1
|
Mohamed FF, Hoac B, Phanrungsuwan A, Tan MH, Giovani PA, Ghiba S, Murshed M, Foster BL, McKee MD. Contributions of increased osteopontin and hypophosphatemia to dentoalveolar defects in osteomalacic Hyp mice. Bone 2023; 176:116886. [PMID: 37634682 PMCID: PMC10529969 DOI: 10.1016/j.bone.2023.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
X-linked hypophosphatemia (XLH) is an inherited disorder caused by inactivating mutations in the PHEX gene leading to renal phosphate wasting, rickets and osteomalacia. XLH is also associated with dentoalveolar mineralization defects in tooth enamel, dentin and cementum, and in alveolar bone, which lead to an increased prevalence of dental abscesses, periodontal disease and tooth loss. Genetic mouse experiments, and deficiencies in XLH patient therapies where treatments do not fully ameliorate mineralization defects, suggest that other pathogenic mechanisms may exist in XLH. The mineralization-inhibiting, secreted extracellular matrix phosphoprotein osteopontin (OPN, gene Spp1) is a substrate for the PHEX enzyme whereby extensive and inactivating degradation of inhibitory OPN by PHEX facilitates mineralization. Conversely, excess OPN accumulation in skeletal and dental tissues - for example in XLH where inactivating mutations in the PHEX gene limit degradation of inhibitory OPN, or as occurs in Fgf23-null mice - contributes to mineralization defects. We hypothesized that Spp1/OPN ablation in Hyp mice (a mouse model for XLH) would reduce dentoalveolar mineralization defects. Immunostaining revealed increased OPN in Hyp vs. wild-type (WT) alveolar bone, particularly in osteocyte lacunocanalicular networks where Hyp mice have characteristic hypomineralized peri-osteocytic lesions (POLs). Micro-computed tomography and histology showed that ablation of Spp1 in Hyp mice (Hyp;Spp1-/-) on a normal diet did not ameliorate bulk defects in enamel, dentin, or alveolar bone. On a high-phosphate diet, both Hyp and Hyp;Spp1-/- mice showed improved mineralization of enamel, dentin, and alveolar bone. Silver staining indicated Spp1 ablation did not improve alveolar or mandibular bone osteocyte POLs in Hyp mice; however, they were normalized by a high-phosphate diet in both Hyp and Hyp;Spp1-/- mice, although inducing increased OPN. Collectively, these data indicate that despite changes in OPN content in the dentoalveolar mineralized tissues, there exist other compensatory mineralization mechanisms that arise from knockout of Spp1/OPN in the Hyp background.
Collapse
Affiliation(s)
- Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Betty Hoac
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Michelle H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Sana Ghiba
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Shriners Hospital for Children, Montreal, QC, Canada
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| | - Marc D McKee
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Characterization of SIBLING Proteins in the Mineralized Tissues. Dent J (Basel) 2022; 10:dj10080144. [PMID: 36005242 PMCID: PMC9406783 DOI: 10.3390/dj10080144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The SIBLING proteins are a family of non-collagenous proteins (NCPs) previously thought to be expressed only in dentin but have been demonstrated in other mineralized and non-mineralized tissues. They are believed to play vital roles in both osteogenesis and dentinogenesis. Since they are tightly regulated lifelong processes and involve a peak of mineralization, three different age groups were investigated. Fifteen wild-type (WT) mice were euthanized at ages 1, 3, and 6 months. Hematoxylin and eosin staining (H&E) was performed to localize various microscopic structures in the mice mandibles and tibias. The immunostaining pattern was compared using antibodies for dentin sialoprotein (DSP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). Immunostaining of DSP in tibia showed its most noticeable staining in the 3-month age group. DSP was expressed in alveolar bone, cellular cementum, and PDL. A similar expression of DMP1 was seen in the tibia and dentin. BSP was most noticeably detected in the tibia and acellular cementum. OPN was mainly expressed in the bone. A lower level of OPN was observed at all age groups in the teeth. The immunostaining intensity was the least detected for all proteins in the 6-month tibia sample. The expression patterns of the four SIBLING proteins showed variations in their staining intensity and temporospatial patterning concordant with skeletal and dental maturity. These findings suggest some role in this tightly regulated mineralization process.
