1
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Hughes S, Edwards JK, Wilcox AG, Pothecary CA, Barnard AR, Joynson R, Joynson G, Hankins MW, Peirson SN, Banks G, Nolan PM. Zfhx3 modulates retinal sensitivity and circadian responses to light. FASEB J 2021; 35:e21802. [PMID: 34383984 PMCID: PMC9292409 DOI: 10.1096/fj.202100563r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Mutations in transcription factors often exhibit pleiotropic effects related to their complex expression patterns and multiple regulatory targets. One such mutation in the zinc finger homeobox 3 (ZFHX3) transcription factor, short circuit (Sci, Zfhx3Sci/+ ), is associated with significant circadian deficits in mice. However, given evidence of its retinal expression, we set out to establish the effects of the mutation on retinal function using molecular, cellular, behavioral and electrophysiological measures. Immunohistochemistry confirms the expression of ZFHX3 in multiple retinal cell types, including GABAergic amacrine cells and retinal ganglion cells including intrinsically photosensitive retinal ganglion cells (ipRGCs). Zfhx3Sci/+ mutants display reduced light responsiveness in locomotor activity and circadian entrainment, relatively normal electroretinogram and optomotor responses but exhibit an unexpected pupillary reflex phenotype with markedly increased sensitivity. Furthermore, multiple electrode array recordings of Zfhx3Sci/+ retina show an increased sensitivity of ipRGC light responses.
Collapse
Affiliation(s)
- Steven Hughes
- Nuffield Department of Clinical NeurosciencesSir William Dunn School of PathologySleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
| | | | | | - Carina A. Pothecary
- Nuffield Department of Clinical NeurosciencesSir William Dunn School of PathologySleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
| | - Alun R. Barnard
- Nuffield Laboratory of OphthalmologyDepartment of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | | | - Mark W. Hankins
- Nuffield Department of Clinical NeurosciencesSir William Dunn School of PathologySleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
| | - Stuart N. Peirson
- Nuffield Department of Clinical NeurosciencesSir William Dunn School of PathologySleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
3
|
A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Mol Psychiatry 2018; 23:713-722. [PMID: 28373692 PMCID: PMC5761721 DOI: 10.1038/mp.2017.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 02/01/2023]
Abstract
Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.
Collapse
|
4
|
Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking. Proc Natl Acad Sci U S A 2016; 113:2756-61. [PMID: 26903623 DOI: 10.1073/pnas.1517549113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.
Collapse
|
5
|
Parsons MJ, Brancaccio M, Sethi S, Maywood ES, Satija R, Edwards JK, Jagannath A, Couch Y, Finelli MJ, Smyllie NJ, Esapa C, Butler R, Barnard AR, Chesham JE, Saito S, Joynson G, Wells S, Foster RG, Oliver PL, Simon MM, Mallon AM, Hastings MH, Nolan PM. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell 2015; 162:607-21. [PMID: 26232227 PMCID: PMC4537516 DOI: 10.1016/j.cell.2015.06.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 01/17/2023]
Abstract
We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3(Sci)), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3(Sci/+) SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3(Sci/+) SCN slices. In conclusion, by cloning Zfhx3(Sci), we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms.
Collapse
Affiliation(s)
- Michael J Parsons
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Siddharth Sethi
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Rahul Satija
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10012, USA
| | - Jessica K Edwards
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Clinical Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Mattéa J Finelli
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Nicola J Smyllie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher Esapa
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rachel Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alun R Barnard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Shoko Saito
- Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Greg Joynson
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Michelle M Simon
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Ann-Marie Mallon
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Patrick M Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK.
