1
|
Kim JM, Park CG. Current status of pancreatic islet xenotransplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2025; 39:1-11. [PMID: 39924969 PMCID: PMC11959427 DOI: 10.4285/ctr.24.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025]
Abstract
Pancreatic islet transplantation represents the optimal treatment for severe hypoglycemia, a serious complication experienced by patients with long-term type 1 diabetes who are undergoing insulin therapy. However, the limited availability of donor organs restricts its widespread use. Porcine pancreatic islets could offer a viable alternative to address this organ shortage. For successful pancreatic islet xenotransplantation using porcine pancreatic islets, efficacy and safety must first be demonstrated in pig-to-nonhuman primate (NHP) preclinical studies, as outlined in the consensus statement of the International Xenotransplantation Association. Our group has achieved long-term survival of wild-type porcine islet grafts in immunosuppressed NHPs by employing two immunosuppressive protocols: one based on CD40-CD40L blockade and another utilizing clinically available immunosuppressants. A clinical trial for pancreatic islet xenotransplantation, following the latter protocol, has received approval from the Korean Ministry of Food and Drug Safety (MFDS). This review aims to highlight the results of clinical trials involving porcine islet xenotransplantation to date, along with the age-specific and other characteristics of the porcine islets used in these trials and the preclinical NHP studies that support them. It offers insights into the perspectives around the first clinical islet xenotransplantation approved by the Korean MFDS, emphasizing improved long-term graft survival.
Collapse
Affiliation(s)
- Jong-Min Kim
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Animal Health and Welfare, Cheongju University College of Health and Medical Sciences, Cheongju, Korea
| | - Chung-Gyu Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
3
|
Ali A, Kurome M, Kessler B, Kemter E, Wolf E. What Genetic Modifications of Source Pigs Are Essential and Sufficient for Cell, Tissue, and Organ Xenotransplantation? Transpl Int 2024; 37:13681. [PMID: 39697899 PMCID: PMC11652200 DOI: 10.3389/ti.2024.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs. Therefore, an optimal combination of essential genetic modifications may be preferable to extensive editing of the source pigs. Here, we discuss the prioritization of genetic modifications to achieve long-term survival and function of xenotransplants and summarise the genotypes that have been most successful for xenogeneic heart, kidney, and islet transplantation. Specific emphasis is given to the choice of the breed/genetic background of the source pigs. Moreover, multimodal deep phenotyping of porcine organs after xenotransplantation into human decedents will be discussed as a strategy for selecting essential genetic modifications of the source pigs. In addition to germ-line gene editing, some of these modifications may also be induced during organ preservation/perfusion, as demonstrated recently by the successful knockdown of swine leukocyte antigens in porcine lungs during ex vivo perfusion.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
4
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
5
|
Sun Q, Song SY, Ma J, Li D, Wang Y, Yang Z, Wang Y. Cutting edge of genetically modified pigs targeting complement activation for xenotransplantation. Front Immunol 2024; 15:1383936. [PMID: 38638432 PMCID: PMC11024274 DOI: 10.3389/fimmu.2024.1383936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In the quest to address the critical shortage of donor organs for transplantation, xenotransplantation stands out as a promising solution, offering a more abundant supply of donor organs. Yet, its widespread clinical adoption remains hindered by significant challenges, chief among them being immunological rejection. Central to this issue is the role of the complement system, an essential component of innate immunity that frequently triggers acute and chronic rejection through hyperacute immune responses. Such responses can rapidly lead to transplant embolism, compromising the function of the transplanted organ and ultimately causing graft failure. This review delves into three key areas of xenotransplantation research. It begins by examining the mechanisms through which xenotransplantation activates both the classical and alternative complement pathways. It then assesses the current landscape of xenotransplantation from donor pigs, with a particular emphasis on the innovative strides made in genetically engineering pigs to evade complement system activation. These modifications are critical in mitigating the discordance between pig endogenous retroviruses and human immune molecules. Additionally, the review discusses pharmacological interventions designed to support transplantation. By exploring the intricate relationship between the complement system and xenotransplantation, this retrospective analysis not only underscores the scientific and clinical importance of this field but also sheds light on the potential pathways to overcoming one of the major barriers to the success of xenografts. As such, the insights offered here hold significant promise for advancing xenotransplantation from a research concept to a viable clinical reality.
Collapse
Affiliation(s)
- Qin Sun
- Department of Endocrinology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jiabao Ma
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengteng Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Eisenson DL, Iwase H, Chen W, Hisadome Y, Cui W, Santillan MR, Schulick AC, Gu D, Maxwell A, Koenig K, Sun Z, Warren D, Yamada K. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation. Front Immunol 2024; 15:1351717. [PMID: 38476227 PMCID: PMC10927755 DOI: 10.3389/fimmu.2024.1351717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Combined islet and kidney xenotransplantation for the treatment of diabetic nephropathy represents a compelling and increasingly relevant therapeutic possibility for an ever-growing number of patients who would benefit from both durable renal replacement and cure of the underlying cause of their renal insufficiency: diabetes. Here we briefly review immune barriers to islet transplantation, highlight preclinical progress in the field, and summarize our experience with combined islet and kidney xenotransplantation, including both challenges with islet-kidney composite grafts as well as our recent success with sequential kidney followed by islet xenotransplantation in a pig-to-baboon model.
Collapse
Affiliation(s)
- Daniel L. Eisenson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hayato Iwase
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weili Chen
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wanxing Cui
- Cell Therapy and Manufacturing, Medstar Georgetown University Hospital, Washington DC, United States
| | - Michelle R. Santillan
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander C. Schulick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Du Gu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda Maxwell
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristy Koenig
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel Warren
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Abstract
End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Lee S, Chung YS, Lee KW, Choi M, Sonn CH, Oh WJ, Hong HG, Shim J, Choi K, Kim SJ, Park JB, Kim TJ. Alteration of γδ T cell subsets in non-human primates transplanted with GGTA1 gene-deficient porcine blood vessels. Xenotransplantation 2024; 31:e12838. [PMID: 38112053 DOI: 10.1111/xen.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND αGal-deficient xenografts are protected from hyperacute rejection during xenotransplantation but are still rejected more rapidly than allografts. Despite studies showing the roles of non-Gal antibodies and αβ T cells in xenograft rejection, the involvement of γδ T cells in xenograft rejection has been limitedly investigated. METHODS Six male cynomolgus monkeys were transplanted with porcine vessel xenografts from wild-type (n = 3) or GGTA1 knockout (n = 3) pigs. We measured the proportions and T cell receptor (TCR) repertoires of blood γδ T cells before and after xenotransplant. Grafted porcine vessel-infiltrating immune cells were visualized at the end of experiments. RESULTS Blood γδ T cells expanded and infiltrated into the graft vessel adventitia following xenotransplantation of α-Gal-deficient pig blood vessels. Pre- and post-transplant analysis of γδ TCR repertoire revealed a transition in δ chain usage post-transplantation, with the expansion of several clonotypes of δ1, δ3, or δ7 chains. Furthermore, the distinctions between pre- and post-transplant δ chain usages were more prominent than those observed for γ chain usages. CONCLUSION γδ TCR repertoire was significantly altered by xenotransplantation, suggesting the role of γδ T cells in sustained xenoreactive immune responses.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yun Shin Chung
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Miran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Jun Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co., Ltd, Pyeongtaek, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
9
|
El Nahas R, Al-Aghbar MA, Herrero L, van Panhuys N, Espino-Guarch M. Applications of Genome-Editing Technologies for Type 1 Diabetes. Int J Mol Sci 2023; 25:344. [PMID: 38203514 PMCID: PMC10778854 DOI: 10.3390/ijms25010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by the immune system. Although conventional therapeutic modalities, such as insulin injection, remain a mainstay, recent years have witnessed the emergence of novel treatment approaches encompassing immunomodulatory therapies, such as stem cell and β-cell transplantation, along with revolutionary gene-editing techniques. Notably, recent research endeavors have enabled the reshaping of the T-cell repertoire, leading to the prevention of T1D development. Furthermore, CRISPR-Cas9 technology has demonstrated remarkable potential in targeting endogenous gene activation, ushering in a promising avenue for the precise guidance of mesenchymal stem cells (MSCs) toward differentiation into insulin-producing cells. This innovative approach holds substantial promise for the treatment of T1D. In this review, we focus on studies that have developed T1D models and treatments using gene-editing systems.