Collapse
|
3
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
4
|
Korkmaz Y, Imhof T, Kämmerer PW, Bloch W, Rink-Notzon S, Möst T, Weber M, Kesting M, Galler KM, Deschner J. The colocalizations of pulp neural stem cells markers with dentin matrix protein-1, dentin sialoprotein and dentin phosphoprotein in human denticle (pulp stone) lining cells. Ann Anat 2021; 239:151815. [PMID: 34400302 DOI: 10.1016/j.aanat.2021.151815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The primary dentin, secondary dentin, and reactive tertiary dentin are formed by terminal differentiated odontoblasts, whereas atubular reparative tertiary dentin is formed by odontoblast-like cells. Odontoblast-like cells differentiate from pulpal stem cells, which express the neural stem cell markers nestin, S100β, Sox10, and P0. The denticle (pulp stone) is an unique mineralized extracellular matrix that frequently occurs in association with the neurovascular structures in the dental pulp. However, to date, the cellular origin of denticles in human dental pulp is unclear. In addition, the non-collagenous extracellular dentin matrix proteins dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), and dentin phosphoprotein (DPP) have been well characterized in the dentin matrix, whereas their role in the formation and mineralization of the denticle matrix remains to be clarified. METHODS To characterize the formation of denticle, healthy human third molars (n = 59) were completely sectioned and evaluated by HE staining in different layers at 720 µm intervals. From these samples, molars with (n = 5) and without denticles (n = 8) were selected. Using consecutive cryo-sections from a layer containing denticles of different sizes, we examined DMP1, DSP, and DPP in denticle lining cells and tested their co-localizations with the glial stem cell markers nestin, S100β, Sox10, and P0 by quantitative and double staining methods. RESULTS DMP1, DSP and DPP were found in odontoblasts, whereas denticle lining cells were positive only for DMP1 and DSP but not for DPP. Nestin was detected in both odontoblasts and denticle lining cells. S100β, Sox10, and P0 were co-localized with DMP1 and DSP in different subpopulations of denticle lining cells. CONCLUSIONS The co-localization of S100β, Sox10, and P0 with DMP1 and DSP in denticle lining cells suggest that denticle lining cells are originated from glial and/or endoneurial mesenchymal stem cells which are involved in biomineralization of denticle matrix by secretion of DMP1 and DSP. Since denticles are atubular compared to primary, secondary, reactionary tertiary dentin and denticle formed by odontoblasts, our results suggest that DPP could be one of the proteins involved in the complex regulation of dentinal tubule formation.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Thomas Imhof
- Institute for Experimental Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Peer W Kämmerer
- Department of Oral, and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Möst
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Decompression effects on bone healing in rat mandible osteomyelitis. Sci Rep 2021; 11:11673. [PMID: 34083570 PMCID: PMC8175588 DOI: 10.1038/s41598-021-91104-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Osteomyelitis (OM) of the jaw is usually caused by a chronic odontogenic infection. Decompression is the release the intraluminal pressure in the cystic cavity allowing gradual bone growth from the periphery. The aim of this study was to analyze the effectiveness of decompression in an OM jaw model. A 4-mm-diameter defect was made on mandibles of fourteen Sprague-Dawley rats and inoculated with S. aureus (20 μl of 1 × 107 CFU/ml) injection. Two weeks later, four groups were made as non-treatment (C1), only curettage (C2), curettage and decompression (E1), and curettage and decompression with normal saline irrigation (E2). After four weeks, each group was analyzed. Most micro-CT parameters, including bone mineral density [0.87 (± 0.08) g/cm3] with bone volume [0.73 (± 0.08) mm3] was higher in E2 group than that of C1 group (p = 0.04, p = 0.05, respectively). E2 group in histology showed the highest number of osteocytes than those of control groups, 91.00 (± 9.90) (p = 0.002). OPN were expressed strongly in the E1 ("5": 76-100%) that those of other groups. Decompression drains induced advanced bone healing compared to that of curettage alone. Therefore, it could be recommended to use decompressive drain for enhancing the jaw OM management.
Collapse
|
6
|
Lira Dos Santos EJ, Chavez MB, Tan MH, Mohamed FF, Kolli TN, Foster BL, Liu ES. Effects of Active Vitamin D or FGF23 Antibody on Hyp Mice Dentoalveolar Tissues. J Dent Res 2021; 100:1482-1491. [PMID: 33906518 DOI: 10.1177/00220345211011041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the PHEX gene lead to X-linked hypophosphatemia (XLH), a form of inherited rickets featuring elevated fibroblast growth factor 23 (FGF23), reduced 1,25-dihydroxyvitamin D (1,25D), and hypophosphatemia. Hyp mutant mice replicate the XLH phenotype, including dentin, alveolar bone, and cementum defects. We aimed to compare effects of 1,25D versus FGF23-neutralizing antibody (FGF23Ab) monotherapies on Hyp mouse dentoalveolar mineralization. Male Hyp mice, either injected subcutaneously with daily 1,25D or thrice weekly with FGF23 blocking antibody from 2 to 35 d postnatal, were compared to wild-type (WT) controls and untreated Hyp mice. Mandibles were analyzed by high-resolution micro-computed tomography (micro-CT), histology, and immunohistochemistry. Both interventions maintained normocalcemia, increased serum phosphate levels, and improved dentoalveolar mineralization in treated versus untreated Hyp mice. 1,25D increased crown dentin volume and thickness and root dentin/cementum volume, whereas FGF23Ab effects were limited to crown dentin volume. 1,25D increased bone volume fraction, bone mineral density, and tissue mineral density in Hyp mice, whereas FGF23Ab failed to significantly affect these alveolar bone parameters. Neither treatment fully attenuated dentin and bone defects to WT levels, and pulp volumes remained elevated regardless of treatment. Both treatments reduced predentin thickness and improved periodontal ligament organization, while 1,25D promoted a more profound improvement in acellular cementum thickness. Altered cell densities and lacunocanalicular properties of alveolar and mandibular bone osteocytes and cementocytes in Hyp mice were partially corrected by either treatment. Neither treatment normalized the altered distributions of bone sialoprotein and osteopontin in Hyp mouse alveolar bone. Moderate improvements from both 1,25D and FGF23Ab treatment regimens support further studies and collection of oral health data from subjects receiving a newly approved anti-FGF23 therapy. The inability of either treatment to fully correct Hyp mouse dentin and bone prompts further experiments into underlying pathological mechanisms to identify new therapeutic approaches.
