1
|
Deng Y, Zhu Y, Su W, Zhang M, Liao W. Transcription factor WUSCHEL-related homeobox (WOX) underground revelations: Insights into plant root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109928. [PMID: 40253917 DOI: 10.1016/j.plaphy.2025.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Plant roots are essential for nutrient and water uptake and play a crucial role in plant growth and development. The development of roots is a complex process regulated by numerous factors, among which transcription factors (TFs) like WUSCHEL-related homeobox (WOX) have an essential function. The importance of WOXs in root development cannot be overstated. They act as key regulators in maintaining the balance between cell proliferation and differentiation and ensure the proper formation and function of root tissues. This review comprehensively presents the roles of WOXs in various root development aspects across multiple plant species, including primary, lateral, adventitious, and crown root development, as well as root hair, rhizoid formation, de novo root regeneration, and root apical meristem maintenance. We also discuss how WOXs regulate root development through various mechanisms in different plant species. Overall, this review provides comprehensive insights into the complex regulatory networks governing plant root growth and the importance of WOXs therein. Understanding WOXs in root development can help improve crop root architecture and stress tolerance and provide insights into the regulatory networks of plant root growth, contributing to plant breeding and agricultural productivity.
Collapse
Affiliation(s)
- Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjie Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanyi Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Zhang Q, Xu X, Yang L. Genome-Wide Identification of WOX Genes in Korean Pine and Analysis of Expression Patterns and Properties of Transcription Factors. BIOLOGY 2025; 14:411. [PMID: 40282276 PMCID: PMC12024698 DOI: 10.3390/biology14040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
(1) Background: WOX (WUSCHEL-related homologous box) is a plant-specific transcription factor involved in plant development and stress response. It has been reported to be involved in processes such as growth and development, stem cell division and differentiation, and organ development; (2) Methods: In this study, bioinformatics was used to identify and analyze the WOX gene family of Korean pine. The gene characteristics were identified and analyzed through yeast transcriptional activation assays as well as subcellular localization experiments; (3) Results: A total of 21 members of the WOX gene family of Korean pine were identified in this study. The phylogenetic tree divides the PkWOX genes into three sub-branches. 21 PkWOX genes are unevenly distributed on 7 of the 12 chromosomes. PkWOX16 was expressed in all tissues. PkWOX2, 3 had higher expression in the embryonic callus, non-embryonic callus, somatic embryo, and zygotic embryo. PkWOX2, 3 and 16 were located in the nucleus and in the cell membrane. The PkWOX2 and 3 proteins exhibited transcriptional self-activation activity, while PkWOX16 did not; (4) Conclusions: In this study, the members of the WOX transcription factor family in Korean pine were identified and systematically analyzed, laying a foundation for their subsequent functional research.
Collapse
Affiliation(s)
- Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (X.X.)
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (X.X.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (X.X.)
- College of Forestry, Beijing Forestry University, Beijing 100091, China
| |
Collapse
|
3
|
Song X, Lu J, Wang H, Tang L, Li S, Zang Z, Wu G, Zhang J. Identification and Characterization of WOX Gene Family in Flax ( Linum usitatissimum L.) and Its Role Under Abiotic Stress. Int J Mol Sci 2025; 26:3571. [PMID: 40332111 DOI: 10.3390/ijms26083571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The WOX (WUSCHEL-related homeobox) gene family plays pivotal roles in plant growth, development, and responses to biotic/abiotic stresses. Flax (Linum usitatissimum L.), a globally important oilseed and fiber crop, lacks a comprehensive characterization of its WOX family. Here, 18 LuWOX genes were systematically identified in the flax genome through bioinformatics analyses. Phylogenetic classification grouped these genes into three clades: Ancient, Intermediate, and WUS Clades, with members within the same clade exhibiting conserved exon-intron structures and motif compositions. Promoter analysis revealed abundant cis-acting elements associated with hormone responses (MeJA, abscisic acid) and abiotic stress adaptation (anaerobic induction, drought, low temperature). Segmental duplication events (nine gene pairs) contributed significantly to LuWOX family expansion. Protein-protein interaction networks implicated several LuWOX proteins in stress-responsive pathways. Expression profiling demonstrated that most LuWOX genes were highly expressed in 5-day-post-anthesis (DPA) flowers and embryonic tissues. qRT-PCR validation further uncovered distinct expression patterns of LuWOX genes under cold, drought, and salt stresses. This study established a foundational framework for leveraging LuWOX genes to enhance stress tolerance in flax breeding and functional genomics.
Collapse
Affiliation(s)
- Xixia Song
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Jianyu Lu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hang Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Lili Tang
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Shuyao Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Guangwen Wu
- Heilongjiang Academy of Agricultural Sciences, Harbing 150086, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department of Biology, University of British Columbia, Kelowna, BC V1CIV7, Canada
| |
Collapse
|
4
|
Wu H, Liu B, Cao Y, Ma G, Zheng X, Zhu H, Sui S. Genome-Wide Identification of WOX Gene Family in Chimonanthus praecox and a Functional Analysis of CpWUS. PLANTS (BASEL, SWITZERLAND) 2025; 14:1144. [PMID: 40219213 PMCID: PMC11991195 DOI: 10.3390/plants14071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Chimonanthus praecox, also known as wintersweet, is a traditional ornamental plant in China. It blooms during the cold winter months and emits a long-lasting fragrance. The WUSCHEL-related homeobox (WOX) transcription factor family is a plant-specific family of homeodomain (HD) transcription factors that plays diverse roles in plant development. We identified 13 WOX family genes (CpWOX1-CpWOX12 and CpWUS) and systematically analysed their physicochemical properties, evolutionary relationships, conserved domains, and expression regulation characteristics. The subcellular localization prediction indicates that all CpWOX proteins are localized in the nucleus and contain a conserved homeobox domain, with the WUS clade specifically containing a WUS-box motif. Phylogenetic analysis revealed that these genes are divided into three evolutionary branches: the WUS, ancient, and intermediate clades. Promoter analysis suggests that CpWOX genes may be involved in hormone responses, abiotic stress, developmental regulation, and encodes a nuclear-localised protein with self-activating activity. It is highly expressed in the stamen and root and is induced by low and high temperatures, salt stress, and methyl jasmonate. This study revealed the evolutionary characteristics of the WOX family genes in wintersweet and the function of CpWUS in regulating flowering time and root development, providing a theoretical basis for understanding the developmental regulatory mechanisms in wintersweet.
Collapse
Affiliation(s)
- Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Bin Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Yinzhu Cao
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Guanpeng Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaowen Zheng
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| |
Collapse
|
5
|
Du Q, Li R. Super pan-genome-wide analysis of Hordeum WOX genes and identification of key members conferring salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109874. [PMID: 40186911 DOI: 10.1016/j.plaphy.2025.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The WUSCHEL-related homeobox (WOX) is a transcription factor family specific to plants, playing a key role in the initiation and maintenance of meristematic tissue, organ formation and response to abiotic stress. Here we identified 14-15 WOX genes in four Hordeum species, conducted their phylogenetic tree, determined their chromosome locations and gene structures, and analyzed their collinearity and cis-acting elements in promoters. Presence Absence Variation (PAV) analysis revealed that certain WOX genes in the four Hordeum species were lost and expanded. Duplication analysis discovered five types of duplications contributing to the formation of WOX genes, with dispersed duplication (DSD) being the main type in four Hordeum species. WOXs belonging to DSD exhibited a high number of long terminal repeat retrotransposons (LTR-RTs), indicating the potential role of LTR-RTs in the formation of WOX genes of the DSD type. Evaluation of Ka/Ks values showed that all WOX genes have undergone purification selection, with varying degrees among different clades of WOX genes. Furthermore, through pan-transcriptome analysis and quantitative experiments, we identified a common gene clade and the WOX13 co-expression networks responding to saline stress. Survival ratio statistics of Arabidopsis thaliana complementation lines under salt treatment suggested that HvWOX13 may play a crucial role in regulating salt tolerance. These findings provide new insights into evolutionary studies of WOX gene family and offer valuable gene resources for breeding crops with enhanced salt stress resistance.
Collapse
Affiliation(s)
- Qingwei Du
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Jia Y, Lin Z, He H, Zhou Z, Gao K, Du K, Zhang R. Comprehensive analysis and identification of the WOX gene family in Schima superba and the key gene SsuWOX1 for enhancing callus regeneration capacity. BMC PLANT BIOLOGY 2025; 25:367. [PMID: 40114040 PMCID: PMC11924843 DOI: 10.1186/s12870-025-06377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
This study conducted a comprehensive analysis of the SsuWOX gene family in Schima superba, elucidating its role in plant growth and stress response mechanisms. The genome contains 15 WOX genes primarily encoding nuclear proteins unevenly distributed across 18 chromosomes. Phylogenetic classification grouped these genes into three distinct subfamilies, with members in each subfamily showing conserved gene structures. Interaction network analysis and cis-regulatory element characterization revealed that SsuWOX gene expression is influenced by hormones and various abiotic stresses. Tissue-specific expression profiles showed six genes exhibiting spatial specificity with significant expression level variations across developmental stages. Notably, SsuWOX1 overexpression in callus tissue significantly elevated CLAVATA3 (CLV3) expression levels. CLV3, a crucial small peptide signaling molecule, primarily regulates stem cell maintenance and differentiation in the shoot apical meristem (SAM). Transgenic callus cells displayed bud-like cell characteristics, including increased cell density and organized spatial arrangement. These findings establish a foundation for functional characterization of SsuWOX1 and provide insights into its regulatory mechanisms in plant development.
