1
|
Jeong S, Lee G, Park S, Son M, Lee S, Ryu B. Unseen Threats: The Long-term Impact of PET-Microplastics on Development of Male Reproductive Over a Lifetime. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407585. [PMID: 39804975 PMCID: PMC11884539 DOI: 10.1002/advs.202407585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/26/2024] [Indexed: 01/16/2025]
Abstract
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week-1) significantly impaired male reproductive function. Reductions in seminiferous tubule diameter and epithelial height are observed (p < 0.0001), with 32.2% decrease in Leydig cells and 24.3% reduction in testosterone levels (p < 0.05). The epididymis shows marked deterioration in all regions, with total sperm concentration significantly reduce from 17.0 × 10⁶ to 5.3 × 10⁶ (p < 0.01) and decrease motility. Transcriptome analysis demonstrates downregulation of genes related with gonadotropin-releasing hormone secretion, testosterone biosynthesis, and Meiosin gene, which is for crucial spermatogenesis. Continuous ingestion of physically abraded PET-MPs from plastic bottles adversely affected testicular and epididymal functions, leading to hormonal imbalances and abnormal sperm production. These findings raise concerns about the impact of commonly used plastics on male reproductive development, highlighting potential risks for future generations.
Collapse
Affiliation(s)
- Seungjin Jeong
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
- Department of Smart Green Technology EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - GyuDae Lee
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Republic of Korea
| | - Surye Park
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, School of MedicineKangwon National UniversityChuncheon24341Republic of Korea
| | - Seungjun Lee
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
| | - Bomi Ryu
- Department of Food Science and NutritionPukyong National UniversityBusan48513Republic of Korea
- Department of Smart Green Technology EngineeringPukyong National UniversityBusan48513Republic of Korea
| |
Collapse
|
2
|
Ruiz-Valderrama L, Mendoza-Sánchez JE, Rodríguez-Tobón E, Arrieta-Cruz I, González-Márquez H, Salame-Méndez PA, Tarragó-Castellanos R, Cortés-Barberena E, Rodríguez-Tobón A, Arenas-Ríos E. High-Fat Diets Disturb Rat Epididymal Sperm Maturation. Int J Mol Sci 2025; 26:1850. [PMID: 40076475 PMCID: PMC11899043 DOI: 10.3390/ijms26051850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Infertility is increasingly recognized as being closely linked to obesity in humans. The successful production of fertile spermatozoa requires adequate spermatogenesis within the testis and proper spermatozoa maturation through the epididymis. This study aimed to evaluate the impact of body adiposity on male fertility, focusing on sperm parameters, epididymal sperm maturation, and sperm capacitation in Wistar rats. Male rats were randomized into three dietary groups over four weeks: a control group receiving less than 4% lard, regular chow, a 10% lard group, and a 60% lard group. Following dietary interventions, fertility tests were conducted across the groups. The epididymis was dissected into caput, corpus, and cauda regions to assess sperm concentration, vitality capacitation, carbohydrate distribution, tyrosine phosphorylation, and phosphatidylserine levels. Additionally, serum testosterone levels were measured to evaluate hormonal influences on fertility. The rats subjected to high-fat diets leading to overweight and obesity exhibited significant alterations in fertility. These changes were characterized by impaired epididymal sperm maturation, as evidenced by lower testosterone levels, decreased sperm viability, and capacitation. Furthermore, increased adiposity was associated with a lack of asymmetry in the plasma membrane, alteration in carbohydrate distribution, and changes in tyrosine phosphorylation. This study underscores the adverse effects of high-fat diets on male fertility, particularly through mechanisms affecting sperm maturation in the epididymis. The evidence suggests that obesity-induced alterations in sperm parameters and hormonal profiles may contribute to reduced fertility in male rats, which could have implications for understanding similar human processes.
Collapse
Affiliation(s)
- Lorena Ruiz-Valderrama
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - José Edwin Mendoza-Sánchez
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Ernesto Rodríguez-Tobón
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Magdalena Contreras, Ciudad de México 10200, Mexico
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Pablo Arturo Salame-Méndez
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Rosario Tarragó-Castellanos
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Ahiezer Rodríguez-Tobón
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Edith Arenas-Ríos
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| |
Collapse
|
3
|
Li L, Jin T, Chen S, Cao H, Ma Y, Fang W, Wang Y, Liu Q, Zheng L, Wijayanti D, Dong W. Exploring novel function of Gpx5 antioxidant activity: Assisting epididymal cells secrete functional extracellular vesicles. J Cell Physiol 2024; 239:e31273. [PMID: 38666419 DOI: 10.1002/jcp.31273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/14/2024]
Abstract
Glutathione peroxisomal-5 (Gpx5) promotes the elimination of H2O2 or organic hydrogen peroxide, and plays an important role in the physiological process of resistance to oxidative stress (OS). To directly and better understand the protection of Gpx5 against OS in epididymal cells and sperm, we studied its mechanism of antioxidant protection from multiple aspects. To more directly investigate the role of Gpx5 in combating oxidative damage, we started with epididymal tissue morphology and Gpx5 expression profiles in combination with the mouse epididymal epithelial cell line PC1 (proximal caput 1) expressing recombinant Gpx5. The Gpx5 is highly expressed in adult male epididymal caput, and its protein signal can be detected in the sperm of the whole epididymis. Gpx5 has been shown to alleviate OS damage induced by 3-Nitropropionic Acid (3-NPA), including enhancing antioxidant activity, reducing mitochondrial damage, and suppressing cell apoptosis. Gpx5 reduces OS damage in PC1 and maintains the well-functioning extracellular vesicles (EVs) secreted by PC1, and the additional epididymal EVs play a role in the response of sperm to OS damage, including reducing plasma membrane oxidation and death, and increasing sperm motility and sperm-egg binding ability. Our study suggests that GPX5 plays an important role as an antioxidant in the antioxidant processes of epididymal cells and sperm, including plasma membrane oxidation, mitochondrial oxidation, apoptosis, sperm motility, and sperm-egg binding ability.
