1
|
Kwathai M, Taemaitree L, Roytrakul S, Daduang S, Klaynongsruang S, Jangpromma N. Siamese crocodile serum hydrolysate peptides: Potent tyrosinase inhibitors and melanogenesis regulators for hyperpigmentation. Int J Biol Macromol 2025; 303:140582. [PMID: 39900149 DOI: 10.1016/j.ijbiomac.2025.140582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Melanin safeguards cells from UV radiation, while also giving them colour (pigmentation). However, excessive melanin production (hyperpigmentation) can cause unwanted side effects such as skin freckles and food browning. As a result, there is a desire to control and in particular reduce melanin production. This study aims to identify bioactive peptides derived from Crocodylus siamensis serum that inhibit tyrosinase, which is a key enzyme in melanin production. We demonstrate hydrolysis of Crocodylus siamensis serum produces peptides that are potent inhibitors of tyrosinase. We demonstrate that alkaline hydrolysis is the most effective method (IC50 = 0.4323 ± 0.049 μg/μL) and use peptidomic analysis to identify two peptides, HG8 (HIVGRGAG) and RI10 (RNIKASHILI), that are as effective alone as the serum hydrolysate. Our results show that both peptides could inhibit cellular tyrosinase activity and reduce melanin accumulation by down-regulating the expression levels of MITF, TYR, TRP1 and TRP2, which are key regulators of melanogenesis. The peptides also reduce the expression levels of Rab27A, MLPH, Myosin Va, Rab17 and gp100, suggesting they suppress melanosome maturation and transport. Furthermore, both peptides show antioxidant properties in B16F10 cells. These findings hold significant promise for the development of tyrosinase inhibitory peptides as therapeutic agents for hyperpigmentation.
Collapse
Affiliation(s)
- Mintra Kwathai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Davis SS, Bassaro LR, Tuma PL. MAL2 and rab17 selectively redistribute invadopodia proteins to laterally-induced protrusions in hepatocellular carcinoma cells. Mol Biol Cell 2025; 36:ar26. [PMID: 39813085 PMCID: PMC11974961 DOI: 10.1091/mbc.e24-09-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translate into how they function in the epithelial-to-mesenchymal transition and/or the mesenchymal-to-epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17). Like MAL2, we found that rab17 expression led to the formation of actin- and cholesterol-dependent protrusions that correlated to its anti-oncogenic properties. MAL2 or rab17 selectively promoted the redistribution of invadopodia proteins to the protrusion tips that correlated with decreased matrix degradation. MAL2-mediated redistribution required a putative EVH1 recognition motif whereas rab17-mediated redistribution was GTP dependent. We also determined that MAL2 and rab17 interaction was GTP dependent, but not dependent on the MAL2 EVH1 recognition motifs, and that protrusions formed by their combined expression shared features of those induced by either alone. Finally, we report that MAL2 or rab17 can redirect trafficking of newly synthesized membrane proteins from the Golgi to the induced protrusions and that the EVH1 recognition motif was required in MAL2 and that rab17-mediated trafficking was GTP dependent.
Collapse
Affiliation(s)
- Saniya S. Davis
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Lauren. R. Bassaro
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
3
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
4
|
Zhang W, Luosang C, Yuan C, Guo T, Wei C, Liu J, Lu Z. Selection signatures of wool color in Gangba sheep revealed by genome-wide SNP discovery. BMC Genomics 2024; 25:606. [PMID: 38886664 PMCID: PMC11181613 DOI: 10.1186/s12864-024-10464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cuicheng Luosang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
5
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Cao Y, Lv J, Tan Y, Chen R, Jiang X, Meng D, Zou K, Pan M, Tang L. Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity and melanosome transport. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117673. [PMID: 38158096 DOI: 10.1016/j.jep.2023.117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.
Collapse
Affiliation(s)
- Yan Cao
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Yan Tan
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ruolin Chen
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xiaoxue Jiang
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Min Pan
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
7
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
8
|
Lv J, Zhang X, An X, Cao Y, Meng D, Zou K, Gao R, Zhang R. The inhibition of VDAC1 oligomerization promotes pigmentation through the CaMK-CRTCs/CREB-MITF pathway. Exp Cell Res 2024; 434:113874. [PMID: 38070860 DOI: 10.1016/j.yexcr.2023.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.
Collapse
Affiliation(s)
- Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, China; Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ximei Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
| | - Yan Cao
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Rongyin Gao
- Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ruzhi Zhang
- Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| |
Collapse
|
9
|
Du H, Li S, Lu J, Tang L, Jiang X, He X, Liang J, Liao X, Cui T, Huang Y, Liu H. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers. BURNS & TRAUMA 2023; 11:tkad020. [PMID: 37605780 PMCID: PMC10440157 DOI: 10.1093/burnst/tkad020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 08/23/2023]
Abstract
Background Angiogenesis is crucial in diabetic wound healing and is often impaired in diabetic foot ulcers (DFUs). Human dermal microvascular endothelial cells (HDMECs) are vital components in dermal angiogenesis; however, their functional and transcriptomic characteristics in DFU patients are not well understood. This study aimed to comprehensively analyse HDMECs from DFU patients and healthy controls and find the potential regulator of angiogenesis in DFUs. Methods HDMECs were isolated from skin specimens of DFU patients and healthy controls via magnetic-activated cell sorting. The proliferation, migration and tube-formation abilities of the cells were then compared between the experimental groups. Both bulk RNA sequencing (bulk-seq) and single-cell RNA-seq (scRNA-seq) were used to identify RAB17 as a potential marker of angiogenesis, which was further confirmed via weighted gene co-expression network analysis (WGCNA) and least absolute shrink and selection operator (LASSO) regression. The role of RAB17 in angiogenesis was examined through in vitro and in vivo experiments. Results The isolated HDMECs displayed typical markers of endothelial cells. HDMECs isolated from DFU patients showed considerably impaired tube formation, rather than proliferation or migration, compared to those from healthy controls. Gene set enrichment analysis (GSEA), fGSEA, and gene set variation analysis (GSVA) of bulk-seq and scRNA-seq indicated that angiogenesis was downregulated in DFU-HDMECs. LASSO regression identified two genes, RAB17 and CD200, as characteristic of DFU-HDMECs; additionally, the expression of RAB17 was found to be significantly reduced in DFU-HDMECs compared to that in the HDMECs of healthy controls. Overexpression of RAB17 was found to enhance angiogenesis, the expression of hypoxia inducible factor-1α and vascular endothelial growth factor A, and diabetic wound healing, partially through the mitogen-activated protein kinase/extracellular signal-regulated kinase signalling pathway. Conclusions Our findings suggest that the impaired angiogenic capacity in DFUs may be related to the dysregulated expression of RAB17 in HDMECs. The identification of RAB17 as a potential molecular target provides a potential avenue for the treatment of impaired angiogenesis in DFUs.