| |
Collapse
|
6
|
Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease. Behav Brain Res 2015; 297:213-23. [PMID: 26467605 PMCID: PMC4678117 DOI: 10.1016/j.bbr.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
Sleep and circadian rhythm disruption is frequently associated with neurodegenerative disease, yet it is unclear how the specific pathology in these disorders leads to abnormal rest/activity profiles. To investigate whether the pathological features of lysosomal storage disorders (LSDs) influence the core molecular clock or the circadian behavioural abnormalities reported in some patients, we examined mouse models of Niemann-Pick Type-C (Npc1 mutant, Npc1(nih)) and Sandhoff (Hexb knockout, Hexb(-/-)) disease using wheel-running activity measurement, neuropathology and clock gene expression analysis. Both mutants exhibited regular, entrained rest/activity patterns under light:dark (LD) conditions despite the onset of their respective neurodegenerative phenotypes. A slightly shortened free-running period and changes in Per1 gene expression were observed in Hexb(-/-) mice under constant dark conditions (DD); however, no overt neuropathology was detected in the suprachiasmatic nucleus (SCN). Conversely, despite extensive cholesterol accumulation in the SCN of Npc1(nih) mutants, no circadian disruption was observed under constant conditions. Our results indicate the accumulation of specific metabolites in LSDs may differentially contribute to circadian deregulation at the molecular and behavioural level.
Collapse
|
7
|
Chu X, Gagnidze K, Pfaff D, Ågmo A. Estrogens, androgens and generalized behavioral arousal in gonadectomized female and male C57BL/6 mice. Physiol Behav 2015; 147:255-63. [PMID: 25936820 DOI: 10.1016/j.physbeh.2015.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
General arousal has been operationally defined as an enhanced motor activity and enhanced intensity of response to sensory stimuli. Even though the effects of gonadal hormones on mating behavior have been much studied, their potential effect on generalized arousal, as defined above, has never been evaluated. In the present study we employed a thoroughly validated assay of general arousal to determine the effects of estradiol (E) and testosterone (T) in gonadectomized female and male mice, respectively. The steroids were administered in three different ways: A fast-acting, water soluble preparation given intraperitoneally, an oil solution given subcutaneously, and an oil solution in a subcutaneous Silastic capsule. Motor activity and responses to sensory stimuli were recorded for 24h, 91h, and seven days following hormone administration, respectively. All measures of arousal varied according to the day/night cycle. The water soluble steroid preparation had no reliable effect. When the same doses of estradiol and testosterone were administered subcutaneously in an oil vehicle no effect of either treatment on arousal was observed. The subcutaneously implanted capsule containing estradiol or testosterone had a delayed effect on motor activity in females (four to seven days) but no effect in males. The long time required by the gonadal hormones for affecting arousal would be consistent with, but does not prove, a genomic action. The limited effects of E and T in our arousal assay suggest to us that the strongest actions of these hormones on arousal occur in the context of sequences of responses to sexually relevant stimuli.
Collapse
Affiliation(s)
- Xi Chu
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway.
| | - Khatuna Gagnidze
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Goldsworthy ME, Potter PK. Modelling age-related metabolic disorders in the mouse. Mamm Genome 2014; 25:487-96. [PMID: 25118634 PMCID: PMC4164835 DOI: 10.1007/s00335-014-9539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023]
Abstract
Ageing can be characterised by a general decline in cellular function, which affects whole-body homoeostasis with metabolic dysfunction-a common hallmark of ageing. The identification and characterisation of the genetic pathways involved are paramount to the understanding of how we age and the development of therapeutic strategies for combating age-related disease. Furthermore, in addition to understanding the ageing process itself, we must understand the interactions ageing has with genetic variation that results in disease phenotypes. The use of model systems such as the mouse, which has a relatively short lifespan, rapid reproduction (resulting in a large number of offspring), well-characterised biology, a fully sequenced genome, and the availability of tools for genetic manipulation is essential for such studies. Here we review the relationship between ageing and metabolism and highlight the need for modelling these processes.