Collapse
Affiliation(s)
- Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wuzi Fang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dwi Wijayanti
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, Indonesia
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Wang Z, Fang K, Wan Y, Yin Y, Li M, Xu K, Li T, Cao Y, Lv Y, Lu G, Liu H, Huang T. TTC6-Mediated Stabilization of the Flagellum Annulus Ensures the Rapid and Directed Motion of Sperm. Cells 2023; 12:2091. [PMID: 37626901 PMCID: PMC10453820 DOI: 10.3390/cells12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sperm motility and structural integrity are essential for successful fertilization in vivo, and any hindrance of the correct assembly of the axoneme and peri-axonemal structures in the sperm flagellum can lead to fertility problems. While there has been considerable advancement in studying diseases related to the flagellum, the underlying mechanisms that control sperm movement are not yet fully understood. In this study, we reveal that the tetratricopeptide repeat protein 6 (Ttc6) gene, expressed mainly in the testes, plays a crucial role in maintaining male fertility in mice. We further demonstrate that the knockout of Ttc6 in mice results in decreased sperm motility and induces an abnormal circular swimming pattern, consequently leading to male subfertility. Morphological analysis showed an atypical hairpin-like appearance of the spermatozoa, and ultrastructural studies showed unsheathed flagella at the juncture between the midpiece and principal piece. Collectively, these findings suggest that TTC6 plays an essential role in maintaining the stability of the annulus region of the sperm flagellum, thus ensuring the swift and directed motion of sperm.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- The Model Animal Research Centre, Shandong University, Jinan 250010, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Shandong Key Laboratory of Reproductive Medicine, Shandong First Medical University, Jinan 250012, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| |
Collapse
|
5
|
Yokota S, Takeda K, Oshio S. Spatiotemporal Small Non-coding RNAs Expressed in the Germline as an Early Biomarker of Testicular Toxicity and Transgenerational Effects Caused by Prenatal Exposure to Nanosized Particles. FRONTIERS IN TOXICOLOGY 2022; 3:691070. [PMID: 35295114 PMCID: PMC8915876 DOI: 10.3389/ftox.2021.691070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, an apparent decline in human sperm quality has been observed worldwide. One in every 5.5 couples suffers from infertility, with male reproductive problems contributing to nearly 40% of all infertility cases. Although the reasons for the increasing number of infertility cases are largely unknown, both genetic and environmental factors can be contributing factors. In particular, exposure to chemical substances during mammalian male germ cell development has been linked to an increased risk of infertility in later life owing to defective sperm production, reproductive tract obstruction, inflammation, and sexual disorders. Prenatal exposure to nanomaterials (NMs) is no exception. In animal experiments, maternal exposure to NMs has been reported to affect the reproductive health of male offspring. Male germ cells require multiple epigenetic reprogramming events during their lifespan to acquire reproductive capacity. Given that spermatozoa deliver the paternal genome to oocytes upon fertilization, we hypothesized that maternal exposure to NMs negatively affects male germ cells by altering epigenetic regulation, which may in turn affect embryo development. Small non-coding RNAs (including microRNAs, PIWI-interacting RNAs, tRNA-derived small RNAs, and rRNA-derived small RNAs), which are differentially expressed in mammalian male germ cells in a spatiotemporal manner, could play important regulatory roles in spermatogenesis and embryogenesis. Thus, the evaluation of RNAs responsible for sperm fertility is of great interest in reproductive toxicology and medicine. However, whether the effect of maternal exposure to NMs on spermatogenesis in the offspring (intergenerational effects) really triggers multigenerational effects remains unclear, and infertility biomarkers for evaluating paternal inheritance have not been identified to date. In this review, existing lines of evidence on the effects of prenatal exposure to NMs on male reproduction are summarized. A working hypothesis of the transgenerational effects of sperm-derived epigenomic changes in the F1 generation is presented, in that such maternal exposure could affect early embryonic development followed by deficits in neurodevelopment and male reproduction in the F2 generation.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
6
|
Lavanya M, Selvaraju S, Krishnappa B, Krishnaswamy N, Nagarajan G, Kumar H. Microenvironment of the male and female reproductive tracts regulate sperm fertility: Impact of viscosity, pH, and osmolality. Andrology 2021; 10:92-104. [PMID: 34420258 DOI: 10.1111/andr.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Terminally differentiated mammalian sperm are exposed to gradients of viscosity, pH, and osmolality both in the male and female reproductive tract during their perilous journey to quest the ovum. The complex physicochemical factors play an integral role in preparing sperm for the fertilization process. OBJECTIVES To elucidate the influence of the reproductive tract microenvironment especially viscosity, pH, and osmolality in regulating sperm functional and fertilization competence. MATERIALS AND METHODS The data used in this review were collected from the research papers and online databases focusing on the influence of viscosity, pH, and osmolality on sperm function. DISCUSSION The gradients of viscosity, pH, and osmolality exist across various segments of the male and female reproductive tract. The changes in the viscosity create a physical barrier, pH aid in capacitation and hyperactivation, and the osmotic stress selects a progressive sperm subpopulation for accomplishing fertilization. The sperm function tests are developed based on the concept that the male genotype is the major contributor to the reproductive outcome. However, recent studies demonstrate the significance of sperm genotype-environment interactions that are essentially contributing to reproductive success. Hence, it is imperative to assess the impact of physicochemical stresses and the adaptive ability of the terminally differentiated sperm, which in turn would improve the outcome of the assisted reproductive technologies and male fertility assessment. CONCLUSION Elucidating the influence of the reproductive tract microenvironment on sperm function provides newer insights into the procedures that need to be adopted for selecting fertile males for breeding, and ejaculates for the assisted reproductive technologies.
Collapse
Affiliation(s)
- Maharajan Lavanya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Govindasamy Nagarajan
- Southern Regional Research Centre under ICAR-Central Sheep and Wool Research Institute (ICAR-CSWRI), Kodaikanal, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
7
|
Wu C, Wang C, Zhai B, Zhao Y, Zhao Z, Yuan Z, Zhang M, Tian K, Fu X. Study of microRNA Expression Profile in Different Regions of Ram Epididymis. Reprod Domest Anim 2021; 56:1209-1219. [PMID: 34169586 DOI: 10.1111/rda.13978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
The regional expression of epididymal genes provides a guarantee for sperm maturation. As a class of endogenous non-coding small RNAs, microRNAs (miRNAs) play an important role in spermatogenesis, maturation and fertilization. Currently, the regulatory role of miRNA in the epididymis is poorly understood. Here, transcriptome sequencing was used to analyse miRNA expression profiles in three regions of the epididymis of rams, including caput, corpus and cauda. The results showed that there were 13 known miRNAs between the caput and corpus controls, 29 between the caput and cauda and 22 differences between the corpus and cauda. Based on the analysis of miRNA target genes by GO and KEGG, a negative regulation network of miRNA-mRNA was constructed in which let-7, miR-541-5p, miR-133b and miR-150 may play an important regulatory role in the maturation regulation of ram epididymal sperm. This research provides a reference for studying the regulation mechanism of sperm maturation in male epididymis and improving semen quality and male reproductive performance.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.,Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunxin Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Bo Zhai
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yunhui Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhuo Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mingxin Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
8
|
Pal P, Biswas S, Mukhopadhyay PK. Molecular perspective concerning fluoride and arsenic mediated disorders on epididymal maturation of spermatozoa: A concise review. Hum Exp Toxicol 2021; 40:2025-2038. [PMID: 34085563 DOI: 10.1177/09603271211021474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epididymis is a complex tubular structure of male reproductive system where spermatozoa undergo maturation and gain the fertilizing ability. Epididymal pseudostratified columnar epithelium with different cell types play imperative role by their secretory properties and enrich the luminal microenvironment necessary for achieving spermatozoal motility. During epididymal transit several secretory proteins like P26h, SPAG11, HSPD1 and many others are deposited on spermatozoal surface. At the same time spermatozoal proteins are also modified in this intraluminal milieu, which include cyritestin, fertilin, CE9 and others. Natural and anthropogenic activities disclose various environmental pollutants which affect different physiological systems of animals and human being. Likewise, reproductive system is also being affected. Fluoride causes structural alterations of caput and cauda segments of epididymis. Redox homeostasis and functional integrity are also altered due to diminished activities of SOD1, GR, Crisp2, Lrp2 and other important proteins. On the contrary arsenic affects mostly on cauda segment. Redox imbalance and functional amendment in epididymis have been observed with arsenic revelation as evidenced by altered genomic appearance of SOD, GST, catalase, Ddx3Y, VEGF and VEGFR2. This review is dealt with structure-function interplay in normal epididymal spermatozoal maturation along with subsequent complications developed under fluoride and arsenic toxicities.