Collapse
Affiliation(s)
- Hengyu Du
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Shenghong Li
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Jinqiang Lu
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Lingzhi Tang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xiao Jiang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xi He
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Jiaji Liang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine, 134 Research Park Dr, Columbia, MO 65211, USA
| | - Yuesheng Huang
- Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology School of Medicine, and Department of Wound Repair, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, 518055, China
| | - Hongwei Liu
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| |
Collapse
|
10
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
11
|
Guo Y, Wu W, Yang X. Coordinated microRNA/mRNA Expression Profiles Reveal Unique Skin Color Regulatory Mechanisms in Chinese Giant Salamander (Andrias davidianus). Animals (Basel) 2023; 13:ani13071181. [PMID: 37048437 PMCID: PMC10093658 DOI: 10.3390/ani13071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Chinese giant salamander (Andrias davidianus) has been increasingly popular in the aquaculture market in China in recent years. In the breeding process of Andrias davidianus, we found that some albino individuals were extremely rare and could not be inherited stably, which severely limits their commercialization in the aquaculture market. In this study, we performed transcriptome and small RNA (sRNA) sequencing analyses in the skin samples of wild-type (WT) and albino (AL) Andrias davidianus. In total, among 5517 differentially expressed genes (DEGs), 2911 DEGs were down-regulated in AL, including almost all the key genes involved in melanin formation. A total of 25 miRNAs were differentially expressed in AL compared to WT, of which 17 were up-regulated. Through the integrated analysis, no intersection was found between the target genes of the differentially expressed miRNAs and the key genes for melanin formation. Gene Ontology (GO) and KEGG pathway analyses on DEGs showed that these genes involved multiple processes relevant to melanin synthesis and the key signal pathway MAPK. Interestingly, the transcription factors SOX10 and PAX3 and the Wnt signaling pathway that play a key role in other species were not included, while the other two transcription factors in the SOX family, SOX21 and SOX7, were included. After analyzing the key genes for melanin formation, it was interesting to note an alternative splicing form of the MITF in WT and a critical mutation of the SLC24A5 gene in AL, which might be the main reason for the skin color change of Andrias davidianus. The results contributed to understanding the molecular mechanism of skin pigmentation in Andrias davidianus and accelerating the acquisition process of individuals with specific body colors by genetic means.
Collapse
|
12
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
13
|
Cell Junction and Vesicle Trafficking-Mediated Melanosome/Melanin Transfer Are Involved in the Dynamic Transformation of Goldfish Carassius auratus Skin Color. Int J Mol Sci 2022; 23:ijms232012214. [PMID: 36293071 PMCID: PMC9603685 DOI: 10.3390/ijms232012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Goldfish are one of the most popular models for studying the genetic diversity of skin color. Transcriptome sequencing (RNA-seq) and whole genome bisulfate sequencing (WGBS) of skin tissues from the third filial (F3) cyan (CN), black (BK), and white (WH) goldfish were conducted to analyze the molecular mechanism of color transformation in fish. The RNA-seq yielded 56 Gb of clean data and 56,627 transcripts from nine skin samples. The DEGs (differentially expressed genes) were enriched in cell junction cellular components and the tight junction pathway. Ninety-five homologs of the claudin family were predicted and 16 claudins were identified in correlation with skin color transformation. WGBS yielded 1079 Gb of clean data from 15 samples. Both the DEGs and the DMRs (differentially methylated regions) in the BK_CN group were found to be enriched in cytoskeleton reorganization and vesicle trafficking. Masson staining and TEM (transmission electron microscopy) confirmed the varied distribution and processes of melanosome/melanin in skin tissues. Our results suggested that cytoskeleton reorganization, cell junction, and the vesicle trafficking system played key roles in the transfer of the melanosome/melanin, and it was the extracellular translocation rather than the biosynthesis or metabolism of the melanin process that resulted in the color transformation of cyan goldfish. The data will facilitate the understanding of the molecular mechanisms underlying dynamic skin color transformation in goldfish.
Collapse
|
14
|
An X, Lv J, Wang F. Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 2022; 932:175231. [PMID: 36038012 DOI: 10.1016/j.ejphar.2022.175231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Pterostilbene is a trans stilbene compound, which is an effective component of herbaceous plants such as Dalbergia woods and Vaccinium. Although pterostilbene has many uses in anti-inflammatory, anti-oxidant and anti-tumor, its whitening effect is drawing more and more attention, the mechanism of melanogenesis and melanosome transport still needs further study. In this research, we tried to further investigate how melanocyte melanogenesis is affected by pterostilbene and whether pterostilbene play a part in melanin transport. Our results showed that pterostilbene has a potent inhibitory effect on melanogenesis in B16F10 cells (3 μM, p < 0.001), in-vitro human skin (10 μM, p < 0.05) and zebrafish embryos (3 μM, p < 0.01). Besides, pterostilbene not only inhibited melanogenesis, but also inhibited melanocyte dendritic development and melanosome transport. Pterostilbene mainly plays a role by inhibiting cAMP/PKA/CREB signal pathway. After the cAMP/PKA/CREB signaling pathway was inhibited, tyrosinase activity and the expression of MITF, TYR, Rab27A, Rab17 and gp100 were decreased, which in turn suppressed melanogenesis, melanocyte dendritic development and melanosome transport. Our findings showed that pterostilbene can potently inhibit melanogenesis and melanosome transport, suggesting the applicability of pterostilbene in skin lightning. Therefore, a novel pharmacologic way to treat hyperpigmentation has been proposed.
Collapse
Affiliation(s)
- Xiaohong An
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Feifei Wang
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China.
| |
Collapse
|
15
|
Wang P, Sun X, Miao Q, Mi H, Cao M, Zhao S, Wang Y, Shu Y, Li W, Xu H, Bai D, Zhang Y. Novel genetic associations with five aesthetic facial traits: A genome-wide association study in the Chinese population. Front Genet 2022; 13:967684. [PMID: 36035146 PMCID: PMC9411802 DOI: 10.3389/fgene.2022.967684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The aesthetic facial traits are closely related to life quality and strongly influenced by genetic factors, but the genetic predispositions in the Chinese population remain poorly understood. Methods: A genome-wide association studies (GWAS) and subsequent validations were performed in 26,806 Chinese on five facial traits: widow’s peak, unibrow, double eyelid, earlobe attachment, and freckles. Functional annotation was performed based on the expression quantitative trait loci (eQTL) variants, genome-wide polygenic scores (GPSs) were developed to represent the combined polygenic effects, and single nucleotide polymorphism (SNP) heritability was presented to evaluate the contributions of the variants. Results: In total, 21 genetic associations were identified, of which ten were novel: GMDS-AS1 (rs4959669, p = 1.29 × 10−49) and SPRED2 (rs13423753, p = 2.99 × 10−14) for widow’s peak, a previously unreported trait; FARSB (rs36015125, p = 1.96 × 10−21) for unibrow; KIF26B (rs7549180, p = 2.41 × 10−15), CASC2 (rs79852633, p = 4.78 × 10−11), RPGRIP1L (rs6499632, p = 9.15 × 10−11), and PAX1 (rs147581439, p = 3.07 × 10−8) for double eyelid; ZFHX3 (rs74030209, p = 9.77 × 10−14) and LINC01107 (rs10211400, p = 6.25 × 10−10) for earlobe attachment; and SPATA33 (rs35415928, p = 1.08 × 10−8) for freckles. Functionally, seven identified SNPs tag the missense variants and six may function as eQTLs. The combined polygenic effect of the associations was represented by GPSs and contributions of the variants were evaluated using SNP heritability. Conclusion: These identifications may facilitate a better understanding of the genetic basis of features in the Chinese population and hopefully inspire further genetic research on facial development.