Collapse
Affiliation(s)
- E J Lira Dos Santos
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Campinas State University, School of Dentistry, Piracicaba, São Paulo, Brazil
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F F Mohamed
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E S Liu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Hoac B, Østergaard M, Wittig NK, Boukpessi T, Buss DJ, Chaussain C, Birkedal H, Murshed M, McKee MD. Genetic Ablation of Osteopontin in Osteomalacic Hyp Mice Partially Rescues the Deficient Mineralization Without Correcting Hypophosphatemia. J Bone Miner Res 2020; 35:2032-2048. [PMID: 32501585 DOI: 10.1002/jbmr.4101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
PHEX is predominantly expressed by bone and tooth-forming cells, and its inactivating mutations in X-linked hypophosphatemia (XLH) lead to renal phosphate wasting and severe hypomineralization of bones and teeth. Also present in XLH are hallmark hypomineralized periosteocytic lesions (POLs, halos) that persist despite stable correction of serum phosphate (Pi ) that improves bulk bone mineralization. In XLH, mineralization-inhibiting osteopontin (OPN, a substrate for PHEX) accumulates in the extracellular matrix of bone. To investigate how OPN functions in Hyp mice (a model for XLH), double-null (Hyp;Opn-/- ) mice were generated. Undecalcified histomorphometry performed on lumbar vertebrae revealed that Hyp;Opn-/- mice had significantly reduced osteoid area/bone area (OV/BV) and osteoid thickness of trabecular bone as compared to Hyp mice, despite being as hypophosphatemic as Hyp littermate controls. However, tibias examined by synchrotron radiation micro-CT showed that mineral lacunar volumes remained abnormally enlarged in these double-null mice. When Hyp;Opn-/- mice were fed a high-Pi diet, serum Pi concentration increased, and OV/BV and osteoid thickness normalized, yet mineral lacunar area remained abnormally enlarged. Enpp1 and Ankh gene expression were increased in double-null mice fed a high-Pi diet, potentially indicating a role for elevated inhibitory pyrophosphate (PPi ) in the absence of OPN. To further investigate the persistence of POLs in Hyp mice despite stable correction of serum Pi , immunohistochemistry for OPN on Hyp mice fed a high-Pi diet showed elevated OPN in the osteocyte pericellular lacunar matrix as compared to Hyp mice fed a control diet. This suggests that POLs persisting in Hyp mice despite correction of serum Pi may be attributable to the well-known upregulation of mineralization-inhibiting OPN by Pi , and its accumulation in the osteocyte pericellular matrix. This study shows that OPN contributes to osteomalacia in Hyp mice, and that genetic ablation of OPN in Hyp mice improves the mineralization phenotype independent of systemic Pi -regulating factors. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Maja Østergaard
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Nina K Wittig
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Tchilalo Boukpessi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Odontology, Charles Foix and Bretonneau Hospitals and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Department of Odontology, Charles Foix and Bretonneau Hospitals and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Henrik Birkedal
- Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Shriners Hospital for Children, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Chavez MB, Kramer K, Chu EY, Thumbigere-Math V, Foster BL. Insights into dental mineralization from three heritable mineralization disorders. J Struct Biol 2020; 212:107597. [PMID: 32758526 PMCID: PMC7530110 DOI: 10.1016/j.jsb.2020.107597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia (XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results in vascular calcification due to decreased PPi, later compounded by FGF23-driven hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these disorders and findings of clinical and preclinical studies to date, including some of our own recent observations. The distinct dental defects associated with the three heritable mineralization disorders reflect unique processes of the respective dental hard tissues, revealing insights into their development and clues about pathological mechanisms underlying such disorders.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Kaitrin Kramer
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Zuo Q, Yao J, Lu S, Du Z, Li S, Lin F, Shi W, Zhang Y, Xiao Y. The role of organic phosphate in the spatial control of periodontium complex bio-mineralization: an in vitro study. J Mater Chem B 2020; 7:5956-5965. [PMID: 31524208 DOI: 10.1039/c9tb01261c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The periodontal structure is a particularly exquisite model of hierarchical spatial control of mineralization. Extracellular matrix control in the selective mineralization of the periodontium complex remains elusive since the extracellular matrix is a set of mineralization promoters and inhibitors. The phosphorylated proteins, which are ubiquitous in the extracellular matrix of the periodontium complex, are well-documented as primary factors in the regulation of tissue mineralization. Whether organic phosphates are key regulators in defining the interfaces between dentin, cementum, periodontal ligament and alveolar bone is an issue worthy of research. Here, we investigated the in