Collapse
Affiliation(s)
- Priyankar Pal
- 568916Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sagnik Biswas
- 568916Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
9
|
Zeng LF, Jin XY, Yin SJ, Qian GY, Wang W, Park YD. Seasonal expression of cytoplasmic creatine kinase in the epididymal epithelium of Pelodiscus sinensis. Biotech Histochem 2021; 97:21-29. [PMID: 33595373 DOI: 10.1080/10520295.2021.1887935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During hibernation of Pelodiscus sinensis, sperm mature and are stored in the epididymis. We investigated seasonal changes in the morphology of epithelial cells of the epididymis of P. sinensis and changes in expression of cytoplasmic creatine kinase (CK). We found that the epididymal epithelium proliferates rapidly to form multiple layers from June to September, while the epididymal epithelial cells are arranged in a single layer from October to May. From the March before the mating period to the end of the mating period in September, a large amount of neutral glycoprotein is secreted in the epididymal epithelium and in the sperm aggregation area; after October, the glycoprotein in the epididymis decreases. At sperm maturation, cytoplasmic CK is expressed abundantly in the villous epithelium, which is formed by proliferation of epididymal epithelial cells. During hibernation and reproduction, the epididymal epithelium of P. sinensis exhibits different proliferation and secretion patterns as the animal adapts to two types of sperm storage. Cytoplasmic CK may participate in regulating the energy metabolism of the epididymal epithelium; it is an important enzyme for regulating sperm maturation.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Xin-Yi Jin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
10
|
Park YJ, Pang WK, Ryu DY, Adegoke EO, Rahman MS, Pang MG. Bisphenol A exposure increases epididymal susceptibility to infection in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111476. [PMID: 33091778 DOI: 10.1016/j.ecoenv.2020.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis. CD-1 male mice (5 weeks old) were treated daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks by oral gavage. Following BPA exposure, we observed decreased intraepithelial projection of basal cells, indicative of changes to the luminal environment. We also observed decreased projection of macrophages and protrusion of apoptotic cells into the lumen induced by incomplete phagocytosis of apoptotic cells in the caput epididymis. Exposure to BPA also reduced the anti- and pro-inflammatory cytokines IL-10, IL-6, IFN-γ, and IL-7 in the epididymis, while the chemotaxis-associated cytokines CCL12, CCL17, CXCL16, and MCP-1 increased. This study suggests two possible mechanisms for BPA induction of male infertility. First, exposure to BPA may induce an imbalance of immune homeostasis by disrupting the ability of basal cells to perceive environmental changes. Second, exposure to BPA may lead to collapse of macrophage phagocytosis via downregulation of intraepithelial projection and inflammatory-related cytokines. In conclusion, the observed potential pathways can lead to autoimmune disorders such epididymitis and orchitis.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
11
|
Gonçalves AA, Garcia AR, Rolim Filho ST, Silva JARD, Melo DND, Guimarães TC, Tavares HR, Silva TVG, Souza EBD, Santos SDSD, Ohashi OM. Scrotal thermoregulation and sequential sperm abnormalities in buffalo bulls (Bubalus bubalis) under short-term heat stress. J Therm Biol 2021; 96:102842. [PMID: 33627280 DOI: 10.1016/j.jtherbio.2021.102842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Heat stress reduces the reproductive capacity of bulls raised in tropical climate. However, the reestablishment of scrotal thermoregulation and the dynamics of sperm defects emergence after stress are not completely known in buffaloes. Thus, the study aimed to evaluate the effect of short-term heat stress over scrotal thermoregulation and sperm attributes, relating them to spermatogenesis stages. Five buffalo bulls went through scrotal insulation during 48 h (from day 0 to day 2). Semen samples were collected every 7 days (from day -7 to day 49) and analyzed about the progressive motility, viability, and sperm morphology. Heat stress significantly destabilized scrotal thermoregulation (P < 0.001). Scrotal temperature was from 4.2 to 6.3 °C lower than the core body temperature, except on insulation days (P < 0.001), and returned to the basal condition five days after the removal of the stressing stimulus. More significant deleterious effects were observed in sperm morphology than in cell concentration, motility, and viability. The chronology of morphologic defects expression demonstrated tail defects (days 7-14), cytoplasmic droplets (days 14-28), and head defects (day 28), returning to pre-insulation condition 35 days after the thermal challenge. Thus, hyperthermia harmed more intensely spermatozoa in epididymal transit, elongated spermatids, and secondary spermatocytes. It is concluded that water buffalo bulls present a peculiar manifestation of sperm morphology after short-term stress, indicating an important difference related to the bovine species. Therefore, during the andrological evaluation of buffalo bulls, it is necessary to avoid the allometric extrapolation between these species.
Collapse
Affiliation(s)
- Arnaldo Algaranhar Gonçalves
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Alexandre Rossetto Garcia
- Laboratory of Biotechnology and Animal Reproduction Brazilian Agricultural Research Corporation, Embrapa Southeast Livestock, São Carlos, SP, Brazil.
| | | | | | - Dayana Neves de Melo
- Institute of Health and Animal Production, Federal Rural University of Amazonia, Belém, PA, Brazil
| | - Thiago Castro Guimarães
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Héliton Ribeiro Tavares
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Eduardo Baia de Souza
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Otávio Mitio Ohashi
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
12
|
Wu P, Liu TL, Li LL, Liu ZP, Tian LH, Hou ZJ. Declined expressing mRNA of beta-defensin 108 from epididymis is associated with decreased sperm motility in blue fox (Vulpes lagopus). BMC Vet Res 2021; 17:12. [PMID: 33413374 PMCID: PMC7789387 DOI: 10.1186/s12917-020-02697-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fecundity is important for farm blue fox (Vulpes lagopus), who with asthenospermia have be a problem in some of farms in China. A key symptom of asthenospermia is decreased sperm motility. The decreased secreting beta-defensin108 (vBD108) of blue fox is speculated be related to asthenospermia. To clarify this idea, the mRNA expression of vBD108 in testis and epididymis of blue foxes with asthenospermia were detected and compared to the healthy one. The antibody was prepared and analyzed by immunohistochemistry. RESULTS The vBD108 in testis and epididymis was found both in blue fox with asthenospermia and healthy group by the method of immunohistochemistry. The expression of vBD108 mRNA in testes (P < 0.05) and epididymal corpus (P < 0.0001) in asthenospermia group was lower than that in healthy group. CONCLUSIONS These results suggested that vBD108 deficiency may related to blue fox asthenospermia. Meanwhile, the study on the blue fox vBD108 provides a hopeful direction to explore the pathogenesis of blue fox asthenospermia in the future.