Collapse
Affiliation(s)
- Michelle E Goldsworthy
- Genetics of Type 2 Diabetes and Disease Model and Discovery Groups, MRC Harwell Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | | |
Collapse
|
9
|
Mandillo S, Heise I, Garbugino L, Tocchini-Valentini GP, Giuliani A, Wells S, Nolan PM. Early motor deficits in mouse disease models are reliably uncovered using an automated home-cage wheel-running system: a cross-laboratory validation. Dis Model Mech 2014; 7:397-407. [PMID: 24423792 PMCID: PMC3944499 DOI: 10.1242/dmm.013946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deficits in motor function are debilitating features in disorders affecting neurological, neuromuscular and musculoskeletal systems. Although these disorders can vary greatly with respect to age of onset, symptomatic presentation, rate of progression and severity, the study of these disease models in mice is confined to the use of a small number of tests, most commonly the rotarod test. To expand the repertoire of meaningful motor function tests in mice, we tested, optimised and validated an automated home-cage-based running-wheel system, incorporating a conventional wheel with evenly spaced rungs and a complex wheel with particular rungs absent. The system enables automated assessment of motor function without handler interference, which is desirable in longitudinal studies involving continuous monitoring of motor performance. In baseline studies at two test centres, consistently significant differences in performance on both wheels were detectable among four commonly used inbred strains. As further validation, we studied performance in mutant models of progressive neurodegenerative diseases – Huntington’s disease [TgN(HD82Gln)81Dbo; referred to as HD mice] and amyotrophic lateral sclerosis [Tg(SOD1G93A)dl1/GurJ; referred to as SOD1 mice] – and in a mutant strain with subtle gait abnormalities, C-Snap25Bdr/H (Blind-drunk, Bdr). In both models of progressive disease, as with the third mutant, we could reliably and consistently detect specific motor function deficits at ages far earlier than any previously recorded symptoms in vivo: 7–8 weeks for the HD mice and 12 weeks for the SOD1 mice. We also conducted longitudinal analysis of rotarod and grip strength performance, for which deficits were still not detectable at 12 weeks and 23 weeks, respectively. Several new parameters of motor behaviour were uncovered using principal component analysis, indicating that the wheel-running assay could record features of motor function that are independent of rotarod performance. This represents a powerful new method to detect motor deficits at pre-symptomatic stages in mouse disease models and should be considered as a valid tool to investigate the efficacy of therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mandillo
- CNR - Institute of Cell Biology and Neurobiology - EMMA, 00015 Monterotondo Scalo, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. J Neurosci 2013; 33:7145-53. [PMID: 23616524 DOI: 10.1523/jneurosci.4950-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The circadian clock of the suprachiasmatic nucleus (SCN) drives daily rhythms of behavior. Cryptochromes (CRYs) are powerful transcriptional repressors within the molecular negative feedback loops at the heart of the SCN clockwork, where they periodically suppress their own expression and that of clock-controlled genes. To determine the differential contributions of CRY1 and CRY2 within circadian timing in vivo, we exploited the N-ethyl-N-nitrosourea-induced afterhours mutant Fbxl3(Afh) to stabilize endogenous CRY. Importantly, this was conducted in CRY2- and CRY1-deficient mice to test each CRY in isolation. In both CRY-deficient backgrounds, circadian rhythms of wheel-running and SCN bioluminescence showed increased period length with increased Fbxl3(Afh) dosage. Although both CRY proteins slowed the clock, CRY1 was significantly more potent than CRY2, and in SCN slices, CRY1 but not CRY2 prolonged the interval of transcriptional suppression. Selective CRY-stabilization demonstrated that both CRYs are endogenous transcriptional repressors of clock-controlled genes, but again CRY1 was preeminent. Finally, although Cry1(-/-);Cry2(-/-) mice were behaviorally arrhythmic, their SCN expressed short period (~18 h) rhythms with variable stability. Fbxl3(Afh/Afh) had no effect on these CRY-independent rhythms, confirming its circadian action is mediated exclusively via CRYs. Thus, stabilization of both CRY1 and CRY2 are necessary and sufficient to explain circadian period lengthening by Fbxl3(Afh/Afh). Both CRY proteins dose-dependently lengthen the intrinsic, high-frequency SCN rhythm, and CRY2 also attenuates the more potent period-lengthening effects of CRY1. Incorporation of CRY-mediated transcriptional feedback thus confers stability to intrinsic SCN oscillations, establishing periods between 18 and 29 h, as determined by selective contributions of CRY1 and CRY2.