Collapse
Affiliation(s)
- Rana El Nahas
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Meritxell Espino-Guarch
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| |
Collapse
|
10
|
Honarpisheh M, Lei Y, Zhang Y, Pehl M, Kemter E, Kraetzl M, Lange A, Wolf E, Wolf-van Buerck L, Seissler J. Formation of Re-Aggregated Neonatal Porcine Islet Clusters Improves In Vitro Function and Transplantation Outcome. Transpl Int 2022; 35:10697. [PMID: 36685665 PMCID: PMC9846776 DOI: 10.3389/ti.2022.10697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Neonatal porcine islet-like cell clusters (NPICCs) are a promising source for islet cell transplantation. Excellent islet quality is important to achieve a cure for type 1 diabetes. We investigated formation of cell clusters from dispersed NPICCs on microwell cell culture plates, evaluated the composition of re-aggregated porcine islets (REPIs) and compared in vivo function by transplantation into diabetic NOD-SCID IL2rγ-/- (NSG) mice with native NPICCs. Dissociation of NPICCs into single cells and re-aggregation resulted in the formation of uniform REPI clusters. A higher prevalence of normoglycemia was observed in diabetic NSG mice after transplantation with a limited number (n = 1500) of REPIs (85.7%) versus NPICCs (n = 1500) (33.3%) (p < 0.05). Transplanted REPIs and NPICCs displayed a similar architecture of endocrine and endothelial cells. Intraperitoneal glucose tolerance tests revealed an improved beta cell function after transplantation of 1500 REPIs (AUC glucose 0-120 min 6260 ± 305.3) as compared to transplantation of 3000 native NPICCs (AUC glucose 0-120 min 8073 ± 536.2) (p < 0.01). Re-aggregation of single cells from dissociated NPICCs generates cell clusters with excellent functionality and improved in vivo function as compared to native NPICCs.
Collapse
Affiliation(s)
- M. Honarpisheh
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Y. Lei
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Y. Zhang
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - M. Pehl
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M. Kraetzl
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - A. Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - L. Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - J. Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Eisenson DL, Hisadome Y, Santillan MR, Yamada K. Progress in islet xenotransplantation: Immunologic barriers, advances in gene editing, and tolerance induction strategies for xenogeneic islets in pig-to-primate transplantation. FRONTIERS IN TRANSPLANTATION 2022; 1:989811. [PMID: 38390384 PMCID: PMC10883655 DOI: 10.3389/frtra.2022.989811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Islet transplantation has emerged as a curative therapy for diabetes in select patients but remains rare due to shortage of suitable donor pancreases. Islet transplantation using porcine islets has long been proposed as a solution to this organ shortage. There have already been several small clinical trials using porcine islets in humans, but results have been mixed and further trials limited by calls for more rigorous pre-clinical data. Recent progress in heart and kidney xenograft transplant, including three studies of pig-to-human xenograft transplant, have recaptured popular imagination and renewed interest in clinical islet xenotransplantation. This review outlines immunologic barriers to islet transplantation, summarizes current strategies to overcome these barriers with a particular focus on approaches to induce tolerance, and describes an innovative strategy for treatment of diabetic nephropathy with composite islet-kidney transplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | | | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
12
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
13
|
Mou L, Shi G, Cooper DK, Lu Y, Chen J, Zhu S, Deng J, Huang Y, Ni Y, Zhan Y, Cai Z, Pu Z. Current Topics of Relevance to the Xenotransplantation of Free Pig Islets. Front Immunol 2022; 13:854883. [PMID: 35432379 PMCID: PMC9010617 DOI: 10.3389/fimmu.2022.854883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes. Current efforts are focused on identifying the optimal pig islet source and overcoming the immunological barrier. The optimal age of the pig donors remains controversial since both adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade collagenase has significantly improved the quantity and quality of adult islets, but neonatal islets can be isolated at a much lower cost. Certain culture media and coculture with mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic modification in pigs affords a promising strategy to prevent rejection. Deletion of expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will certainly be beneficial in pig organ transplantation in humans, but this is not yet proven in islet transplantation, though the challenge of the '4th xenoantigen' may prove problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have already been applied in phase II clinical trials of islet allotransplantation. Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications reported previously. In this review, we discuss (I) the optimal age of the islet-source pig, (ii) progress in genetic modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation, and (iv) the reduction in the instant blood-mediated inflammatory reaction.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guanghan Shi
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shufang Zhu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Huang
- Department of Life Science, Bellevue College, Bellevue, WA, United States
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
14
|
Graham ML, Ramachandran S, Singh A, Moore MEG, Flanagan EB, Azimzadeh A, Burlak C, Mueller KR, Martins K, Anazawa T, Balamurugan AN, Bansal-Pakala P, Murtaugh MP, O’Brien TD, Papas KK, Spizzo T, Schuurman HJ, Hancock WW, Hering BJ. Clinically available immunosuppression averts rejection but not systemic inflammation after porcine islet xenotransplant in cynomolgus macaques. Am J Transplant 2022; 22:745-760. [PMID: 34704345 PMCID: PMC9832996 DOI: 10.1111/ajt.16876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.