vitro remineralization process of demineralized and dephosphorylated periodontal tissue sections. When exposed to a metastable mineralization solution, a large number of calcospherulites deposited on the surface of the dephosphorylated sections and the tissue selective mineralization were disrupted. Interestingly, on adding a dentin matrix protein-1 analogue named polyacrylic acid, the surface mineralization rate in the dephosphorylated periodontal complex reduced dramatically. In contrast, hierarchical mineralization was displayed by the demineralized section at the tissue collagen fibrillar levels in both alveolar bone and dentin regions. These results demonstrated that the organic phosphate could prevent surface mineral deposition, and the minerals could penetrate the collagen fibrils to initiate a selective and hierarchal tissue mineralization with the assistance of the dentin matrix protein-1 analogue in the periodontal complex. This study enhances our understanding of the mineralization discrepancy in the periodontal tissues, which will provide some insight into the development of biomaterials for the regeneration of soft-hard tissue interfaces.
Collapse
Affiliation(s)
- Qiliang Zuo
- Ministry Education Key Laboratory for Oral Biomedical Engineering, School of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cai M, Li J, Yue R, Wang Z, Sun Y. Glycosylation of DMP1 maintains cranial sutures in mice. J Oral Rehabil 2020; 47 Suppl 1:19-28. [PMID: 31461788 DOI: 10.1111/joor.12881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 01/19/2023]
Abstract
Craniosynostosis, a severe craniofacial developmental disease, can only be treated with surgery currently. Recent studies have shown that proteoglycans are involved in the suture development. For the bone matrix protein, dentin matrix protein 1 (DMP1), glycosylation on the N-terminal of it could generate a functional proteoglycan form of DMP1 during osteogenesis. We identified that the proteoglycan form of DMP1 (DMP1-PG) is highly expressed in mineralisation front of suture. But, the potential role of DMP1-PG in suture fusion remain unclear. To investigate the role of DMP1-PG in cranial suture fusion and craniofacial bone development. By using a DMP1 glycosylation site mutation mouse model, DMP1-S89G mice, we compared the suture development in it with control mice. We compared the suture phenotypes, bone formation rate, expression levels of bone formation markers in vivo between DMP1-S89G mice and wild-type mice. Meanwhile, cell culture and organ culture were performed to detect the differences in cell differentiation and suture fusion in vitro. Finally, chondroitin sulphate (CHS), as functional component of DMP1-PG, was employed to test whether it could delay the premature suture fusion and the abnormal differentiation of bone mesenchymal stem cells (BMSCs) of DMP1-PG mice. DMP1-S89G mice had premature closure of suture and shorter skull size. Lack of DMP1-PG accelerated bone formation in cranial suture. DMP1-PG maintained the essential stemness of BMSCs in suture through blocking the premature differentiation of BMSCs to osteoblasts. Finally, chondroitin sulphate, a major component of DMP1-PG, successfully delayed the premature suture fusion by organ culture of skull in vitro. DMP1-PG could inhibit premature fusion of cranial suture and maintain the suture through regulating the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Mingxiang Cai
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Junhui Li
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Rui Yue
- School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zuolin Wang
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Guirado E, Chen Y, Ross RD, Zhang Y, Chaussain C, George A. Disrupted Protein Expression and Altered Proteolytic Events in Hypophosphatemic Dentin Can Be Rescued by Dentin Matrix Protein 1. Front Physiol 2020; 11:82. [PMID: 32116788 PMCID: PMC7034300 DOI: 10.3389/fphys.2020.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
Dentin, one of the four mineralized tissues of the craniofacial complex, forms sequentially from the deposition of an organic matrix to the nucleation of an inorganic phase within the matrix scaffold. Several promoters and inhibitors of mineralization support and regulate mineral nucleation. Clinical and experimental evidence suggest that dentin matrix protein 1 (DMP1) and phosphate-regulating neutral endopeptidase (PHEX) cooperate and are necessary for the formation of a cohesive dentin layer. The following study investigates the effect of PHEX loss-of-function on dentin matrix formation preceding mineralization. Using the Hyp mouse, an animal model for X-linked hypophosphatemia (XLH), we identified an irregular distribution of dentin extracellular matrix proteins. Likewise, dental pulp stem cells (DPSCs) from XLH patients exhibited altered proteolytic events with disrupted extracellular matrix deposition. Further differentiation assays demonstrated that XLH DPSCs exhibited impaired matrix mineralization. Overexpression of DMP1 in XLH DPSCs restored the irregular protein processing patterns to near-physiological levels. Our results support the hypothesis that hypophosphatemia resulting from PHEX loss-of-function affects the integrity of the organization of the dentin matrix and suggests that exogenous DMP1 can restore physiological processing of matrix proteins, in addition to its canonical role in mineralization.