Collapse
Affiliation(s)
- Yuanting Jia
- Agricultural University of Hebei, Baoding, Hebei, 071000, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China
| | - Zihang Lin
- Agricultural University of Hebei, Baoding, Hebei, 071000, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China
| | - Haixin He
- Agricultural University of Hebei, Baoding, Hebei, 071000, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China.
| | - Kejiu Du
- Agricultural University of Hebei, Baoding, Hebei, 071000, China.
| | - Rui Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
- Key Laboratory of Forest Tree Breeding Technology, Zhejiang Province, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
7
|
Li Z, Zhang Z, Xu Y, Lei X, Xie Q, Liu Z, Wang Y, Gao C. Genome-wide identification of the WOX gene family in Populus davidiana×P.bolleana and functional analysis of PdbWOX4 in salt resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112379. [PMID: 39736457 DOI: 10.1016/j.plantsci.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
WOX transcription factors (TFs) are plant specific transcription regulatory factors that have a momentous role in maintaining plant growth and development and responding to abiotic stress. In this study, a total of 13 PdbWOX genes were identified. qRT-PCR analyses showed that 13 PdbWOX genes were responsive to salt stress. Notably, the expression of PdbWOX4 was significantly changed at all time points under NaCl stress, suggesting that PdbWOX4 expression may be involved in salt stress. Further, an overexpression vector of PdbWOX4 was constructed and transient transformed into Shanxin poplar. Biochemical staining and physiological parameter analysis showed that overexpression of PdbWOX4 decreased the total antioxidant capacity (T-AOC) and peroxidase (POD) activity, which in turn reduced the scavenging capacity of reactive oxygen species (ROS), and increased the cell damage and death induced by salt stress. qRT-PCR and ChIP-PCR demonstrated that PdbWOX4 can regulate the expression of PdbDREB2C by binding to its promoter. Further analyses revealed that overexpression of PdbDREB2C can reduce cellular damage by increasing ROS scavenging capacity thereby improving salt tolerance in Shanxin poplar. Taken together, we found that PdbWOX4 negatively regulated the salt tolerance of Shanxin poplar by repressing the PdbDREB2C, suggesting that PdbWOX4 may play a key role in the tolerance of Shanxin poplar to salt stress, and is an important candidate gene for molecular resistance breeding in forest trees.
Collapse
Affiliation(s)
- Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Ziqian Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yumeng Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Qinjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yanmin Wang
- Forestry Research Institute of Heilongjiang Province, Harbin 150081, China; Key Laboratory of Fast, Growing Tree Cultivating of Heilongjiang Province, Harbin 150081, China.
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China.
| |
Collapse
|
8
|
Zhang W, Huang L, Zhou L, Zong Y, Gao R, Li Y, Liu C. Genome-Wide Identification of the WUSCHEL-Related Homeobox ( WOX) Gene Family in Barley Reveals the Potential Role of HvWOX8 in Salt Tolerance. Int J Mol Sci 2025; 26:2019. [PMID: 40076657 PMCID: PMC11900497 DOI: 10.3390/ijms26052019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
The WUSCHEL-related homeobox (WOX) belongs to a plant-specific transcription factor gene family that plays crucial roles in plant growth and development. Barley ranks as the fourth global cereal crop and is recognized as a model crop for the study of cereal genetics. However, genome-wide characterization, functional validation, and stress-related studies of the WOX gene family in barley remain limited, hindering efforts to leverage their potential for improving salt tolerance and regeneration efficiency in breeding programs. In this study, we identified 12 HvWOX genes assigned from chromosome 1 to chromosome 5. Phylogenetic analysis revealed that these HvWOX genes can be classified into three clades (WUS, ancient, and intermediate). Gene structure analysis revealed that the exon numbers of HvWOX genes varied in the WUS and intermediate clades but were highly conserved in the ancient clade. Tissue-specific analysis revealed that the most common HvWOX genes were highly expressed in reproductive tissues such as anthers or ovaries. Cis-element analysis suggested that there were multiple stress- and hormone-responsive elements in the HvWOX gene promoters. In addition, overexpression of HvWOX8 in Arabidopsis significantly enhanced root elongation under salt stress (50-100 mM NaCl), suggesting its direct role in salt tolerance. Transcriptomic analysis further revealed that HvWOX8 modulates hormone signaling and electron transfer pathways during ATP synthesis under stress conditions. In conclusion, our results provided a comprehensive understanding of the gene characteristics, expression patterns, and potential roles of barley WOX genes.
Collapse
Affiliation(s)
- Wenqi Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Linli Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Longhua Zhou
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Yingjie Zong
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Yingbo Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Street, Shanghai 201106, China; (W.Z.); (L.H.); (L.Z.); (Y.Z.); (R.G.); (Y.L.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| |
Collapse
|
9
|
Xu J, Hu Z, Chen S, Tang J, Chen L, Chen P, Cai N, Xu Y. Transcriptome-wide identification and characterization of WUSCHEL-related homeobox (WOX) gene family in Pinus yunnanensis. BMC Genomics 2025; 26:99. [PMID: 39901066 PMCID: PMC11789396 DOI: 10.1186/s12864-025-11271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
WUSCHEL-related homeobox (WOX), a specific gene family in plants, plays a critical role during stem cell regulation, plant regeneration and upgrowth. However, our understanding of WOX functions in conifers is limited compared to angiosperms. To address this gap, we investigated the presence, expression profiles and protein characteristics of WOX gene in P. yunnanensis. Our findings revealed that 10 PyWOX genes were dispersed across three existing clades, and their expression profiles were presented in specific developmental stages and tissues. The ancient-clade members (PyWOX13, PyWOXG, PyWOXA) exhibited constitutive expressions in most tissues and developmental stages, indicating that they are the oldest and conserved WOX genes. Members of the intermediate-clade (PyWOXB, PyWOXE) were primarily expressed during callus formation and seed germination, suggesting a role in promoting embryogenesis and plant regeneration. Most members of WUS-clade (PyWUS, PyWOX3, PyWOX4, PyWOX5, PyWOXX) showed high transcripts level in cluster buds, which may be related to meristematic development and the formation of axillary meristems. The self-activation assay demonstrated that PyWOX4 has transcriptional activation activity. Our study also suggested that there were highly conserved and clear orthologs of WOX genes present in Pinus. Together, these findings provide a foundation for further clarifying the function and regulatory mechanism of WOX genes in P. yunnanensis growth and development.
Collapse
Affiliation(s)
- Junfei Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhaoliu Hu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Sili Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Peizhen Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yulan Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China.
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
10
|
Dong X, Gao J, Jiang M, Tao Y, Chen X, Yang X, Wang L, Jiang D, Xiao Z, Bai X, He F. The Identification and Characterization of WOX Family Genes in Coffea arabica Reveals Their Potential Roles in Somatic Embryogenesis and the Cold-Stress Response. Int J Mol Sci 2024; 25:13031. [PMID: 39684742 DOI: 10.3390/ijms252313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of Coffea arabica, hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed WOX genes in three Coffea species. A total of 23 CaWOXs, 12 CcWOXs, and 10 CeWOXs were identified. Transcriptomic profile analysis indicated that about half of the CaWOX genes were actively expressed during somatic embryogenesis. The most represented CaWOXs were CaWOX2a, CaWOX2b, CaWOX8a, and CaWOX8b, which are suggested to promote the induction and development of the embryogenic callus, whereas CaWOX13a and CaWOX13b are suggested to negatively impact these processes. Co-expression analysis revealed that somatic embryogenesis-related CaWOXs were co-expressed with genes involved in embryo development, post-embryonic development, DNA repair, DNA metabolism, phenylpropanoid metabolism, secondary metabolite biosynthesis, and several epigenetic pathways. In addition, qRT-PCR showed that four WOX genes responded to cold stress. Overall, this study offers valuable insights into the functions of CaWOX genes during somatic embryogenesis and under cold stress. The results suggest that certain WOX genes play distinct regulatory roles during somatic embryogenesis, meriting further functional investigation. Moreover, the cold-responsive genes identified here are promising candidates for further molecular analysis to assess their potential to enhance cold tolerance.
Collapse
Affiliation(s)
- Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Jing Gao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Meng Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yuan Tao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xingbo Chen
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xiaoshuang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Linglin Wang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Dandan Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Ziwei Xiao
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
11
|
Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant Growth Regulators: An Overview of WOX Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:3108. [PMID: 39520025 PMCID: PMC11548557 DOI: 10.3390/plants13213108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The adaptation of plants to land requires sophisticated biological processes and signaling. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signaling pathways in plants during stress and growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are TFs that are part of the homeodomain (HD) family, which is important for the maintenance of apical meristem, stem cell niche, and other cellular processes. The WOX gene family is divided into three clades: ancient, intermediate, and modern (WUS) based on historical evolution linkage. The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. Numerous research studies have discovered that the WOX gene family play a role in the whole plant's growth and development, such as in the stem, embryo, root, flower, and leaf. This review comprehensively analyzes roles of the WOX gene family across various plant species, highlighting the evolutionary significance and potential biotechnological applications in stress resistance and crop improvement.