Collapse
Affiliation(s)
- Melanie L. Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Meghan E. G. Moore
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - E. Brian Flanagan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Agnes Azimzadeh
- Department of Surgery, University of Maryland, Baltimore, MD
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kate R. Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kyra Martins
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Takayuki Anazawa
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Pratima Bansal-Pakala
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Timothy D. O’Brien
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Henk-J. Schuurman
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN,Spring Point Project, Minneapolis, MN
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bernhard. J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
15
|
Arefanian H, Ramji Q, Gupta N, Spigelman AF, Grynoch D, MacDonald PE, Mueller TF, Gazda LS, Rajotte RV, Rayat GR. Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Front Endocrinol (Lausanne) 2022; 13:1032906. [PMID: 36619563 PMCID: PMC9811407 DOI: 10.3389/fendo.2022.1032906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Qahir Ramji
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nancy Gupta
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donald Grynoch
- Alberta Precision Labs, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ray V. Rajotte
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| | - Gina R. Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| |
Collapse
|
16
|
Kano M, Mizutani E, Homma S, Masaki H, Nakauchi H. Xenotransplantation and interspecies organogenesis: current status and issues. Front Endocrinol (Lausanne) 2022; 13:963282. [PMID: 35992127 PMCID: PMC9388829 DOI: 10.3389/fendo.2022.963282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreas (and islet) transplantation is the only curative treatment for type 1 diabetes patients whose β-cell functions have been abolished. However, the lack of donor organs has been the major hurdle to save a large number of patients. Therefore, transplantation of animal organs is expected to be an alternative method to solve the serious shortage of donor organs. More recently, a method to generate organs from pluripotent stem cells inside the body of other species has been developed. This interspecies organ generation using blastocyst complementation (BC) is expected to be the next-generation regenerative medicine. Here, we describe the recent advances and future prospects for these two approaches.
Collapse
Affiliation(s)
- Mayuko Kano
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiji Mizutani
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hideki Masaki
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| | - Hiromitsu Nakauchi
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| |
Collapse
|
17
|
Gao Q, Davis R, Fitch Z, Mulvihill M, Ezekian B, Schroder P, Schmitz R, Song M, Leopardi F, Ribeiro M, Miller A, Moris D, Shaw B, Samy K, Reimann K, Williams K, Collins B, Kirk AD. Anti-thymoglobulin induction improves neonatal porcine xenoislet engraftment and survival. Xenotransplantation 2021; 28:e12713. [PMID: 34951057 PMCID: PMC8715890 DOI: 10.1111/xen.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Porcine islet xenotransplantation is a viable strategy to treat diabetes. Its translation has been limited by the pre-clinical development of a clinically available immunosuppressive regimen. We tested two clinically relevant induction agents in a non-human primate (NHP) islet xenotransplantation model to compare depletional versus nondepletional induction immunosuppression. Neonatal porcine islets were isolated from GKO or hCD46/GKO transgenic piglets and transplanted via portal vein infusion in diabetic rhesus macaques. Induction therapy consisted of either basiliximab (n = 6) or rhesus-specific anti-thymocyte globulin (rhATG, n = 6), combined with a maintenance regimen using B7 costimulation blockade, tacrolimus with a delayed transition to sirolimus, and mycophenolate mofetil. Xenografts were monitored by blood glucose levels and porcine C-peptide measurements. Of the six receiving basiliximab induction, engraftment was achieved in 4 with median graft survival of 14 days. All six receiving rhATG induction engrafted with significantly longer xenograft survival at 40.5 days (P = 0.03). These data suggest that depletional induction provides superior xenograft survival to nondepletional induction, in the setting of a costimulation blockade-based maintenance regimen.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robert Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Zachary Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Michael Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Ezekian
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Paul Schroder
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Frank Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Marianna Ribeiro
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allison Miller
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Dimitrios Moris
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Shaw
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Kannan Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Keith Reimann
- MassBiologics, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Kyha Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Bradley Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
18
|
Song M, Fitch ZW, Samy KP, Martin BM, Gao Q, Patrick Davis R, Leopardi FV, Huffman N, Schmitz R, Devi GR, Collins BH, Kirk AD. Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation 2021; 28:e12680. [PMID: 33619844 DOI: 10.1111/xen.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.
Collapse
Affiliation(s)
- Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin M Martin
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Francis V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Niki Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
19
|
Lee EJ, Lee H, Park EM, Kang HJ, Kim SJ, Park CG. Immunoglobulin M and Immunoglobulin G Subclass Distribution of Anti-galactose-Alpha-1,3-Galactose and Anti-N-Glycolylneuraminic Acid Antibodies in Healthy Korean Adults. Transplant Proc 2021; 53:1762-1770. [PMID: 33581850 DOI: 10.1016/j.transproceed.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human preformed antibodies (Abs), anti-galactose-alpha-1,3-galactose (Gal) and anti-N-glycolylneuraminic acid (Neu5Gc), can react with porcine antigens of wild-type pigs. To provide basic population data of the Abs for potential application in clinical xenotransplantation, we developed enzyme-linked immunosorbent assay methods and investigated the serum titers of anti-Gal and anti-Neu5Gc Abs, including immunoglobulin (Ig) M and IgG along with its subclasses, in humans. METHODS Anti-Gal and anti-Neu5Gc Abs serum titers were measured in 380 healthy Korean adults using the in-house enzyme-linked immunosorbent assays. The frequency and median values of anti-Gal and anti-Neu5Gc were measured, and their class and subclass distribution were evaluated. RESULTS The detection frequencies of anti-Gal were 99.2%, 95.0%, 23.2%, 94.5%, 12.4%, and 3.4% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The detection frequencies of anti-Neu5Gc Abs were 87.4%, 96.6%, 1.6%, 46.3%, 0.0%, and 0.0% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The median values of anti-Gal IgM (1001.6 ng/mL) and IgG (1198.3 ng/mL) were significantly higher than those of anti-Neu5Gc Abs (IgM, 328.4 ng/mL; IgG, 194.7 ng/mL; P < .001). IgG2 titers of both anti-Gal and anti-Neu5Gc Abs correlated better with the IgG class than the titers of other IgG subclasses. CONCLUSIONS The titers of anti-Gal Abs were higher than those of anti-Neu5Gc Abs. IgG2 was the main IgG subclass in both anti-Gal and anti-Neu5Gc Abs. Variation in the titers of anti-Gal or anti-Neu5Gc Abs may partly explain the biological and immunologic changes that occur in recipients of xenotransplants.
Collapse
Affiliation(s)
- Eun Jin Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea.
| | - Sang Joon Kim
- Department of Surgery, Myongji Hospital, Goyang-si, Republic of Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Hong SH, Kim HJ, Kang SJ, Park CG. Novel Immunomodulatory Approaches for Porcine Islet Xenotransplantation. Curr Diab Rep 2021; 21:3. [PMID: 33433735 DOI: 10.1007/s11892-020-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Porcine islet xenotransplantation is a promising alternative to overcome the shortage of organ donors. For the successful application of islet xenotransplantation, robust immune/inflammatory responses against porcine islets should be thoroughly controlled. Over the last few decades, there have been numerous attempts to surmount xenogeneic immune barriers. In this review, we summarize the current progress in immunomodulatory therapy for the clinical application of porcine islet xenotransplantation. RECENT FINDINGS Long-term graft survival of porcine islets was achieved by using anti-CD154 Ab-based regimens in a preclinical non-human primate (NHP) model. However, owing to a serious complication of thromboembolism in clinical trials, the development of an anti-CD154 Ab-sparing immunosuppressant procedure is required. The efficacy of new immunosuppressive practices that employ anti-CD40 Abs or other immunosuppressive reagents has been tested in a NHP model to realize their utility in porcine islet xenotransplantation. The recent progress in the development of immunomodulatory approaches, including the immunosuppressive regimen, which enables long-term graft survival in a pig-to-non-human primate islet xenotransplantation model, with their potential clinical applicability was reviewed.