Collapse
Affiliation(s)
- Elizabeth Guirado
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yinghua Chen
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Youbin Zhang
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Catherine Chaussain
- EA2496, Faculty of Dentistry, Université de Paris, Montrouge, France
- APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, OSCAR, Bretonneau Hospital PNVS, AP-HP, Paris, France
| | - Anne George
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Zhang H, Chavez MB, Kolli TN, Tan MH, Fong H, Chu EY, Li Y, Ren X, Watanabe K, Kim DG, Foster BL. Dentoalveolar Defects in the Hyp Mouse Model of X-linked Hypophosphatemia. J Dent Res 2020; 99:419-428. [PMID: 31977267 DOI: 10.1177/0022034520901719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in PHEX cause X-linked hypophosphatemia (XLH), a form of hypophosphatemic rickets. Hyp (Phex mutant) mice recapitulate the XLH phenotype. Dental disorders are prevalent in individuals with XLH; however, underlying dentoalveolar defects remain incompletely understood. We analyzed Hyp mouse dentoalveolar defects at 42 and 90 d postnatal to comparatively define effects of XLH on dental formation and function. Phex mRNA was expressed by odontoblasts (dentin), osteocytes (bone), and cementocytes (cellular cementum) in wild-type (WT) mice. Enamel density was unaffected, though enamel volume was significantly reduced in Hyp mice. Dentin defects in Hyp molars were indicated histologically by wide predentin, thin dentin, and extensive interglobular dentin, confirming micro-computed tomography (micro-CT) findings of reduced dentin volume and density. Acellular cementum was thin and showed periodontal ligament detachment. Mechanical testing indicated dramatically altered periodontal mechanical properties in Hyp versus WT mice. Hyp mandibles demonstrated expanded alveolar bone with accumulation of osteoid, and micro-CT confirmed decreased bone volume fraction and alveolar bone density. Cellular cementum area was significantly increased in Hyp versus WT molars owing to accumulation of hypomineralized cementoid. Histology, scanning electron microscopy, and nanoindentation revealed hypomineralized "halos" surrounding Hyp cementocyte and osteocyte lacunae. Three-dimensional micro-CT analyses confirmed larger cementocyte/osteocyte lacunae and significantly reduced perilacunar mineral density. While long bone and alveolar bone osteocytes in Hyp mice overexpressed fibroblast growth factor 23 (Fgf23), its expression in molars was much lower, with cementocyte Fgf23 expression particularly low. Expression and distribution of other selected markers were disturbed in Hyp versus WT long bone, alveolar bone, and cementum, including osteocyte/cementocyte marker dentin matrix protein 1 (Dmp1). This study reports for the first time a quantitative analysis of the Hyp mouse dentoalveolar phenotype, including all mineralized tissues. Novel insights into cellular cementum provide evidence for a role for cementocytes in perilacunar mineralization and cementum biology.
Collapse
Affiliation(s)
- H Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - H Fong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Y Li
- Department of Oral Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - X Ren
- Department of Periodontics, School of Stomatology, Shanxi Medical University, Taiyuan, China
| | - K Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D G Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Kawashima N, Okiji T. Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto) 2016; 56:144-53. [PMID: 27131345 DOI: 10.1111/cga.12169] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Odontoblasts are specialized cells that produce dentin and exhibit unique morphological characteristics; i.e., they extend cytoplasmic processes into dentinal tubules. While osteoblasts, which are typical hard-tissue-forming cells, are generated from mesenchymal stem cells during normal and pathological bone metabolism, the induction of odontoblasts only occurs once during tooth development, and odontoblasts survive throughout the lives of healthy teeth. During the differentiation of odontoblasts, signaling molecules from the inner enamel epithelium are considered necessary for the differentiation of odontoblast precursors, i.e., peripheral dental papilla cells. If odontoblasts are destroyed by severe external stimuli, such as deep caries, the differentiation of dental pulp stem cells into odontoblast-like cells is induced. Various bioactive molecules, such as non-collagenous proteins, might be involved in this process, although the precise mechanisms responsible for odontoblast differentiation have not been fully elucidated. Recently, our knowledge about the other functional activities of odontoblasts (apart from dentin formation) has increased. For example, it has been suggested that odontoblasts might act as nociceptive receptors, and surveillance cells that detect the invasion of exogenous pathogens. The regeneration of the dentin-pulp complex has recently gained much attention as a promising future treatment modality that could increase the longevity of pulpless teeth. Finally, congenital dentin anomalies, which are concerned with the disturbance of odontoblast functions, are summarized.
