1
|
Bhujbal SK, Rai AN, Joshi-Saha A. Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. PLANT MOLECULAR BIOLOGY 2025; 115:34. [PMID: 39971832 PMCID: PMC11839727 DOI: 10.1007/s11103-025-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
High oilseed production is an exigency due to the increasing edible oil consumption of the growing population. Rapeseed and mustard are cultivated worldwide and contribute significantly to the world's total oilseed production. Already a plateau is reached in terms of area and yield in most of the existing cultivars. Most of the commercially cultivated high yielding rapeseed and mustard varieties are tall, mainly due to a wider use of heterosis. However, they are susceptible to lodging and consequent yield losses. Plant yield is strongly dependent upon its architecture; therefore, 'ideotype breeding' is the key approach adopted to develop new varieties with enhanced yield potential, which is less explored in these crops. Dwarf/ semi dwarf plant type varieties has shown its improved yield potential over tall plant type in cereals which further leads to 'Green revolution' in Asian countries. Although, many induced dwarf mutants in rapeseed and mustard were isolated, unlike dwarf green-revolution varieties of cereals, most of them had undesirable plant types with defects including extreme dwarfism and sterility, leading to poor yield potential. Understanding the genetic and molecular mechanisms governing plant height and its correlation with yield and yield contributing characters is crucial. In this review, recent insights into genetic, molecular, and anatomical regulation of plant height have been discussed. The role of hormones, their crosstalk, and hormonal control for cell division and expansion have been delineated with respect to plant architecture. Many dwarfing genes are identified as being part of various phytohormone pathways. Parallelly, molecular links between plant height and flowering time have been explored. The overall synthesis of the review points out some key target pathways and genes that will be useful for plant breeders as well as biotechnologists for targeted genome editing for improving plant architecture without a yield penalty.
Collapse
Affiliation(s)
- Shankar K Bhujbal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Archana N Rai
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
2
|
Li X, Fang S, Chen W, Liu S, Zhao L, Xu Z, Chen S, Liu Y, Du Y, Deng L, Liu L, Wang T, Li P, Zhu Y, Yu D, Wang H. CRF12 specifically regulates the flowering time of Arabidopsis thaliana under non-inductive conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17257. [PMID: 39910911 DOI: 10.1111/tpj.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
The flowering time of Arabidopsis thaliana, a model plant, is significantly accelerated when exposed to long-day (LD) conditions, as it is a typical LD plant. Consequently, the investigation of the flowering regulatory network in A. thaliana under LD conditions has garnered considerable attention in the study of flowering signals, resulting in a significant breakthrough. While many LD plants, including A. thaliana, exhibit delayed flowering under non-inductive short-day (SD) conditions, they are still capable of flowering. Nevertheless, research on the regulation of flowering induction in LD plants under non-inductive SD conditions has been limited. This study demonstrated the involvement of CYTOKININ RESPONSE FACTORS 12 (CRF12) in the regulation of flowering in A. thaliana under non-inductive conditions. Analysis of the expression patterns revealed that the activation of CRF12 expression and protein stability occurred exclusively in non-inductive environments. Molecular and genetic analyses revealed that under a non-inductive photoperiod of 12 h of light and 12 h of darkness, CRF12, CONSTANS (CO), and TARGET OF EAT 1/2 (TOE1/2) engage in competitive interactions to regulate flowering time, while in a SD photoperiod of 8 h of light and 16 h of darkness, CRF12 modulates flowering time by inhibiting the activity of TOE1/2.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Siyuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Yang Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Luyao Deng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Ting Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Pingping Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
3
|
Wang L, Liu H, Sun Y, Wang W, Li C, Liu Y, Liu Z, Ji R, Huang S, Qu G, Wang Y. Identification and Candidate Gene Analysis of Brcl1, a Novel Gene Confers a Leaf Curled Phenotype in Brassica rapa L. Int J Mol Sci 2025; 26:732. [PMID: 39859447 PMCID: PMC11765633 DOI: 10.3390/ijms26020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Leaf shape is an important determinant of photosynthesis, yield and quality in plants. In this study, we obtained a curled leaf mutant, cl1, from an ethyl methanesulfonate (EMS)-induced mutagenesis population. It was designated the Brcl1YS locus. Bulk segregant RNA sequencing combined with recombinant screening identified the candidate interval responsible for Brcl1YS in a 97.5 kb region on chromosome A02. Twelve genes were identified within the candidate region. Sequence differences and co-separation verification confirmed that BraA02g017030.3C was the most promising candidate gene underlying the Brcl1YS locus. It is homologous to Arabidopsis AT1G66350 (RGL1), which has been shown to act as a negative regulator of the gibberellin pathway. Combined with cell morphology observation, it is speculated that the loss of function of Brcl1YS results in differences in cell development, ultimately leading to changes in leaf morphology. The results will contribute to the understanding of the molecular mechanisms underlying leaf curling in B. rapa.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huishan Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunxia Sun
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanwei Liu
- Department of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaoyang Qu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yugang Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Lu S, Li M, Cheng Y, Gou H, Che L, Liang G, Mao J. Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress. PLANT CELL REPORTS 2024; 43:265. [PMID: 39417869 DOI: 10.1007/s00299-024-03353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
KEY MESSAGE Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRT‑PCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
6
|
Du M, Wang D, Li J, Zhu T, Lyu P, Li G, Ding Y, Liu X, Men Q, Li X, Sun Y, Meng L, Guo S. GhSWEET42 Regulates Flowering Time under Long-Day Conditions in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2181. [PMID: 39204617 PMCID: PMC11360393 DOI: 10.3390/plants13162181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Flowering in plants is pivotal for initiating and advancing reproductive processes, impacting regional adaptation and crop yield. Despite numerous cloned and identified flowering time genes, research in cotton remains sparse. This study identified GhSWEET42 as a key determinant of the flowering time in cotton, demonstrating that its heterologous expression in Arabidopsis accelerated flowering under LD conditions compared to WT. Transgenic plants exhibited upregulated expression of the flowering inducers AtFT, AtSOC1, AtGI, and AtFKF1, alongside downregulated expression of the repressors AtTSF, AtFLC, and AtRGL2, correlating with the earlier flowering phenotype. GhSWEET42 showed a constitutive expression pattern, with elevated levels in the leaves, petals, and flower buds, and was notably higher in early-maturing cotton varieties. Subcellular localization assays confirmed GhSWEET42's presence on the cell membrane. Transcriptome analysis between WT and GhSWEET42-overexpressing Arabidopsis plants revealed 2393 differentially expressed genes (DEGs), spanning 221 biological processes, 93 molecular functions, and 37 cellular components according to Gene Ontology (GO) enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis categorized the DEGs into metabolism and environmental information processing. These findings enhance the understanding of GhSWEET42's function and provide a foundation for elucidating the molecular mechanisms governing flowering time regulation in cotton.
Collapse
Affiliation(s)
- Mengxue Du
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Deying Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Jingyu Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Taotao Zhu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Peng Lyu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Gang Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Yi Ding
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Xinxin Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Qingmei Men
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Xiaofei Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Lingzhi Meng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
| | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (M.D.); (D.W.); (J.L.); (T.Z.); (P.L.); (G.L.); (Y.D.); (X.L.); (Q.M.); (X.L.); (Y.S.)