Collapse
Affiliation(s)
- Haroon Rasheed
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Chichi Winarsih
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Haping Road 105, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| |
Collapse
|
12
|
Hsu HF, Li YC, Shen YH, Yang CH. PaWOX3 and PaWOX3B Regulate Flower Number and the Lip Symmetry of Phalaenopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1328-1343. [PMID: 38903045 DOI: 10.1093/pcp/pcae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
The standout characteristic of the orchid perianth is the transformation of the upper median petal into a distinctively formed lip, which gives orchid flowers their typically zygomorphic symmetry and makes them the most popular ornamental plants worldwide. To study orchid flower development, two WUSCHEL-related homeobox (WOX) genes, PaWOX3 and PaWOX3B, were identified in Phalaenopsis. PaWOX3 and PaWOX3B mRNAs accumulate abundantly during early reproductive development and perianths of young buds, significantly decreasing in mature flowers and absent in vegetative leaves and roots. PaWOX3 and PaWOX3B virus-induced gene silencing (VIGS) knockdown in Phalaenopsis significantly reduces floral bud numbers, suggesting that PaWOX3/PaWOX3B may be involved in flower initiation. Transgenic Arabidopsis ectopically expressing repressor forms of PaWOX3/PaWOX3B and their Oncidium ortholog, OnPRS, exhibit lateral organ development defects, implicating these genes likely have function in regulating growth and differentiation for lateral organs. Neither PaWOX3, PaWOX3B single nor PaWOX3/PaWOX3B double VIGS Phalaenopsis altered the flower morphology. Interestingly, double silencing of PaWOX3 or PaWOX3B with OAGL6-2, which controlled the identity/formation of lips, altered the symmetry of 'BigLip' produced in OAGL6-2 VIGS. This result indicated that the levels of PaWOX3/PaWOX3B are still sufficient to maintain the symmetry for the OAGL6-2 VIGS 'BigLip'. However, the symmetry of the OAGL6-2 VIGS 'BigLip' cannot be maintained once the expression of PaWOX3 or PaWOX3B is further reduced. Thus, in addition to controlling lip identity, this study further found that OAGL6-2 could cooperate with functionally redundant PaWOX3/PaWOX3B in maintaining the symmetric axis of lip.
Collapse
Affiliation(s)
- Hsing-Fun Hsu
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Ya-Chun Li
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Hsuan Shen
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Chang-Hsien Yang
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
13
|
Shen M, Zhao K, Luo X, Guo L, Ma Z, Wen L, Lin S, Lin Y, Sun H, Ahmad S. Genome mining of WOX-ARF gene linkage in Machilus pauhoi underpinned cambial activity associated with IAA induction. FRONTIERS IN PLANT SCIENCE 2024; 15:1364086. [PMID: 39114465 PMCID: PMC11303294 DOI: 10.3389/fpls.2024.1364086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
As an upright tree with multifunctional economic application, Machilus pauhoi is an excellent choice in modern forestry from Lauraceae. The growth characteristics is of great significance for its molecular breeding and improvement. However, there still lack the information of WUSCHEL-related homeobox (WOX) and Auxin response factor (ARF) gene family, which were reported as specific transcription factors in plant growth as well as auxin signaling. Here, a total of sixteen MpWOX and twenty-one MpARF genes were identified from the genome of M. pauhoi. Though member of WOX conserved in the Lauraceae, MpWOX and MpARF genes were unevenly distributed on 12 chromosomes as a result of region duplication. These genes presented 45 and 142 miRNA editing sites, respectively, reflecting a potential post-transcriptional restrain. Overall, MpWOX4, MpWOX13a, MpWOX13b, MpARF6b, MpARF6c, and MpARF19a were highly co-expressed in the vascular cambium, forming a working mode as WOX-ARF complex. MpWOXs contains typical AuxRR-core and TGA-element cis-acting regulatory elements in this auxin signaling linkage. In addition, under IAA and NPA treatments, MpARF2a and MpWOX1a was highly sensitive to IAA response, showing significant changes after 6 hours of treatment. And MpWOX1a was significantly inhibited by NPA treatment. Through all these solid analysis, our findings provide a genetic foundation to growth mechanism analysis and further molecular designing breeding in Machilus pauhoi.
Collapse
Affiliation(s)
- Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Lingling Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhirui Ma
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lei Wen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Sagheer Ahmad
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Lou X, Wang J, Wang G, He D, Shang W, Song Y, Wang Z, He S. Genome-Wide Analysis of the WOX Family and Its Expression Pattern in Root Development of Paeonia ostii. Int J Mol Sci 2024; 25:7668. [PMID: 39062910 PMCID: PMC11277081 DOI: 10.3390/ijms25147668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a woody plant with high ornamental, medicinal, and oil values. However, its low rooting rate and poor rooting quality are bottleneck issues in the micropropagation of P. ostii. The WUSCHEL-related homeobox (WOX) family plays a crucial role in root development. In this study, based on the screening of the genome and root transcriptome database, we identified ten WOX members in P. ostii. Phylogenetic analysis revealed that the ten PoWOX proteins clustered into three major clades, the WUS, intermediate, and ancient clade, respectively. The conserved motifs and tertiary structures of PoWOX proteins located in the same clade exhibited higher similarity. The analysis of cis-regulatory elements in the promoter indicated that PoWOX genes are involved in plant growth and development, phytohormones, and stress responses. The expression analysis revealed that PoWOX genes are expressed in distinct tissues. PoWOX4, PoWOX5, PoWOX11, and PoWOX13b are preferentially expressed in roots at the early stage of root primordium formation, suggesting their role in the initiation and development of roots. These results will provide a comprehensive reference for the evolution and potential function of the WOX family and offer guidance for further study on the root development of tree peony.
Collapse
Affiliation(s)
- Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China;
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Dan He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| |
Collapse
|
15
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
16
|
Gong M, Lu X, Zhang C, Ma L, Yan H, Nai G, Lai Y, Li Y, Pu Z, Chen B, Ma S, Li S. Evolutionary analysis of genes from WOX family and their expression profile in grape ( Vitis vinifera) under different stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24136. [PMID: 39074235 DOI: 10.1071/fp24136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
The WUSCHEL-related homeobox (WOX) transcription factor family plays critical roles in plant growth, development, and stress adaptation, but the biological functions in response to various stress of the WOX gene family have not been extensively researched in grapevine (Vitis vinifera ). In this study, 12 grapevine WOXs were identified from the grapevine genome. Quantitative PCR and microarray expression profiling found that the expression of WOXs had an obvious tissue-specific pattern. Conjoint analysis between various tissues and treated materials indicated VvWUS1 expression is associated with expression of genes from grapevine rupestris stem pitting-associated virus; and VvWOX3 with grapevine fanleaf virus. The gene expression patterns of the WOXs in grape were different under salt stress, with VvWOX8/9 , VvWUS1 , and VvWOX3 responding more strongly to salt stress than control by 18.20-, 9.50-, and 9.19-fold. This study further improves understanding of the evolution and function of the WOX gene family, and offers a theoretical framework and reference for breeding grapevine to better tolerate adversity and permit cultivation of seedlings free of viruses.
Collapse
Affiliation(s)
- Meishuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Congcong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Haokai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Lai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhihui Pu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; and College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; and Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
17
|
Luo X, Zheng Q, He X, Zhao X, Zhang M, Huang Y, Cai B, Liu Z. The Evolution of the WUSCHEL-Related Homeobox Gene Family in Dendrobium Species and Its Role in Sex Organ Development in D. chrysotoxum. Int J Mol Sci 2024; 25:5352. [PMID: 38791390 PMCID: PMC11121392 DOI: 10.3390/ijms25105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The WUSCHEL-related homeobox (WOX) transcription factor plays a vital role in stem cell maintenance and organ morphogenesis, which are essential processes for plant growth and development. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are valued for their ornamental and medicinal properties. However, the specific functions of the WOX gene family in Dendrobium species are not well understood. In our study, a total of 30 WOX genes were present in the genomes of the three Dendrobium species (nine DchWOXs, 11 DhuWOXs, and ten DnoWOXs). These 30 WOXs were clustered into ancient clades, intermediate clades, and WUS/modern clades. All 30 WOXs contained a conserved homeodomain, and the conserved motifs and gene structures were similar among WOXs belonging to the same branch. D. chrysotoxum and D. huoshanense had one pair of fragment duplication genes and one pair of tandem duplication genes, respectively; D. nobile had two pairs of fragment duplication genes. The cis-acting regulatory elements (CREs) in the WOX promoter region were mainly enriched in the light response, stress response, and plant growth and development regulation. The expression pattern and RT-qPCR analysis revealed that the WOXs were involved in regulating the floral organ development of D. chrysotoxum. Among them, the high expression of DchWOX3 suggests that it might be involved in controlling lip development, whereas DchWOX5 might be involved in controlling ovary development. In conclusion, this work lays the groundwork for an in-depth investigation into the functions of WOX genes and their regulatory role in Dendrobium species' floral organ development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bangping Cai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| |
Collapse
|
18
|
Wang Y, Yang L, Geng W, Cheng R, Zhang H, Zhou H. Genome-wide prediction and functional analysis of WOX genes in blueberry. BMC Genomics 2024; 25:434. [PMID: 38693497 PMCID: PMC11064388 DOI: 10.1186/s12864-024-10356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.