Collapse
Affiliation(s)
- Peiqi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinghan Sun
- Genomic & Phenomic Data Center, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Mi
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyi Wang
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| |
Collapse
|
16
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Wang HM, Qu LQ, Ng JPL, Zeng W, Yu L, Song LL, Wong VKW, Xia CL, Law BYK. Natural Citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153941. [PMID: 35114451 DOI: 10.1016/j.phymed.2022.153941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 5-demethylnobiletin is a natural polymethoxyflavone which is isolated from the extract of citrus fruits peels. It exhibits a broad spectrum of biological activities such as anti-cancer, anti-inflammatory, cardiovascular protective and neuroprotective effects, however, its effect in melanogenesis remains uninvestigated. PURPOSE Melanin synthesis is a very important biological process in curing disease such as vitiligo with depigmentation on the skin. In the current work, we aim to confirm the bioactivity and mechanism of 5-demethylnobiletin in stimulating melanogenesis. STUDY DESIGN To confirm the mechanistic role of 5-demethylnobiletin in enhancing melanogenesis, its effect on the activity of tyrosinase, together with the level of microphthalmia-associated transcription factor (MITF), Trp-1, Trp-2, melanocyte-specific marker protein PMEL17, Rab27a, Melanophilin and Myosin VA were studied in B16F10 melanoma cells. METHODS Multiple biological assays on melanogenesis-associated proteins such as melanin content detection, tyrosinase activity colorimetric assay, qPCR, western blot analysis, dual-luciferase reporter assay, cAMP activity assay and Fontana-Masson ammoniacal silver staining were used to confirm the role of 5-demethylnobiletin in stimulating melanin synthesis and the transportation of melanosomes. RESULTS As confirmed by multiple biological assays, 5-demethylnobiletin is found to stimulate dendrite structure formation in cells, melanin synthesis and the transportation of melanosomes, via inducing the phosphorylation of cAMP response element-binding protein (CREB) and increasing the intracellular levels of cAMP in vitro through the PKA-dependent pathway. CONCLUSION The findings suggested that 5-demethylnobiletin may be considered as a potential natural product candidate for patients with pigment disorder.
Collapse
Affiliation(s)
- Hui Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wu Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cheng Lai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510150, China.
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
18
|
Zhang M, Chiozzi RZ, Skerrett-Byrne DA, Veenendaal T, Klumperman J, Heck AJR, Nixon B, Helms JB, Gadella BM, Bromfield EG. High Resolution Proteomic Analysis of Subcellular Fractionated Boar Spermatozoa Provides Comprehensive Insights Into Perinuclear Theca-Residing Proteins. Front Cell Dev Biol 2022; 10:836208. [PMID: 35252197 PMCID: PMC8894813 DOI: 10.3389/fcell.2022.836208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
The perinuclear theca (PT) is a highly condensed, largely insoluble protein structure that surrounds the nucleus of eutherian spermatozoa. Recent reports have indicated that the PT unexpectedly houses several somatic proteins, such as core histones, which may be important post-fertilization during re-modelling of the male pronucleus, yet little is known regarding the overall proteomic composition of the PT. Here, we report the first in depth, label-free proteomic characterization of the PT of boar spermatozoa following the implementation of a long-established subcellular fractionation protocol designed to increase the detection of low abundance proteins. A total of 1,802 proteins were identified, a result that represents unparalleled depth of coverage for the boar sperm proteome and exceeds the entire annotated proteome of the Sus scrofa species so far. In the PT structure itself, we identified 813 proteins and confirmed the presence of previously characterized PT proteins including the core histones H2A, H2B, H3 and H4, as well as Ras-related protein Rab-2A (RAB2A) and Rab-2B (RAB2B) amongst other RAB proteins. In addition to these previously characterized PT proteins, our data revealed that the PT is replete in proteins critical for sperm-egg fusion and egg activation, including: Izumo family members 1–4 (IZUMO1-4) and phosphoinositide specific phospholipase ζ (PLCZ1). Through Ingenuity Pathway Analysis, we found surprising enrichment of endoplasmic reticulum (ER) proteins and the ER-stress response in the PT. This is particularly intriguing as it is currently held that the ER structure is lost during testicular sperm maturation. Using the String and Cytoscape tools to visualize protein-protein interactions revealed an intricate network of PT protein complexes, including numerous proteasome subunits. Collectively, these data suggest that the PT may be a unique site of cellular homeostasis that houses an abundance of protein degradation machinery. This fits with previous observations that the PT structure dissociates first within the oocyte post-fertilization. It remains to be explored whether proteasome subunits within the PT actively assist in the protein degradation of paternal cell structures post-fertilization and how aberrations in PT protein content may delay embryonic development.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Bart M. Gadella,
| | - Elizabeth G. Bromfield
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Barbonari S, D'Amore A, Palombi F, De Cesaris P, Parrington J, Riccioli A, Filippini A. RELEVANCE OF LYSOSOMAL Ca2+ SIGNALLING MACHINERY IN CANCER. Cell Calcium 2022; 102:102539. [DOI: 10.1016/j.ceca.2022.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
|
20
|
Lv J, Yang Y, Jia B, Li S, Zhang X, Gao R. The Inhibitory Effect of Curcumin Derivative J147 on Melanogenesis and Melanosome Transport by Facilitating ERK-Mediated MITF Degradation. Front Pharmacol 2021; 12:783730. [PMID: 34887767 PMCID: PMC8649847 DOI: 10.3389/fphar.2021.783730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The therapeutic use of curcumin and chemically modified curcumin (CMC) for suppressing melanogenesis and tyrosinase activity have been recognized. J147 is a modified version of curcumin with superior bioavailability and stability. However, there is no report about the effects of J147 on pigmentation in vitro and in vivo. In our studies, we investigated the hypopigmentary effects of J147 treatment on melanocytes and explored the underlying mechanism. The present studies suggested that J147 suppressed both basal and α-MSH-induced melanogenesis, as well as decreased melanocyte dendricity extension and melanosome transport. J147 played these roles mainly by activating the extracellular signal-regulated protein kinase (ERK) pathway. Once activated, it resulted in MITF degradation and further down-regulated the expression of tyrosinase, TRP-1, TRP-2, Myosin Va, Rab27a and Cdc42, ultimately inhibited melanin synthesis and melanosome transport. Furthermore, the hypopigmentary effects of J147 were demonstrated in vivo in a zebrafish model and UVB-induced hyperpigmentation model in brown guinea pigs. Our findings also suggested that J147 exhibited no cytotoxicity in vitro and in vivo. Taken together, these data confirmed that J147 may prove quite useful as a safer natural skin-whitening agent.
