivo. Mol Neurobiol 2016; 54:2483-2496. [DOI: 10.1007/s12035-016-9836-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
|
43
|
Wu S, Gallagher KL. The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:396-409. [PMID: 25124761 DOI: 10.1111/tpj.12640] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 05/08/2023]
Abstract
Plant cells are able to convey positional and developmental information between cells through the direct transfer of transcription factors. One well studied example of this is the SHORT-ROOT (SHR) protein, which moves from the stele into the neighboring ground tissue layer to specify endodermis. While it has been shown that SHR trafficking relies on plasmodesmata (PD), and interaction with the SHR INTERACTING EMBRYONIC LETHAL (SIEL) protein, little information is known about how SHR trafficking is controlled or how SIEL promotes the movement of SHR. Here we show that SHR can move from multiple different cell types in the root. Analysis of subcellular localization indicates that in the cytoplasm of root or leaf cells, SHR localizes to endosomes in a SIEL-dependent manner. Interference of early and late endosomes disrupts intercellular movement of SHR. Our findings reveal an essential role for the plant endomembrane, independent of secretion, in the intercellular trafficking of SHR.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
44
|
Ducharme NA, Ham AJL, Lapierre LA, Goldenring JR. Rab11-FIP2 influences multiple components of the endosomal system in polarized MDCK cells. CELLULAR LOGISTICS 2014; 1:57-68. [PMID: 21686255 DOI: 10.4161/cl.1.2.15289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 12/27/2022]
Abstract
The Rab11 Family Interacting Proteins (Rab11-FIPs) are hypothesized to regulate sequential steps in the apical recycling and transcytotic pathways of polarized epithelial cells. Previous studies have suggested that Rab11-FIP proteins assemble into multi-protein complexes regulating plasma membrane recycling. Rab11-FIP2 interacts with both myosin Vb and Rab11. Recent investigations have noted that that Rab11-FIP2 mutants [Rab11-FIP2(129-512), also designated Rab11-FIP2(ΔC2) and Rab11-FIP2(S229A, R413G), also designated Rab11-FIP2(SARG)], are potent inhibitors of transcytosis in polarized MDCK cells. Interestingly, Rab11-FIP2(ΔC2), but not Rab11-FIP2(SARG), also altered the morphology of the EEA-1 positive early endosomal compartment. These findings suggested that Rab11-FIP2 mutants could differentiate different points along the recycling pathway. We therefore sought to investigate whether Rab11-FIP2 is a general regulator of the early endosomal system. Both Rab11-FIP2 mutants altered the localization and co-localized with dynein heavy chain. In contrast, both clathrin heavy chain and AP-1 accumulated with membranes containing Rab11-FIP2(SARG), but not with Rab11-FIP2(ΔC2). Expression of Rab11-FIP2(ΔC2), but not Rab11-FIP2(SARG), caused clustering of early endosomal markers Rab5b, Epsin 4 and IQGAP1, around a collapsed Rab11-FIP2 containing membranous cisternum. Interestingly, neither Rab11-FIP2 mutant had any effect on the distribution of Rab5a, a classical early endosome marker. The results support the view that Rab11-FIP2 may influence microtubule-dependent centripetal movement of subsets of early endosomes as well as processing through the common and recycling endosomal systems.
Collapse
Affiliation(s)
- Nicole A Ducharme
- Departments of Surgery and Cell & Developmental Biology; Vanderbilt University School of Medicine; Nashville, TN USA
| | | | | | | |
Collapse
|
45
|
SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2014; 111:15432-7. [PMID: 25301900 DOI: 10.1073/pnas.1408327111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the increasing number of regulatory proteins identified in clathrin-independent endocytic (CIE) pathways, our understanding of the exact functions of these proteins and the sequential manner in which they function remains limited. In this study, using the Caenorhabditis elegans intestine as a model, we observed a unique structure of interconnected endosomal tubules, which is required for the basolateral recycling of several CIE cargoes including hTAC, GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein complex exocyst. Depleting SEC-10 and several other exocyst components disrupted the endosomal tubules into various ring-like structures. An epistasis analysis further suggested that SEC-10 operates at the intermediate step between early endosomes and recycling endosomes. The endosomal tubules were also sensitive to inactivation of the Rab GTPase RAB-10 and disruption of microtubules. Taken together, our data suggest that SEC-10 coordinates with RAB-10 and microtubules to form the endosomal tubular network for efficient recycling of particular CIE cargoes.