Collapse
Affiliation(s)
- Yanwen Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| | - Wenzhu Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Rui Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| | - Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| |
Collapse
|
19
|
Li Z, Qian W, Qiu S, Wang W, Jiang M, Hu X, Huang H, Lin E. Identification and characterization of the WOX Gene Family revealed two WUS Clade Members associated with embryo development in Cunninghamia lanceolata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108570. [PMID: 38560957 DOI: 10.1016/j.plaphy.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The WUSCHEL-related homeobox (WOX) gene family is vital for plant development and stress response. In this study, we conducted a comprehensive analysis of WOX genes in Cunninghamia lanceolata (C. lanceolata) and subsequently explored the potential roles of two ClWOX genes within the WUS clade. In total, six ClWOX genes were identified through a full-length transcriptome analysis. These genes, exhibiting conserved structural and functional motifs, were assigned to the ancient clade and Modern/WUS clade, respectively, through a phylogenetic analysis. Our expression analysis indicated that these ClWOX genes were highly expressed in the middle and late developmental stages of zygotic embryos in C. lanceolata. Moreover, only ClWOX5 and ClWOX6 within the Modern/WUS clade exhibited transcriptional activity, and their expressions were also induced in response to auxin and wounding. Overexpression of ClWOX5 and ClWOX6 in Arabidopsis caused a partially sterile phenotype, resulting in a very low seed setting rate. Transcriptomic analysis revealed that expressions of many embryo-defective (EMB) genes, phytohormone-related genes, and transcription factors (TFs) were dramatically altered in ClWOX5 and ClWOX6 transgenic plants, which suggested that ClWOX5 and ClWOX6 may play specific important roles in embryo development via complex gene networks. In addition, overexpression of ClWOX5 and ClWOX6 in leaf segments promoted shoot regeneration in tobacco, indicating that ClWOX5 and ClWOX6 can promote plant regeneration and could be used to improve genetic transformation. In conclusion, these results help to elucidate the function of the WOX gene and provide a valuable basis for future studies of the developmental regulation and applications of WOX genes in C. lanceolata.
Collapse
Affiliation(s)
- Zhouyang Li
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wang Qian
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shan Qiu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenxin Wang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Mei Jiang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiange Hu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
20
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
21
|
Mukherjee A, Maheshwari U, Sharma V, Sharma A, Kumar S. Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop. PLANTA 2024; 259:91. [PMID: 38480598 DOI: 10.1007/s00425-024-04365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION The article highlights omics-based interventions in sorghum to combat food and nutritional scarcity in the future. Sorghum with its unique ability to thrive in adverse conditions, has become a tremendous highly nutritive, and multipurpose cereal crop. It is resistant to various types of climatic stressors which will pave its way to a future food crop. Multi-omics refers to the comprehensive study of an organism at multiple molecular levels, including genomics, transcriptomics, proteomics, and metabolomics. Genomic studies have provided insights into the genetic diversity of sorghum and led to the development of genetically improved sorghum. Transcriptomics involves analysing the gene expression patterns in sorghum under various conditions. This knowledge is vital for developing crop varieties with enhanced stress tolerance. Proteomics enables the identification and quantification of the proteins present in sorghum. This approach helps in understanding the functional roles of specific proteins in response to stress and provides insights into metabolic pathways that contribute to resilience and grain production. Metabolomics studies the small molecules, or metabolites, produced by sorghum, provides information about the metabolic pathways that are activated or modified in response to environmental stress. This knowledge can be used to engineer sorghum varieties with improved metabolic efficiency, ultimately leading to better crop yields. In this review, we have focused on various multi-omics approaches, gene expression analysis, and different pathways for the improvement of Sorghum. Applying omics approaches to sorghum research allows for a holistic understanding of its genome function. This knowledge is invaluable for addressing challenges such as climate change, resource limitations, and the need for sustainable agriculture.
Collapse
Affiliation(s)
- Ananya Mukherjee
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Uma Maheshwari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Vishal Sharma
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, Crop and Soil Science, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173230, India
| |
Collapse
|
22
|
Li JJ, Qiu XY, Dai YJ, Nyonga TM, Li CC. Genome-Wide Identification and Co-Expression Networks of WOX Gene Family in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2024; 13:720. [PMID: 38475567 DOI: 10.3390/plants13050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
WUSCHEL-related homeobox (WOX) genes are a class of plant-specific transcription factors, regulating the development of multiple tissues. However, the genomic characterizations and expression patterns of WOX genes have not been analyzed in lotus. In this study, 15 NnWOX genes were identified based on the well-annotated reference genome of lotus. According to the phylogenetic analysis, the NnWOX genes were clustered into three clades, i.e., ancient clade, intermediate clade, and WUS clade. Except for the conserved homeobox motif, we further found specific motifs of NnWOX genes in different clades and divergence gene structures, suggesting their distinct functions. In addition, two NnWOX genes in the ancient clade have conserved expression patterns and other NnWOX genes exhibit different expression patterns in lotus tissues, suggesting a low level of functional redundancy in lotus WOX genes. Furthermore, we constructed the gene co-expression networks for each NnWOX gene. Based on weighted gene co-expression network analysis (WGCNA), ten NnWOX genes and their co-expressed genes were assigned to the modules that were significantly related to the cotyledon and seed coat. We further performed RT-qPCR experiments, validating the expression levels of ten NnWOX genes in the co-expression networks. Our study reveals comprehensive genomic features of NnWOX genes in lotus, providing a solid basis for further function studies.
Collapse
Affiliation(s)
- Juan-Juan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xiao-Yan Qiu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yu-Jun Dai
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Tonny M Nyonga
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chang-Chun Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
23
|
Wang D, Qiu Z, Xu T, Yao S, Zhang M, Cheng X, Zhao Y, Ji K. Identification and Expression Patterns of WOX Transcription Factors under Abiotic Stresses in Pinus massoniana. Int J Mol Sci 2024; 25:1627. [PMID: 38338907 PMCID: PMC10855728 DOI: 10.3390/ijms25031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) play a crucial role in regulating plant development and responding to various abiotic stresses. However, the members and functions of WOX proteins in Pinus massoniana remain unclear. In this study, a total of 11 WOX genes were identified, and bioinformatics methods were used for preliminary identification and analysis. The phylogenetic tree revealed that most PmWOXs were distributed in ancient and WUS clades, with only one member found in the intermediate clade. We selected four highly conserved WOX genes within plants for further expression analysis. These genes exhibited expressions across almost all tissues, while PmWOX2, PmWOX3, and PmWOX4 showed high expression levels in the callus, suggesting their potential involvement in specific functions during callus development. Expression patterns under different abiotic stresses indicated that PmWOXs could participate in resisting multiple stresses in P. massoniana. The identification and preliminary analysis of PmWOXs lay the foundation for further research on analyzing the resistance molecular mechanism of P. massoniana to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.Z.); (X.C.); (Y.Z.)
| |
Collapse
|
24
|
Chen X, Hou Y, Cao Y, Wei B, Gu L. A Comprehensive Identification and Expression Analysis of the WUSCHEL Homeobox-Containing Protein Family Reveals Their Special Role in Development and Abiotic Stress Response in Zea mays L. Int J Mol Sci 2023; 25:441. [PMID: 38203611 PMCID: PMC10779079 DOI: 10.3390/ijms25010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Maize is an important food and cash crop worldwide. The WUSCHEL (WUS)-related homeobox (WOX) transcription factor (TF) family plays a significant role in the development process and the response to abiotic stress of plants. However, few studies have been reported on the function of WOX genes in maize. This work, utilizing the latest maize B73 reference genome, results in the identification of 22 putative ZmWOX gene family members. Except for chromosome 5, the 22 ZmWOX genes were homogeneously distributed on the other nine chromosomes and showed three tandem duplication and 10 segmental duplication events. Based on phylogenetic characteristics, ZmWOXs are divided into three clades (e.g., WUS, intermediate, and ancient groups), and the majority of ZmWOXs in same group display similar gene and protein structures. Cross-species collinearity results indicated that some WOX genes might be evolutionarily conservative. The promoter region of ZmWOX family members is enriched in light, plant growth/hormone, and abiotic stress-responsive elements. Tissue-specific expression evaluation showed that ZmWOX genes might play a significant role in the occurrence of maize reproductive organs. Transcriptome data and RT-qPCR analysis further showed that six ZmWOX genes (e.g., ZmWOX1, 4, 6, 13, 16, and 18) were positively or negatively modulated by temperature, salt, and waterlogging stresses. Moreover, two ZmWOXs, ZmWOX1 and ZmWOX18, both were upregulated by abiotic stress. ZmWOX18 was localized in the nucleus and had transactivation activities, while ZmWOX1 was localized in both the cytoplasm and nucleus, without transactivation activity. Overall, this work offers new perspectives on the evolutionary relationships of ZmWOX genes and might provide a resource for further detecting the biological functions of ZmWOXs.
Collapse
Affiliation(s)
| | | | | | | | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (X.C.); (Y.H.); (Y.C.); (B.W.)
| |
Collapse
|
25
|
Yin S, Zhao L, Liu J, Sun Y, Li B, Wang L, Ren Z, Chen C. Pan-genome Analysis of WOX Gene Family and Function Exploration of CsWOX9 in Cucumber. Int J Mol Sci 2023; 24:17568. [PMID: 38139397 PMCID: PMC10743939 DOI: 10.3390/ijms242417568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cucumber is an economically important vegetable crop, and the warts (composed of spines and Tubercules) of cucumber fruit are an important quality trait that influences its commercial value. WOX transcription factors are known to have pivotal roles in regulating various aspects of plant growth and development, but their studies in cucumber are limited. Here, genome-wide identification of cucumber WOX genes was performed using the pan-genome analysis of 12 cucumber varieties. Our findings revealed diverse CsWOX genes in different cucumber varieties, with variations observed in protein sequences and lengths, gene structure, and conserved protein domains, possibly resulting from the divergent evolution of CsWOX genes as they adapt to diverse cultivation and environmental conditions. Expression profiles of the CsWOX genes demonstrated that CsWOX9 was significantly expressed in unexpanded ovaries, especially in the epidermis. Additionally, analysis of the CsWOX9 promoter revealed two binding sites for the C2H2 zinc finger protein. We successfully executed a yeast one-hybrid assay (Y1H) and a dual-luciferase (LUC) transaction assay to demonstrate that CsWOX9 can be transcriptionally activated by the C2H2 zinc finger protein Tu, which is crucial for fruit Tubercule formation in cucumber. Overall, our results indicated that CsWOX9 is a key component of the molecular network that regulates wart formation in cucumber fruits, and provide further insight into the function of CsWOX genes in cucumber.