Collapse
Affiliation(s)
- Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, China.,Department of Pharmacy, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Yang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Bingyi Jia
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Siqi Li
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Ximei Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Rongyin Gao
- Department of Pharmacy, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
21
|
Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Mol Ecol 2021; 31:603-619. [PMID: 34704295 DOI: 10.1111/mec.16253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.
Collapse
Affiliation(s)
- Maybellene P Gamboa
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Benito-Martinez S, Salavessa L, Raposo G, Marks MS, Delevoye C. Melanin transfer and fate within keratinocytes in human skin pigmentation. Integr Comp Biol 2021; 61:1546-1555. [PMID: 34021340 DOI: 10.1093/icb/icab094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human skin and hair pigmentation play important roles in social behavior but also in photoprotection from the harmful effects of ultraviolet light. The main pigments in mammalian skin, the melanins, are synthesized within specialized organelles called melanosomes in melanocytes, which sit at the basal layer of the epidermis and the hair bulb. The melanins are then transferred from melanocytes to keratinocytes, where they accumulate perinuclearly in membrane-bound organelles as a "cap" above the nucleus. The mechanism of transfer, the nature of the pigmented organelles within keratinocytes, and the mechanism governing their intracellular positioning are all debated and poorly understood, but likely play an important role in the photoprotective properties of melanin in the skin. Here, we detail our current understanding of these processes and present a guideline for future experimentation in this area.
Collapse
Affiliation(s)
- Silvia Benito-Martinez
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Laura Salavessa
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| |
Collapse
|
24
|
Moreiras H, Seabra MC, Barral DC. Melanin Transfer in the Epidermis: The Pursuit of Skin Pigmentation Control Mechanisms. Int J Mol Sci 2021; 22:4466. [PMID: 33923362 PMCID: PMC8123122 DOI: 10.3390/ijms22094466] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which the pigment melanin is transferred from melanocytes and processed within keratinocytes to achieve skin pigmentation remain ill-characterized. Nevertheless, several models have emerged in the past decades to explain the transfer process. Here, we review the proposed models for melanin transfer in the skin epidermis, the available evidence supporting each one, and the recent observations in favor of the exo/phagocytosis and shed vesicles models. In order to reconcile the transfer models, we propose that different mechanisms could co-exist to sustain skin pigmentation under different conditions. We also discuss the limited knowledge about melanin processing within keratinocytes. Finally, we pinpoint new questions that ought to be addressed to solve the long-lasting quest for the understanding of how basal skin pigmentation is controlled. This knowledge will allow the emergence of new strategies to treat pigmentary disorders that cause a significant socio-economic burden to patients and healthcare systems worldwide and could also have relevant cosmetic applications.
Collapse
Affiliation(s)
| | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (H.M.); (M.C.S.)
| |
Collapse
|
25
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|
26
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
27
|
Lv J, An X, Jiang S, Yang Y, Song G, Gao R. Protoporphyrin IX Stimulates Melanogenesis, Melanocyte Dendricity, and Melanosome Transport Through the cGMP/PKG Pathway. Front Pharmacol 2020; 11:569368. [PMID: 33013408 PMCID: PMC7516199 DOI: 10.3389/fphar.2020.569368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Protoporphyrin IX (PPIX) is a heterocyclic organic compound that is the last intermediate in the heme biosynthetic pathway. PPIX, due to its photodynamic effects, is utilized in the treatment of skin diseases. Furthermore, PPIX has been utilized as a melanogenesis-stimulating agent in various studies. However, the exact function and mechanism underlying PPIX action in melanocytes remain to be elucidated. In the present study, we sought to further investigate how PPIX affects melanocyte melanogenesis, and whether PPIX is involved in melanin transport. Our findings demonstrated that PPIX increased melanocyte dendricity and melanosome transport, in addition to increasing melanogenesis. PPIX functions primarily by activating the guanylate cyclase (GC) and cyclic guanosine 3’, 5’-monophosphate/protein kinase G (cGMP/PKG) signaling pathways. Once activated, these pathways increase tyrosinase activity and the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2), myosin Va, melanophinin, Ras-related protein Rab-27A (Rab27a), and cell division cycle 42 (Cdc42), promoting melanogenesis, melanocyte dendricity, and melanosome transport. Furthermore, the melanogenic effects of PPIX were confirmed in vivo in a zebrafish model system. Our results indicate that PPIX is not cytotoxic and may, thus, be utilized as a pigmentation enhancer.