- School of Life Science, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
7
|
Zhao Z, Chen T, Yue J, Pu N, Liu J, Luo L, Huang M, Guo T, Xiao W. Small Auxin Up RNA 56 (SAUR56) regulates heading date in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:62. [PMID: 37521314 PMCID: PMC10374499 DOI: 10.1007/s11032-023-01409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Heading date is a critical agronomic trait that determines crop yield. Although numerous genes associated with heading date have been identified in rice, the mechanisms involving Small Auxin Up RNA (SAUR) family have not been elucidated. In this study, the biological function of several SAUR genes was initially investigated using the CRISPR-Cas9 technology in the Japonica cultivar Zhonghua11 (ZH11) background. Further analysis revealed that the loss-of-function of OsSAUR56 affected heading date in both NLD (natural long-day) and ASD (artificial short-day). OsSAUR56 exhibited predominant expression in the anther, with its protein localized in both the cytoplasm and nucleus. OsSAUR56 regulated flowering time and heading date by modulating the expression of the clock gene OsGI, as well as two repressors Ghd7 and DTH8. Furthermore, haplotype-phenotype association analysis revealed a strong correlation between OsSAUR56 and heading date, suggesting its role in selection during the domestication of rice. In summary, these findings highlights the importance of OsSAUR56 in the regulation of heading date for further potential facilitating genetic engineering for flowering time during rice breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01409-w.
Collapse
Affiliation(s)
- Zhe Zhao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Tengkui Chen
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jicheng Yue
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Na Pu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jinzhao Liu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Lixin Luo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Ming Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| | - Wuming Xiao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| |
Collapse
|
8
|
Su L, Zhang T, Yang B, Dong T, Liu X, Bai Y, Liu H, Xiong J, Zhong Y, Cheng ZMM. Different evolutionary patterns of TIR1/AFBs and AUX/IAAs and their implications for the morphogenesis of land plants. BMC PLANT BIOLOGY 2023; 23:265. [PMID: 37202746 DOI: 10.1186/s12870-023-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.
Collapse
Affiliation(s)
- Liyao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyu Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yibo Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Max Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
10
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Huang B, Qi Y, Huang X, Yang P. Genome-wide identification and co-expression network analysis of Aux/IAA gene family in Salvia miltiorrhiza. PeerJ 2023; 11:e15212. [PMID: 37090108 PMCID: PMC10117383 DOI: 10.7717/peerj.15212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) gene family serves as a principal group of genes responsible for modulating plant growth and development through the auxin signaling pathway. Despite the significance of this gene family, the identification and characterization of members within the well-known Chinese medicinal herb Salvia miltiorrhiza (S. miltiorrhiza) have not been thoroughly investigated. In this study, we employed bioinformatics methods to identify 23 Aux/IAA genes within the genome of S. miltiorrhiza. These genes were classified into typical IAA and atypical IAA based on their domain structure. Our analysis of the promoter regions revealed that the expression of these genes is regulated not only by auxins, but also by other hormones and environmental factors. Furthermore, we found that the expression patterns of these genes varied across various tissues of S. miltiorrhiza. While our initial hypothesis suggested that the primary function of these genes was the interaction between SmIAA and ARF, gene co-expression network analysis revealed that they are also influenced by various other transcription factors, such as WRKY and ERF. The findings establish a sturdy basis for future investigations into the function of the Aux/IAA gene family and exhibit promising prospects for enhancing the genetics of this medicinal flora and its associated species.
Collapse
Affiliation(s)
- Bin Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
12
|
Yang Z, Dong D, Qi Z, Jia C, Han L, Chao Y. Genome-wide identification, expression analysis, and transcriptome analysis of the IAA gene family in Zoysia japonica. Mol Biol Rep 2023; 50:4385-4394. [PMID: 36961632 DOI: 10.1007/s11033-022-08154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/23/2022] [Indexed: 03/25/2023]
Abstract
BACKGROUND AUX/IAA is an essential signaling molecule and has great physiological importance in various plants, but its function in Zoysia japonica remains unknown. METHODS AND RESULTS Genome-wide identification and analysis of AUX/IAA genes used bioinformatics methods to investigate the ZjIAA genes' expression of exogenous IAA hydroponics treatment for 2 h by qRT-PCR, control and exogenous IAA treated zoysia were subjected to transcriptome sequencing. ZjIAAs were distributed across the 13 subfamilies by phylogenetic analysis with Oryza sativa and Arabidopsis thaliana. Multiple sequence alignment revealed that the majority of genes were non-canonical ZjIAAs with incomplete domain. The optimal growth concentration of the IAA hormone was 0.05 mM, and the qRT-PCR analysis revealed that eight ZjIAAs were differentially expressed, with seven genes considerably upregulating and one gene significantly downregulating. The result of transcriptome sequencing revealed that 515 differentially expressed genes (DEGs) were identified, with 344 upregulated genes and 171 downregulated genes. A total of 18 genes were annotated as involved in the plant hormone signal transduction pathway. And 8 ZjIAAs exhibited distinct expressions, 7 upregulated, and only one downregulated, according to the qRT-PCR study. CONCLUSIONS Genome-wide identification and analysis increased the understanding of the evolution and function of the IAA family in zoysia. DEGs of control and treatment with 0.05 mM exogenous IAA hormone were investigated by transcriptome sequencing. ZjIAAs had substantial variations in the expression of associated genes, with the majority of genes upregulated and 18 genes implicated in plant hormone signal transduction.
Collapse
Affiliation(s)
- Zhuoxiong Yang
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Di Dong
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Zewen Qi
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Chenyan Jia
- Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd, Hohhot, 010010, Inner Mongolia, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Du W, Ding J, Li J, Li H, Ruan C. Co-regulatory effects of hormone and mRNA-miRNA module on flower bud formation of Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1109603. [PMID: 37008468 PMCID: PMC10064061 DOI: 10.3389/fpls.2023.1109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Few flower buds in a high-yield year are the main factors restricting the yield of Camellia oleifera in the next year. However, there are no relevant reports on the regulation mechanism of flower bud formation. In this study, hormones, mRNAs, and miRNAs were tested during flower bud formation in MY3 ("Min Yu 3," with stable yield in different years) and QY2 ("Qian Yu 2," with less flower bud formation in a high-yield year) cultivars. The results showed that except for IAA, the hormone contents of GA3, ABA, tZ, JA, and SA in the buds were higher than those in the fruit, and the contents of all hormones in the buds were higher than those in the adjacent tissues. This excluded the effect of hormones produced from the fruit on flower bud formation. The difference in hormones showed that 21-30 April was the critical period for flower bud formation in C. oleifera; the JA content in MY3 was higher than that in QY2, but a lower concentration of GA3 contributed to the formation of the C. oleifera flower bud. JA and GA3 might have different effects on flower bud formation. Comprehensive analysis of the RNA-seq data showed that differentially expressed genes were notably enriched in hormone signal transduction and the circadian system. Flower bud formation in MY3 was induced through the plant hormone receptor TIR1 (transport inhibitor response 1) of the IAA signaling pathway, the miR535-GID1c module of the GA signaling pathway, and the miR395-JAZ module of the JA signaling pathway. In addition, the expression of core clock components GI (GIGANTEA) and CO (CONSTANS) in MY3 increased 2.3-fold and 1.8-fold over that in QY2, respectively, indicating that the circadian system also played a role in promoting flower bud formation in MY3. Finally, the hormone signaling pathway and circadian system transmitted flowering signals to the floral meristem characteristic genes LFY (LEAFY) and AP1 (APETALA 1) via FT (FLOWERING LOCUS T) and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) to regulate flower bud formation. These data will provide the basis for understanding the mechanism of flower bud alternate formation and formulating high yield regulation measures for C. oleifera.