Collapse
Affiliation(s)
- Shuai Yin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lili Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Jiaqi Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Yanjie Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Bohong Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Lina Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Y.); (L.Z.); (J.L.); (Y.S.); (B.L.); (L.W.); (Z.R.)
| |
Collapse
|
26
|
Zhang ZA, Liu MY, Ren SN, Liu X, Gao YH, Zhu CY, Niu HQ, Chen BW, Liu C, Yin W, Wang HL, Xia X. Identification of WUSCHEL-related homeobox gene and truncated small peptides in transformation efficiency improvement in Eucalyptus. BMC PLANT BIOLOGY 2023; 23:604. [PMID: 38030990 PMCID: PMC10688041 DOI: 10.1186/s12870-023-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The WUSCHEL-related Homeobox (WOX) genes, which encode plant-specific homeobox (HB) transcription factors, play crucial roles in regulating plant growth and development. However, the functions of WOX genes are little known in Eucalyptus, one of the fastest-growing tree resources with considerable widespread cultivation worldwide. RESULTS A total of nine WOX genes named EgWOX1-EgWOX9 were retrieved and designated from Eucalyptus grandis. From the three divided clades marked as Modern/WUS, Intermediate and Ancient, the largest group Modern/WUS (6 EgWOXs) contains a specific domain with 8 amino acids: TLQLFPLR. The collinearity, cis-regulatory elements, protein-protein interaction network and gene expression analysis reveal that the WUS proteins in E. grandis involve in regulating meristems development and regeneration. Furthermore, by externally adding of truncated peptides isolated from WUS specific domain, the transformation efficiency in E. urophylla × E. grandis DH32-29 was significant enhanced. The transcriptomics data further reveals that the use of small peptides activates metabolism pathways such as starch and sucrose metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis. CONCLUSIONS Peptides isolated from WUS protein can be utilized to enhance the transformation efficiency in Eucalyptus, thereby contributing to the high-efficiency breeding of Eucalyptus.
Collapse
Affiliation(s)
- Zhuo-Ao Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mei-Ying Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shu-Ning Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue-Hao Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chen-Yu Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hao-Qiang Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo-Wen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, Guangxi, 530002, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
27
|
Abubakar AS, Wu Y, Chen F, Zhu A, Chen P, Chen K, Qiu X, Huang X, Zhao H, Chen J, Gao G. Comprehensive Analysis of WUSCEL-Related Homeobox Gene Family in Ramie ( Boehmeria nivea) Indicates Its Potential Role in Adventitious Root Development. BIOLOGY 2023; 12:1475. [PMID: 38132301 PMCID: PMC10740585 DOI: 10.3390/biology12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Department of Agronomy, Bayero University Kano, PMB 3011, Kano 700241, Nigeria
| | - Yongmei Wu
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Key Laboratory of Biological and Processing for Bast Fiber Crops, Changsha 410221, China
| | - Gang Gao
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
28
|
Quan L, Shiting L, Chen Z, Yuyan H, Minrong Z, Shuyan L, Libao C. NnWOX1-1, NnWOX4-3, and NnWOX5-1 of lotus (Nelumbo nucifera Gaertn)promote root formation and enhance stress tolerance in transgenic Arabidopsis thaliana. BMC Genomics 2023; 24:719. [PMID: 38017402 PMCID: PMC10683310 DOI: 10.1186/s12864-023-09772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Liu Quan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Liang Shiting
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Chen
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Han Yuyan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Minrong
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Jiangsu, People's Republic of China.
| | - Cheng Libao
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Liu W, Cai G, Zhai N, Wang H, Tang T, Zhang Y, Zhang Z, Sun L, Zhang Y, Beeckman T, Xu L. Genome and transcriptome of Selaginella kraussiana reveal evolution of root apical meristems in vascular plants. Curr Biol 2023; 33:4085-4097.e5. [PMID: 37716350 DOI: 10.1016/j.cub.2023.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The evolution of roots allowed vascular plants to adapt to land environments. Fossil evidence indicates that roots evolved independently in euphyllophytes (ferns and seed plants) and lycophytes, the two lineages of extant vascular plants. Based on a high-quality genome assembly, mRNA sequencing (mRNA-seq) data, and single-cell RNA-seq data for the lycophyte Selaginella kraussiana, we show that the two root origin events in lycophytes and euphyllophytes adopted partially similar molecular modules in the regulation of root apical meristem (RAM) development. In S. kraussiana, the RAM initiates from the rhizophore primordium guided by auxin and duplicates itself by dichotomous branching. The auxin signaling pathway directly upregulates euAINTEGUMENTAb (SkeuANTb), and then SkeuANTb directly promotes the expression of SkeuANTa and the WUSCHEL-RELATED HOMEOBOX13b (SkWOX13b) for RAM maintenance, partially similar to the molecular pathway involving the euANT-branch PLETHORA (AtPLT) genes and AtWOX5 in root initiation in the seed plant Arabidopsis thaliana. Other molecular modules, e.g., SHORT-ROOT and SCARECROW, also have partially similar expression patterns in the RAMs of S. kraussiana and A. thaliana. Overall, our study not only provides genome and transcriptome tools of S. kraussiana but also indicates the employment of some common molecular modules in RAMs during root origins in lycophytes and euphyllophytes.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Tengfei Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
30
|
Xu A, Yang J, Wang S, Zheng L, Wang J, Zhang Y, Bi X, Wang H. Characterization and expression profiles of WUSCHEL-related homeobox (WOX) gene family in cultivated alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2023; 23:471. [PMID: 37803258 PMCID: PMC10557229 DOI: 10.1186/s12870-023-04476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
The WUSCHEL-related homeobox (WOX) family members are plant-specific transcriptional factors, which function in meristem maintenance, embryogenesis, lateral organ development, as well as abiotic stress tolerance. In this study, 14 MsWOX transcription factors were identified and comprehensively analyzed in the cultivated alfalfa cv. Zhongmu No.1. Overall, 14 putative MsWOX members containing conserved structural regions were clustered into three clades according to phylogenetic analysis. Specific expression patterns of MsWOXs in different tissues at different levels indicated that the MsWOX genes play various roles in alfalfa. MsWUS, MsWOX3, MsWOX9, and MsWOX13-1 from the three subclades were localized in the nucleus, among which, MsWUS and MsWOX13-1 exhibited strong self-activations in yeast. In addition, various cis-acting elements related to hormone responses, plant growth, and stress responses were identified in the 3.0 kb promoter regions of MsWOXs. Expression detection of separated shoots and roots under hormones including auxin, cytokinin, GA, and ABA, as well as drought and cold stresses, showed that MsWOX genes respond to different hormones and abiotic stress treatments. Furthermore, transcript abundance of MsWOX3, and MsWOX13-2 were significantly increased after rhizobia inoculation. This study presented comprehensive data on MsWOX transcription factors and provided valuable insights into further studies of their roles in developmental processes and abiotic stress responses in alfalfa.
Collapse
Affiliation(s)
- Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiaqi Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Siqi Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Jing Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
31
|
Chen GZ, Huang J, Lin ZC, Wang F, Yang SM, Jiang X, Ahmad S, Zhou YZ, Lan S, Liu ZJ, Peng DH. Genome-Wide Analysis of WUSCHEL-Related Homeobox Gene Family in Sacred Lotus ( Nelumbo nucifera). Int J Mol Sci 2023; 24:14216. [PMID: 37762519 PMCID: PMC10531982 DOI: 10.3390/ijms241814216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein-protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| |
Collapse
|
32
|
Yoshida H, Okada S, Wang F, Shiota S, Mori M, Kawamura M, Zhao X, Wang Y, Nishigaki N, Kobayashi A, Miura K, Yoshida S, Ikegami M, Ito A, Huang LT, Caroline Hsing YI, Yamagata Y, Morinaka Y, Yamasaki M, Kotake T, Yamamoto E, Sun J, Hirano K, Matsuoka M. Integrated genome-wide differentiation and association analyses identify causal genes underlying breeding-selected grain quality traits in japonica rice. MOLECULAR PLANT 2023; 16:1460-1477. [PMID: 37674315 DOI: 10.1016/j.molp.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Improving grain quality is a primary objective in contemporary rice breeding. Japanese modern rice breeding has developed two different types of rice, eating and sake-brewing rice, with different grain characteristics, indicating the selection of variant gene alleles during the breeding process. Given the critical importance of promptly and efficiently identifying genes selected in past breeding for future molecular breeding, we conducted genome scans for divergence, genome-wide association studies, and map-based cloning. Consequently, we successfully identified two genes, OsMnS and OsWOX9D, both contributing to rice grain traits. OsMnS encodes a mannan synthase that increases the white core frequency in the endosperm, a desirable trait for sake brewing but decreases the grain appearance quality. OsWOX9D encodes a grass-specific homeobox-containing transcription factor, which enhances grain width for better sake brewing. Furthermore, haplotype analysis revealed that their defective alleles were selected in East Asia, but not Europe, during modern improvement. In addition, our analyses indicate that a reduction in grain mannan content during African rice domestication may also be caused a defective OsMnS allele due to breeding selection. This study not only reveals the delicate balance between grain appearance quality and nutrition in rice but also provides a new strategy for isolating causal genes underlying complex traits, based on the concept of "breeding-assisted genomics" in plants.