Collapse
Affiliation(s)
- Jinpeng Lv
- Department of Pharmacy, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Xiaohong An
- Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, China
| | - Songzhou Jiang
- Department of Pharmacy, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Ying Yang
- Department of Pharmacy, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Guoqiang Song
- Department of Pharmacy, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Rongyin Gao
- Department of Pharmacy, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
28
|
Taefehshokr N, Yin C, Heit B. Rab GTPases in the differential processing of phagocytosed pathogens versus efferocytosed apoptotic cells. Histol Histopathol 2020; 36:123-135. [PMID: 32990320 DOI: 10.14670/hh-18-252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phagocytosis is an important feature of innate immunity in which invading microorganisms are engulfed, killed and degraded - and in some immune cells, their antigens presented to adaptive immune system. A closely related process, efferocytosis, removes apoptotic cells, and is essential for the maintenance of homeostasis. Both phagocytosis and efferocytosis are tightly regulated processes that involve target recognition and uptake through specific receptors, followed by endolysosomal trafficking and processing of the internalized target. Central to the uptake and trafficking of these targets are the Rab family of small GTPases, which coordinate the engulfment and trafficking of both phagocytosed and efferocytosed materials through the endolysosomal system. Because of this regulatory function, Rab GTPases are often targeted by pathogens to escape phagocytosis. In this review, we will discuss the shared and differential roles of Rab GTPases in phagocytosis and efferocytosis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Charles Yin
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada. .,Associate Scientist, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
29
|
Dar KB, Bhat AH, Amin S, Anjum S, Reshi BA, Zargar MA, Masood A, Ganie SA. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Curr Cancer Drug Targets 2020; 19:430-448. [PMID: 30073927 DOI: 10.2174/1568009618666180803104631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Syed Anjum
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
30
|
Wall AA, Condon ND, Luo L, Stow JL. Rab8a localisation and activation by Toll-like receptors on macrophage macropinosomes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180151. [PMID: 30966999 DOI: 10.1098/rstb.2018.0151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macropinocytosis is a prevalent and essential pathway in macrophages where it contributes to anti-microbial responses and innate immune cell functions. Cell surface ruffles give rise to phagosomes and to macropinosomes as multi-functional compartments that contribute to environmental sampling, pathogen entry, plasma membrane turnover and receptor signalling. Rapid, high resolution, lattice light sheet imaging demonstrates the dynamic nature of macrophage ruffling. Pathogen-mediated activation of surface and endosomal Toll-like receptors (TLRs) in macrophages upregulates macropinocytosis. Here, using multiple forms of imaging and microscopy, we track membrane-associated, fluorescently-tagged Rab8a expressed in live macrophages, using a variety of cell markers to demonstrate Rab8a localization and its enrichment on early macropinosomes. Production of a novel biosensor and its use for quantitative FRET analysis in live cells, pinpoints macropinosomes as the site for TLR-induced activation of Rab8a. We have previously shown that TLR signalling, cytokine outputs and macrophage programming are regulated by the GTPase Rab8a with PI3 Kγ as its effector. Finally, we highlight another effector, the phosphatase OCRL, which is located on macropinosomes and interacts with Rab8a, suggesting that Rab8a may operate on multiple levels to modulate phosphoinositides in macropinosomes. These findings extend our understanding of macropinosomes as regulatory compartments for innate immune function in macrophages. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Adam A Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland , Brisbane, Queensland 4072 , Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland , Brisbane, Queensland 4072 , Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland , Brisbane, Queensland 4072 , Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland , Brisbane, Queensland 4072 , Australia
| |
Collapse
|
31
|
Ono S, Otomo A, Murakoshi S, Mitsui S, Sato K, Fukuda M, Hadano S. ALS2, the small GTPase Rab17-interacting protein, regulates maturation and sorting of Rab17-associated endosomes. Biochem Biophys Res Commun 2020; 523:908-915. [PMID: 31959474 DOI: 10.1016/j.bbrc.2019.12.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
Small GTPase Rab17 has been shown to regulate a wide range of physiological processes including cell migration in tumor cells and dendrite morphogenesis in neurons. However, molecular mechanism underlying Rab17-mediated intracellular trafficking is still unclear. To address this issue, we focused on Rab17-interacting protein ALS2, which was also known as a guanine nucleotide exchange factor (GEF) for Rab5, and investigated how ALS2 contributed to Rab17-associated membrane trafficking in cells. Rab17 was primarily localized to endosomal compartments, particularly to recycling endosomes, which was dependent on Rab11 expression. Upon Rac1 activation, Rab17 along with ALS2 was recruited to membrane ruffles and early endosomes in a Rab5 activity-independent manner. While RABGEF1, another Rab17-interacting Rab5 GEF, functioned as a GEF for Rab17, ALS2 did not possess such catalytic activity but merely interacted with Rab17. Importantly, ALS2 acted downstream of RABGEF1, regulating the maturation of Rab17-residing nascent endosomes to early endosome antigen 1 (EEA1)-positive early endosomes. Further, these Rab17-residing nascent endosomes were arisen via clathrin-independent endocytosis (CIE). Collectively, ALS2 plays a crucial role in the regulation of Rab17-associated endosomal trafficking and maturation, probably through their physical interaction, in cells.
Collapse
Affiliation(s)
- Suzuka Ono
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Shuji Murakoshi
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Shun Mitsui
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kai Sato
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
32
|
Lv J, Fu Y, Cao Y, Jiang S, Yang Y, Song G, Yun C, Gao R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp Dermatol 2019; 29:149-157. [PMID: 31785162 DOI: 10.1111/exd.14066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
Isoliquiritigenin (ISL), a flavonoid component from the hydrolysis products of licorice root. It has been reported that ISL inhibited melanogenesis by suppressing the tyrosinase activity in human melanocytes. Recently, ISL was found to induce melanin degradation in human epidermal keratinocytes. However, the role of ISL in pigmentation is not fully understood. In the current study, we aimed to investigate the effects of ISL on pigmentation, and further explored the underlying mechanism. Our results suggested that ISL suppressed basal and α-MSH-, ACTH- and UV-induced melanin synthesis, in addition to inhibiting melanocyte dendricity and melanosome transport. ISL played these roles mainly by activating the extracellular signal-regulated protein kinase pathway. Once activated, it induced microphthalmia-associated transcription factor degradation and decreased the expression of tyrosinase, TRP-1, DCT, Rab27a and Cdc42, finally inhibited melanogenesis, melanocyte dendricity and melanosome transport. Our findings suggested that ISL exhibited no cytotoxicity in our research, it may prove quite useful as a safer natural skin-whitening agent.
Collapse
Affiliation(s)
- Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China.,Shanghai Institute of Pharmaceutical Industry, Shanghai, China.,Yabang Medical Research Institute, Changzhou, China
| | - Ying Fu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yan Cao
- Department of Dermatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Songzhou Jiang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Ying Yang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Guoqiang Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Changjun Yun
- Changzhou Wujin People's Hospital, Changzhou, China
| | - Rongyin Gao
- Department of Pharmacy, The First people's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
33
|
Lv J, Fu Y, Gao R, Li J, Kang M, Song G, Yun C. Diazepam enhances melanogenesis, melanocyte dendricity and melanosome transport via the PBR/cAMP/PKA pathway. Int J Biochem Cell Biol 2019; 116:105620. [PMID: 31561018 DOI: 10.1016/j.biocel.2019.105620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Diazepam is a medicament of the benzodiazepine family and it typically produces a sedative effect. Researchers have revealed that diazepam can induce melanogenesis and produce dendrite-like structures in B16 melanoma cells. However, the associated mechanisms of melanogenesis and phenotypic alterations have mostly remained unknown. In this study, we determined the effects of diazepam on melanogenesis, cellular phenotypic alterations, the location of melanosomes and the expression of relevant proteins in melanocytes using Masson-Fontana ammoniacal silver staining, scanning electron microscopy, immunocytochemistry and western blot analysis. Our results collectively indicated that diazepam had a pivotal role in melanocytes by enhancing melanin synthesis, melanocyte dendricity, melanosome trafficking, and capture at the dendrite tips. These functions might be attributed to the fact that diazepam activated the peripheral benzodiazepine receptor (PBR). This increased intracellular levels of cAMP, which stimulated the phosphorylation of cAMP response element-binding (CREB). As a result, this increased the tyrosinase, microphthalmia-associated transcription factor (MITF), Rab27a, Myosin Va, Rab17 and Cdc42 expression. This caused melanogenesis and melanosome transport. Therefore, our findings may provide a potential strategy for treating anti-hypopigmentation disorders.