Collapse
|
14
|
Liu H, Luo Q, Tan C, Song J, Zhang T, Men S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1259-1277. [PMID: 36648165 DOI: 10.1111/tpj.16109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Auxin is indispensable to the fertilization-induced coordinated development of the embryo, endosperm, and seed coat. However, little attention has been given to the distribution pattern, maintenance mechanism, and function of auxin throughout the process of seed development. In the present study, we found that auxin response signals display a dynamic distribution pattern during Arabidopsis seed development. Shortly after fertilization, strong auxin response signals were observed at the funiculus, chalaza, and micropylar integument where the embryo attaches. Later, additional signals appeared at the middle layer of the inner integument (ii1') above the chalaza and the whole inner layer of the outer integument (oi1). These signals peaked when the seed was mature, then declined upon desiccation and disappeared in the dried seed. Auxin biosynthesis genes, including ASB1, TAA1, YUC1, YUC4, YUC8, and YUC9, contributed to the accumulation of auxin in the funiculus and seed coat. Auxin efflux carrier PIN3 and influx carrier AUX1 also contributed to the polar auxin distribution in the seed coat. PIN3 was expressed in the ii1 (innermost layer of the inner integument) and oi1 layers of the integument and showed polar localization. AUX1 was expressed in both layers of the outer integument and the endosperm and displayed a uniform localization. Further research demonstrated that the accumulation of auxin in the seed coat regulates seed size. Transgenic plants that specifically express the YUC8 gene in the oi2 or ii1 seed coat produced larger seeds. These results provide useful tools for cultivating high-yielding crops.
Collapse
Affiliation(s)
- Huabin Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Yang M, Chen J, Chang Y, Wan S, Zhao Z, Ni F, Guan R. Fine Mapping of a Pleiotropic Locus ( BnUD1) Responsible for the Up-Curling Leaves and Downward-Pointing Siliques in Brassica napus. Int J Mol Sci 2023; 24:ijms24043069. [PMID: 36834480 PMCID: PMC9965582 DOI: 10.3390/ijms24043069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Leaves and siliques are important organs associated with dry matter biosynthesis and vegetable oil accumulation in plants. We identified and characterized a novel locus controlling leaf and silique development using the Brassica napus mutant Bnud1, which has downward-pointing siliques and up-curling leaves. The inheritance analysis showed that the up-curling leaf and downward-pointing silique traits are controlled by one dominant locus (BnUD1) in populations derived from NJAU5773 and Zhongshuang 11. The BnUD1 locus was initially mapped to a 3.99 Mb interval on the A05 chromosome with a BC6F2 population by a bulked segregant analysis-sequencing approach. To more precisely map BnUD1, 103 InDel primer pairs uniformly covering the mapping interval and the BC5F3 and BC6F2 populations consisting of 1042 individuals were used to narrow the mapping interval to a 54.84 kb region. The mapping interval included 11 annotated genes. The bioinformatic analysis and gene sequencing data suggested that BnaA05G0157900ZS and BnaA05G0158100ZS may be responsible for the mutant traits. Protein sequence analyses showed that the mutations in the candidate gene BnaA05G0157900ZS altered the encoded PME in the trans-membrane region (G45A), the PMEI domain (G122S), and the pectinesterase domain (G394D). In addition, a 573 bp insertion was detected in the pectinesterase domain of the BnaA05G0157900ZS gene in the Bnud1 mutant. Other primary experiments indicated that the locus responsible for the downward-pointing siliques and up-curling leaves negatively affected the plant height and 1000-seed weight, but it significantly increased the seeds per silique and positively affected photosynthetic efficiency to some extent. Furthermore, plants carrying the BnUD1 locus were compact, implying they may be useful for increasing B. napus planting density. The findings of this study provide an important foundation for future research on the genetic mechanism regulating the dicotyledonous plant growth status, and the Bnud1 plants can be used directly in breeding.
Collapse
|
16
|
Genome-wide evolutionary analysis of AUX/IAA gene family in wheat identifies a novel gene TaIAA15-1A regulating flowering time by interacting with ARF. Int J Biol Macromol 2023; 227:285-296. [PMID: 36549029 DOI: 10.1016/j.ijbiomac.2022.12.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Flowering time is a critical agronomic trait that has strong effects on crop yields. Auxin signaling pathway plays an important role in various development processes, such as flowering, grain development. However, no Aux/IAA gene had been reported to have functions involving in wheat flowering time. Here, we systematically performed genome-wide identification, classification, domain distribution, exon-intron structure, chromosome locations and global expression pattern of Aux/IAA gene family in 14 plant genomes (including Triticum aestivum). A phylogenetic model was proposed to infer the Aux/IAA evolutionary history involving in a central exon-intron structure "2121" during evolution. Overexpression of TaIAA15-1A caused an early flowering time in Brachypodium. RNA-seq analysis showed that TaIAA15-1A overexpression alters various pathways including phytohormone signaling pathway, flowering-related pathway, and polyamine biosynthesis pathway. Screening of auxin response factor (ARF) genes identified BdARF16 that interacted with TaIAA15-1A. Exogenous polyamine (spermidine and spermine) treatments promoted early flowering and (putrescine and DCHA) delayed flowering time of WT plants. Our finding will provide insights on mechanisms of Aux/IAAs gene family and TaIAA15-1A, illustrating the potential during crop improvement programs.
Collapse
|
17
|
Yang X, Li J, Ji C, Wei Z, Zhao T, Pang Q. Overexpression of an aquaporin gene EsPIP1;4 enhances abiotic stress tolerance and promotes flowering in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:25-35. [PMID: 36323195 DOI: 10.1016/j.plaphy.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aquaporins are water channel proteins that play an essential role in plant growth and development. Despite extensive functional characterization of aquaporins in model plants such as Arabidopsis, their contributions to abiotic stress tolerance in non-model plants are still poorly understood. As a close relative of Arabidopsis thaliana, Eutrema salsugineum is an excellent model for studying salt tolerance. Here, we identified and functionally characterized EsPIP1;4, a gene encoding a plasma membrane intrinsic protein (PIP) aquaporin in E. salsugineum. Overexpression of EsPIP1;4 in Arabidopsis improved seed germination and root growth of transgenic plants under abiotic stress, which was accompanied by an increase in proline accumulation, reduction in MDA, and decrease in the rate of ion leakage. Under abiotic stress, transgenic plants overexpressing EsPIP1;4 also showed increased antioxidant enzyme activity, and enhanced K+/Na+ ratio compared to control plants. Furthermore, overexpression of EsPIP1;4 promoted flowering by regulating genes in multiple flowering pathways. Together, our results demonstrated that an aquaporin from E. salsugineum improves abiotic stress tolerance and promotes flowering.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiawen Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoxin Wei
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tong Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
18
|
Curci PL, Zhang J, Mähler N, Seyfferth C, Mannapperuma C, Diels T, Van Hautegem T, Jonsen D, Street N, Hvidsten TR, Hertzberg M, Nilsson O, Inzé D, Nelissen H, Vandepoele K. Identification of growth regulators using cross-species network analysis in plants. PLANT PHYSIOLOGY 2022; 190:2350-2365. [PMID: 35984294 PMCID: PMC9706488 DOI: 10.1093/plphys/kiac374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
Collapse
Affiliation(s)
- Pasquale Luca Curci
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Jie Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Niklas Mähler
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - David Jonsen
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Magnus Hertzberg
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
20
|
Transcriptome Analysis Reveals Putative Induction of Floral Initiation by Old Leaves in Tea-Oil Tree (Camellia oleifera ‘changlin53’). Int J Mol Sci 2022; 23:ijms232113021. [PMID: 36361817 PMCID: PMC9655362 DOI: 10.3390/ijms232113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar ‘changlin53’) was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera ‘changlin53’ mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm–photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.