Collapse
Affiliation(s)
- Hideki Yoshida
- Institute of Fermentation Sciences, Fukushima University, Fukushima 960-1248, Japan
| | - Satoshi Okada
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Uzurano, Kasai, Hyogo 675-2103, Japan
| | - Fanmiao Wang
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Research Center of Genetic Resources, NARO, 2-1-1 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shohei Shiota
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masaki Mori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Xue Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yiqiao Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Naho Nishigaki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Asako Kobayashi
- Fukui Agricultural Experiment Station, Fukui 918-8215, Japan
| | - Kotaro Miura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Shinya Yoshida
- Hyogo Prefectural Research Center for Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan; Research Institute for Food and Agriculture, Ryukoku University, Ootsu, Shiga 520-2194, Japan
| | - Masaru Ikegami
- Hyogo Prefectural Research Center for Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan
| | - Akitoshi Ito
- Food Research Centre, Aichi Centre for Industry and Science Technology, 2-1-1 Shimpukuji-cho, Nagoya, Aichi 451-0083, Japan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, China; Department of Agronomy, National Taiwan University, Taipei, Taiwan, China
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, China; Department of Agronomy, National Taiwan University, Taipei, Taiwan, China
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishiku, Fukuoka, Japan
| | - Yoichi Morinaka
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Uzurano, Kasai, Hyogo 675-2103, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China.
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Makoto Matsuoka
- Institute of Fermentation Sciences, Fukushima University, Fukushima 960-1248, Japan.
| |
Collapse
|
33
|
Tang L, He Y, Liu B, Xu Y, Zhao G. Genome-Wide Identification and Characterization Analysis of WUSCHEL-Related Homeobox Family in Melon ( Cucumis melo L.). Int J Mol Sci 2023; 24:12326. [PMID: 37569702 PMCID: PMC10419029 DOI: 10.3390/ijms241512326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) proteins are very important in controlling plant development and stress responses. However, the WOX family members and their role in response to abiotic stresses are largely unknown in melon (Cucumis melo L.). In this study, 11 WOX (CmWOX) transcript factors with conserved WUS and homeobox motif were identified and characterized, and subdivided into modern clade, ancient clade and intermediate clade based on bioinformatic and phylogenetic analysis. Evolutionary analysis revealed that the CmWOX family showed protein variations in Arabidopsis, tomato, cucumber, melon and rice. Alignment of protein sequences uncovered that all CmWOXs had the typical homeodomain, which consisted of conserved amino acids. Cis-element analysis showed that CmWOX genes may response to abiotic stress. RNA-seq and qRT-PCR results further revealed that the expression of partially CmWOX genes are associated with cold and drought. CmWOX13a and CmWOX13b were constitutively expressed under abiotic stresses, CmWOX4 may play a role in abiotic processes during plant development. Taken together, this study offers new perspectives on the CmWOX family's interaction and provides the framework for research on the molecular functions of CmWOX genes.
Collapse
Affiliation(s)
- Lingli Tang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Yuhua He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Yongyang Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Guangwei Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
34
|
Lv J, Feng Y, Jiang L, Zhang G, Wu T, Zhang X, Xu X, Wang Y, Han Z. Genome-wide identification of WOX family members in nine Rosaceae species and a functional analysis of MdWOX13-1 in drought resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111564. [PMID: 36549571 DOI: 10.1016/j.plantsci.2022.111564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are important in plant development processes and evolutionary novelties. In this study, a genome-wide comprehensive analysis of WOX genes from nine Rosaceae species was carried out, and their potential roles in Malus were subsequently investigated. 125 WOXs in 9 Rosaceae species were identified and classified into three clades, i.e., the ancient, intermediate, and WUS clades. Prunus. domestica contained the most intra-genomic collinearity among the nine Rosaceae species. Additionally, the cis-elements in WOX gene family members were compared and classified into three categories, including phytohormone-responsive, plant growth and development, and abiotic and biotic stresses. Overexpression (OE) of MdWOX13-1 also increased the callus weight and enhanced ROS scavenging against drought stress. Furthermore, via yeast-one hybrid assay and LUC analyses, MdWOX13-1 could directly bind to the MdMnSOD promoter. Therefore, our results will facilitate further study of the WOX genes' function in the Rosaceae family.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Guibin Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Xuefeng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China.
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, PR China
| |
Collapse
|
35
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
36
|
Zhang M, Chen X, Lou X, Zhang Y, Han X, Yang Q, Tong Z, Zhang J. Identification of WUSCHEL-related homeobox ( WOX) gene family members and determination of their expression profiles during somatic embryogenesis in Phoebe bournei. FORESTRY RESEARCH 2023; 3:5. [PMID: 39526263 PMCID: PMC11524275 DOI: 10.48130/fr-2023-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/19/2023] [Indexed: 11/16/2024]
Abstract
WUSCHEL-related homeobox (WOX) transcription factor (TF)-encoding genes play crucial roles during embryo development. The function of WOX genes in embryonic development has been thoroughly studied in Arabidopsis thaliana, but little is known about their function in woody species, especially Phoebe bournei, an endemic and endangered species in China. In the present study, a total of 15 WOX genes were identified in P. bournei, and phylogenetic analysis resulted in their assignment to three typical clades: an ancient clade, an intermediate clade, and a modern/WUS clade. The gene structure and sequence characteristics and the physicochemical properties of WOX proteins were also analyzed. Promoter prediction indicated that WOX genes are likely involved in plant growth and development and hormone responses. Subsequently, we evaluated the expression patterns of WOX genes in response to auxin (IAA), abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. According to tissue-specific expression patterns, we screened nine WOX genes that were present in embryonic calli and that might participate in the somatic embryogenesis (SE) of P. bournei. Furthermore, the expression profiles of these nine WOX genes during three phases of embryogenic calli development and three phases of somatic embryo development, namely, spheroid embryogenesis, immature cotyledon-producing embryogenesis and mature cotyledon-producing embryogenesis, were monitored. Overall, we systematically analyzed the expression patterns of WOX genes in P. bournei during SE, the information of which provides a basis for further elucidating the molecular mechanism through which WOX TFs function in P. bournei embryo development.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xinyi Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xiongzhen Lou
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| |
Collapse
|
37
|
Riccucci E, Vanni C, Vangelisti A, Fambrini M, Giordani T, Cavallini A, Mascagni F, Pugliesi C. Genome-Wide Analysis of WOX Multigene Family in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2023; 24:3352. [PMID: 36834765 PMCID: PMC9968055 DOI: 10.3390/ijms24043352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The WUSCHEL-related homeobox (WOX) is a family of specific transcription factors involved in plant development and response to stress, characterized by the presence of a homeodomain. This study represents the first comprehensive characterization of the WOX family in a member of the Asteraceae family, the sunflower (H. annuus L.). Overall, we identified 18 putative HaWOX genes divided by phylogenetic analysis in three major clades (i.e., ancient, intermediate, and WUS). These genes showed conserved structural and functional motifs. Moreover, HaWOX has homogeneously distributed on H. annuus chromosomes. In particular, 10 genes originated after whole segment duplication events, underpinning a possible evolution of this family along with the sunflower genome. In addition, gene expression analysis evidenced a specific pattern of regulation of the putative 18 HaWOX during embryo growth and in ovule and inflorescence meristem differentiation, suggesting a pivotal role for this multigenic family in sunflower development. The results obtained in this work improved the understanding of the WOX multigenic family, providing a resource for future study on functional analysis in an economically valuable species such as sunflower.
Collapse
Affiliation(s)
- Ettore Riccucci
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Cosimo Vanni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
38
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
Affiliation(s)
- Qihui Wan
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Ning Zhai
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Dixiang Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Wu Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Lin Xu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
39
|
Overexpression of Liriodenron WOX5 in Arabidopsis Leads to Ectopic Flower Formation and Altered Root Morphology. Int J Mol Sci 2023; 24:ijms24020906. [PMID: 36674428 PMCID: PMC9860802 DOI: 10.3390/ijms24020906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Roots are essential for plant growth, and studies on root-related genes, exemplified by WUSCHEL-RELATED HOMEOBOX5 (WOX5), have mainly concentrated on model organisms with less emphasis on the function of these genes in woody plants. Here, we report that overexpression of the WOX5 gene from Liriodendron hybrid (LhWOX5) in Arabidopsis leads to significant morphological changes in both the aerial and subterranean organs. In the Arabidopsis aerial parts, overexpression of LhWOX5 results in the production of ectopic floral meristems and leaves, possibly via the ectopic activation of CLV3 and LFY. In addition, in the Arabidopsis root, overexpression of LhWOX5 alters root apical meristem morphology, leading to a curled and shortened primary root. Importantly, these abnormal phenotypes in the aerial and subterranean organs caused by constitutive ectopic expression of LhWOX5 mimic the observed phenotypes when overexpressing AtWUS and AtWOX5 in Arabidopsis, respectively. Taken together, we propose that the LhWOX5 gene, originating from the Magnoliaceae plant Liriodendron, is a functional homolog of the AtWUS gene from Arabidopsis, while showing the highest degree of sequence similarity with its ortholog, AtWOX5. Our study provides insight into the potential role of LhWOX5 in the development of both the shoot and root.