Collapse
Affiliation(s)
- Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
14
|
Jani PH, Gibson MP, Liu C, Zhang H, Wang X, Lu Y, Qin C. Transgenic expression of Dspp partially rescued the long bone defects of Dmp1-null mice. Matrix Biol 2015; 52-54:95-112. [PMID: 26686820 DOI: 10.1016/j.matbio.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023]
Abstract
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1(-/-)) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1(-/-) mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as "Dmp1(-/-);Dspp-Tg mice"). We characterized the long bones of the Dmp1(-/-);Dspp-Tg mice at different ages and compared them with those from Dmp1(-/-) and Dmp1(+/-) (normal control) mice. Our analyses showed that the long bones of Dmp1(-/-);Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1(-/-) mice. The long bones of Dmp1(-/-);Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1(-/-) mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1(-/-) mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that DSPP and DMP1 may function synergistically within the complex milieus of bone matrices.
Collapse
Affiliation(s)
- Priyam H Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Monica P Gibson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
15
|
Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis. Sci Rep 2015; 5:17518. [PMID: 26634432 PMCID: PMC4669440 DOI: 10.1038/srep17518] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/05/2015] [Indexed: 01/23/2023] Open
Abstract
Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.
Collapse
|
16
|
Liu Z, Liu L, Kang C, Xie Q, Zhang B, Li Y. Effects of estrogen deficiency on microstructural changes in rat alveolar bone proper and periodontal ligament. Mol Med Rep 2015; 12:3508-3514. [PMID: 26044123 DOI: 10.3892/mmr.2015.3891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/16/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to analyze the effects of estrogen deficiency on buccal alveolar bone proper and the periodontal ligament in ovariectomized (OVX) rats, compared with rats that had been subjected to sham treatment. Morphological and histological changes in the periodontium were analyzed using micro‑computed tomography and paraffin sectioning. Sections were stained using hematoxylin and eosin, and tartrate‑resistant acid phosphatase. Expression of receptor activator of nuclear factor‑κB ligand (RANKL), dentin matrix protein 1 C‑terminal (DMP1‑C) and osteopontin (OPN) were analyzed using immunohistochemistry. Histomorphometric analysis of buccal alveolar bone proper samples revealed porotic changes and disorganized bone structure in OVX rats. Furthermore, bone mineral density and pore spacing were significantly lower in OVX rats compared with sham rats. Porosity was significantly higher in OVX rats compared with sham rats (P<0.01). A greater number of osteoclasts were observed along the margins of the buccal alveolar bone proper samples from OVX rats compared with those from the sham rats. Expression of OPN and RANKL was significantly higher, and that of DMP1‑C was significantly lower, in OVX rats compared with sham rats. Ovariectomy‑induced osteoporosis is capable of changing the structure of buccal alveolar bone proper and the periodontal ligament, which is likely to increase the risk of periodontal disease.
Collapse
Affiliation(s)
- Zhongshuang Liu
- Sino‑Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lisha Liu
- Sino‑Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chen Kang
- Sino‑Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qi Xie
- School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bin Zhang
- Sino‑Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Li
- Sino‑Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Liu P, Zhang H, Liu C, Wang X, Chen L, Qin C. Inactivation of Fam20C in cells expressing type I collagen causes periodontal disease in mice. PLoS One 2014; 9:e114396. [PMID: 25479552 PMCID: PMC4257665 DOI: 10.1371/journal.pone.0114396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/06/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND FAM20C is a kinase that phosphorylates secretory proteins. Previous studies have shown that FAM20C plays an essential role in the formation and mineralization of bone, dentin and enamel. The present study analyzed the loss-of-function effects of FAM20C on the health of mouse periodontal tissues. METHODS By crossbreeding 2.3 kb Col 1a1-Cre mice with Fam20Cfl/fl mice, we created 2.3 kb Col 1a1-Cre;Fam20Cfl/fl (cKO) mice, in which Fam20C was inactivated in the cells that express Type I collagen. We analyzed the periodontal tissues in the cKO mice using X-ray radiography, histology, scanning electron microscopy and immunohistochemistry approaches. RESULTS The cKO mice underwent a remarkable loss of alveolar bone and cementum, along with inflammation of the periodontal ligament and formation of periodontal pockets. The osteocytes and lacuno-canalicular networks in the alveolar bone of the cKO mice showed dramatic abnormalities. The levels of bone sialoprotein, osteopontin, dentin matrix protein 1 and dentin sialoprotein were reduced in the Fam20C-deficient alveolar bone and/or cementum, while periostin and fibrillin-1 were decreased in the periodontal ligament of the cKO mice. CONCLUSION Loss of Fam20C function leads to periodontal disease in mice. The reduced levels of bone sialoprotein, osteopontin, dentin matrix protein 1, dentin sialoprotein, periostin and fibrillin-1 may contribute to the periodontal defects in the Fam20C-deficient mice.