Collapse
|
21
|
Negative regulation of seed germination by maternal AFB1 and AFB5 in Arabidopsis. Biosci Rep 2022; 42:231693. [PMID: 36039862 PMCID: PMC9469108 DOI: 10.1042/bsr20221504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
The plant hormone auxin suppresses seed germination, but how auxin does it remains poorly understood. While studying the functions of the AUXIN SIGNALING F-BOX (AFB) auxin co-receptors in Arabidopsis, we consistently isolated AFB1 and AFB5 in reproductive tissues in co-immunoprecipitation experiments using their interacting protein ASK1 as the bait. However, T2 seeds of the AFB1 or AFB5 transgenic lines generated for the co-immunoprecipitation experiments frequently failed to germinate, which led to the studies of seed germination in these plants and afb1 and afb5 mutants, and AFB1 and AFB5 expression in nearly mature fruit and imbibed seeds using AFB1:GUS and AFB5:GUS lines. We found that AFB1 and AFB5 acted in maternal tissues to suppress seed germination and their effects were positively correlated with the plants’ sensitivity to indole acetic acid. Conversely, afb1 and afb5 single mutants exhibited faster seed germination than the wild type and the seeds of the afb1-5afb5-5 double mutant germinated even faster than those of the afb1-5 and afb5-5 single mutants. Seed germination of the afb1-5afb5-5 double mutant also exhibited higher sensitivity to gibberellic acid than that of the wild-type and the afb1-3, afb1-5 and afb5-5 single mutants. Both AFB1 and AFB5 were expressed in the funiculus during seed maturation, and AFB1 was also transiently expressed in a small chalazal region surrounding the hilum in the seed coat during seed imbibition. Therefore, AFB1 and AFB5 likely suppress seed germination in the funiculus and AFB1 also briefly suppresses seed germination in the chalaza during seed imbibition.
Collapse
|
22
|
Genome-Wide Identification and Expression Analysis of the Aux/IAA and Auxin Response Factor Gene Family in Medicago truncatula. Int J Mol Sci 2021; 22:ijms221910494. [PMID: 34638833 PMCID: PMC8532000 DOI: 10.3390/ijms221910494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aux/IAA and auxin response transcription factor (ARF) genes are key regulators of auxin responses in plants. A total of 25 MtIAA and 40 MtARF genes were identified based on the latest updated Medicago truncatula reference genome sequence. They were clustered into 10 and 8 major groups, respectively. The homologs among M. truncatula, soybean, and Arabidopsis thaliana shared close relationships based on phylogenetic analysis. Gene structure analysis revealed that MtIAA and MtARF genes contained one to four concern motifs and they are localized to eight chromosomes, except chromosome 6 without MtARFs. In addition, some MtIAA and MtARF genes were expressed in all tissues, while others were specifically expressed in specific tissues. Analysis of cis-acting elements in promoter region and expression profiles revealed the potential response of MtIAA and MtARF genes to hormones and abiotic stresses. The prediction protein–protein interaction network showed that some ARF proteins could interact with multiple Aux/IAA proteins, and the reverse is also true. The investigation provides valuable, basic information for further studies on the biological functions of MtIAA and MtARF genes in the regulation of auxin-related pathways in M. truncatula.
Collapse
|
23
|
A Gain-of-Function Mutant of IAA7 Inhibits Stem Elongation by Transcriptional Repression of EXPA5 Genes in Brassica napus. Int J Mol Sci 2021; 22:ijms22169018. [PMID: 34445724 PMCID: PMC8396470 DOI: 10.3390/ijms22169018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Plant height is one of the most important agronomic traits of rapeseeds. In this study, we characterized a dwarf Brassica napus mutant, named ndf-2, obtained from fast neutrons and DES mutagenesis. Based on BSA-Seq and genetic properties, we identified causal mutations with a time-saving approach. The ndf-2 mutation was identified on chromosome A03 and can result in an amino acid substitution in the conserved degron motif (GWPPV to EWPPV) of the Auxin/indole-3-acetic acid protein 7 (BnaA03.IAA7) encoded by the causative gene. Aux/IAA protein is one of the core components of the auxin signaling pathway, which regulates many growth and development processes. However, the molecular mechanism of auxin signal regulating plant height is still not well understood. In the following work, we identified that BnaARF6 and BnaARF8 as interactors of BnaA03.IAA7 and BnaEXPA5 as a target of BnaARF6 and BnaARF8. The three genes BnaA03.IAA7, BnaARF6/8 and BnaEXPA5 were highly expressed in stem, suggesting that these genes were involved in stem development. The overexpression of BnaEXPA5 results in larger rosettes leaves and longer inflorescence stems in Arabidopsis thaliana. Our results indicate that BnaA03.IAA7- and BnaARF6/8-dependent auxin signal control stem elongation and plant height by regulating the transcription of BnaEXPA5 gene, which is one of the targets of this signal.
Collapse
|
24
|
Wu C, Paciorek M, Liu K, LeClere S, Perez‐Jones A, Westra P, Sammons RD. Investigating the presence of compensatory evolution in dicamba resistant IAA16 mutated kochia (Bassia scoparia) †. PEST MANAGEMENT SCIENCE 2021; 77:1775-1785. [PMID: 33236492 PMCID: PMC7986355 DOI: 10.1002/ps.6198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lack of fitness costs has been reported for multiple herbicide resistance traits, but the underlying evolutionary mechanisms are not well understood. Compensatory evolution that ameliorates resistance costs, has been documented in bacteria and insects but rarely studied in weeds. Dicamba resistant IAA16 (G73N) mutated kochia was previously found to have high fecundity in the absence of competition, regardless of significant vegetative growth defects. To understand if costs of dicamba resistance can be compensated through traits promoting reproductive success in kochia, we thoroughly characterized the reproductive growth and development of different G73N kochia biotypes. Flowering phenology, seed production and reproductive allocation were quantified through greenhouse studies, floral (stigma-anthers distance) and seed morphology, as well as resulting mating and seed dispersal systems were studied through time-course microcopy images. RESULTS G73N covaried with multiple phenological, morphological and ecological traits that improve reproductive fitness: (i) 16-60% higher reproductive allocation; (ii) longer reproduction phase through early flowering (2-7 days); (iii) smaller stigma-anthers separation (up to 60% reduction of herkogamy and dichogamy) that can potentially promote selfing and reproductive assurance; (iv) 'winged' seeds with 30-70% longer sepals that facilitate long-distance seed dispersal. CONCLUSION The current study demonstrates that costs of herbicide resistance can be ameliorated through coevolution of other fitness penalty alleviating traits. As illustrated in a hypothetical model, the evolution of herbicide resistance is an ongoing fitness maximization process, which poses challenges to contain the spread of resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Marta Paciorek
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Kang Liu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Sherry LeClere
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | | | - Phil Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|
25
|
Wang C, Abbas F, Zhou Y, Ke Y, Li X, Yue Y, Yu Y, Yu R, Fan Y. Genome-wide identification and expression pattern of SnRK gene family under several hormone treatments and its role in floral scent emission in Hedychium coronarium. PeerJ 2021; 9:e10883. [PMID: 33854831 PMCID: PMC7955670 DOI: 10.7717/peerj.10883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays crucial roles in various plant signaling pathways and stress-adaptive responses including biotic and abiotic stresses via activating protein phosphorylation pathways. However, there is no information available on the role of the SnRK gene family in Hedychium coronarium. H. coronarium is an important crop widely cultivated as an ornamental plant, herb, spice, or condiment. In this study, 60 HcSnRK genes were identified from the H. coronarium genomic and transcriptome data. Phylogenetic and gene structure analysis showed that the HcSnRK genes were divided into three groups (HcSnRK1, HcSnRK2 and HcSnRK3) and among them HcSnRK3 subfamily was further subdivided into two clades according to the number of introns. Chromosome localization analysis showed that HcSnRK genes were unevenly mapped onto all chromosomes, and the Ka/Ks ratio of 24 paralogues includes four tandems and 20 segmental duplications indicated that the HcSnRK gene family underwent a purifying selection. Cis-regulatory elements analysis suggested that the HcSnRK genes respond to multiple hormones and other stresses. The responsiveness of HcSnRK genes to several hormones was analyzed by quantitative real-time PCR. Based on the different transcriptome data, two candidates HcSnRK genes (HcSnRK2.2 and HcSnRK2.9) were screened out for further characterization . The subcellular localization experiment revealed that both genes were located in the nucleus and cytoplasm. Moreover, virus-induced gene silencing (VIGS) of HcSnRK2.2 and HcSnRK2.9 significantly reduced the floral volatile contents by suppressing the expression of terpene synthase genes (HcTPS1, HcTPS3, and HcTPS5), indicating that HcSnRK2.2 and HcSnRK2.9 genes play an important role in the regulatory mechanism of floral aroma. These results will provide novel insights into the functional dissection of H. coronarium SnRK gene family.