Collapse
Affiliation(s)
- So-Hee Hong
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea.
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea.
- Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
21
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Zammit NW, Seeberger KL, Zamerli J, Walters SN, Lisowski L, Korbutt GS, Grey ST. Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation 2020; 28:e12669. [PMID: 33316848 DOI: 10.1111/xen.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Jad Zamerli
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.,Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | | | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Nanno Y, Shajahan A, Sonon RN, Azadi P, Hering BJ, Burlak C. High-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues are unique to porcine islets. PLoS One 2020; 15:e0241249. [PMID: 33170858 PMCID: PMC7654812 DOI: 10.1371/journal.pone.0241249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/09/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Islet transplantation is an emerging treatment option for type 1 diabetes but its application is limited by the shortage of human pancreas donors. Characterization of the N- and O-glycan surface antigens that vary between human and genetically engineered porcine islet donors could shed light on targets of antibody mediated rejection. METHODS N- and O-glycans were isolated from human and adult porcine islets and analyzed using matrix-assisted laser-desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and electrospray ionization mass spectrometry (ESI-MS/MS). RESULTS A total of 57 porcine and 34 human N-glycans and 21 porcine and 14 human O-glycans were detected from cultured islets. Twenty-eight of which were detected only from porcine islets, which include novel xenoantigens such as high-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues. Porcine islets have terminal N-glycolylneuraminic acid (NeuGc) residue in bi-antennary N-glycans and sialyl-Tn O-glycans. No galactose-α-1,3-galactose (α-Gal) or Sda epitope were detected on any of the islets. CONCLUSIONS These results provide important insights into the potential antigenic differences of N- and O-glycan profiles between human and porcine islets. Glycan differences may identify novel gene targets for genetic engineering to generate superior porcine islet donors.
Collapse
Affiliation(s)
- Yoshihide Nanno
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bellin MD, Dunn TB. Transplant strategies for type 1 diabetes: whole pancreas, islet and porcine beta cell therapies. Diabetologia 2020; 63:2049-2056. [PMID: 32894315 DOI: 10.1007/s00125-020-05184-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Whole-organ pancreas and islet transplantations are performed in a highly selected group of patients with diabetes mellitus, primarily those with type 1 diabetes mellitus, complicated by recurrent severe hypoglycaemia or renal failure requiring kidney transplantation. Clinical accessibility to pancreases or islets, and patient characteristics and therapeutic goals, may dictate choice of procedure. Pancreas transplantation is most often performed simultaneous with a kidney transplant, but patients with particularly labile type 1 diabetes may be considered for a pancreas transplant alone. While highly successful at restoring insulin independence, pancreas transplants carry the significant risks of major surgery and immunosuppression. Islet transplantation is a relatively minor procedure, usually performed for labile type 1 diabetes with severe hypoglycaemia. It is highly successful at resolving hypoglycaemia, but more than one pancreas donor may be required for insulin independence. Both pancreas and islet transplantation are limited in applicability by a paucity of deceased donors. Pigs provide one promising replenishable source of islets. Porcine islets can successfully reverse diabetes mellitus in non-human primates under the appropriate immunosuppressive conditions, with promise for eventually translating this success to a larger population of patients with diabetes mellitus in the future. Graphical abstract.
Collapse
Affiliation(s)
- Melena D Bellin
- Medical School, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, East Building Rm MB 671, 2450 Riverside Ave S, Minneapolis, MN, 55454, USA.
| | - Ty B Dunn
- Department of Surgery, Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
25
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
26
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
27
|
Samy KP, Gao Q, Davis RP, Song M, Fitch ZW, Mulvihill MS, MacDonald AL, Leopardi FV, How T, Williams KD, Devi GR, Collins BH, Luo X, Kirk AD. The role of human CD46 in early xenoislet engraftment in a dual transplant model. Xenotransplantation 2019; 26:e12540. [PMID: 31219218 PMCID: PMC6908747 DOI: 10.1111/xen.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane cofactor protein CD46 attenuates the complement cascade by facilitating cleavage of C3b and C4b. In solid organ xenotransplantation, organs expressing CD46 have been shown to resist hyperacute rejection. However, the incremental value of human CD46 expression for islet xenotransplantation remains poorly defined. METHODS This study attempted to delineate the role of CD46 in early neonatal porcine islet engraftment by comparing Gal-knocked out (GKO) and hCD46-transgenic (GKO/CD46) islets in a dual transplant model. Seven rhesus macaques underwent dual transplant and were sacrificed at 1 hour (n = 4) or 24 hours (n = 3). Both hemilivers were recovered and fixed for immunohistochemistry (CD46, insulin, neutrophil elastase, platelet, IgM, IgG, C3d, C4d, CD68, Caspase 3). Quantitative immunohistochemical analysis was performed using the Aperio Imagescope. RESULTS Within 1 hour of intraportal infusion of xenografts, no differences were observed between the two types of islets in terms of platelet, antibody, or complement deposition. Cellular infiltration and islet apoptotic activity were also similar at 1 hour. At 24 hours, GKO/CD46 islets demonstrated significantly less platelet deposition (P = 0.01) and neutrophil infiltration (P = 0.01) compared to GKO islets. In contrast, C3d (P = 0.38) and C4d (P = 0.45) deposition was equal between the two genotypes. CONCLUSIONS Our findings suggest that expression of hCD46 on NPIs potentially provides a measurable incremental survival advantage in vivo by reducing early thrombo-inflammatory events associated with instant blood-mediated inflammatory reaction (IBMIR) following intraportal islet infusion.