Collapse
|
40
|
Geng L, Li Q, Jiao L, Xiang Y, Deng Q, Zhou DX, Zhao Y. WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. THE NEW PHYTOLOGIST 2023; 237:204-216. [PMID: 36208055 DOI: 10.1111/nph.18522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Crown root (CR) morphogenesis is critical for normal growth and nutrition absorption in cereals. In rice, WUSCHEL-RELATED HOMEOBOX11 (WOX11) and CROWN ROOTLESS1 (CRL1) play vital roles in controlling CR development. Despite their importance, whether and how the two regulators coordinate CR formation remains unclear. Electrophoretic mobility shift assays, transient expression, and chromatin immunoprecipitation qPCR suggested that WOX11 and CRL1 directly bind to OsCKX4 to regulate its expression during CR development. CRL1 enhances OsCKX4 activation through direct interaction with WOX11 at root emergence and elongation stages. Genetic dissection showed that the wox11/crl1 double mutant exhibits a more severe root phenotype. OsCKX4 knockout plants generated by CRISPR/Cas9 exhibited fewer CRs and higher cytokinin levels in the root meristem. Increased expression of OsCKX4 could partially complement the CR phenotypes of both crl1 and wox11 mutants. Furthermore, cytokinin can promote WOX11 protein accumulation in the root meristem. Together, these findings show that cytokinin accumulation is tightly regulated by the WOX11-CRL1 complex during CR elongation by counteracting the negative regulatory effects of cytokinin on root development. Importantly, these results reveal an intrinsic link between WOX11 protein accumulation and cytokinin to maintain CR growth.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lele Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Yu Y, Yang M, Liu X, Xia Y, Hu R, Xia Q, Jing D, Guo Q. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat ( Eriobotrya japonica). FRONTIERS IN PLANT SCIENCE 2022; 13:1024515. [PMID: 36407616 PMCID: PMC9669421 DOI: 10.3389/fpls.2022.1024515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of WOX genes have not been reported in perennial loquat. In this study, 18 EjWOX genes were identified in the loquat genome. Chromosomal localization analysis showed that 18 EjWOX genes were located on 12 of 17 chromosomes. Gene structure analysis showed that all EjWOX genes contain introns, of which 11 EjWOX genes contain untranslated regions. There are 8 pairs of segmental duplication genes and 0 pairs of tandem duplication genes in the loquat WOX family, suggesting that segmental duplications might be the main reason for the expansion of the loquat WOX family. A WOX transcription factor gene named EjWUSa was isolated from loquat. The EjWUSa protein was localized in the nucleus. Protein interactions between EjWUSa with EjWUSa and EjSTM were verified. Compared with wild-type Arabidopsis thaliana, the 35S::EjWUSa transgenic Arabidopsis showed early flowering. Our study provides an important basis for further research on the function of EjWOX genes and facilitates the molecular breeding of loquat early-flowering varieties.
Collapse
Affiliation(s)
- Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Miaomiao Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinya Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruoqian Hu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Chaudhary R, Singh S, Kaur K, Tiwari S. Genome-wide identification and expression profiling of WUSCHEL-related homeobox ( WOX) genes confer their roles in somatic embryogenesis, growth and abiotic stresses in banana. 3 Biotech 2022; 12:321. [PMID: 36276441 PMCID: PMC9556689 DOI: 10.1007/s13205-022-03387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-specific WUSCHEL-related homeobox (WOX) transcription factors are known to be involved in plant developmental processes, especially in embryogenesis. In this study, a total of thirteen WOX members were identified in the banana (Musa acuminata) genome (MaWOX) and characterized for in-silico analysis. Phylogenetic analysis revealed that these genes were divided into three clades (ancient, intermediate and modern) which reflected the evolutionary history of WOX families. Furthermore, modern clade members have shown higher variations in gene structural features and carried unique conserved motifs (motif 3 and motif 4) when compared to the members of other clades. The differential expression of all 13 MaWOX was observed in early (embryogenic cell suspension (ECS), multiplying ECS, germinating embryos, young leaflet and node of germinated plantlets) and late (unripe fruit peel and pulp, ripe fruit peel and pulp) developmental stages of banana cultivar Grand Naine. The maximum expression of MaWOX6 (18 fold) and MaWOX13 (120 fold) was found during somatic embryogenesis and in unripe fruit pulp, respectively. Moreover, numerous cis-elements responsive to drought, cold, ethylene, methyl jasmonate (MeJA), abscisic acid (ABA) and gibberellic acid (GA) were observed in all MaWOX promoter regions. The subsequent expression analysis under various abiotic stresses (cold, drought and salt) revealed maximum expression of the MaWOX3 (830 fold), MaWOX8a (30 fold) and MaWOX11b (105 fold) in salt stress. It gives evidence about their possible role in salt stress tolerance in banana. Hence, the present study provides precise information on the MaWOX gene family and their expression in various tissues and stressful environmental conditions that may help to develop climate-resilient banana plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03387-w.
Collapse
Affiliation(s)
- Roni Chaudhary
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Surender Singh
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Karambir Kaur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
| |
Collapse
|
43
|
Muhammad Tajo S, Pan Z, He S, Chen B, KM Y, Mahmood T, Bello Sadau S, Shahid Iqbal M, Gereziher T, Suleiman Abubakar U, Joseph M, Sammani T, Geng X, Du X. Characterization of WOX genes revealed drought tolerance, callus induction, and tissue regeneration in Gossypium hirsutum. Front Genet 2022; 13:928055. [PMCID: PMC9597092 DOI: 10.3389/fgene.2022.928055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton is an important natural fiber crop; its seeds are the main oil source. Abiotic stresses cause a significant decline in its production. The WUSCHEL-related Homeobox (WOX) genes have been involved in plant growth, development, and stress responses. However, the functions of WOX genes are less known in cotton. This study identified 39, 40, 21, and 20 WOX genes in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. All the WOX genes in four cotton species could be classified into three clades, which is consistent with previous research. The gene structure and conserved domain of all WOX genes were analyzed. The expressions of WOX genes in germinating hypocotyls and callus were characterized, and it was found that most genes were up-regulated. One candidate gene Gh_ A01G127500 was selected to perform the virus-induced gene silencing (VIGS) experiment, and it was found that the growth of the silenced plant (pCLCrVA: GhWOX4_A01) was significantly inhibited compared with the wild type. In the silenced plant, there is an increase in antioxidant activities and a decrease in oxidant activities compared with the control plant. In physiological analysis, the relative electrolyte leakage level and the excised leaf water loss of the infected plant were increased. Still, both the relative leaf water content and the chlorophyll content were decreased. This study proved that WOX genes play important roles in drought stress and callus induction, but more work must be performed to address the molecular functions of WOX genes.
Collapse
Affiliation(s)
- Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Zhaoe Pan
- *Correspondence: Xiaoli Geng, ; Xiongming Du,
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Yusuf KM
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tahir Mahmood
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Shahid Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Teame Gereziher
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Umar Suleiman Abubakar
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Masha Joseph
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tajo Sammani
- Department of Agricultural Economics, University of Maiduguri, Maiduguri, Nigeria
| | - Xiaoli Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- *Correspondence: Xiaoli Geng, ; Xiongming Du,
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- *Correspondence: Xiaoli Geng, ; Xiongming Du,
| |
Collapse
|
44
|
Chang Y, Song X, Li M, Zhang Q, Zhang P, Lei X, Pei D. Characterization of walnut JrWOX11 and its overexpression provide insights into adventitious root formation and development and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:951737. [PMID: 36147233 PMCID: PMC9485816 DOI: 10.3389/fpls.2022.951737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
The well-developed root system enables plant survival under various environmental stresses. WUSCHEL-RELATED HOMEOBOX GENE 11 (WOX11) plays a critical role in adventitious root formation and development in rice, Arabidopsis, and easy-to-root tree poplar. However, in difficult-to-root trees, the knowledge of WOX11 during adventitious root formation and development remains scarce. In this study, the JrWOX11 gene was isolated from a difficult-to-root tree walnut and heterologously expressed in the "84K" poplar. The results showed that JrWOX11 contained a similar structure and sequence to the homologous genes in rice, Arabidopsis, and poplar, but had different numbers and types of motifs and cis-elements. JrWOX11 lacked the motif GGAIQY compared to that in easy-to-root trees. In addition, JrWOX11 expression was induced by ABA, PEG, and NaCl treatments. Overexpression of JrWOX11 in poplar promoted root initiation and significantly increased adventitious root (ARs) number, lateral roots (LRs) number, and root hair (RH) length. Furthermore, the aboveground biomass was notably increased under NaCl and PEG treatments in transgenic plants. When NaCl and PEG were removed, the survival rate, aerial shoot development, and de novo root organogenesis were also markedly enhanced in transgenic shoot cuttings. The study provides valuable information on the differences between JrWOX11 and the homologous genes in rice, Arabidopsis, and poplar, and supports the critical role of JrWOX11 in the formation of AR and tolerance to salt and osmotic stresses.