Collapse
Affiliation(s)
- Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- College of Economics and Management, Kunming university, Kunming, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangdong, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, China
| |
Collapse
|
26
|
Huang C, Yang M, Shao D, Wang Y, Wan S, He J, Meng Z, Guan R. Fine mapping of the BnUC2 locus related to leaf up-curling and plant semi-dwarfing in Brassica napus. BMC Genomics 2020; 21:530. [PMID: 32736518 PMCID: PMC7430850 DOI: 10.1186/s12864-020-06947-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Studies of leaf shape development and plant stature have made important contributions to the fields of plant breeding and developmental biology. The optimization of leaf morphology and plant height to improve lodging resistance and photosynthetic efficiency, increase planting density and yield, and facilitate mechanized harvesting is a desirable goal in Brassica napus. Results Here, we investigated a B. napus germplasm resource exhibiting up-curled leaves and a semi-dwarf stature. In progeny populations derived from NJAU5737 and Zhongshuang 11 (ZS11), we found that the up-curled leaf trait was controlled by a dominant locus, BnUC2. We then fine mapped the BnUC2 locus onto an 83.19-kb interval on chromosome A05 using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. We further determined that BnUC2 was a major plant height QTL that explained approximately 70% of the phenotypic variation in two BC5F3 family populations derived from NJAU5737 and ZS11. This result implies that BnUC2 was also responsible for the observed semi-dwarf stature. The fine mapping interval of BnUC2 contained five genes, two of which, BnaA05g16700D (BnaA05.IAA2) and BnaA05g16720D, were revealed by comparative sequencing to be mutated in NJAU5737. This result suggests that the candidate gene mutation (BnaA05g16700D, encoding Aux/IAA2 proteins) in the conserved Degron motif GWPPV (P63S) was responsible for the BnUC2 locus. In addition, investigation of agronomic traits in a segregated population indicated that plant height, main inflorescence length, and branching height were significantly reduced by BnUC2, whereas yield was not significantly altered. The determination of the photosynthetic efficiency showed that the BnUC2 locus was beneficial to improve the photosynthetic efficiency. Our findings may provide an effective foundation for plant type breeding in B. napus. Conclusions Using SNP and SSR markers, a dominant locus (BnUC2) related to up-curled leaves and semi-dwarf stature in B. napus has been fine mapped onto an 83.19-kb interval of chromosome A05 containing five genes. The BnaA05.IAA2 is inferred to be the candidate gene responsible for the BnUC2 locus.
Collapse
Affiliation(s)
- Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danlei Shao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zuqing Meng
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, Tibet Autonomous Region, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
Ma L, Yi D, Yang J, Liu X, Pang Y. Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula. PLANTS 2020; 9:plants9040513. [PMID: 32316208 PMCID: PMC7238248 DOI: 10.3390/plants9040513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The control of flowering time has an important impact on biomass and the environmental adaption of legumes. The CCT (CO, COL and TOC1) gene family was elucidated to participate in the molecular regulation of flowering in plants. We identified 36 CCT genes in the M. truncatula genome and they were classified into three distinct subfamilies, PRR (7), COL (11) and CMF (18). Synteny and phylogenetic analyses revealed that CCT genes occurred before the differentiation of monocot and dicot, and CCT orthologous genes might have diversified among plants. The diverse spatial-temporal expression profiles indicated that MtCCT genes could be key regulators in flowering time, as well as in the development of seeds and nodules in M. truncatula. Notably, 22 MtCCT genes with typical circadian rhythmic variations suggested their different responses to light. The response to various hormones of MtCCT genes demonstrated that they participate in plant growth and development via varied hormones dependent pathways. Moreover, six MtCCT genes were dramatically induced by salinity and dehydration treatments, illustrating their vital roles in the prevention of abiotic injury. Collectively, our study provides valuable information for the in-depth investigation of the molecular mechanism of flowering time in M. truncatula, and it also provides candidate genes for alfalfa molecular breeding with ideal flowering time.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiqiang Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Department of Grassland Science, China Agriculture University, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Correspondence: ; Tel.: +86-10-6287-6460
| |
Collapse
|
28
|
An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem. PLoS Genet 2020; 16:e1008661. [PMID: 32294082 PMCID: PMC7266345 DOI: 10.1371/journal.pgen.1008661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/02/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
In the Arabidopsis thaliana shoot apical meristem (SAM) the expression domains of Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN) genes are separated by a narrow boundary region from which new organs are initiated. Disruption of this boundary through either loss of function or ectopic expression of HD-ZIPIII and KAN causes ectopic or suppression of organ formation respectively, raising the question of how these transcription factors regulate organogenesis at a molecular level. In this study we develop a multi-channel FACS/RNA-seq approach to characterize global patterns of gene expression across the HD-ZIPIII-KAN1 SAM boundary. We then combine FACS, RNA-seq and perturbations of HD-ZIPIII and KAN expression to identify genes that are both responsive to REV and KAN1 and normally expressed in patterns that correlate with REV and KAN1. Our data reveal that a significant number of genes responsive to REV are regulated in opposite ways depending on time after induction, with genes associated with auxin response and synthesis upregulated initially, but later repressed. We also characterize the cell type specific expression patterns of auxin responsive genes and identify a set of genes involved in organogenesis repressed by both REV and KAN1. The plant hormone auxin promotes the formation of lateral organs such as leaves and flowers in a specific region of the shoot called the peripheral zone. Although the restriction of organogenesis to the peripheral zone is known to depend on the Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI1 (KAN1) genes, the transcriptional pathways downstream of these genes have not been studied in the shoot. In this study we investigate regulatory interactions between REVOLUTA (REV), KAN1 and auxin by developing a cell-type specific transcriptomics approach to analyse gene expression patterns and responses to perturbations. Using this approach, we identify cell-type specific genes that respond to changes in REV and KAN1 expression in the shoot. Our data reveal that while REV promotes auxin-related gene expression over the short term, both REV and KAN1 repress auxin induced genes over the long-term, consistent with their influence on organogenesis. We also identify a common set of genes repressed by REV and KAN1 that promote organogenesis.