Collapse
Affiliation(s)
- Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Robert Patrick Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Michael S Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Andrea L MacDonald
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Frank V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Tam How
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Kyha D Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
28
|
Cho B, Lee EJ, Ahn SM, Kim G, Lee SH, Ji DY, Kang JT. Production of genetically modified pigs expressing human insulin and C-peptide as a source of islets for xenotransplantation. Transgenic Res 2019; 28:549-559. [PMID: 31473874 DOI: 10.1007/s11248-019-00169-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Islet xenotransplantation is a promising treatment for type I diabetes. Numerous studies of islet xenotransplantation have used pig-to-nonhuman primate transplantation models. Some studies reported long-term survival and successful function of porcine islets in diabetic monkeys. Genetic engineering techniques may improve the survival and function of porcine islets. A recent study reported the generation of transgenic pigs expressing human insulin rather than porcine insulin by changing one amino acid at the end of the β-chain in insulin. However, C-peptide from pigs still existed. In this study, we generated transgenic pigs expressing human proinsulin to express human insulin and C-peptide using fibroblasts from proinsulin knockout pigs as donor cells for somatic cell nuclear transfer. Eleven live piglets were delivered from three surrogates and characterized to confirm the genotype and phenotype of the generated piglets. Genotype analysis of the generated piglets showed that five of the eleven piglets contained the human proinsulin gene. Insulin expression was confirmed in the serum and pancreas in two of the five piglets. C-peptide derived from human proinsulin was also confirmed by liquid chromatography tandem mass spectrometry. Non-fasting blood glucose level was measured to verify the function of the insulin derived from the human proinsulin. Two piglets expressing insulin showed normal glucose levels similar to that in the wild-type control. In conclusion, human insulin- and C-peptide-expressing pigs without porcine insulin and C-peptide were successfully established. These pigs can be used as a source of islets for islet xenotransplantation.
Collapse
Affiliation(s)
- Bumrae Cho
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Eun-Jin Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Sun Mi Ahn
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Ghangyong Kim
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Sang Hoon Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Dal-Young Ji
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Mgenplus Bldg., 83, Hyoryeong-ro, Seocho-gu, Seoul, 06688, Republic of Korea.
| |
Collapse
|
29
|
Is the renal subcapsular space the preferred site for clinical porcine islet xenotransplantation? Review article. Int J Surg 2019; 69:100-107. [PMID: 31369877 DOI: 10.1016/j.ijsu.2019.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022]
Abstract
It can reasonably be anticipated that, within 5-10 years, islet allotransplantation or pig islet xenotransplantation may be the preferred options for β-cell replacement therapy. The portal vein/liver is currently the preferred clinical site for free islet transplantation, constituting 90% of clinical islet transplants. Despite being the site of choice for rodent and some large animal studies, the renal subcapsular space is rarely used clinically, even though the introduction of islets intraportally is not entirely satisfactory (particularly for pig islet xenotransplantation). We questioned why this might be so. Is it perhaps based on prior clinical evidence, or from experience in nonhuman primates? When we have questioned experts in the field, no definitive answers have been forthcoming. We have therefore reviewed the relevant literature, and still cannot find a convincing reason why the renal subcapsular space has been so relatively abandoned as a site for clinical islet transplantation. Owing to its sequestered environment, subcapsular transplantation might avoid some of the remaining challenges of intraportal transplantation. This may be particularly true when using pig islets for xenotransplantation, which are exceptionally pure in comparison to human islets used in auto- or allo-transplantation. With evidence from the literature, we question the notion that the subcapsular space is inhospitable to islet transplantation and suggest that, when porcine islet transplantation is introduced, this site should perhaps be reconsidered.
Collapse
|
30
|
Rousse J, Salama A, Leviatan Ben-Arye S, Hruba P, Slatinska J, Evanno G, Duvaux O, Blanchard D, Yu H, Chen X, Bach JM, Padler-Karavani V, Viklicky O, Soulillou JP. Quantitative and qualitative changes in anti-Neu5Gc antibody response following rabbit anti-thymocyte IgG induction in kidney allograft recipients. Eur J Clin Invest 2019; 49:e13069. [PMID: 30620396 DOI: 10.1111/eci.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 01/02/2023]
Abstract
Antibodies of non-human mammals are glycosylated with carbohydrate antigens, such as galactose-α-1-3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc). These non-human carbohydrate antigens are highly immunogenic in humans due to loss-of-function mutations of the key genes involved in their synthesis. Such immunogenic carbohydrates are expressed on therapeutic polyclonal rabbit anti-human T-cell IgGs (anti-thymocyte globulin; ATG), the most popular induction treatment in allograft recipients. To decipher the quantitative and qualitative response against these antigens in immunosuppressed patients, particularly against Neu5Gc, which may induce endothelial inflammation in both the graft and the host. We report a prospective study of the antibody response against α-Gal and Neu5Gc-containing glycans following rabbit ATG induction compared to controls. We show a drop in the overall levels of anti-Neu5Gc antibodies at 6 and 12 months post-graft compared to the pre-existing levels due to the major early immunosuppression. However, in contrast, in a cross-sectional study there was a highly significant increase in anti-Neu5Gc IgGs levels at 6 months post-graft in the ATG-treated compared to non-treated patients(P = 0.007), with a clear hierarchy favouring anti-Neu5Gc over anti-Gal response. A sialoglycan microarray analysis revealed that the increased anti-Neu5Gc IgG response was still highly diverse against multiple different Neu5Gc-containing glycans. Furthermore, some of the ATG-treated patients developed a shift in their anti-Neu5Gc IgG repertoire compared with the baseline, recognizing different patterns of Neu5Gc-glycans. In contrast to Gal, Neu5Gc epitopes remain antigenic in severely immunosuppressed patients, who also develop an anti-Neu5Gc repertoire shift. The clinical implications of these observations are discussed.