Collapse
Affiliation(s)
- Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China; Shanghai Institute of Pharmaceutical Industry, Shanghai 200000, China; Yabang Medical Research Institute, Changzhou 213000, China.
| | - Ying Fu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Rongyin Gao
- Department of Pharmacy, The first people's Hospital of Changzhou, The third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Jiawen Li
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Maofan Kang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Guoqiang Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213000, China
| | - Changjun Yun
- Changzhou Wujin People's Hospital, Changzhou 213000, China
| |
Collapse
|
34
|
Sato R, Okura T, Kawahara M, Takizawa N, Momose F, Morikawa Y. Apical Trafficking Pathways of Influenza A Virus HA and NA via Rab17- and Rab23-Positive Compartments. Front Microbiol 2019; 10:1857. [PMID: 31456775 PMCID: PMC6700264 DOI: 10.3389/fmicb.2019.01857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The envelope proteins of influenza A virus, hemagglutinin (HA) and neuraminidase (NA), play critical roles in viral entry to host cells and release from the cells, respectively. After protein synthesis, they are transported from the trans-Golgi network (TGN) to the apical plasma membrane (PM) and assembled into virus particles. However, the post-TGN transport pathways of HA and NA have not been clarified. Temporal study by confocal microscopy revealed that HA and NA colocalized soon after their synthesis, and relocated together from the TGN to the upper side of the cell. Using the Rab family protein, we investigated the post-TGN transport pathways of HA and NA. HA partially colocalized with AcGFP-Rab15, Rab17, and Rab23, but rarely with AcGFP-Rab11. When analyzed in cells stably expressing AcGFP-Rab, HA/NA colocalized with Rab15 and Rab17, markers of apical sorting and recycling endosomes, and later colocalized with Rab23, which distributes to the apical PM and endocytic vesicles. Overexpression of the dominant-negative (DN) mutants of Rab15 and Rab17, but not Rab23, significantly delayed HA transport to the PM. However, Rab23DN impaired cell surface expression of HA. Live-cell imaging revealed that NA moved rapidly with Rab17 but not with Rab15. NA also moved with Rab23 in the cytoplasm, but this motion was confined at the upper side of the cell. A fraction of HA was localized to Rab17 and Rab23 double-positive vesicles in the cytoplasm. Coimmunoprecipitation indicated that HA was associated with Rab17 and Rab23 in lipid raft fractions. When cholesterol was depleted by methyl-β-cyclodextrin treatment, the motion of NA and Rab17 signals ceased. These results suggest that HA and NA are incorporated into lipid raft microdomains and are cotransported to the PM by Rab17-positive and followed by Rab23-positive vesicles.
Collapse
Affiliation(s)
- Ryota Sato
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Okura
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Madoka Kawahara
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Naoki Takizawa
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Yuko Morikawa
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
35
|
Koike S, Yamasaki K, Yamauchi T, Shimada-Omori R, Tsuchiyama K, Aiba S. Toll-like receptor 2 utilizes RAB11A for melanosome transfer from melanocytes to keratinocytes. J Dermatol Sci 2019; 94:310-312. [PMID: 31079998 DOI: 10.1016/j.jdermsci.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022]
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoko Shimada-Omori
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
36
|
Guo D, Lui GYL, Lai SL, Wilmott JS, Tikoo S, Jackett LA, Quek C, Brown DL, Sharp DM, Kwan RYQ, Chacon D, Wong JH, Beck D, van Geldermalsen M, Holst J, Thompson JF, Mann GJ, Scolyer RA, Stow JL, Weninger W, Haass NK, Beaumont KA. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Int J Cancer 2019; 144:3070-3085. [PMID: 30556600 DOI: 10.1002/ijc.32064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023]
Abstract
Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Dajiang Guo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Goldie Y L Lui
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Siew Li Lai
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Shweta Tikoo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Louise A Jackett
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Darren L Brown
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Danae M Sharp
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Rain Y Q Kwan
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason H Wong
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - John F Thompson
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Richard A Scolyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jennifer L Stow
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Weninger
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
37
|
Zhong H, An X, Li Y, Cai M, Ahmad O, Shang J, Zhou J. Sodium tanshinone IIA silate increases melanin synthesis by activating the MAPK and PKA pathways and protects melanocytes from H2O2-induced oxidative stress. RSC Adv 2019; 9:18747-18757. [PMID: 35516905 PMCID: PMC9065168 DOI: 10.1039/c8ra09786k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is an intriguing depigmentation disorder that affects about 0.5–2% of the world population. In the past decade, first-line treatments of vitiligo have involved the use of calcineurin inhibitors and corticosteroids. Sodium tanshinone IIA sulfonate (STS) has been widely applied in the treatment of cardiovascular and cerebrovascular diseases in China. In the present study, the effect of STS on melanogenesis was confirmed in the B16F10 cells and zebrafish by direct observation. The prevention of hydrogen peroxide (H2O2)-induced oxidative stress has been proven to be beneficial to vitiligo patients, and STS that can protect the B16F10 cells against oxidative stress has been investigated in the present reversed study. Moreover, we found that pre-treatment with STS led to a concentration-dependent mitochondrial impairment and decreased cell apoptosis of the B16F10 cells in response to H2O2. In addition, we demonstrated that STS increased melanin synthesis in the B16F10 cells by activating the mitogen-activated protein kinase (MAPK) and protein kinase A (PKA) pathways. STS also increased the Cdc42 and KIF5b expression to stimulate the translocation of melanin. These results suggest that STS protects the B16F10 cells against H2O2-induced oxidative stress and exerts melanin synthesis activity in the B16F10 cells by activating the MAPK and PKA pathways; thus, it shows therapeutic potential for vitiligo. Vitiligo is an intriguing depigmentation disorder that affects about 0.5–2% of the world population.![]()
Collapse
Affiliation(s)
- Hui Zhong
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Xiaohong An
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yu Li
- Shanghai Key Laboratory of Crime Scene Evidence
- Shanghai Research Institute of Criminal Science and Technology
- Shanghai 200083
- China
| | - Minxuan Cai
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Owais Ahmad
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Jing Shang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|
38
|
Striz AC, Stephan AP, López-Coral A, Tuma PL. Rab17 regulates apical delivery of hepatic transcytotic vesicles. Mol Biol Cell 2018; 29:2887-2897. [PMID: 30256711 PMCID: PMC6249867 DOI: 10.1091/mbc.e18-07-0433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major focus for our laboratory is identifying the molecules and mechanisms that regulate basolateral-to-apical transcytosis in polarized hepatocytes. Our most recent studies have focused on characterizing the biochemical and functional properties of the small rab17 GTPase. We determined that rab17 is a monosumoylated protein and that this modification likely mediates selective interactions with the apically located syntaxin 2. Using polarized hepatic WIF-B cells exogenously expressing wild-type, dominant active/guanosine triphosphate (GTP)-bound, dominant negative/guanosine diphosphate (GDP)-bound, or sumoylation-deficient/K68R rab17 proteins, we confirmed that rab17 regulates basolateral-to-apical transcytotic vesicle docking and fusion with the apical surface. We further confirmed that transcytosis is impaired from the subapical compartment to the apical surface and that GTP-bound and sumoylated rab17 are likely required for apical vesicle docking. Because expression of the GTP-bound rab17 led to impaired transcytosis, whereas wild type had no effect, we further propose that rab17 GTP hydrolysis is required for vesicle delivery. We also determined that transcytosis of three classes of newly synthesized apical residents showed similar responses to rab17 mutant expression, indicating that rab17 is a general component of the transcytotic machinery required for apically destined vesicle docking and fusion.