Collapse
Affiliation(s)
- Ping Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Tao-lin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ling-ling Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhi-ping Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Li-hong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhi-jun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
13
|
Rahban R, Nef S. CatSper: The complex main gate of calcium entry in mammalian spermatozoa. Mol Cell Endocrinol 2020; 518:110951. [PMID: 32712386 DOI: 10.1016/j.mce.2020.110951] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium ions (Ca2+) are involved in nearly every aspect of cellular life. They are one of the most abundant elements in mammals and play a vital role in physiological and biochemical processes acting mainly as intracellular messengers. In spermatozoa, several key functions are regulated by cytoplasmic Ca2+ concentration such as sperm capacitation, chemotaxis, hyperactive motility, and acrosome reaction. The sperm-specific ion channel CatSper is the principal calcium channel in sperm mediating the calcium influx into the sperm flagellum and acting as an essential modulator of downstream mechanisms involved in fertilization. This review aims to provide insights into the structure, localization, and function of the mammalian CatSper channel, primarily human and mice. The activation of CatSper by progesterone and prostaglandins, as well as the ligand-independent regulation of the channel by a change in the membrane voltage and intracellular pH are going to be addressed. Finally, major questions, challenges, and perspectives are discussed.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
14
|
Ogórek M, Herman S, Pierzchała O, Bednarz A, Rajfur Z, Baster Z, Grzmil P, Starzyński RR, Szudzik M, Jończy A, Lipiński P, Lenartowicz M. Molecular machinery providing copper bioavailability for spermatozoa along the epididymial tubule in mouse. Biol Reprod 2020; 100:1505-1520. [PMID: 30997485 DOI: 10.1093/biolre/ioz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
Progressive functional maturation of spermatozoa is completed during the transit of these cells through the epididymis, a tubule structure connecting a testicle to a vas deferens. Epididymal epithelial cells by means of their secretory and absorptive functions determine a highly specialized luminal microenvironment containing multiple organic and inorganic components. The latter include copper ions, which due to their redox properties are indispensable for critical homeostatic processes occurring in spermatozoa floating in different part of epididymis but can be potentially toxic. Main purpose of our study was to determine epididymal region-dependent expression and localization of copper transporters ensuring a tight control of copper concentration in epididymal fluid. We also aimed at identifying proteins responsible for copper uptake by spermatozoa and verifying whether this process is coordinated with copper supply to superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Our study identifies two ATPases-ATP7A, ATP7B and Slc31a1, major copper importers/exporters depending on their differential expression on epididymal polarized epithelial cells of the caput, corpus, and cauda. Next, ceruloplasmin seems to be a chief protein transporting copper in the epididymal fluid and providing this biometal to spermatozoa. The entry of copper to germ cells is mediated by Slc31a1 and is correlated with both expressions of copper chaperone for superoxide dismutase (CCS), copper chaperone directly providing copper ions to SOD1 and with the expression and activity of the latter. Our results outline a network of cooperating copper binding proteins expressed in epididymal epithelium and in spermatozoa that orchestrate bioavailability of this microelement for gametes and protect them against copper toxicity.
Collapse
Affiliation(s)
- M Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - S Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - O Pierzchała
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - A Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Z Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - P Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - R R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - A Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - P Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Wang TE, Li SH, Minabe S, Anderson AL, Dun MD, Maeda KI, Matsuda F, Chang HW, Nixon B, Tsai PSJ. Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations. Biol Reprod 2019; 99:1022-1033. [PMID: 29800099 DOI: 10.1093/biolre/ioy125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Sulfhydryl oxidation is part of the sperm maturation process essential for the acquisition of sperm fertilization competency and its structural stabilization; however, the specific sulfhydryl oxidases that fulfill these roles have yet to be identified. In this study, we investigate the potential involvement of one atypical thiol oxidase family called quiescin Q6/sulfhydryl oxidase (QSOX) using the mouse epididymis as our model system. With multidisciplinary approaches, we show that QSOX isoform 1 and 2 exhibit complementary distribution throughout the epididymal duct, but that each variant possesses distinct subcellular localization within the epididymal principal cells. While QSOX2 was exclusively present in the Golgi apparatus of the caput and corpus epididymis, QSOX1c, the most profusely express QSOX1 variant, was abundantly present in the cauda luminal fluids. Moreover, immunohistochemistry studies together with proteomic identification in isolated epididymosomes provided evidence substantiating the release of QSOX2, but not QSOX1c, via an apocrine secretory pathway. Furthermore, we demonstrate for the first time, distinct association of QSOX1c and QSOX2 with the sperm acrosome and implantation fossa, during different stages of their epididymal maturation. In conclusion, our study provides the first comprehensive comparisons between QSOX1 and QSOX2 in the mouse epididymis, revealing their distinct epididymal distribution, cellular localization, mechanisms of secretion and sperm membrane association. Together, these data suggest that QSOX1 and QSOX2 have discrete biological functions in male germ cell development.
Collapse
Affiliation(s)
- Tse-En Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, Mackay Memorial Hospital, Tamshui, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shiori Minabe
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Amanda L Anderson
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, New South Wales, Australia
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Brett Nixon
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Xu B, Turner SD, Hinton BT. Alteration of transporter activities in the epididymides of infertile initial segment-specific Pten knockout mice. Biol Reprod 2019; 99:536-545. [PMID: 29590317 DOI: 10.1093/biolre/ioy073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
A fully functional initial segment, the most proximal region of the epididymis, is important for male fertility. Our previous study generated a mouse model to investigate the importance of initial segment function in male fertility. In that model, phosphatase and tensin homolog (Pten) was conditionally removed from the initial segment epithelium, which resulted in epithelial de-differentiation. When spermatozoa progressed through the de-differentiated epithelial duct, they developed angled flagella, suggesting compromised sperm maturation, which eventually resulted in male infertility. To understand the molecular mechanisms, by which PTEN regulates epididymal sperm maturation, we compared the transcriptome profile of the initial segment between controls and initial segment-specific Pten knockouts and revealed that water, ion, and organic solute transporter activities were one of the top molecular and cellular functions altered following loss of Pten. Alteration in protein levels and localization of several transporters following loss of Pten were also observed by immunofluorescence analysis. Epithelial cells of the initial segment from knockouts were more permeable to fluorescein isothiocyanate-dextran (4000 Da) compared to controls. Interestingly, conditional deletion of Pten from other organs also resulted in changes in transporter activity, suggesting a common role of PTEN in regulation of transporter activity. Taken together, our data support the hypothesis that loss of Pten from the initial segment epithelium results in changes in the transporting and permeability characteristics of the epithelium, which in turn altered the luminal fluid microenvironment that is so important for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Bingfang Xu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Stephen D Turner
- Bioinformatics Core, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Kolasa-Wołosiuk A, Tarnowski M, Baranowska-Bosiacka I, Chlubek D, Wiszniewska B. Antioxidant enzyme expression of mRNA and protein in the epididymis of finasteride-treated male rat offspring during postnatal development. Arch Med Sci 2019; 15:797-810. [PMID: 31110548 PMCID: PMC6524191 DOI: 10.5114/aoms.2017.68528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/05/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION We verify whether finasteride had a transgenerational effect on the epididymal expression of antioxidant enzymes, and the correlation between these enzymes and blood androgen concentrations in male offspring (F1:Fin) of females fertilized by finasteride-treated male rats. MATERIAL AND METHODS The expression of CAT, SOD1, GPX5, GR on the mRNA and protein levels was evaluated in the epididymis at postnatal day (PND) 7, 14, 21, 28 and 90. Levels of T and DHT were correlated with mRNA levels of enzymes by Spearman's rank correlation coefficient. RESULTS A change in the levels of transcripts was noted in F1:Fin rats: CAT decreased at PND 28 (p < 0.01) and increased at PND 90 (p < 0.01); SOD1 increased at PND 7 (p < 0.0001), 21 (p < 0.001), 90 (p < 0.0001) and decreased at 14 PND (p < 0.01); GPX5 increased at PND 14 and 21 (p < 0.0001); GR decreased at PND 21 and 28 (p < 0.0001). Altered immunolocalization of enzymes within the epididymal epithelium was observed. Negative correlations between GPX5 mRNA with androgens (T, p = 0.0002; DHT, p = 0.0009) were visible in the control rats, and positive correlation between DHT and CAT mRNA (p = 0.03), in opposite to F1:Fin group were was negative for both androgens (T, p = 0.044 and DHT, p = 0.02). CONCLUSIONS Finasteride treatment of adult male rats may cause changes in antioxidant defense system in the epididymis of their offspring, leading to improper ROS concentrations that can affect post-testicular sperm maturation.