Collapse
Affiliation(s)
| | | | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Petra Hruba
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit, EA4644 University/ONIRIS USC1383 INRA, Pathophysiology Department, ONIRIS-Nantes-Atlantic College of Veterinary Medicine and Food Sciences, Nantes, France
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ondrej Viklicky
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
31
|
Li X, Meng Q, Zhang L. Overcoming Immunobiological Barriers Against Porcine Islet Xenografts: What Should Be Done? Pancreas 2019; 48:299-308. [PMID: 30855426 DOI: 10.1097/mpa.0000000000001259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Porcine islets might represent an ideal solution to the severe shortage of living donor islets available for transplantation and thus have great potential for the treatment of diabetes. Although tremendous progress has been achieved through recent experiments, the immune response remains a major obstacle. This review first describes the 3 major pathways of rejection: hyperacute rejection mediated by preformed natural antibodies and complement, instant blood-mediated inflammatory reactions, and acute cell-mediated rejection. Furthermore, this review examines immune-related strategies, including major advances, which have been shown to extend the life and/or function of porcine islets in vitro and in vivo: (1) genetic modification to make porcine islets more compatible with the recipient, (2) optimization of the newly defined biological agents that have been shown to promote long-term survival of xenografts in nonhuman primates, and (3) development of novel immunoisolation technologies that maintain the long-term survival of islet xenografts without the use of systemic immunosuppressive drugs. Finally, the clinical application of porcine islet transplantation is presented. Even though less clinical information is available, experimental data indicate that porcine islet xenografts are likely to become a standard treatment for patients with type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xinyu Li
- From the Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
32
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs. RECENT FINDINGS Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and-in part-non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets. Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Eckhard Wolf
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
34
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
35
|
Ahn CH, Jang JY, Lee SO, Yoon JW, Kim SW, Park KS, Jung HS. Liver transaminase levels after intraportal autologous islet transplantation after partial pancreatectomy were associated with long-term metabolic outcomes. Diabetes Res Clin Pract 2018; 143:232-238. [PMID: 30036613 DOI: 10.1016/j.diabres.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the changes of post-procedural liver transaminase levels after autologous islet transplantation (ITx), and their associations with glycemic outcomes. METHODS Non-diabetic patients who underwent distal pancreatectomy for benign tumors were enrolled. Islets isolated from the healthy part of the resected pancreas were transplanted via the portal vein. Metabolic parameters were evaluated in the subjects for 5 years. RESULTS Eight patients completed the study and four developed postoperative diabetes mellitus (PODM). Disposition index (DI) at postoperative 1 year showed prominent difference between the patients who develop PODM or not: DI was preserved in the PODM-free patients (49.7 ± 4.5 to 70.8 ± 14.4, P = 0.182), while it significantly decreased in the PODM patients (69.3 ± 9.9 to 28.5 ± 3.9, P = 0.019). The preoperative liver transaminase levels were not different between the two groups. However, transient increase in liver transaminase levels during the first week after ITx was observed only in the PODM patients, and their peak values demonstrated significant negative correlation with the changes in DI (r = -0.774 for alanine transaminase, r = -0.759 for aspartate transaminase; P < 0.05). CONCLUSIONS Elevation of serum transaminases after ITx could be one of the factors determining insulin secretion and PODM.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Ok Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun-Whe Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Safley SA, Kenyon NS, Berman DM, Barber GF, Willman M, Duncanson S, Iwakoshi N, Holdcraft R, Gazda L, Thompson P, Badell IR, Sambanis A, Ricordi C, Weber CJ. Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocin-diabetic non-human primates. Xenotransplantation 2018; 25:e12450. [PMID: 30117193 DOI: 10.1111/xen.12450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Xenogeneic donors would provide an unlimited source of islets for the treatment of type 1 diabetes (T1D). The goal of this study was to assess the function of microencapsulated adult porcine islets (APIs) transplanted ip in streptozotocin (STZ)-diabetic non-human primates (NHPs) given targeted immunosuppression. METHODS APIs were encapsulated in: (a) single barium-gelled alginate capsules or (b) double alginate capsules with an inner, islet-containing compartment and a durable, biocompatible outer alginate layer. Immunosuppressed, streptozotocin-diabetic NHPs were transplanted ip with encapsulated APIs, and graft function was monitored by measuring blood glucose, %HbA1c, and porcine C-peptide. At graft failure, explanted capsules were assessed for biocompatibility and durability plus islet viability and functionality. Host immune responses were evaluated by phenotyping peritoneal cell populations, quantitation of peritoneal cytokines and chemokines, and measurement of anti-porcine IgG and IgM plus anti-Gal IgG. RESULTS NHP recipients had reduced hyperglycemia, decreased exogenous insulin requirements, and lower percent hemoglobin A1c (%HbA1c) levels. Porcine C-peptide was detected in plasma of all recipients, but these levels diminished with time. However, relatively high levels of porcine C-peptide were detected locally in the peritoneal graft site of some recipients at sacrifice. IV glucose tolerance tests demonstrated metabolic function, but the grafts eventually failed in all diabetic NHPs regardless of the type of encapsulation or the host immunosuppression regimen. Explanted microcapsules were intact, "clean," and free-floating without evidence of fibrosis at graft failure, and some reversed diabetes when re-implanted ip in diabetic immunoincompetent mice. Histology of explanted capsules showed scant evidence of a host cellular response, and viable islets could be found. Flow cytometric analyses of peritoneal cells and peripheral blood showed similarly minimal evidence of a host immune response. Preformed anti-porcine IgG and IgM antibodies were present in recipient plasma, but these levels did not rise post-transplant. Peritoneal graft site cytokine or chemokine levels were equivalent to normal controls, with the exception of minimal elevation observed for IL-6 or IL-1β, GRO-α, I-309, IP-10, and MCP-1. However, we found central necrosis in many of the encapsulated islets after graft failure, and explanted islets expressed endogenous markers of hypoxia (HIF-1α, osteopontin, and GLUT-1), suggesting a role for non-immunologic factors, likely hypoxia, in graft failure. CONCLUSIONS With donor xenoislet microencapsulation and host immunosuppression, APIs corrected hyperglycemia after ip transplantation in STZ-diabetic NHPs in the short term. The islet xenografts lost efficacy gradually, but at graft failure, some viable islets remained, substantial porcine C-peptide was detected in the peritoneal graft site, and there was very little evidence of a host immune response. We postulate that chronic effects of non-immunologic factors, such as in vivo hypoxic and hyperglycemic conditions, damaged the encapsulated islet xenografts. To achieve long-term function, new approaches must be developed to prevent this damage, for example, by increasing the oxygen supply to microencapsulated islets in the ip space.
Collapse
Affiliation(s)
- Susan A Safley
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Norma S Kenyon
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Dora M Berman
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | | | - Stephanie Duncanson
- Department of Biomedical Engineering, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Neal Iwakoshi
- Department of Surgery, Emory University, Atlanta, Georgia
| | | | | | - Peter Thompson
- Department of Surgery, Emory University, Atlanta, Georgia
| | - I Raul Badell
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Athanassios Sambanis
- Department of Biomedical Engineering, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Camillo Ricordi
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Collin J Weber
- Department of Surgery, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Smith KE, Purvis WG, Davis MA, Min CG, Cooksey AM, Weber CS, Jandova J, Price ND, Molano DS, Stanton JB, Kelly AC, Steyn LV, Lynch RM, Limesand SW, Alexander M, Lakey JRT, Seeberger K, Korbutt GS, Mueller KR, Hering BJ, McCarthy FM, Papas KK. In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β-cell function, and transcriptomes. Xenotransplantation 2018; 25:e12432. [PMID: 30052287 DOI: 10.1111/xen.12432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, β-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, β-cell percentage, and β-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS The oxygen demand, membrane integrity, β-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.
Collapse
Affiliation(s)
- Kate E Smith
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Catherine G Min
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Craig S Weber
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Diana S Molano
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Alexander
- Department of Surgery, University of California-Irvine, Orange, CA, USA
| | | | - Karen Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Kate R Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
38
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
39
|
Samy KP, Davis RP, Gao Q, Martin BM, Song M, Cano J, Farris AB, McDonald A, Gall EK, Dove CR, Leopardi FV, How T, Williams KD, Devi GR, Collins BH, Kirk AD. Early barriers to neonatal porcine islet engraftment in a dual transplant model. Am J Transplant 2018; 18:998-1006. [PMID: 29178588 PMCID: PMC5878697 DOI: 10.1111/ajt.14601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 01/25/2023]
Abstract
Porcine islet xenografts have the potential to provide an inexhaustible source of islets for β cell replacement. Proof-of-concept has been established in nonhuman primates. However, significant barriers to xenoislet transplantation remain, including the poorly understood instant blood-mediated inflammatory reaction and a thorough understanding of early xeno-specific immune responses. A paucity of data exist comparing xeno-specific immune responses with alloislet (AI) responses in primates. We recently developed a dual islet transplant model, which enables direct histologic comparison of early engraftment immunobiology. In this study, we investigate early immune responses to neonatal porcine islet (NPI) xenografts compared with rhesus islet allografts at 1 hour, 24 hours, and 7 days. Within the first 24 hours after intraportal infusion, we identified greater apoptosis (caspase 3 activity and TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling])-positive cells) of NPIs compared with AIs. Macrophage infiltration was significantly greater at 24 hours compared with 1 hour in both NPI (wild-type) and AIs. At 7 days, IgM and macrophages were highly specific for NPIs (α1,3-galactosyltransferase knockout) compared with AIs. These findings demonstrate an augmented macrophage and antibody response toward xenografts compared with allografts. These data may inform future immune or genetic manipulations required to improve xenoislet engraftment.