Collapse
Affiliation(s)
- Peihong Liu
- Department of Periodontics, Harbin Medical University School of Stomatology, Harbin, Heilongjiang, 150001, China
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, United States of America
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, United States of America
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, United States of America
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, United States of America
| | - Li Chen
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- * E-mail: (LC); (CQ)
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, 75246, United States of America
- * E-mail: (LC); (CQ)
| |
Collapse
|
18
|
Prasadam I, Zhou Y, Shi W, Crawford R, Xiao Y. Role of dentin matrix protein 1 in cartilage redifferentiation and osteoarthritis. Rheumatology (Oxford) 2014; 53:2280-7. [PMID: 24987156 DOI: 10.1093/rheumatology/keu262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. METHODS To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. RESULTS It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. CONCLUSION Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.
Collapse
Affiliation(s)
- Indira Prasadam
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia.
| | - Yinghong Zhou
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Wei Shi
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Ross Crawford
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia. Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Yin Xiao
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Sfeir C, Fang PA, Jayaraman T, Raman A, Xiaoyuan Z, Beniash E. Synthesis of bone-like nanocomposites using multiphosphorylated peptides. Acta Biomater 2014; 10:2241-9. [PMID: 24434535 PMCID: PMC4351712 DOI: 10.1016/j.actbio.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
There is a great need for novel materials for mineralized tissue repair and regeneration. Two examples of such tissue, bone and dentin, are highly organized hierarchical nanocomposites in which mineral and organic phases interface at the molecular level. In contrast, current graft materials are either ceramic powders or physical blends of mineral and organic phases with mechanical properties far inferior to those of their target tissues. The objective of this study was to synthesize composite nanofibrils with highly integrated organic/inorganic phases inspired by the mineralized collagen fibrils of bone and dentin. Utilizing our understanding of bone and dentin biomineralization, we have first designed bioinspired peptides containing 3 Ser-Ser-Asp repeat motifs based on the highly phosphorylated protein, dentin phosphophoryn (DPP), found in dentin and alveolar bone. We demonstrate that up to 80% of serines in the peptide can be phosphorylated by casein kinases. We further tested the ability of these peptides to induce biomimetic calcium phosphate mineralization of collagen fibrils. Our mineralization studies have revealed that in the presence of these phosphorylated peptides, mineralized collagen fibrils structurally similar to the mineralized collagen fibrils of bone and dentin were formed. Our results demonstrate that using phosphorylated DPP-inspired peptides, we can successfully synthesize biomimetic composite nanofibrils with integrated organic and inorganic phases. These results provide the first step in the development of biomimetic nanostructured materials for mineralized tissue repair and regeneration using phosphopeptides.
Collapse
Affiliation(s)
- Charles Sfeir
- University of Pittsburgh, School of Dental Medicine, McGowan Institute of Regenerative Medicine, Center for Craniofacial Regeneration, 552 Salk Hall, 3501 Terrace St., Pittsburgh, PA 15261, USA.
| | - Ping-An Fang
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thottala Jayaraman
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aparna Raman
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhang Xiaoyuan
- Department of Oral Biology, School of Dental Medicine and the Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elia Beniash
- University of Pittsburgh, School of Dental Medicine, McGowan Institute of Regenerative Medicine, Center for Craniofacial Regeneration, 552 Salk Hall, 3501 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
20
|
Gibson MP, Zhu Q, Wang S, Liu Q, Liu Y, Wang X, Yuan B, Ruest LB, Feng JQ, D'Souza RN, Qin C, Lu Y. The rescue of dentin matrix protein 1 (DMP1)-deficient tooth defects by the transgenic expression of dentin sialophosphoprotein (DSPP) indicates that DSPP is a downstream effector molecule of DMP1 in dentinogenesis. J Biol Chem 2013; 288:7204-14. [PMID: 23349460 PMCID: PMC3591629 DOI: 10.1074/jbc.m112.445775] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/08/2013] [Indexed: 01/10/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.
Collapse
Affiliation(s)
- Monica Prasad Gibson
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Qinglin Zhu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Suzhen Wang
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Qilin Liu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Ying Liu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Xiaofang Wang
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Baozhi Yuan
- the Department of Medicine, University of Wisconsin, and Geriatric Research Education and Clinical Centers, Madison, Wisconsin 53705
| | - L. Bruno Ruest
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Jian Q. Feng
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Rena N. D'Souza
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Chunlin Qin
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Yongbo Lu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| |
Collapse
|
21
|
Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 2012; 214:241-55. [PMID: 22700194 DOI: 10.1530/joe-12-0143] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. These proteins share many structural characteristics and are primarily located in bone and dentin. Accumulating evidence has implicated the SIBLING proteins in matrix mineralisation. Therefore, in this review, we discuss the individual role that each of the SIBLING proteins has in this highly orchestrated process. In particular, we emphasise how the nature and extent of their proteolytic processing and post-translational modification affect their functional role. Finally, we describe the likely roles of the SIBLING proteins in clinical disorders of hypophosphataemia and their potential therapeutic use.