Collapse
Affiliation(s)
- Yingying Chang
- Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs of Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Mingjun Li
- Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs of Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Qixiang Zhang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiashuo Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
45
|
Genome-Wide Analysis of the WOX Transcription Factor Genes in Dendrobium catenatum Lindl. Genes (Basel) 2022; 13:genes13081481. [PMID: 36011392 PMCID: PMC9408443 DOI: 10.3390/genes13081481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are a class of transcription factors exclusive to plants. They can promote cell division or inhibit stem cell differentiation to regulate plant growth and development. However, the WOX transcription factor genes in the monocotyledon Dendrobium catenatum Lindl. remain relatively uncharacterized. Specifically, the effects of phytohormones on their expression levels are unclear. In this study, we identified and analyzed 10 candidate DcaWOX transcription factor genes in D. catenatum. The DcaWOX family was divided into the modern/WUS, intermediate, and ancient clades. The subcellular localization analysis detected DcaWOX-GFP fusion proteins in the tobacco epidermal leaf cell nucleus. In DcaWOX, members of the WUS clade with the WUS-box motif can significantly activate the expression of TPL in vivo, while members of the intermediate and ancient clades cannot. The expression of the DcaWOX genes varied among the examined tissues. Moreover, the DcaWOX expression patterns were differentially affected by the phytohormone treatments, with differences detected even between homologs of the same gene. Furthermore, the gene expression patterns were consistent with the predicted cis-acting elements in the promoters. The above results suggest that DcaWOX may have an important role in its growth and development and resistance to stress. The results of this comprehensive investigation of the DcaWOX gene family provide the basis for future studies on the roles of WOX genes in D. catenatum.
Collapse
|
46
|
Wang Z, Cai Q, Xia H, Han B, Li M, Wang Y, Zhu M, Jiao C, Wang D, Zhu J, Yuan W, Zhu D, Xu C, Wang H, Zhou M, Zhang X, Shi J, Chen J. Genome-Wide Identification and Comparative Analysis of WOX Genes in Four Euphorbiaceae Species and Their Expression Patterns in Jatropha curcas. Front Genet 2022; 13:878554. [PMID: 35846114 PMCID: PMC9280045 DOI: 10.3389/fgene.2022.878554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are widely distributed in plants and play important regulatory roles in growth and development processes such as embryonic development and organ development. Here, series of bioinformatics methods were utilized to unravel the structural basis and genetic hierarchy of WOX genes, followed by regulation of the WOX genes in four Euphorbiaceae species. A genome-wide survey identified 59 WOX genes in Hevea brasiliensis (H. brasiliensis: 20 genes), Jatropha curcas (J. curcas: 10 genes), Manihot esculenta (M. esculenta: 18 genes), and Ricinus communis (R. communis: 11 genes). The phylogenetic analysis revealed that these WOX members could be clustered into three close proximal clades, such as namely ancient, intermediate and modern/WUS clades. In addition, gene structures and conserved motif analyses further validated that the WOX genes were conserved within each phylogenetic clade. These results suggested the relationships among WOX members in the four Euphorbiaceae species. We found that WOX genes in H. brasiliensis and M. esculenta exhibit close genetic relationship with J. curcas and R. communis. Additionally, the presence of various cis-acting regulatory elements in the promoter of J. curcas WOX genes (JcWOXs) reflected distinct functions. These speculations were further validated with the differential expression profiles of various JcWOXs in seeds, reflecting the importance of two JcWOX genes (JcWOX6 and JcWOX13) during plant growth and development. Our quantitative real-time PCR (qRT-PCR) analysis demonstrated that the JcWOX11 gene plays an indispensable role in regulating plant callus. Taken together, the present study reports the comprehensive characteristics and relationships of WOX genes in four Euphorbiaceae species, providing new insights into their characterization.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Haimeng Xia
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Bingqing Han
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Dandan Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Junjie Zhu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Di Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minghui Zhou
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Xie Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jinhui Chen,
| |
Collapse
|
47
|
Zhang Y, Liu Y, Wang X, Wang R, Chen X, Wang S, Wei H, Wei Z. PtrWOX13A Promotes Wood Formation and Bioactive Gibberellins Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2022; 13:835035. [PMID: 35837467 PMCID: PMC9274204 DOI: 10.3389/fpls.2022.835035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
WUSCHEL-related homeobox (WOX) genes are plant-specific transcription factors (TFs) involved in multiple processes of plant development. However, there have hitherto no studies on the WOX TFs involved in secondary cell wall (SCW) formation been reported. In this study, we identified a Populus trichocarpa WOX gene, PtrWOX13A, which was predominantly expressed in SCW, and then characterized its functions through generating PtrWOX13A overexpression poplar transgenic lines; these lines exhibited not only significantly enhanced growth potential, but also remarkably increased SCW thicknesses, fiber lengths, and lignin and hemicellulose contents. However, no obvious change in cellulose content was observed. We revealed that PtrWOX13A directly activated its target genes through binding to two cis-elements, ATTGATTG and TTAATSS, in their promoter regions. The fact that PtrWOX13A responded to the exogenous GAs implies that it is responsive to GA homeostasis caused by GA inactivation and activation genes (e.g., PtrGA20ox4, PtrGA2ox1, and PtrGA3ox1), which were regulated by PtrWOX13A directly or indirectly. Since the master switch gene of SCW formation, PtrWND6A, and lignin biosynthesis regulator, MYB28, significantly increased in PtrWOX13A transgenic lines, we proposed that PtrWOX13A, as a higher hierarchy TF, participated in SCW formation through controlling the genes that are components of the known hierarchical transcription regulation network of poplar SCW formation, and simultaneously triggering a gibberellin-mediated signaling cascade. The discovery of PtrWOX13A predominantly expressed in SCW and its regulatory functions in the poplar wood formation has important implications for improving the wood quality of trees via genetic engineering.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueying Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuebing Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
48
|
Ren H, Chen S, Hou J, Li H. Genome-wide identification, expression analyses of Wuschel-related homeobox (WOX) genes in Brachypodium distachyon and functional characterization of BdWOX12. Gene X 2022; 836:146691. [PMID: 35738446 DOI: 10.1016/j.gene.2022.146691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.
Collapse
Affiliation(s)
- Hongyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
49
|
Yang T, Gao T, Wang C, Wang X, Chen C, Tian M, Yang W. In silico genome wide identification and expression analysis of the WUSCHEL-related homeobox gene family in Medicago sativa. Genomics Inform 2022; 20:e19. [PMID: 35794699 PMCID: PMC9299560 DOI: 10.5808/gi.22013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alfalfa (Medicago sativa) is an important food and feed crop which rich in mineral sources. The WUSCHEL-related homeobox (WOX) gene family plays important roles in plant development and identification of putative gene families, their structure, and potential functions is a primary step for not only understanding the genetic mechanisms behind various biological process but also for genetic improvement. A variety of computational tools, including MAFFT, HMMER, hidden Markov models, Pfam, SMART, MEGA, ProtTest, BLASTn, and BRAD, among others, were used. We identified 34 MsWOX genes based on a systematic analysis of the alfalfa plant genome spread in eight chromosomes. This is an expansion of the gene family which we attribute to observed chromosomal duplications. Sequence alignment analysis revealed 61 conserved proteins containing a homeodomain. Phylogenetic study sung reveal five evolutionary clades with 15 motif distributions. Gene structure analysis reveals various exon, intron, and untranslated structures which are consistent in genes from similar clades. Functional analysis prediction of promoter regions reveals various transcription binding sites containing key growth, development, and stress-responsive transcription factor families such as MYB, ERF, AP2, and NAC which are spread across the genes. Most of the genes are predicted to be in the nucleus. Also, there are duplication events in some genes which explain the expansion of the family. The present research provides a clue on the potential roles of MsWOX family genes that will be useful for further understanding their functional roles in alfalfa plants.
Collapse
Affiliation(s)
- Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Chuang Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiaochun Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Caijin Chen
- Branch Institute of Guyuan, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, China
| | - Mei Tian
- Institute of Horticultural Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Weidi Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
50
|
Yoshikawa T, Hisano H, Hibara KI, Nie J, Tanaka Y, Itoh JI, Taketa S. A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley. AOB PLANTS 2022; 14:plac019. [PMID: 35669443 PMCID: PMC9162124 DOI: 10.1093/aobpla/plac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most highly produced cereal in the world after wheat, rice and maize and is mainly utilized as malts and for animal feed. Barley, a model crop of the tribe Triticeae, is important in comparative analyses of Poaceae. However, molecular understanding about the developmental processes is limited in barley. Our previous work characterized one of two WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes present in the barley genome: NARROW LEAFED DWARF1 (NLD1). We demonstrated that NLD1 plays a pivotal role in the development of lateral organs. In the present study, we describe a bifurcated palea (bip) mutant of barley focusing on flower and leaf phenotypes. The palea in the bip mutant was split into two and develop towards inside the lemma surrounding the carpels and anthers. The bip mutant is devoid of lodicules, which develop in a pair at the base of the stamen within the lemma in normal barley. bip also exhibited malformations in leaves, such as narrow leaf due to underdeveloped leaf-blade width, and reduced trichome density. Map-based cloning and expression analysis indicated that BIP is identical to another barley WOX3 gene, named HvWOX3. The bip nld1 double mutant presented a more severe reduction in leaf-blade width and number of trichomes. By comparing the phenotypes and gene expression patterns of various WOX3 mutants, we concluded that leaf bilateral outgrowth and trichome development are promoted by both NLD1 and HvWOX3, but that HvWOX3 serves unique and pivotal functions in barley development that differ from those of NLD1.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo 656-0484, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo 656-0484, Japan
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jilu Nie
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Tanaka
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo 656-0484, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Shin Taketa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|