Collapse
Affiliation(s)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Calderón B, Huerta L, Casado ME, González-Casbas JM, Botella-Carretero JI, Martín-Hidalgo A. Morbid obesity-related changes in the expression of lipid receptors, transporters, and HSL in human sperm. J Assist Reprod Genet 2019; 36:777-786. [PMID: 30659447 PMCID: PMC6505031 DOI: 10.1007/s10815-019-01406-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To study the location and expression of receptors (SR-BI/CLA-1, SR-BII, and LDLr) and transporter (ABCA1) involved in uptake and efflux of cholesterol in human spermatozoa and assess whether obesity alters its location/expression and whether this could be related to infertility. DESIGN Observational study. SETTING None PATIENT(S): Ten controls and 20 obese patients. INTERVENTION(S) Anthropometric parameters. Serum and semen samples were collected. MAIN OUTCOME MEASURE(S) Spermatozoon concentration, immunolocalization, and protein expression in semen. RESULTS Spermatozoon concentration and motility was decreased in morbidly obese patients. SR-BI/CLA-1, SR-BII, LDLr, and ABCA1 are located in the spermatozoon cell membrane and the localization does not change between obese patients and controls. Control spermatozoa showed high SR-BI expression, and less expression for the rest of the receptors analyzed, indicating that SR-BI/CLA-1 is relevant in human spermatozoon cholesterol uptake/efflux. On the contrary, spermatozoa of obese patients showed less SR-BI/CLA-1 expression than controls, and more intense positive staining for SR-BII, LDLr, and ABCA1. Finally, human sperm expresses the 130- and 82-kDa hormone-sensitive lipase (HSL) isoforms. The 130-kDa isoform is expressed in the control sperm, and the expression disappears in the obese patients. CONCLUSION(S) The presence of lipid receptors/transporters and HSL in human spermatozoa suggests their role in the process of maturation/capacitation. The changes in the expression of lipid receptors/transporters and the lack of the 130-kDa HSL isoform in obese patients prevent the hydrolysis of cholesterol esters internalized by these receptors, and favor their accumulation in the cytoplasm of the spermatozoa that could contribute to lipotoxicity and infertility.
Collapse
Affiliation(s)
- Berniza Calderón
- Instituto Tecnológico Santo Domingo (INTEC), Santo Domingo, República Dominicana
- Departamento de Endocrinología y Metabolismo, Madrid, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Madrid, Spain
| | - María Emilia Casado
- Servicio de Bioquímica-Investigación, Madrid, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - José Manuel González-Casbas
- Instituto Europeo de Fertilidad y Unidad de Reproducción Asistida, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Hospital Universitario Ramón y Cajal, E-28034, Madrid, Spain
| | - José Ignacio Botella-Carretero
- Departamento de Endocrinología y Metabolismo, Madrid, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Madrid, Spain.
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Ctra.ColmenarViejo, Km 9.100, E-28034, Madrid, Spain.
| |
Collapse
|
19
|
Zini A. ICSI with testicular sperm for couples with sperm DNA damage. Int Braz J Urol 2018; 44:664-666. [PMID: 30020583 PMCID: PMC6092666 DOI: 10.1590/s1677-5538.ibju.2018.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Armand Zini
- Department of Surgery, St. Mary's Hospital, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Asano A, Roman HB, Hirschberger LL, Ushiyama A, Nelson JL, Hinchman MM, Stipanuk MH, Travis AJ. Cysteine dioxygenase is essential for mouse sperm osmoadaptation and male fertility. FEBS J 2018; 285:1827-1839. [PMID: 29604178 PMCID: PMC5992081 DOI: 10.1111/febs.14449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/11/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
Sperm entering the epididymis are immotile and cannot respond to stimuli that will enable them to fertilize. The epididymis is a highly complex organ, with multiple histological zones and cell types that together change the composition and functional abilities of sperm through poorly understood mechanisms. Sperm take up taurine during epididymal transit, which may play antioxidant or osmoregulatory roles. Cysteine dioxygenase (CDO) is a critical enzyme for taurine synthesis. A previous study reported that male CDO-/- mice exhibit idiopathic infertility, prompting us to investigate the functions of CDO in male fertility. Immunoblotting and quantitative reverse transcription-polymerase chain reaction analysis of epididymal segments showed that androgen-dependent CDO expression was highest in the caput epididymidis. CDO-/- mouse sperm demonstrated a severe lack of in vitro fertilization ability. Acrosome exocytosis and tyrosine phosphorylation profiles in response to stimuli were normal, suggesting normal functioning of pathways associated with capacitation. CDO-/- sperm had a slight increase in head abnormalities. Taurine and hypotaurine concentrations in CDO-/- sperm decreased in the epididymal intraluminal fluid and sperm cytosol. We found no evidence of antioxidant protection against lipid peroxidation. However, CDO-/- sperm exhibited severe defects in volume regulation, swelling in response to the relatively hypo-osmotic conditions found in the female reproductive tract. Our findings suggest that epididymal CDO plays a key role in post-testicular sperm maturation, enabling sperm to osmoregulate as they transition from the male to the female reproductive tract, and provide new understanding of the compartmentalized functions of the epididymis.