Collapse
|
11
|
Kuwagata M. Current problems of in vivo developmental neurotoxicity tests and a new in vivo approach focusing on each step of the developing central nervous system. Congenit Anom (Kyoto) 2012; 52:129-39. [PMID: 22925213 DOI: 10.1111/j.1741-4520.2012.00376.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developmental neurotoxicity (DNT) tests usually focus on postnatal indicators, such as behavior and neuropathology, for the detection of chemically induced neurodevelopmental defects in the central nervous system (CNS). However, low reliability, especially low reproducibility, of behavioral results often causes concern among scientists and the scientific community in general. Guidance of neurohistopathological examination in the DNT guideline also has some shortcomings, especially relating to the methodological aspects. Ongoing international trends in DNT tests have shifted from the use of original in vivo animal (mammalian) studies to in vitro experiments using cell cultures and/or non-mammalian species, such as fish. In vitro systems might initially be useful to screen test chemicals for their DNT potential. Although in vitro systems are employed as alternative approaches for DNT studies, the use of in vivo studies based on animal models remains an important factor when data are to be extrapolated to the human case. In this review, a new in vivo approach that focuses on histopathological observation of each developmental step of the CNS, such as proliferation of neural stem cells, migration of immature neurons, and formation of neural networks, using fetal and neonatal brains after chemical exposure is introduced, and some queries and arguments for current DNT experimental guidelines are discussed.
Collapse
Affiliation(s)
- Makiko Kuwagata
- Laboratory of Pathology, Toxicology Division, Hatano Research Institute, Food and Drug Safety Center, Kanagawa, Japan.
| |
Collapse
|
12
|
Abstract
Identifying genes involved in behavioural disorders in man is a challenge as the cause is often multigenic and the phenotype is modulated by environmental cues. Mouse mutants are a valuable tool for identifying novel pathways underlying specific neurological phenotypes and exploring the influence both genetic and non-genetic factors. Many human variants causing behavioural disorders are not gene deletions but changes in levels of expression or activity of a gene product; consequently, large-scale mouse ENU mutagenesis has the advantage over the study of null mutants in that it generates a range of point mutations that frequently mirror the subtlety and heterogeneity of human genetic lesions. ENU mutants have provided novel and clinically relevant functional information on genes that influence many aspects of mammalian behaviour, from neuropsychiatric endophenotypes to circadian rhythms. This review will highlight some of the most important findings that have been made using this method in several key areas of neurological disease research.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
13
|
Keers R, Pedroso I, Breen G, Aitchison KJ, Nolan PM, Cichon S, Nöthen MM, Rietschel M, Schalkwyk LC, Fernandes C. Reduced anxiety and depression-like behaviours in the circadian period mutant mouse afterhours. PLoS One 2012; 7:e38263. [PMID: 22719873 PMCID: PMC3376117 DOI: 10.1371/journal.pone.0038263] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/04/2012] [Indexed: 01/27/2023] Open
Abstract
Background Disruption of the circadian rhythm is a key feature of bipolar disorder. Variation in genes encoding components of the molecular circadian clock has been associated with increased risk of the disorder in clinical populations. Similarly in animal models, disruption of the circadian clock can result in altered mood and anxiety which resemble features of human mania; including hyperactivity, reduced anxiety and reduced depression-like behaviour. One such mutant, after hours (Afh), an ENU-derived mutant with a mutation in a recently identified circadian clock gene Fbxl3, results in a disturbed (long) circadian rhythm of approximately 27 hours. Methodology Anxiety, exploratory and depression-like behaviours were evaluated in Afh mice using the open-field, elevated plus maze, light-dark box, holeboard and forced swim test. To further validate findings for human mania, polymorphisms in the human homologue of FBXL3, genotyped by three genome wide case control studies, were tested for association with bipolar disorder. Principal Findings Afh mice showed reduced anxiety- and depression-like behaviour in all of the behavioural tests employed, and some evidence of increased locomotor activity in some tests. An analysis of three separate human data sets revealed a gene wide association between variation in FBXL3 and bipolar disorder (P = 0.009). Conclusions Our results are consistent with previous studies of mutants with extended circadian periods and suggest that disruption of FBXL3 is associated with mania-like behaviours in both mice and humans.