Collapse
|
46
|
McHarg S, Hopkins G, Lim L, Garrod D. Down-regulation of desmosomes in cultured cells: the roles of PKC, microtubules and lysosomal/proteasomal degradation. PLoS One 2014; 9:e108570. [PMID: 25291180 PMCID: PMC4188543 DOI: 10.1371/journal.pone.0108570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds.
Collapse
Affiliation(s)
- Selina McHarg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Gemma Hopkins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lusiana Lim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Kornilova ES. Receptor-mediated endocytosis and cytoskeleton. BIOCHEMISTRY (MOSCOW) 2014; 79:865-78. [DOI: 10.1134/s0006297914090041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Frasca G, Du V, Bacri JC, Gazeau F, Gay C, Wilhelm C. Magnetically shaped cell aggregates: from granular to contractile materials. SOFT MATTER 2014; 10:5045-5054. [PMID: 24710948 DOI: 10.1039/c4sm00202d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent decades, significant advances have been made in the description and modelling of tissue morphogenesis. By contrast, the initial steps leading to the formation of a tissue structure, through cell-cell adhesion, have so far been described only for small numbers of interacting cells. Here, through the use of remote magnetic forces, we succeeded at creating cell aggregates of half million cells, instantaneously and for several cell types, not only those known to form spheroids. This magnetic compaction gives access to the cell elasticity, found in the range of 800 Pa. The magnetic force can be removed at any time, allowing the cell mass to evolve spontaneously thereafter. The dynamics of contraction of these cell aggregates just after their formation (or, in contrast, their spreading for non-interacting monocyte cells) provides direct information on cell-cell interactions and allows retrieving the adhesion energy, in between 0.05 and 2 mJ m(-2), depending on the cell type tested, and in the case of cohesive aggregates. Thus, we show, by probing a large number of cell types, that cell aggregates behave like complex materials, undergoing a transition from a wet granular to contractile network, and that this transition is controlled by cell-cell interactions.
Collapse
Affiliation(s)
- G Frasca
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris 7, Paris, France.
| | | | | | | | | | | |
Collapse
|
49
|
Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One 2014; 9:e96922. [PMID: 24810588 PMCID: PMC4014599 DOI: 10.1371/journal.pone.0096922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 12/18/2022] Open
Abstract
Infection of non-enveloped polyomaviruses depends on an intact microtubular network. Here we focus on mouse polyomavirus (MPyV). We show that the dynamics of MPyV cytoplasmic transport reflects the characteristics of microtubular motor-driven transport with bi-directional saltatory movements. In cells treated with microtubule-disrupting agents, localization of MPyV was significantly perturbed, the virus was retained at the cell periphery, mostly within membrane structures resembling multicaveolar complexes, and at later times post-infection, only a fraction of the virus was found in Rab7-positive endosomes and multivesicular bodies. Inhibition of cytoplasmic dynein-based motility by overexpression of dynamitin affected perinuclear translocation of the virus, delivery of virions to the ER and substantially reduced the numbers of infected cells, while overexpression of dominant-negative form of kinesin-1 or kinesin-2 had no significant impact on virus localization and infectivity. We also found that transport along microtubules was important for MPyV-containing endosome sequential acquisition of Rab5, Rab7 and Rab11 GTPases. However, in contrast to dominant-negative mutant of Rab7 (T22N), overexpression of dominant-negative mutant Rab11 (S25N) did not affect the virus infectivity. Altogether, our study revealed that MPyV cytoplasmic trafficking leading to productive infection bypasses recycling endosomes, does not require the function of kinesin-1 and kinesin-2, but depends on functional dynein-mediated transport along microtubules for translocation of the virions from peripheral, often caveolin-positive compartments to late endosomes and ER – a prerequisite for efficient delivery of the viral genome to the nucleus.
Collapse
|
50
|
Penjweini R, Smisdom N, Deville S, Ameloot M. Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:855-65. [DOI: 10.1016/j.bbamcr.2014.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/18/2013] [Accepted: 01/16/2014] [Indexed: 01/31/2023]
|