Collapse
Affiliation(s)
- Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Heather B. Roman
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | | | - Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jacquelyn L. Nelson
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Meleana M. Hinchman
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Martha H. Stipanuk
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Alexander J. Travis
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| |
Collapse
|
21
|
Srivastav A, Changkija B, Sharan K, Nagar GK, Bansode FW. Influence of antifertility agents Dutasteride and Nifedipine on CatSper gene level in epididymis during sperm maturation in BALB/c mice. Reproduction 2018; 155:347-359. [PMID: 29434054 DOI: 10.1530/rep-17-0664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
Abstract
Calcium (Ca2+) signaling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and the acrosome reaction are all mediated by increases in intracellular Ca2+ through CatSper (sperm-specific cation channel). The CatSper channel complex contains four pore-forming α subunits (CatSper1-4) and five accessory subunits called β, δ, ε, γ and ζ. Genetic deletion of any of the four CatSper genes in mice results in loss of hyperactivated motility and male infertility. Despite their vital role in male fertility, almost very little is known about influence of antifertility agents on CatSper gene expression in epididymis and epididymal spermatozoa. Therefore, we performed quantitative real-time qPCR analysis for CatSper expression in the epididymis and epididymal sperm of BALB/c mice after treatment with Dutasteride (DS), a dual 5-α reductase inhibitor and Nifedipine (NF) a calcium channel blocker as positive control. We observed that treatment with antifertility agents Dutasteride and Nifedipine induced significant decreases in the caput and cauda epididymal sperm counts, motility and fertility which could partly be attributed to alteration in the normal morphology of the sperm associated with downregulation/upregulation of CatSper mRNAs in epididymis and epididymal spermatozoa of male BALB/c mice. These can be explained on the basis of interference with mechanisms affecting calcium ion signaling resulting in changes in intracellular calcium required for sperm activity, finally affecting sperm maturation and fertility of male BALB/c mice. These studies provide some novel avenues for developing new male contraceptives in future.
Collapse
Affiliation(s)
- Archana Srivastav
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | | | - Kunal Sharan
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | - Geet Kumar Nagar
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | - Falgun W Bansode
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| |
Collapse
|
22
|
Gao DY, Zhang BL, Leung MCT, Au SCL, Wong PYD, Shum WWC. Coupling of TRPV6 and TMEM16A in epithelial principal cells of the rat epididymis. J Gen Physiol 2017; 148:161-82. [PMID: 27481714 PMCID: PMC4969799 DOI: 10.1085/jgp.201611626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/13/2016] [Indexed: 01/31/2023] Open
Abstract
Principal cells regulate the ionic environment of the epididymal lumen via unknown mechanisms. Gao et al. use electrophysiological and pharmacological tools to characterize rat principal cells and reveal a TRPV6-mediated calcium conductance and TMEM16A-mediated calcium-activated chloride conductance. The epididymis establishes a congenial environment for sperm maturation and protection. Its fluid is acidic, and the calcium concentration is low and declines along the length of the epididymal tubule. However, our knowledge of ionic currents and mechanisms of calcium homeostasis in rat epididymal epithelial cells remains enigmatic. In this study, to better understand calcium regulation in the epididymis, we use the patch-clamp method to record from single rat cauda epididymal principal cells. We detect a constitutively active Ca2+ current with characteristics that match the epithelial calcium channel TRPV6. Electrophysiological and pharmacological data also reveal a constitutively active calcium-activated chloride conductance (CaCC). Removal of extracellular calcium attenuates not only the TRPV6-like conductance, but also the CaCC. Lanthanide block is time dependent such that the TRPV6-like component is inhibited first, followed by the CaCC. The putative CaCC blocker niflumic acid partially inhibits whole-cell currents, whereas La3+ almost abolishes whole-cell currents in principal cells. Membrane potential measurements reveal an interplay between La3+-sensitive ion channels and those that are sensitive to the specific TMEM16A inhibitor tannic acid. In vivo perfusion of the cauda epididymal tubule shows a substantial rate of Ca2+ reabsorption from the luminal side, which is dose-dependently suppressed by ruthenium red, a putative blocker of epithelial Ca2+ channels and CaCC. Finally, we discover messenger RNA for both TRPV6 and TMEM16A in the rat epididymis and show that their proteins colocalize in the apical membrane of principal cells. Collectively, these data provide evidence for a coupling mechanism between TRPV6 and TMEM16A in principal cells that may play an important role in the regulation of calcium homeostasis in the epididymis.
Collapse
Affiliation(s)
- Da Yuan Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Matthew C T Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon C L Au
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patrick Y D Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Winnie W C Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Zhang M, Wang J, Deng C, Jiang MH, Feng X, Xia K, Li W, Lai X, Xiao H, Ge RS, Gao Y, Xiang AP. Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production. Cell Death Dis 2017; 8:e3123. [PMID: 29022899 PMCID: PMC5680910 DOI: 10.1038/cddis.2017.531] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/09/2022]
Abstract
Previous studies have demonstrated that rodent stem Leydig cell (SLC) transplantation can partially restore testosterone production in Leydig cell (LC)-disrupted or senescent animal models, which provides a promising approach for the treatment of hypogonadism. Here, we isolated human SLCs prospectively and explored the potential therapeutic benefits of human SLC transplantation for hypogonadism treatment. In adult human testes, p75 neurotrophin receptor positive (p75+) cells expressed the known SLC marker nestin, but not the LC lineage marker hydroxysteroid dehydrogenase-3β (HSD3β). The p75+ cells which were sorted by flow cytometry from human adult testes could expand in vitro and exhibited clonogenic self-renewal capacity. The p75+ cells had multi-lineage differentiation potential into multiple mesodermal cell lineages and testosterone-producing LCs in vitro. After transplantation into the testes of ethane dimethane sulfonate (EDS)-treated LC-disrupted rat models, the p75+ cells differentiated into LCs in vivo and secreted testosterone in a physiological pattern. Moreover, p75+ cell transplantation accelerated the recovery of serum testosterone levels, spermatogenesis and reproductive organ weights. Taken together, we reported a method for the identification and isolation of human SLCs on the basis of p75 expression, and demonstrated that transplanted human p75+ SLCs could replace disrupted LCs for testosterone production. These findings provide the groundwork for further clinical application of human SLCs for hypogonadism.
Collapse
Affiliation(s)
- Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Mei Hua Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Wenzhou, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Dzyuba B, Cosson J, Dzyuba V, Fedorov P, Bondarenko O, Rodina M, Linhart O, Shelton WL, Boryshpolets S. Sperm maturation in sturgeon (Actinopterygii, Acipenseriformes): A review. Theriogenology 2017; 97:134-138. [DOI: 10.1016/j.theriogenology.2017.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
|
25
|
Cruceño AAM, Aguilera-Merlo CI, Chaves EM, Mohamed FH. Epididymis of Viscacha (Lagostomus maximus maximus): A Morphological Comparative Study in Relation to Sexual Maturity. Anat Histol Embryol 2016; 46:73-84. [PMID: 27457370 DOI: 10.1111/ahe.12240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/29/2016] [Indexed: 01/23/2023]
Abstract
The morphological variations and the androgen receptor (AR) expression were studied in viscacha epididymis in relation to sexual maturity. The animals were divided into immature, pre-pubertal and adult, according to their corporal weight and testicular histology. The epididymides were studied by light microscopy, immunohistochemistry for AR and morphometric analysis. In pre-pubertal and adult animals, four well-differentiated segments (initial, caput, corpus and cauda) were observed, while in immature animals, three segments were identified (initial-caput segment, corpus and cauda). In each segment, the structural parameters and the relative cell distribution were different between the groups. The serum testosterone levels of pre-pubertal and adults showed a very significant increase related to sexual maturity. The AR expression in epithelial and fibromuscular stromal cells was different between the groups. In conclusion, the present work demonstrates that the morphological characteristics of the viscacha epididymis vary while sexual maturity is reached, the development of initial and caput is subsequent to corpus and cauda development and the androgens might play an important role during this process.