Collapse
Affiliation(s)
- Katherine A Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Edinburgh, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
22
|
Siyam A, Wang S, Qin C, Mues G, Stevens R, D’Souza RN, Lu Y. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling. Biochem Biophys Res Commun 2012; 424:641-6. [PMID: 22813642 PMCID: PMC3412887 DOI: 10.1016/j.bbrc.2012.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 01/10/2023]
Abstract
Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.
Collapse
Affiliation(s)
- Arwa Siyam
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007, USA
| | - Suzhen Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
| | - Gabriele Mues
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
| | - Roy Stevens
- Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007, USA
| | - Rena N. D’Souza
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013, USA
| |
Collapse
|
23
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Sawada T, Ishikawa T, Shintani S, Yanagisawa T. Ultrastructural immunolocalization of dentin matrix protein 1 on Sharpey's fibers in monkey tooth cementum. Biotech Histochem 2012; 87:360-5. [PMID: 22435407 DOI: 10.3109/10520295.2012.671493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of dentin matrix protein 1 (DMP1) in the formation of mineralized tissue, including dentinogenesis and osteogenesis, its precise role in cementogenesis remains to be clarified fully. The purpose of our study was to demonstrate the ultrastructural immunolocalization of DMP1 in monkey molar tooth cementum. Japanese Macaca fuscata monkeys were fixed by perfusion. The upper molar teeth and accompanying periodontium then were dissected and demineralized with EDTA. Cryosections were obtained, incubated in anti-DMP1 polyclonal antibody, and processed by immunoperoxidase and immunogold labeling. Intense immunoperoxidase staining for DMP1 was observed in acellular extrinsic fiber cementum, particularly in Sharpey's fibers. Cementocyte lacunae with canaliculi showed DMP1 staining in the apical region of the tooth root. Electron immunomicroscopy revealed the close proximity of DMP1 to collagen fibrils in Sharpey's fibers at the mineralization front. Intense immunogold labeling was localized on the walls of the cementocyte lacunae in cellular cementum. These results should contribute to better understanding of the role of DMP1, not only in Sharpey's fiber biomineralization, but also in the maintenance of the cementocyte lacunar space in cementum.
Collapse
Affiliation(s)
- T Sawada
- Department of Ultrastructural Science, Tokyo Dental College, Chiba, Japan.
| | | | | | | |
Collapse
|
25
|
Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 2011; 25:2551-62. [PMID: 21507898 PMCID: PMC3136343 DOI: 10.1096/fj.10-177816] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/07/2011] [Indexed: 12/19/2022]
Abstract
Fibroblastic growth factor 23 (FGF23) is a circulating phosphaturic hormone. Inactivating mutations of the endopeptidase PHEX or the SIBLING protein DMP1 result in equivalent intrinsic bone mineralization defects and increased Fgf23 expression in osteocytes. The mechanisms whereby PHEX and DMP1 regulate Fgf23 expression are unknown. We examined the possibility that PHEX and DMP1 regulate Fgf23 through a common pathway by analyzing the phenotype of compound Phex and Dmp1 mutant mice (Hyp/Dmp1(-/-)). Compared to single-mutant littermates, compound-mutant Hyp/Dmp1(-/-) mice displayed nonadditive elevations of serum FGF23 (1912 ± 183, 1715 ± 178, and 1799 ± 181 pg/ml), hypophosphatemia (P(i): 6.0 ± 0.3, 5.8 ± 0.2, and 5.4 ± 0.1 mg/dl), and severity of rickets/osteomalacia (bone mineral density: -36, -36, and -30%). Microarray analysis of long bones identified gene expression profiles implicating common activation of the FGFR pathway in all the mutant groups. Furthermore, inhibiting FGFR signaling using SU5402 in Hyp- and Dmp1(-/-)-derived bone marrow stromal cells prevented the increase in Fgf23 mRNA expression (129- and 124-fold increase in Hyp and Dmp1(-/-) vs. 1.3-fold in Hyp+SU5402 and 2.5-fold in Dmp1(-/-)+SU5402, P<0.05). For all analyses, samples collected from nonmutant wild-type littermates served as controls. These findings indicate that PHEX and DMP1 control a common pathway regulating bone mineralization and FGF23 production, the latter involving activation of the FGFR signaling in osteocytes.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Valentin David
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hua Li
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, Texas, USA
| | - L. Darryl Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Kumazawa K, Sawada T, Yanagisawa T, Shintani S. Effect of single-dose amoxicillin on rat incisor odontogenesis: a morphological study. Clin Oral Investig 2011; 16:835-42. [DOI: 10.1007/s00784-011-0581-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023]
|
27
|
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58:1033-43. [PMID: 20679519 DOI: 10.1369/jhc.2010.956771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH₂-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH₂-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Dept. of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|