Collapse
Affiliation(s)
- Anneliese C Striz
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Anna P Stephan
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Alfonso López-Coral
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
39
|
Villaseñor R, Schilling M, Sundaresan J, Lutz Y, Collin L. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis. Cell Rep 2018; 21:3256-3270. [PMID: 29241551 DOI: 10.1016/j.celrep.2017.11.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/08/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Transcytosis across the blood-brain barrier (BBB) regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs) remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab) sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab) sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, Switzerland
| | - Michael Schilling
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, Switzerland
| | - Janani Sundaresan
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, Switzerland
| | - Yves Lutz
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, Switzerland.
| |
Collapse
|
40
|
Endo C, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Tsunemi Y, Kamatani N, Kawashima M. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci Rep 2018; 8:8974. [PMID: 29895819 PMCID: PMC5997657 DOI: 10.1038/s41598-018-27145-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Skin trait variation impacts quality-of-life, especially for females from the viewpoint of beauty. To investigate genetic variation related to these traits, we conducted a GWAS of various skin phenotypes in 11,311 Japanese women and identified associations for age-spots, freckles, double eyelids, straight/curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. Novel signals for skin-spot traits neighboured AKAP1/MSI2 (rs17833789; P = 2.2 × 10-9), BNC2 (rs10810635; P = 2.1 × 10-22), HSPA12A (rs12259842; P = 7.1 × 10-11), PPARGC1B (rs251468; P = 1.3 × 10-21), and RAB11FIP2 (rs10444039; P = 5.6 × 10-21). HSPA12A SNPs were the only protein-coding gene eQTLs identified across skin-spot loci. Double edged eyelid analysis identified that a signal around EMX2 (rs12570134; P = 8.2 × 10-15) was also associated with expression of EMX2 and the antisense-RNA gene EMX2OS in brain putamen basal ganglia tissue. A known hair morphology signal in EDAR was associated with both eyebrow thickness (rs3827760; P = 1.7 × 10-9) and straight/curly hair (rs260643; P = 1.6 × 10-103). Excessive hairiness signals' top SNPs were also eQTLs for TBX15 (rs984225; P = 1.6 × 10-8), BCL2 (rs7226979; P = 7.3 × 10-11), and GCC2 and LIMS1 (rs6542772; P = 2.2 × 10-9). For excessive sweating, top variants in two signals in chr2:28.82-29.05 Mb (rs56089836; P = 1.7 × 10-11) were eQTLs for either PPP1CB or PLB1, while a top chr16:48.26-48.45 Mb locus SNP was a known ABCC11 missense variant (rs6500380; P = 6.8 × 10-10). In total, we identified twelve loci containing sixteen association signals, of which fifteen were novel. These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations.
Collapse
Affiliation(s)
- Chihiro Endo
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Makoto Kawashima
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
41
|
Koike S, Yamasaki K, Yamauchi T, Inoue M, Shimada-Ohmori R, Tsuchiyama K, Aiba S. Toll-like receptors 2 and 3 enhance melanogenesis and melanosome transport in human melanocytes. Pigment Cell Melanoma Res 2018; 31:570-584. [PMID: 29603875 DOI: 10.1111/pcmr.12703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
Abstract
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll-like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100-positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.
Collapse
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Inoue
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Shimada-Ohmori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
42
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
43
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
44
|
Interleukin-22 participates in the inflammatory process of vitiligo. Oncotarget 2017; 8:109161-109174. [PMID: 29312598 PMCID: PMC5752511 DOI: 10.18632/oncotarget.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 01/21/2023] Open
Abstract
Vitiligo is an acquired depigmentary skin inflammatory disorder. The pathogenesis of inflammatory skin disease involves the release of cytokines from keratinocytes, including interleukin (IL)-1β. IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. Among skin cell populations only keratinocytes are the major targets of IL-22. In the present study, we demonstrated that IL-22 promoting IL-1β secretion from keratinocytes via the Reactive oxygen species (ROS)-NOD-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1 pathway. It inhibited the expression of protease-activated receptor-2 (PAR-2) of keratinocytes. However, IL-22 had no direct effect on normal human foreskin-derived epidermal melanocytes (NHEM). Considering the closely connection between keratinocytes and melanocytes, and the ability of keratinocytes to produce a plethora of cytokines, in the present work, we examined whether IL-22 could regulate melanocytes functions by keratinocytes participation. Keratinocytes were exposed to IL-22 and the conditional medium was collected. The effect of conditional medium on melanocytes was studied. The expressions of relative proteins were assessed by western blot. Influence of conditional medium on NHEM migration was assessed by Transwell method and the apoptosis by flow cytometry analysis. The IL-22-treating keratinocytes conditional medium inhibited melanogenesis and restrained the expressions of Rab GTPases of NHEM. In addition, the conditional medium suppressed melanocytes migration and induced apoptosis. Our results collectively indicated that IL-22 may potentiate IL-1β-mediated skin inflammation and result in participating in the inflammatory pathogenesis of vitiligo.
Collapse
|
45
|
Singh SK, Baker R, Sikkink SK, Nizard C, Schnebert S, Kurfurst R, Tobin DJ. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol 2017. [PMID: 28636748 DOI: 10.1111/exd.13395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+ , while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stephen K Sikkink
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
46
|
Yin C, Argintaru D, Heit B. Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases 2017; 10:218-226. [PMID: 28471261 DOI: 10.1080/21541248.2017.1308852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Efferocytosis-the phagocytic removal of apoptotic cells-is required for preventing the presentation of apoptotic cell-derived antigens. This process is regulated by Rab17-dependent sorting of efferocytosed cargos from the phagolysosome to recycling endosomes. In this study we demonstrate that Rab17 is rapidly recruited to efferosomes, followed by migration of the efferosome to the cell center where it intermixes with lysosomes and undergoes Rab17-dependent vesiculation. These efferosome-derived vesicles then traffic in a Rab17-dependent manner to the cell periphery, where they transfer cargo to recycling endosomes. Combined, our observations support a model wherein efferosomes migrate to the cell center to acquire degradative enzymes, followed by peripheral migration to prevent further phagolysosome maturation and to enable cargo transfer to recycling endosomes.