Collapse
Affiliation(s)
- A A M Cruceño
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - C I Aguilera-Merlo
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - E M Chaves
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - F H Mohamed
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
26
|
Schorr-Lenz AM, Alves J, Henckes NAC, Seibel PM, Benham AM, Bustamante-Filho IC. GnRH immunization alters the expression and distribution of protein disulfide isomerases in the epididymis. Andrology 2016; 4:957-63. [DOI: 10.1111/andr.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/18/2016] [Accepted: 04/02/2016] [Indexed: 01/03/2023]
Affiliation(s)
- A. M. Schorr-Lenz
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - J. Alves
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - N. A. C. Henckes
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - P. M. Seibel
- Centro de Ciências Biológicas e da Saúde; Univates; Lajeado RS Brazil
| | - A. M. Benham
- School of Biological and Biomedical Sciences; Durham University; Durham UK
| | | |
Collapse
|
27
|
Abstract
From a review of some aspects of epididymal structure, function and research done largely in my research area over the last 50 years, I conclude that more is known than is understood of sperm maturation and storage in the epididymis. Highly qualified technicians have not always applied sophisticated modern techniques in well-considered experiments to physiologically relevant and properly-prepared samples, so that our understanding of the biological problem of the nature of the epididymal epithelial influence on maturing epididymal spermatozoa has not kept pace with the outpouring of data generated, much of which is difficult to interpret. We stand at a crossroads of where to aim our limited resources and personnel: should we continue new technology-led studies in many directions, backtrack to test hypotheses and fill in gaps in our knowledge, or consider more biological directions to our research?
Collapse
|
28
|
Whitfield M, Ouvrier A, Cadet R, Damon-Soubeyrand C, Guiton R, Janny L, Kocer A, Marceau G, Pons-Rejraji H, Trousson A, Drevet JR, Saez F. Liver X Receptors (LXRs) Alpha and Beta Play Distinct Roles in the Mouse Epididymis1. Biol Reprod 2016; 94:55. [DOI: 10.1095/biolreprod.115.133538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/11/2016] [Indexed: 01/07/2023] Open
|
29
|
Xin A, Zhao Y, Yu H, Shi H, Diao H, Zhang Y. Characterization of β-defensin 42 expressed in principal cells at the initial segment of the rat epididymis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:861-9. [PMID: 26363282 DOI: 10.1093/abbs/gmv089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022] Open
Abstract
β-defensins, preferentially expressed in male reproductive tracts, particularly in the testes and epididymis with region-specific patterns, play an important role in both innate immunity and sperm fertility. Expressed in the caput region of epididymis, β-defensins have been known to contribute to innate immunity, sperm motility initiation, and maintenance. However, β-defensins of the initial region remain to be uncharacterized. In this study, rat β-defensin 42 (Defb42) was revealed to be exclusively located in the principal cells at the initial segment of the rat epididymis and its sperm's acrosome. Furthermore, the expression of Defb42 was dependent on luminal testicular factors and developmental phases. The recombinant Defb42 was predominantly antimicrobial not against Candida albicans, but against Escherichia coli and Staphylococcus aureus. Based on these findings, Defb42 was suggested to play a dual role in sperm fertility and host defense in rat epididymis.
Collapse
Affiliation(s)
- Aijie Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Zhao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Heguo Yu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Huijuan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Yonglian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Pintus E, Ros-Santaella JL, Garde JJ. Beyond Testis Size: Links between Spermatogenesis and Sperm Traits in a Seasonal Breeding Mammal. PLoS One 2015; 10:e0139240. [PMID: 26430740 PMCID: PMC4592251 DOI: 10.1371/journal.pone.0139240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/10/2015] [Indexed: 01/21/2023] Open
Abstract
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Clinics and Pathology, Faculty of Veterinary Medicine, University of Sassari, Sassari, Italy
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - José Luis Ros-Santaella
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | | |
Collapse
|
31
|
Liu X, Liu FJ, Jin SH, Shen XF, Wang YW. In-depth Proteomic mapping of mouse (Mus musculus) epididymal constructive basis for sperm maturation. Proteome Sci 2015. [PMID: 26225126 PMCID: PMC4518611 DOI: 10.1186/s12953-015-0076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mouse epididymis performs an essential role in sperm maturation, but global protein expression data in mouse epididymis are still lacking. Here, we reported the first in-depth gel-based profiling of mouse epididymis proteome and established a 2-DE map. RESULTS A total of 832 protein spots were detected in the reproducible gels, and 625 spots corresponding to 355 unique protein entries have been successfully identified by MALDI-TOF-MS. The confidence of proteome data was validated by Western blot. Functional annotations showed that these proteins were mainly related to general metabolism, antioxidant and structural molecule activity. Immunohistochemistry disclosed two structural proteins (myosin regulatory light polypeptide 9 and alpha-2 type I collagen) continuously expressed in the myoid cell since postpartum. CONCLUSION This study provides a first-draft reference map of the mouse epididymis proteome, which will greatly expand the knowledge of the epididymal structural basis and contribute to the better understanding of those proteins in the process of mouse epididymal sperm maturation.
Collapse
Affiliation(s)
- Xin Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai, 264000, Shandong People's Republic of China
| | - Fu-Jun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai, 264000, Shandong People's Republic of China
| | - Shao-Hua Jin
- Clinical Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai, 264000, Shandong People's Republic of China
| | - Xiao-Fang Shen
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai, 264000, Shandong People's Republic of China
| | - Yan-Wei Wang
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai, 264000, Shandong People's Republic of China
| |
Collapse
|
32
|
Optimum calcium concentration: a crucial factor in regulating sperm motility in vitro. Cell Biochem Biophys 2015; 70:1177-83. [PMID: 24880438 DOI: 10.1007/s12013-014-0038-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sperm motility can be maintained in vitro by incubation in a defined medium under specific conditions. In most studies, the exact role of various constituents of epididymal fluid, including calcium, has remained obscure. Most of the culture media have included millimolar concentrations of calcium, but previous reports have indicated that millimolar calcium inhibits sperm motility. In this present study, we sought the optimum concentration of extracellular calcium required for optimum sperm motility. This study showed that extracellular calcium has a concentration-dependent biphasic role in motility regulation. It promoted motility and velocity at lower (10 µM) concentration whereas notably inhibited it at higher concentrations. When external membrane-bound calcium was removed by ethylene glycol tetraacetic acid, motility decreased considerably. To confirm the motility-inhibiting role of calcium above 10 µM, a sperm motility-stimulating protein (MSP) recently reported from our laboratory was used which at 0.9 μM induces motility in 60-70 % cells. Calcium at 10 µM had no appreciable effect on the motility-promoting activity of the MSP but depressed the activity above 10 µM. Thus, our present results emphasize the biphasic role of extracellular calcium and the importance of its optimum concentration in different buffers and media used for sperm motility initiation.