Collapse
|
29
|
Huang D, Wang Q, Duan D, Dong Q, Zhao S, Zhang M, Jing G, Liu C, van Nocker S, Ma F, Li C. Overexpression of MdIAA9 confers high tolerance to osmotic stress in transgenic tobacco. PeerJ 2019; 7:e7935. [PMID: 31687272 PMCID: PMC6825743 DOI: 10.7717/peerj.7935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Auxin is a plant hormone that takes part in a series of developmental and physiological processes. There are three major gene families that play a role in the early response of auxin and auxin/indole-3-acetic acid (Aux/IAA) is one of these. Although the genomic organization and function of Aux/IAA genes have been recognized in reference plants there have only been a few focused studies conducted with non-model crop plants, especially in the woody perennial species. We conducted a genomic census and expression analysis of Aux/IAA genes in the cultivated apple (Malus × domestica Borkh.). The Aux/IAA gene family of the apple genome was identified and analyzed in this study. Phylogenetic analysis showed that MdIAAs could be categorized into nine subfamilies and that these MdIAA proteins contained four whole or partially conserved domains of the MdIAA family. The spatio-specific expression profiles showed that most of the MdIAAs were preferentially expressed in specific tissues. Some of these genes were significantly induced by treatments with one or more abiotic stresses. The overexpression of MdIAA9 in tobacco (Nicotiana tabacum L.) plants significantly increased their tolerance to osmotic stresses. Our cumulative data supports the interactions between abiotic stresses and plant hormones and provides a theoretical basis for the mechanism of Aux/IAA and drought resistance in apples.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Maoxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Tiwari LD, Grover A. Cpn60β4 protein regulates growth and developmental cycling and has bearing on flowering time in Arabidopsis thaliana plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:78-88. [PMID: 31300145 DOI: 10.1016/j.plantsci.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
Chloroplastic Cpn60 proteins are type I chaperonins comprising of Cpn60α and Cpn60β subunits. Arabidopsis genome contains six entries in Cpn60 family, out of which two are for Cpn60α subunit and four for Cpn60β subunit. We noted that the cpn60β4 knockout mutant plants (T-DNA insertion salk_064887 line) differed from the wild type Col-0 plants in the developmental programming. cpn60β4 mutant plants showed early seed germination. Radical emergence, hypocotyl emergence and cotyledons opening were faster in cpn60β4 mutant plants than WT. Importantly, cpn60β4 mutant plants showed early-flowering phenotype. The number of flowers and siliques as well as weight of the seeds were higher in cpn60β4 mutant plants as compared to Col-0 plants. These effects were reverted to wild type like growth and developmental patterns when genomic fragment of Arabidopsis encompassing Cpn60β4 gene was complemented in the mutant background. The overexpression of Cpn60β4 gene using CaMV35 promoter in wild type background (OE-Cpn60β4) delayed the floral transition as against wild type plants. The plastid division were affected in cpn60β4 mutant plants compared to Col-0. The results of this study suggest that Cpn60β4 plays important role(s) in chloroplast development and is a key factor in plant growth, development and flowering in Arabidopsis.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
31
|
Jiang M, Hu H, Kai J, Traw MB, Yang S, Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. PLANT MOLECULAR BIOLOGY 2019; 100:467-479. [PMID: 31004275 PMCID: PMC6586719 DOI: 10.1007/s11103-019-00871-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/11/2019] [Indexed: 05/07/2023]
Abstract
We have isolated several Osiaa23 rice mutants with different knockout genotypes, resulting in different phenotypes, which suggested that different genetic backgrounds or mutation types influence gene function. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene family performs critical roles in auxin signal transduction in plants. In rice, the gene OsIAA23 (Os06t0597000) is known to affect development of roots and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for research continuously. Here, we isolate new Osiaa23 mutants using the CRISPR/Cas9 system in japonica (Wuyunjing24) and indica (Kasalath) rice, with extensive genome re-sequencing to confirm the absence of off-target effects. In Kasalath, mutants with a 13-amino acid deletion showed profoundly greater dwarfing, lateral root developmental disorder, and fertility deficiency, relative to mutants with a single amino acid deletion, demonstrating that those 13 amino acids in Kasalath are essential to gene function. In Wuyunjing24, we predicted that mutants with a single base-pair frameshift insertion would experience premature termination and strong phenotypic defects, but instead these lines exhibited negligible phenotypic difference and normal fertility. Through RNA-seq, we show here that new mosaic transcripts of OsIAA23 were produced de novo, which circumvented the premature termination and thereby preserved the wild-type phenotype. This finding is a notable demonstration in plants that mutants can mask loss of function CRISPR/Cas9 editing of the target gene through de novo changes in alternative splicing.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huaying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Kai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
32
|
Ke Y, Abbas F, Zhou Y, Yu R, Yue Y, Li X, Yu Y, Fan Y. Genome-Wide Analysis and Characterization of the Aux/IAA Family Genes Related to Floral Scent Formation in Hedychium coronarium. Int J Mol Sci 2019; 20:E3235. [PMID: 31266179 PMCID: PMC6651449 DOI: 10.3390/ijms20133235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023] Open
Abstract
Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.
Collapse
Affiliation(s)
- Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Hong J, Lee H, Lee J, Kim H, Ryu H. ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:207-214. [PMID: 30908972 DOI: 10.1016/j.plaphy.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
ABSCISIC ACID-INSENSITIVE 3 (ABI3) is one of the essential transcription factors of ABSCISIC ACID (ABA) signaling, functioning in seed germination, early seedling development, and abiotic stress tolerance. A recent study showed that epigenetic repression of ABI3 by brassinosteroid (BR)-activated BRI1 EMS SUPPRESSOR1 (BES1)-TOPLESS (TPL)HISTONE DEACETYLASE 19 (HDA19) repressor complex is a critical event for promoting seed germination and early seedling development. However, other physiological roles of the repression of ABI3 and ABA responses by BES1-mediated BR signaling pathways remain elusive. Here, we show that BES1-mediated suppression of ABI3 promotes floral transition and ABI3 acts as a negative regulator for flowering. Ectopic expression of ABI3 specifically compromised the early flowering phenotype of bes1-D and induced severe late-flowering phenotypes in wild-type Arabidopsis and Solanum lycopersicum plants. Both spatiotemporal expression patterns and global transcriptome analysis of ABI3-overexpressing plants supported the biological roles of ABI3 in the negative regulation of floral transition and reproduction. Finally, we confirmed that the loss of function of ABI3 induced early-flowering phenotypes in both long- and short-day conditions. In conclusion, our data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
34
|
Shu K, Chen F, Zhou W, Luo X, Dai Y, Shuai H, Yang W. ABI4 regulates the floral transition independently of ABI5 and ABI3. Mol Biol Rep 2018; 45:2727-2731. [DOI: 10.1007/s11033-018-4290-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
|
35
|
Xu F, He S, Zhang J, Mao Z, Wang W, Li T, Hua J, Du S, Xu P, Li L, Lian H, Yang HQ. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2018; 11:523-541. [PMID: 29269022 DOI: 10.1016/j.molp.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs by blue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin-induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengbo He
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenxiu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jie Hua
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ling Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
36
|
Zhu C, Wang L, Chen J, Liu C, Zeng H, Wang H. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana. Sci Rep 2017; 7:5629. [PMID: 28717174 PMCID: PMC5514138 DOI: 10.1038/s41598-017-04387-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.