Collapse
Affiliation(s)
- KP Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - RP Davis
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Q Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - BM Martin
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - M Song
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - J Cano
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - AB Farris
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - A McDonald
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - EK Gall
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - CR Dove
- College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602
| | | | - T How
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - KD Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - GR Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - BH Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - AD Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
40
|
Wright K, Dziuk R, Mital P, Kaur G, Dufour JM. Xenotransplanted Pig Sertoli Cells Inhibit Both the Alternative and Classical Pathways of Complement-Mediated Cell Lysis While Pig Islets Are Killed. Cell Transplant 2018; 25:2027-2040. [PMID: 27305664 DOI: 10.3727/096368916x692032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenotransplantation has vast clinical potential but is limited by the potent immune responses generated against xenogeneic tissue. Immune-privileged Sertoli cells (SCs) survive xenotransplantation long term (≥90 days) without immunosuppression, making SCs an ideal model to identify xenograft survival mechanisms. Xenograft rejection includes the binding of natural and induced antibodies and the activation of the complement cascade. Using an in vitro cytotoxicity assay, wherein cells were cultured with human serum and complement, we demonstrated that neonatal pig SCs (NPSCs) are resistant to complement-mediated cell lysis and express complement inhibitory factors, membrane cofactor protein (MCP; CD46), and decay- accelerating factor (DAF; CD55) at significantly higher levels than neonatal pig islets (NPIs), which served as non-immune-privileged controls. After xenotransplantation into naive Lewis rats, NPSCs survived throughout the study, while NPIs were rejected within 9 days. Serum antibodies, and antibody and complement deposition within the grafts were analyzed. Compared to preformed circulating anti-pig IgM antibodies, no significant increase in IgM production against NPSCs or NPIs was observed, while IgM deposition was detected from day 6 onward in both sets of grafts. A late serum IgG response was detected in NPSC (days 13 and 20) and NPI (day 20) recipients. Consistently, IgG deposition was first detected at days 9 and 13 in NPSC and NPI grafts, respectively. Interestingly, C3 was deposited at days 1 and 3 in NPI grafts and only at day 1 in NPSC grafts, while membrane attack complex (MAC) deposition was only detected in NPI grafts (at days 1-4). Collectively, these data suggest NPSCs actively inhibit both the alternative and classical pathways of complement-mediated cell lysis, while the alternative pathway plays a role in rejecting NPIs. Ultimately, inhibiting the alternative pathway along with transplanting xenogeneic tissue from transgenic pigs (expressing human complement inhibitory factors) could prolong the survival of xenogeneic cells without immunosuppression.
Collapse
Affiliation(s)
- Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rachel Dziuk
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Payal Mital
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
41
|
He S, Wang C, Du X, Chen Y, Zhao J, Tian B, Lu H, Zhang Y, Liu J, Yang G, Li L, Li H, Cheng J, Lu Y. MSCs promote the development and improve the function of neonatal porcine islet grafts. FASEB J 2018; 32:3242-3253. [DOI: 10.1096/fj.201700991r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sirong He
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
- Department of ImmunologyCollege of Basic MedicineChongqing Medical University Chongqing China
| | - Chengshi Wang
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Xiaojiong Du
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Younan Chen
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Jiuming Zhao
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Bole Tian
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Huimin Lu
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Yi Zhang
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Jingping Liu
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Guang Yang
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Lan Li
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Hongxia Li
- National Center for Safety Evaluation of Traditional Chinese Medicine Chengdu China
| | - Jingqiu Cheng
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Yanrong Lu
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
42
|
Samy KP, Butler JR, Li P, Cooper DKC, Ekser B. The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation. J Immunol Res 2017; 2017:8415205. [PMID: 29159187 PMCID: PMC5660816 DOI: 10.1155/2017/8415205] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022] Open
Abstract
Pig-to-human xenotransplantation offers a potential bridge to the growing disparity between patients with end-stage organ failure and graft availability. Early studies attempting to overcome cross-species barriers demonstrated robust humoral immune responses to discordant xenoantigens. Recent advances have led to highly efficient and targeted genomic editing, drastically altering the playing field towards rapid production of less immunogenic porcine tissues and even the discussion of human xenotransplantation trials. However, as these humoral immune barriers to cross-species transplantation are overcome with advanced transgenics, cellular immunity to these novel xenografts remains an outstanding issue. Therefore, understanding and optimizing immunomodulation will be paramount for successful clinical xenotransplantation. Costimulation blockade agents have been introduced in xenotransplantation research in 2000 with anti-CD154mAb. Most recently, prolonged survival has been achieved in solid organ (kidney xenograft survival > 400 days with anti-CD154mAb, heart xenograft survival > 900 days, and liver xenograft survival 29 days with anti-CD40mAb) and islet xenotransplantation (>600 days with anti-CD154mAb) with the use of these potent experimental agents. As the development of novel genetic modifications and costimulation blocking agents converges, we review their impact thus far on preclinical xenotransplantation and the potential for future application.
Collapse
Affiliation(s)
- Kannan P. Samy
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James R. Butler
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David K. C. Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
43
|
Cowan PJ, Tector AJ. The Resurgence of Xenotransplantation. Am J Transplant 2017; 17:2531-2536. [PMID: 28397351 DOI: 10.1111/ajt.14311] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
There has been an upsurge of interest in xenotransplantation in recent years. This resurgence can attributed to a combination of factors. First, there has been a dramatic improvement in efficacy in several preclinical models, with maximum xenograft survival times increasing to 950 days for islets, 945 days for hearts, and 310 days for kidneys. Second, the rapid development of genome editing technology (particularly the advent of clustered regularly interspaced short palindromic repeats/Cas9) has revolutionized the capacity to generate new donor pigs with multiple protective genetic modifications; what once took many years to achieve can now be performed in months, with much greater precision and scope. Third, the specter of porcine endogenous retrovirus (PERV) has receded significantly. There has been no evidence of PERV transmission in clinical trials and preclinical models, and improved screening methods and new options for the treatment or even elimination of PERV are now available. Balancing these positive developments are several remaining challenges, notably the heavy and often clinically inapplicable immunosuppression required to prevent xenograft rejection. Nonetheless, the potential for xenotransplantation as a solution to the shortage of human organs and tissues for transplantation continues to grow.