Collapse
Affiliation(s)
- Robert Keers
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Inti Pedroso
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Gerome Breen
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Kathy J. Aitchison
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Patrick M. Nolan
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Center Juelich, Juelich, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Mannheim, Mannheim, Germany
| | - Leonard C. Schalkwyk
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Cathy Fernandes
- MRC SGDP Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Banks GT, Nolan PM. Assessment of Circadian and Light-Entrainable Parameters in Mice Using Wheel-Running Activity. ACTA ACUST UNITED AC 2011; 1:369-81. [PMID: 26068996 DOI: 10.1002/9780470942390.mo110123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In most organisms, physiological variables are regulated by an internal clock. This endogenous circadian (∼24-hr) clock enables organisms to anticipate daily environmental changes and modify behavioral and physiological functions appropriately. Processes regulated by the circadian clock include sleep-wake and locomotor activity, core body temperature, metabolism, water/food intake, and available hormone levels. At the core of the mammalian circadian system are molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by signals from the environment (so called zeitgebers or time-givers) and, once integrated within the suprachiasmatic nucleus, are conveyed to remote neural circuits where output rhythms are regulated. Disrupting any of a number of neural processes can affect how rhythms are generated and relayed to the periphery and disturbances in circadian/entrainment parameters are associated with numerous human conditions. These non-invasive protocols can be used to determine whether circadian/entrainment parameters are affected in mouse mutants or treatment groups. Curr. Protoc. Mouse Biol. 1:369-381 © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Gareth T Banks
- Neurobehavioural Genetics, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Patrick M Nolan
- Neurobehavioural Genetics, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| |
Collapse
|
15
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
16
|
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, Cox RD. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 2010; 42:1086-92. [PMID: 21076408 PMCID: PMC3018646 DOI: 10.1038/ng.713] [Citation(s) in RCA: 553] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 10/19/2010] [Indexed: 12/03/2022]
Abstract
Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity-associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ~3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.
Collapse
Affiliation(s)
- Chris Church
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nat Protoc 2010; 5:177-90. [PMID: 20057387 DOI: 10.1038/nprot.2009.204] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a protocol for the production of mice carrying N-ethyl-N-nitrosourea (ENU) mutations and their screening for auditory and vestibular phenotypes. In comparison with the procedures describing individual phenotyping tests, this protocol integrates a set of tests for the comprehensive determination of the causes of hearing loss. It comprises a primary screen of relatively simple auditory and vestibular tests. A variety of secondary phenotyping protocols are also described for further investigating the deaf and vestibular mutants identified in the primary screen. The screen can be applied to potentially thousands of mutant mice, produced either by ENU or other mutagenesis approaches. Primary screening protocols take no longer than a few minutes, apart from ABR testing which takes upto 3.5 h per mouse. These protocols have been applied for the identification of mouse models of human deafness and are a key component for investigating the genes and genetic pathways involved in hereditary deafness.
Collapse
|
18
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 2008; 4:e1000040. [PMID: 18516223 PMCID: PMC2295261 DOI: 10.1371/journal.pgen.1000040] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 12/20/2022] Open
Abstract
Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain's critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.