Collapse
Affiliation(s)
- Chen Zhu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Li Wang
- Sivilculture Forestry department, College of Forestry, Beijing Forestry University, Beijing, China
| | - Jinhua Chen
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China
| | - Chenglan Liu
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China
| | - Huiming Zeng
- Turfgrass Management department, College of Forestry, Beijing forestry university, Beijing, China.
| | - Huafang Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
37
|
Liu K, Yuan C, Feng S, Zhong S, Li H, Zhong J, Shen C, Liu J. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics 2017; 18:351. [PMID: 28476147 PMCID: PMC5420106 DOI: 10.1186/s12864-017-3722-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. Results In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Conclusions Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3722-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Shuting Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jinxiang Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| |
Collapse
|
38
|
Li Z, Zhang J, Liu Y, Zhao J, Fu J, Ren X, Wang G, Wang J. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. BMC PLANT BIOLOGY 2016; 16:41. [PMID: 26860357 PMCID: PMC4748683 DOI: 10.1186/s12870-016-0724-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/28/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. RESULTS Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. CONCLUSIONS In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and emerge. To complete the germination, seeds of which would stimulate more GA synthesis to antagonize the stimulation of exogenous auxin. Exogenous auxin regulates multi-metabolic networks controlling seed secondary dormancy and germination, of which the most important thing was that we found the auxin-responsive seed secondary dormancy refers to epigenetic regulation and germination to enhance Met pathway. Therefore, this study uncovers a previously unrecognized transcriptional regulatory networks and physiological development process of seed dormancy and germination with superfluous auxin signal activate.
Collapse
Affiliation(s)
- Zhenhua Li
- College of Agriculture and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, 100094, China.
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Yiling Liu
- Institute of Tobacco, Guizhou University, Guiyang, 550025, China.
| | - Jiehong Zhao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, GuiYang, 550081, China.
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianhua Wang
- College of Agriculture and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, 100094, China.
| |
Collapse
|
39
|
Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 2016; 143:682-90. [PMID: 26758694 DOI: 10.1242/dev.128595] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022]
Abstract
Flowering in plants is a dynamic and synchronized process where various cues including age, day length, temperature and endogenous hormones fine-tune the timing of flowering for reproductive success. Arabidopsis thaliana is a facultative long day (LD) plant where LD photoperiod promotes flowering. Arabidopsis still flowers under short-day (SD) conditions, albeit much later than in LD conditions. Although factors regulating the inductive LD pathway have been extensively investigated, the non-inductive SD pathway is much less understood. Here, we identified a key basic helix-loop-helix transcription factor called NFL (NO FLOWERING IN SHORT DAY) that is essential to induce flowering specifically under SD conditions in Arabidopsis. nfl mutants do not flower under SD conditions, but flower similar to the wild type under LD conditions. The no-flowering phenotype in SD is rescued either by exogenous application of gibberellin (GA) or by introducing della quadruple mutants in the nfl background, suggesting that NFL acts upstream of GA to promote flowering. NFL is expressed at the meristematic regions and NFL is localized to the nucleus. Quantitative RT-PCR assays using apical tissues showed that GA biosynthetic genes are downregulated and the GA catabolic and receptor genes are upregulated in the nfl mutant compared with the wild type, consistent with the perturbation of the endogenous GA biosynthetic and catabolic intermediates in the mutant. Taken together, these data suggest that NFL is a key transcription factor necessary for promotion of flowering under non-inductive SD conditions through the GA signaling pathway.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ruijiao Xin
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Theo Lange
- Institute of Plant Biology, Department of Plant Physiology and Biochemistry, Technical University of Braunschweig, Braunschweig D-38106, Germany
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:195-205. [PMID: 26507894 PMCID: PMC4682436 DOI: 10.1093/jxb/erv459] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the life cycle of a plant, one of the major biological processes is the transition from the vegetative to the reproductive stage. In Arabidopsis, flowering time is precisely controlled by extensive environmental and internal cues. Gibberellins (GAs) promote flowering, while abscisic acid (ABA) is considered as a flowering suppressor. However, the detailed mechanism through which ABA inhibits the floral transition is poorly understood. Here, we report that ABSCISIC ACID-INSENSITIVE 4 (ABI4), a key component in the ABA signalling pathway, negatively regulates floral transition by directly promoting FLOWERING LOCUS C (FLC) transcription. The abi4 mutant showed the early flowering phenotype whereas ABI4-overexpressing (OE-ABI4) plants had delayed floral transition. Consistently, quantitative reverse transcription-PCR (qRT-PCR) assay revealed that the FLC transcription level was down-regulated in abi4, but up-regulated in OE-ABI4. The change in FT level was consistent with the pattern of FLC expression. Chromatin immunoprecipitation-qPCR (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and tobacco transient expression analysis showed that ABI4 promotes FLC expression by directly binding to its promoter. Genetic analysis demonstrated that OE-ABI4::flc-3 could not alter the flc-3 phenotype. OE-FLC::abi4 showed a markedly delayed flowering phenotype, which mimicked OE-FLC::WT, and suggested that ABI4 acts upstream of FLC in the same genetic pathway. Taken together, these findings suggest that ABA inhibits the floral transition by activating FLC transcription through ABI4.
Collapse
Affiliation(s)
- Kai Shu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruijun Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shengfu Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
41
|
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X. Genetic discovery for oil production and quality in sesame. Nat Commun 2015; 6:8609. [PMID: 26477832 PMCID: PMC4634326 DOI: 10.1038/ncomms9609] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023] Open
Abstract
Oilseed crops are used to produce vegetable oil. Sesame (Sesamum indicum), an oilseed crop grown worldwide, has high oil content and a small diploid genome, but the genetic basis of oil production and quality is unclear. Here we sequence 705 diverse sesame varieties to construct a haplotype map of the sesame genome and de novo assemble two representative varieties to identify sequence variations. We investigate 56 agronomic traits in four environments and identify 549 associated loci. Examination of the major loci identifies 46 candidate causative genes, including genes related to oil content, fatty acid biosynthesis and yield. Several of the candidate genes for oil content encode enzymes involved in oil metabolism. Two major genes associated with lignification and black pigmentation in the seed coat are also associated with large variation in oil content. These findings may inform breeding and improvement strategies for a broad range of oilseed crops. Sesame is a valuable oilseed crop with a small diploid genome and high seed-oil content making it an attractive model for genetic studies. Here, Wei et al. sequence more than 705 sesame varieties and perform a genome-wide association study to identify genes associated with important agronomic traits.
Collapse
Affiliation(s)
- Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kunyan Liu
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Feng
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yan Zhao
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qiang Zhao
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Xiaodong Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaofeng Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wenjun Li
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Danlin Fan
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Yuan Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yiqi Lu
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Xianmei Zhang
- Luohe Academy of Agricultural Sciences, Luohe 462300, China
| | - Xiumei Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Congcong Zhou
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Chuanrang Zhu
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Lifeng Liu
- Luohe Academy of Agricultural Sciences, Luohe 462300, China
| | - Ruichun Zhong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Qilin Tian
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Ziruo Wen
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Qijun Weng
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Bin Han
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Xuehui Huang
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
42
|
Abraham Juárez MJ, Hernández Cárdenas R, Santoyo Villa JN, O'Connor D, Sluis A, Hake S, Ordaz-Ortiz J, Terry L, Simpson J. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3893-905. [PMID: 25911746 PMCID: PMC4473989 DOI: 10.1093/jxb/erv191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.