Collapse
Affiliation(s)
- P J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - A J Tector
- School of Medicine, University of Alabama, Birmingham, AL
| |
Collapse
|
44
|
|
45
|
Huang D, Wang Y, Hawthorne WJ, Hu M, Hawkes J, Burns H, Davies S, Gao F, Chew YV, Yi S, O'Connell PJ. Ex vivo-expanded baboon CD39 + regulatory T cells prevent rejection of porcine islet xenografts in NOD-SCID IL-2rγ -/- mice reconstituted with baboon peripheral blood mononuclear cells. Xenotransplantation 2017; 24. [PMID: 28963731 DOI: 10.1111/xen.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND A high immunosuppressive burden is required for long-term islet xenograft survival in non-human primates even using genetically modified donor pigs. AIMS We aimed to investigate the capacity of baboon regulatory T cells (Treg) to suppress islet xenograft rejection, thereby developing a potential immunoregulatory or tolerance therapy that could be evaluated in NHP models of xenotransplantation. MATERIALS & METHODS Baboon Treg expanded with stimulation by porcine peripheral blood mononuclear cells (PBMC) were characterized by cell phenotyping and suppressive activity assays in vitro. Their function in vivo was evaluated in neonatal porcine islet cell clusters (NICC) transplanted NOD-SCID IL-2rγ-/- (NSG) mice receiving baboon PBMC alone or with expanded autologous Treg. RESULTS The majority of expanded Treg coexpressed Foxp3 and CD39 and were highly suppressive of the baboon anti-pig xenogeneic T cell response in vitro. Reconstitution of mice with baboon PBMC alone resulted in NICC xenograft rejection within 35 days. Cotransfer with baboon PBMC and Treg prolonged islet xenograft survival beyond 100 days, correlating with Treg engraftment, intragraft CD39 and Foxp3 gene expression, and reduced graft infiltrating effector T cells and reduced interferon-γ production. DISCUSSION & CONCLUSION Our data supports the capacity of ex vivo expanded CD39+ baboon Treg to suppress islet xenograft rejection in primatized mice, suggesting it has potential as an adjunctive immunotherapy in preclinical NHP models of xenotransplantation.
Collapse
Affiliation(s)
- Dandan Huang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Joanne Hawkes
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Sussan Davies
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Feng Gao
- Cell Transplantation and Gene Therapy, 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
46
|
Fung RKF, Kerridge IH. Gene editing advance re-ignites debate on the merits and risks of animal to human transplantation. Intern Med J 2017; 46:1017-22. [PMID: 27633468 DOI: 10.1111/imj.13183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
In Australia, and internationally, the shortage of organ and tissue donors significantly limits the number of patients with critical organ or tissue failure who are able to receive a transplant each year. The rationale for xenotransplantation - the transplantation of living cells, tissues or organs from one species to another - is to meet this shortfall in human donor material. While early clinical trials showed promise, particularly in patients with type I diabetes whose insulin dependence could be temporarily reversed by the transplantation of porcine islet cells, these benefits have been balanced with scientific, clinical and ethical concerns revolving around the risks of immune rejection and the potential transmission of porcine endogenous retroviruses or other infectious agents from porcine grafts to human recipients. However, the advent of CRISPR/Cas9, a revolutionary gene editing technology, has reignited interest in the field with the possibility of genetically engineering porcine organs and tissues that are less immunogenic and have virtually no risk of transmission of porcine endogenous retroviruses. At the same time, CRISPR/Cas9 may also open up a myriad of possibilities for tissue engineering and stem cell research, which may complement xenotransplantation research by providing an additional source of donor cells, tissues and organs for transplantation into patients. The recent international symposium on gene editing, organised by the US National Academy of Sciences, highlights both the enormous therapeutic potential of CRISPR/Cas9 and the raft of ethical and regulatory challenges that may follow its utilisation in transplantation and in medicine more generally.
Collapse
Affiliation(s)
- R K F Fung
- Centre for Values, Ethics and the Law in Medicine, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia. .,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - I H Kerridge
- Centre for Values, Ethics and the Law in Medicine, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Mourad NI, Gianello P. Gene Editing, Gene Therapy, and Cell Xenotransplantation: Cell Transplantation Across Species. CURRENT TRANSPLANTATION REPORTS 2017; 4:193-200. [PMID: 28932650 PMCID: PMC5577055 DOI: 10.1007/s40472-017-0157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Cell xenotransplantation has the potential to provide a safe, ethically acceptable, unlimited source for cell replacement therapies. This review focuses on genetic modification strategies aimed to overcome remaining hurdles standing in the way of clinical porcine islet transplantation and to develop neural cell xenotransplantation. RECENT FINDINGS In addition to previously described genetic modifications aimed to mitigate hyperacute rejection, instant blood-mediated inflammatory reaction, and cell-mediated rejection, new data showing the possibility of increasing porcine islet insulin secretion by transgenesis is an interesting addition to the array of genetically modified pigs available for xenotransplantation. Moreover, combining multiple modifications is possible today thanks to new, improved genomic editing tools. SUMMARY Genetic modification of large animals, pigs in particular, has come a long way during the last decade. These modifications can help minimize immunological and physiological incompatibilities between porcine and human cells, thus allowing for better tolerance and function of xenocells.
Collapse
Affiliation(s)
- Nizar I. Mourad
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, SSS/IREC/CHEX, Avenue Hippocrate, 55 – Bte B1.55.04, 1200 Brussels, Belgium
| | - Pierre Gianello
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, SSS/IREC/CHEX, Avenue Hippocrate, 55 – Bte B1.55.04, 1200 Brussels, Belgium
| |
Collapse
|
48
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
49
|
Executive Summary of IPITA-TTS Opinion Leaders Report on the Future of β-Cell Replacement. Transplantation 2017; 100:e25-31. [PMID: 27082827 DOI: 10.1097/tp.0000000000001054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The International Pancreas and Islet Transplant Association (IPITA), in conjunction with the Transplantation Society (TTS), convened a workshop to consider the future of pancreas and islet transplantation in the context of potential competing technologies that are under development, including the artificial pancreas, transplantation tolerance, xenotransplantation, encapsulation, stem cell derived beta cells, beta cell proliferation, and endogenous regeneration. Separate workgroups for each topic and then the collective group reviewed the state of the art, hurdles to application, and proposed research agenda for each therapy that would allow widespread application. Herein we present the executive summary of this workshop that focuses on obstacles to application and the research agenda to overcome them; the full length article with detailed background for each topic is published as an online supplement to Transplantation.
Collapse
|
50
|
Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res 2017; 26:435-445. [PMID: 28553699 DOI: 10.1007/s11248-017-0021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO-1 that will be suitable for xenotransplantation by overcoming hyperacute, acute and anti-inflammatory rejection.
Collapse
|