Collapse
Affiliation(s)
- Alun R. Barnard
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Patrick M. Nolan
- Neurobehavioural Genetics Group, Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
20
|
Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9:49-69. [PMID: 18949851 DOI: 10.1146/annurev.genom.9.081307.164224] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arguably, the main challenge for contemporary genetics is to understand the function of every gene in a mammalian genome. The mouse has emerged as a model for this task because its genome can be manipulated in a number of ways to study gene function or mimic disease states. Two complementary genetic approaches can be used to generate mouse models. A reverse genetics or gene-driven approach (gene to phenotype) starts from a known gene and manipulates the genome to create genetically modified mice, such as knockouts. Alternatively, a forward genetics or phenotype-driven approach (phenotype to gene) involves screening mice for mutant phenotypes without previous knowledge of the genetic basis of the mutation. N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely used for both approaches to generate mouse mutants. Here we review progress in ENU mutagenesis screening, with an emphasis on creating mouse models for human disorders.
Collapse
|
21
|
Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 2007; 18:559-72. [PMID: 17629744 DOI: 10.1007/s00335-007-9035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, and VA Tennessee Valley Healthcare System, Nashville 37212, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 2007; 24:195-213. [PMID: 17453843 DOI: 10.1080/07420520701283693] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The last decade has seen tremendous progress in our understanding of the organization and function of the circadian clock. A number of so-called clock genes were discovered, and these genes and their protein products were shown to organize into feedback loops to give a near 24 h rhythmicity. However, the mechanism is much more complicated. First, many new clock components have been identified, increasing both our understanding and the overall complexity of the mechanism. Second, there is now evidence that transcription may not play a central role in determining the functioning of the clock: the identification of post-translational modifications of the clock proteins has revealed new levels of control. Finally, chromatin remodeling seems to be crucial in the regulation of the expression of major clock components. This review describes the recent advances in our knowledge of the molecular clockwork in mammals; in particular, the contribution of new clock components and of post-transcriptional and post-translational events to circadian timekeeping are discussed.
Collapse
Affiliation(s)
- Hugues Dardente
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
23
|
Godinho SIH, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR, O'neill J, Chesham JE, Brooker D, Lalanne Z, Hastings MH, Nolan PM. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007; 316:897-900. [PMID: 17463252 DOI: 10.1126/science.1141138] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
By screening N-ethyl-N-nitrosourea-mutagenized animals for alterations in rhythms of wheel-running activity, we identified a mouse mutation, after hours (Afh). The mutation, a Cys(358)Ser substitution in Fbxl3, an F-box protein with leucine-rich repeats, results in long free-running rhythms of about 27 hours in homozygotes. Circadian transcriptional and translational oscillations are attenuated in Afh mice. The Afh allele significantly affected Per2 expression and delayed the rate of Cry protein degradation in Per2::Luciferase tissue slices. Our in vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping.