Collapse
Affiliation(s)
- Charles Yin
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| | - Dean Argintaru
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| | - Bryan Heit
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
47
|
Yin C, Kim Y, Argintaru D, Heit B. Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death Dis 2016; 7:e2529. [PMID: 28005073 PMCID: PMC5261003 DOI: 10.1038/cddis.2016.431] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Macrophages engulf and destroy pathogens (phagocytosis) and apoptotic cells (efferocytosis), and can subsequently initiate adaptive immune responses by presenting antigens derived from engulfed materials. Both phagocytosis and efferocytosis share a common degradative pathway in which the target is engulfed into a membrane-bound vesicle, respectively, termed the phagosome and efferosome, where they are degraded by sequential fusion with endosomes and lysosomes. Despite this shared maturation pathway, macrophages are immunogenic following phagocytosis but not efferocytosis, indicating that differential processing or trafficking of antigens must occur. Mass spectrometry and immunofluorescence microscopy of efferosomes and phagosomes in macrophages demonstrated that efferosomes lacked the proteins required for antigen presentation and instead recruited the recycling regulator Rab17. As a result, degraded materials from efferosomes bypassed the MHC class II loading compartment via the recycling endosome - a process not observed in phagosomes. Combined, these results indicate that macrophages prevent presentation of apoptotic cell-derived antigens by preferentially trafficking efferocytosed, but not phagocytosed, materials away from the MHC class II loading compartment via the recycling endosome pathway.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Yohan Kim
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Dean Argintaru
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Bryan Heit
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| |
Collapse
|
48
|
Wang AB, Zhang YV, Tumbar T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J 2016; 36:61-78. [PMID: 27908934 DOI: 10.15252/embj.201694572] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023] Open
Abstract
Cell proliferation is essential to rapid tissue growth and repair, but can result in replication-associated genome damage. Here, we implicate the transcription factor Gata6 in adult mouse hair follicle regeneration where it controls the renewal of rapidly proliferating epithelial (matrix) progenitors and hence the extent of production of terminally differentiated lineages. We find that Gata6 protects against DNA damage associated with proliferation, thus preventing cell cycle arrest and apoptosis. Furthermore, we show that in vivo Gata6 stimulates EDA-receptor signaling adaptor Edaradd level and NF-κB pathway activation, known to be important for DNA damage repair and stress response in general and for hair follicle growth in particular. In cultured keratinocytes, Edaradd rescues DNA damage, cell survival, and proliferation of Gata6 knockout cells and restores MCM10 expression. Our data add to recent evidence in embryonic stem and neural progenitor cells, suggesting a model whereby developmentally regulated transcription factors protect from DNA damage associated with proliferation at key stages of rapid tissue growth. Our data may add to understanding why Gata6 is a frequent target of amplification in cancers.
Collapse
Affiliation(s)
- Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ying V Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
49
|
Péladeau C, Heibein A, Maltez MT, Copeland SJ, Copeland JW. A specific FMNL2 isoform is up-regulated in invasive cells. BMC Cell Biol 2016; 17:32. [PMID: 27578625 PMCID: PMC5006604 DOI: 10.1186/s12860-016-0110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Formins are a highly conserved family of cytoskeletal remodeling proteins. A growing body of evidence suggests that formins play key roles in the progression and spread of a variety of cancers. There are 15 human formin proteins and of these the Diaphanous-Related Formins (DRFs) are the best characterized. Included in the DRFs are the Formin-Like proteins, FMNL1, 2 & 3, each of which have been strongly implicated in driving tumorigenesis and metastasis of specific tumors. In particular, increased FMNL2 expression correlates with increased invasiveness of colorectal cancer (CRC) in vivo and for a variety of CRC cell-lines in vitro. FMNL2 expression is also required for invasive cell motility in other cancer cell-lines. There are multiple alternatively spliced isoforms of FMNL2 and it is predicted that the encoded proteins will differ in their regulation, subcellular localization and in their ability to regulate cytoskeletal dynamics. RESULTS Using RT-PCR we identified four FMNL2 isoforms expressed in CRC and melanoma cell-lines. We find that a previously uncharacterized FMNL2 isoform is predominantly expressed in a variety of melanoma and CRC cell lines; this isoform is also more effective in driving 3D motility. Building on previous reports, we also show that FMNL2 is required for invasion in A375 and WM266.4 melanoma cells. CONCLUSIONS Taken together, these results suggest that FMNL2 is likely to be generally required in melanoma cells for invasion, that a specific isoform of FMNL2 is up-regulated in invasive CRC and melanoma cells and this isoform is the most effective at facilitating invasion.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Allan Heibein
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Melissa T Maltez
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
50
|
Zhou J, Ling J, Wang Y, Shang J, Ping F. Cross-talk between interferon-gamma and interleukin-18 in melanogenesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:133-43. [PMID: 27567084 DOI: 10.1016/j.jphotobiol.2016.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/13/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Skin is the largest organ in our body and strategically placed to provide a metabolically active biological barrier against a range of noxious stressors. A lot of inflammatory cytokines, which are increased after ultraviolet (UV) irradiation produced by keratinocytes or other immunocytes, are closely related to pigmentary changes, including interleukin-18 (IL-18) and interferon-γ (IFN-γ). In this study, the effect of cross-talk between IL-18 and IFN-γ on melanogenesis was investigated. Treatment with IL-18 resulted in a dose-dependent increase of melanogenesis, while IFN-γ made an opposite effect. This influence of IL-18 and IFN-γ was mediated by regulations of microphthalmia-associated transcription factor (MITF) and its downstream enzymatic cascade expressions. Furthermore, IFN-γ inhibited basal and IL-18-induced melanogenesis. IFN-γ increased signal transducer and activator of transcription-1 (STAT-1) phosphorylation to play its position in regulating melanin pigmentation, and its inhibitory effect could be prevented by Janus Kinase 1 (JAK 1) inhibitor. IFN-γ could inhibit melanogenesis by decreasing melanocyte dendrite formation. In addition, IFN-γ inhibited the expressions of Rab Pases to suppress the mature and transport of melanosomes. IL-18 could rapidly induce Akt and PTEN phosphorylation and p65 expression in B16F10 cells. When treatment with IL-18 and IFN-γ together, the phosphorylation level of Protein Kinase B (Akt) and phosphatase and tensin homolog deleted on chromosome ten (PTEN) and expression of p65 NF-κB were inhibited, compared with treated with IL-18 only. Our studies indicated that IFN-γ could directly induce B16F10 cells apoptosis in vitro. Furthermore, we demonstrated that IFN-γ markedly up-regulated IL-18 binding protein (BP) production in normal human foreskin-derived epidermal keratinocytes in dose-dependent manner. UVB irradiation induced protease-activated receptor-2 (PAR-2) expression in NHEK, IFN-γ could inhibit this enhancement in a dose-dependent manner. These data suggest that IFN-γ plays a role in regulating inflammation- or UV-induced pigmentary changes, in direct/indirect manner.
Collapse
Affiliation(s)
- Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Ling
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, PR China
| | - Yong Wang
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, PR China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Fengfeng Ping
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, PR China.
| |
Collapse
|