Collapse
Affiliation(s)
- María Jazmín Abraham Juárez
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - Rocío Hernández Cárdenas
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - José Natzul Santoyo Villa
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - Devin O'Connor
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aaron Sluis
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - José Ordaz-Ortiz
- Plant Science Laboratory, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Leon Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire MK43 0AL, UK
| | - June Simpson
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
43
|
Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:209-17. [PMID: 24992887 DOI: 10.1016/j.plaphy.2014.06.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/13/2014] [Indexed: 05/18/2023]
Abstract
Auxin is a well-known plant phytohormone that is involved in multiple plant growth processes and stress responses. In this study, auxin response was significantly modulated under drought stress condition. The iaaM-OX transgenic lines with higher endogenous indole-3-acetic acid (IAA) level and IAA pre-treated wild type (WT) plants exhibited enhanced drought stress resistance, while the yuc1yuc2yuc6 triple mutants with lower endogenous IAA level showed decreased stress resistance in comparison to non-treated WT plants. Additionally, endogenous and exogenous auxin positively modulated the expression levels of multiple abiotic stress-related genes (RAB18, RD22, RD29A, RD29B, DREB2A, and DREB2B), and positively affected reactive oxygen species (ROS) metabolism and underlying antioxidant enzyme activities. Moreover, auxin significantly modulated some carbon metabolites including amino acids, organic acids, sugars, sugar alcohols and aromatic amines. Notably, endogenous and exogenous auxin positively modulated root architecture especially the lateral root number. Taken together, this study demonstrated that auxin might participate in the positive regulation of drought stress resistance, through regulation of root architecture, ABA-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Li Chen
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaodong Liu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Kejian Ding
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
44
|
Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. THE PLANT CELL 2014; 26:2889-904. [PMID: 25052716 PMCID: PMC4145121 DOI: 10.1105/tpc.114.127993] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 05/02/2023]
Abstract
The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaoyu Geng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Chunmei He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Rong Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Zhaojun Ding
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
45
|
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:15485-90. [PMID: 23986496 PMCID: PMC3780901 DOI: 10.1073/pnas.1304651110] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transition from dormancy to germination in seeds is a key physiological process during the lifecycle of plants. Abscisic acid (ABA) is the sole plant hormone known to maintain seed dormancy; it acts through a gene expression network involving the transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3). However, whether other phytohormone pathways function in the maintenance of seed dormancy in response to environmental and internal signals remains an important question. Here, we show that the plant growth hormone auxin, which acts as a versatile trigger in many developmental processes, also plays a critical role in seed dormancy in Arabidopsis. We show that disruptions in auxin signaling in MIR160-overexpressing plants, auxin receptor mutants, or auxin biosynthesis mutants dramatically release seed dormancy, whereas increases in auxin signaling or biosynthesis greatly enhance seed dormancy. Auxin action in seed dormancy requires the ABA signaling pathway (and vice versa), indicating that the roles of auxin and ABA in seed dormancy are interdependent. Furthermore, we show that auxin acts upstream of the major regulator of seed dormancy, ABI3, by recruiting the auxin response factors AUXIN RESPONSE FACTOR 10 and AUXIN RESPONSE FACTOR 16 to control the expression of ABI3 during seed germination. Our study, thus, uncovers a previously unrecognized regulatory factor of seed dormancy and a coordinating network of auxin and ABA signaling in this important process.
Collapse
Affiliation(s)
- Xiaodong Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology and
| | - Hong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology and
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengyan Feng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology and
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology and
| | - Hong-Quan Yang
- College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and
| | - Jianming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Zu-Hua He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology and
| |
Collapse
|
46
|
Zeng Y, Zhao T, Kermode AR. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle. PLANT PHYSIOLOGY 2013; 161:179-95. [PMID: 23144188 PMCID: PMC3532250 DOI: 10.1104/pp.112.206946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.
Collapse
|
47
|
Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:991-1006. [PMID: 23013333 DOI: 10.1111/j.1744-7909.2012.01170.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The link between root growth, H₂O₂, auxin signaling, and the cell cycle in cadmium (Cd)-stressed rice (Oryza sativa L. cv. Zhonghua No. 11) was analyzed in this study. Exposure to Cd induced a significant accumulation of Cd, but caused a decrease in zinc (Zn) content which resulted from the decreased expression of OsHMA9 and OsZIP. Analysis using a Cd-specific probe showed that Cd was mainly localized in the meristematic zone and vascular tissues. Formation and elongation of the root system were significantly promoted by 3-amino-1,2,4-triazole (AT), but were markedly inhibited by N,N'-dimethylthiourea (DMTU) under Cd stress. The effect of H₂O₂ on Cd-stressed root growth was further confirmed by examining a gain-of-function rice mutant (carrying catalase1 and glutathione-S-transferase) in the presence or absence of diphenylene iodonium. DR5-GUS staining revealed close associations between H₂O₂ and the concentration and distribution of auxin. H₂O₂ affected the expression of key genes, including OsYUCCA, OsPIN, OsARF, and OsIAA, in the auxin signaling pathway in Cd-treated plants. These results suggest that H₂O₂ functions upstream of the auxin signaling pathway. Furthermore, H₂O₂ modified the expression of cell-cycle genes in Cd-treated roots. The effects of H₂O₂ on root system growth are therefore linked to auxin signal modification and to variations in the expression of cell-cycle genes in Cd-stressed rice. A working model for the effects of H₂O₂ on Cd-stressed root system growth is thus proposed and discussed in this paper.
Collapse
Affiliation(s)
- Feng-Yun Zhao
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chew YH, Wilczek AM, Williams M, Welch SM, Schmitt J, Halliday KJ. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. THE NEW PHYTOLOGIST 2012; 194:654-665. [PMID: 22352314 DOI: 10.1111/j.1469-8137.2012.04069.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• In this study, we used a combination of theoretical (models) and experimental (field data) approaches to investigate the interaction between light and temperature signalling in the control of Arabidopsis flowering. • We utilised our recently published phenology model that describes the flowering time of Arabidopsis grown under a range of field conditions. We first examined the ability of the model to predict the flowering time of field plantings at different sites and seasons in light of the specific meteorological conditions that pertained. • Our analysis suggested that the synchrony of temperature and light cycles is important in promoting floral initiation. New features were incorporated into the model that improved its predictive accuracy across seasons. Using both laboratory and field data, our study has revealed an important seasonal effect of night temperatures on flowering time. Further model adjustments to describe phytochrome (phy) mutants supported our findings and implicated phyB in the temporal gating of temperature-induced flowering. • Our study suggests that different molecular pathways interact and predominate in natural environments that change seasonally. Temperature effects are mediated largely during the photoperiod during spring/summer (long days) but, as days shorten in the autumn, night temperatures become increasingly important.
Collapse
Affiliation(s)
- Yin Hoon Chew
- School of Biological Sciences, Edinburgh University, Mayfield Road, Edinburgh EH9 3JH, UK
- Synthetic & Systems Biology Centre, C. H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | | | - Mathew Williams
- School of GeoSciences, Crew Building, King's Buildings, West Mains Road, Edinburgh EH9 3JN, UK
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Johanna Schmitt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Karen J Halliday
- School of Biological Sciences, Edinburgh University, Mayfield Road, Edinburgh EH9 3JH, UK
- Synthetic & Systems Biology Centre, C. H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
49
|
Qu LJ, Zhao Y. Plant hormones: metabolism, signaling and crosstalk. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:410-411. [PMID: 21658176 DOI: 10.1111/j.1744-7909.2011.01057.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|