Collapse
Affiliation(s)
- Sofia I H Godinho
- Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hong HK, Chong JL, Song W, Song EJ, Jyawook AA, Schook AC, Ko CH, Takahashi JS. Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. PLoS Genet 2007; 3:e33. [PMID: 17319750 PMCID: PMC1802832 DOI: 10.1371/journal.pgen.0030033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/05/2007] [Indexed: 01/12/2023] Open
Abstract
The mechanism of circadian oscillations in mammals is cell autonomous and is generated by a set of genes that form a transcriptional autoregulatory feedback loop. While these "clock genes" are well conserved among animals, their specific functions remain to be fully understood and their roles in central versus peripheral circadian oscillators remain to be defined. We utilized the in vivo inducible tetracycline-controlled transactivator (tTA) system to regulate Clock gene expression conditionally in a tissue-specific and temporally controlled manner. Through the use of Secretogranin II to drive tTA expression, suprachiasmatic nucleus- and brain-directed expression of a tetO::Clock(Delta19) dominant-negative transgene lengthened the period of circadian locomotor rhythms in mice, whereas overexpression of a tetO::Clock(wt) wild-type transgene shortened the period. Low doses (10 mug/ml) of doxycycline (Dox) in the drinking water efficiently inactivated the tTA protein to silence the tetO transgenes and caused the circadian periodicity to return to a wild-type state. Importantly, low, but not high, doses of Dox were completely reversible and led to a rapid reactivation of the tetO transgenes. The rapid time course of tTA-regulated transgene expression demonstrates that the CLOCK protein is an excellent indicator for the kinetics of Dox-dependent induction/repression in the brain. Interestingly, the daily readout of circadian period in this system provides a real-time readout of the tTA transactivation state in vivo. In summary, the tTA system can manipulate circadian clock gene expression in a tissue-specific, conditional, and reversible manner in the central nervous system. The specific methods developed here should have general applicability for the study of brain and behavior in the mouse.
Collapse
Affiliation(s)
- Hee-Kyung Hong
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Center for Functional Genomics, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Jason L Chong
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Weimin Song
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Eun Joo Song
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Amira A Jyawook
- Center for Functional Genomics, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew C Schook
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Caroline H Ko
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Center for Functional Genomics, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
25
|
Hall JC, Chang DC, Dolezelova E. Principles and problems revolving around rhythm-related genetic variants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:215-232. [PMID: 18419279 DOI: 10.1101/sqb.2007.72.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Much of what is known about the regulation of circadian rhythms has stemmed from the induction, recognition, or manufacture of genetic variants. Such investigations have been especially salient in chronobiological analyses of Drosophila. Many starting points for elucidation of rhythmic processes operating in this insect entailed the isolation of mutants or the design of engineered gene modifications. Various features of the principles and practices associated with the genetic approach toward understanding clock functions, and chronobiologically related ones, are discussed from perspectives that are largely genetic as such, although intertwined with certain neurogenetic and molecular-genetic concerns when appropriate. Key themes in this treatment connect with the power and problems associated with multiply mutant forms of rhythm-related genes, with the opportunistic or problematical aspects of multigenic variants that are in play (sometimes surprisingly), and with a question as to how forceful chronogenetic inferences have been in terms of elucidating the mechanisms of circadian pacemaking.
Collapse
Affiliation(s)
- J C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
26
|
Maywood ES, O'Neill JS, Reddy AB, Chesham JE, Prosser HM, Kyriacou CP, Godinho SIH, Nolan PM, Hastings MH. Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:85-94. [PMID: 18419265 DOI: 10.1101/sqb.2007.72.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A hierarchy of interacting, tissue-based clocks controls circadian physiology and behavior in mammals. Preeminent are the suprachiasmatic nuclei (SCN): central hypothalamic pacemakers synchronized to solar time via retinal afferents and in turn responsible for internal synchronization of other clocks present in major organ systems. The SCN and peripheral clocks share essentially the same cellular timing mechanism. This consists of autoregulatory transcriptional/posttranslational feedback loops in which the Period (Per) and Cryptochrome (Cry) "clock" genes are negatively regulated by their protein products. Here, we review recent studies directed at understanding the molecular and cellular bases to the mammalian clock. At the cellular level, we demonstrate the role of F-box protein Fbxl3 (characterized by the afterhours mutation) in directing the proteasomal degradation of Cry and thereby controlling negative feedback and circadian period of the molecular loops. Within SCN neural circuitry, we describe how neuropeptidergic signaling by VIP synchronizes and sustains the cellular clocks. At the hypothalamic level, signaling via a different SCN neuropeptide, prokineticin, is not required for pacemaking but is necessary for control of circadian behavior. Finally, we consider how metabolic pathways are coordinated in time, focusing on liver function and the role of glucocorticoid signals in driving the circadian transcriptome and proteome.
Collapse
Affiliation(s)
- E S Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.
Collapse
|
28
|
Kuwagata M, Ogawa T, Nagata T, Shioda S. The evaluation of early embryonic neurogenesis after exposure to the genotoxic agent 5-bromo-2'-deoxyuridine in mice. Neurotoxicology 2006; 28:780-9. [PMID: 16956662 DOI: 10.1016/j.neuro.2006.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 11/26/2022]
Abstract
Developmental neurotoxicity (DNT) is an important issue in children's health. Neurogenesis occurs throughout the early fetal to the postnatal period. The proliferation of embryonic stem cells can be a target for toxicants, especially genotoxic compounds. 5-Bromo-2'-deoxyuridine (BrdU), a thymidine analogue, has been used as a marker for proliferating cells. However, we reported that prenatal BrdU exposure induced behavioral abnormalities such as hyperactivity in rat and mouse offspring. In this study, to further clarify the toxic effect of BrdU on the early neurogenesis and to examine the usefulness of the evaluation of this process in DNT, C57BL/6 mice were exposed to 100 mg/kg of BrdU once on gestational day (GD) 9 or 11, and serial sections from a wide variety of areas of the embryonic brains 24 h after the exposure were examined. BrdU exposure on GD11 induced cell death in some specific areas, such as the neocortex and striatum, but not in the substantia nigra, raphe and pons, even though BrdU was incorporated into those cells. BrdU decreased the number of cells positive for phosphorylated histone 3 (phospho-histone 3), a marker for proliferating cells at metaphase of mitosis, in the cortex, mammillary body and cerebellum, suggesting that BrdU affected the proliferation of neural stem cells. Exposure on GD9 did not induce cell death in the fetal brain. These results indicate that BrdU actually impaired the early neurogenesis, supporting the postnatal results, and demonstrated that embryonic neurogenesis has heterogeneous sensitivity to the genotoxic agents BrdU that differs according to the area and developmental stage. The evaluation of events in early neurogenesis such as the proliferation of neural stem cells shortly after chemical exposure will be one of the valuable endpoints for studying postnatal neurodevelopmental disorders.
Collapse
|
29
|
Abstract
The study of human behavioural and psychiatric disorders benefits from the development of genetic models in mice and other organisms. Mouse mutants allow one to investigate the molecular basis of disease progression and to develop novel therapies. The number of potential mouse models is increasing dramatically through the implementation of mutagenesis screens for aberrant behavioural phenotypes. The alkylating agent N-ethyl-N-nitrosourea ENU is the mutagen of choice in these screens as it induces mutations at a very high rate. Progeny of chemically-mutagenised animals are screened either in systematic high-throughput test batteries or in specific low-throughput tests. Both approaches have been highly successful with large numbers of novel loci being identified and characterised. Many mutant lines are available for general research with phenotypes and genetic map positions on public websites. Of the mutant genes characterised, the majority have contributed to our knowledge of gene function in physiology and disease. The 'mutagenesis screening' approach continues to evolve through the design of new phenotyping strategies. The development of modifier screens in mice shows promise in the elucidation of complex phenotypes whereas the use of mutagenesis in combination with pharmacological agents targets specific neurochemical systems. Finally, the systematic screening approach has demonstrated that mutations are likely to affect more than one biological process.
Collapse
Affiliation(s)
- Sofia I H Godinho
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire OX11 0RD, UK
| | | |
Collapse
|
30
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
31
|
de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005; 160:382-8. [PMID: 15863235 DOI: 10.1016/j.bbr.2004.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/24/2004] [Accepted: 12/06/2004] [Indexed: 11/30/2022]
Abstract
This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.
Collapse
Affiliation(s)
- Leonie de Visser
- Department of Animals, Science and Society, Ethology and Animal Welfare, Faculty of Veterinary medicine, Utrecht University, The Netherlands
| | | | | |
Collapse
|