Collapse
|
33
|
Lestari SW, Pujianto DA, Soeharso P, Loanda E. Evaluation of outer dense fiber-1 and -2 protein expression in asthenozoospermic infertile men. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background: Most of male infertility are caused by defect in sperm motility (asthenozoospermia). The molecular mechanism of low sperm motility in asthenozoospermic patients has not been fully understood. Sperm motility is strongly related to the axoneme structure which is composed of microtubules and supported by outer dense fiber (ODF) and fibrous sheath (FS) protein. The objective of this study was to characterize the ODF (ODF1 and ODF2) expression in asthenozoospermic infertile male and control normozoospermic fertile male.Methods: Asthenozoospermic samples (n=18) were collected from infertile patients at Andrology Lab, Cipto Mangunkusumo Hospital Jakarta and control were taken from normozoospermic fertile donor (n=18). After motility analyses by computer-assisted sperm analysis (CASA), semen were divided into two parts, for Western blot and for immunocytochemistry analysis. Antibody against ODF1 and ODF2 protein were used in both analyses.Results: Analysis of ODF1 protein expression showed bands with molecular weight of ~30 kDa and ODF2 ~85 kDa. The mean band intensity of ODF1 and ODF2 protein were lower in the asthenozoospermic group (AG) compared to normozoospermic group (NG). Moreover, both ODF proteins were less intense and less localized in the AG than NG. Sperm motility was lower in AG, compared to control NG, i.e. average path velocity (VAP) = 32.07 ± 7.03 vs 37.58 ± 8.73 µm/s, p = 0.455; straight line velocity (VSL) = 24.17 ± 6.90 vs 27.61 ± 4.50 µm/s, p = 0.317 and curvilinear velocity (VCL) = 45.68 ± 7.91 vs 55.55 ± 16.40 µm/s, p = 0.099.Conclusion: There is down-regulation of ODF1 and ODF2 protein expression and less-compact localization in AG sperm compared to the NG. These changes might have caused disturbances in the sperm motility as observed in this study.
Collapse
|
34
|
Oviduct binding ability of porcine spermatozoa develops in the epididymis and can be advanced by incubation with caudal fluid. Theriogenology 2015; 83:1502-13. [DOI: 10.1016/j.theriogenology.2015.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/23/2022]
|
35
|
Rodríguez-Tobón A, Fierro R, León-Galván MA, Rosado A, Cortés-Barberena E, Arenas-Ríos E. Tyrosine phosphorylation as evidence of epididymal cauda participation in the sperm maturation process ofCorynorhinus mexicanusbat. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahiezer Rodríguez-Tobón
- Doctorado en Biología Experimental; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Reyna Fierro
- Departamento de Ciencias de la Salud; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Miguel Angel León-Galván
- Departamento de Biología; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Adolfo Rosado
- Departamento de Biología de la Reproducción; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| | - Edith Arenas-Ríos
- Departamento de Biología de la Reproducción; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina CP 09340 Iztapalapa DF México
| |
Collapse
|
36
|
Zhou T, Wang G, Chen M, Zhang M, Guo Y, Yu C, Zhou Z, Si W, Sha J, Guo X. Comparative analysis of macaque and human sperm proteomes: Insights into sperm competition. Proteomics 2015; 15:1564-73. [DOI: 10.1002/pmic.201400248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/20/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Gaigai Wang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing P. R. China
| | - Mianqiu Zhang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Chunmei Yu
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Wei Si
- Kunming Primate Research Centre and Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
37
|
Liu X, Wang W, Liu F. New insight into the castrated mouse epididymis based on comparative proteomics. Reprod Fertil Dev 2015; 27:551-6. [DOI: 10.1071/rd13323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/11/2014] [Indexed: 11/23/2022] Open
Abstract
The mammalian epididymis is an important male accessory gland where the spermatozoa gain the ability to fertilise the egg. To further understand the effects of testicular factors on the epididymis, the proteome of castrated adult mice and sham controls was compared using high-resolution two-dimensional gel electrophoresis following identification of proteins by matrix-assisted laser desorption ionisation time-of-flight/time-of-flight mass spectrometry. Twenty-three differentially expressed proteins (11 upregulated and 12 downregulated) were identified in epididymides from castrated. Bioinformatic analysis indicated that these castration-responsive proteins participated in energy metabolism and the antigen processing and presentation pathway. The differential expression levels were further validated by western blotting. The differentially expressed proteins may serve as potential candidates in studies of epididymal function and male infertility.
Collapse
|
38
|
Diao R, Fok KL, Chen H, Yu MK, Duan Y, Chung CM, Li Z, Wu H, Li Z, Zhang H, Ji Z, Zhen W, Ng CF, Gui Y, Cai Z, Chan HC. Deficient human β-defensin 1 underlies male infertility associated with poor sperm motility and genital tract infection. Sci Transl Med 2014; 6:249ra108. [PMID: 25122636 DOI: 10.1126/scitranslmed.3009071] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genital tract infection and reduced sperm motility are considered two pivotal etiological factors for male infertility associated with leukocytospermia and asthenozoospermia, respectively. We demonstrate that the amount of human β-defensin 1 (DEFB1) in sperm from infertile men exhibiting either leukocytospermia or asthenozoospermia, both of which are associated with reduced motility and reduced bactericidal activity in sperm, is much lower compared to that in normal fertile sperm. Interference with DEFB1 function also decreases both motility and bactericidal activity in normal sperm, whereas treatment with recombinant DEFB1 markedly restores DEFB1 expression, bactericidal activity, sperm quality, and egg-penetrating ability in sperm from both asthenozoospermia and leukocytospermia patients. DEFB1 interacts with chemokine receptor type 6 (CCR6) in sperm and triggers Ca(2+) mobilization, which is important for sperm motility. Interference with CCR6 function also reduces motility and bactericidal activity of normal sperm. The present finding explains a common defect in male infertility associated with both asthenozoospermia and leukocytospermia, indicating a dual role of DEFB1 in defending male fertility. These results also suggest that the expression of DEFB1 and CCR6 may have diagnostic potential and that treatment of defective sperm with recombinant DEFB1 protein may be a feasible therapeutic approach for male infertility associated with poor sperm motility and genital tract infection.
Collapse
Affiliation(s)
- Ruiying Diao
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China. Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Chen
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China. Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yonggang Duan
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China. Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Chin Man Chung
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhao Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China. Shantou University Medical College, Shantou 515041, China
| | - Hanwei Wu
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zesong Li
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Hu Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China. Shantou University Medical College, Shantou 515041, China
| | - Ziliang Ji
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China. Shantou University Medical College, Shantou 515041, China
| | - Wanhua Zhen
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Chi Fai Ng
- Department of Surgery, Division of Urology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China. Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China.
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Women's and Children's Hospital, Sichuan University, Sichuan 610017, China.
| |
Collapse
|
39
|
Nagdas SK, Buchanan T, Raychoudhury S. Identification of peroxiredoxin-5 in bovine cauda epididymal sperm. Mol Cell Biochem 2013; 387:113-21. [PMID: 24186847 DOI: 10.1007/s11010-013-1876-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry and Physics, Fayetteville State University, 1200 Murchison Road, Fayetteville, NC, 28301, USA,
| | | | | |
Collapse
|
40
|
Motility of Fresh and Frozen-Thawed Stallion Sperm from Three Segments of the Epididymal Cauda and the Effect of Post-Thaw Seminal Plasma Addition on Motility. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
42
|
Ferrer M, Cornwall G, Oko R. A Population of CRES Resides in the Outer Dense Fibers of Spermatozoa1. Biol Reprod 2013; 88:65. [DOI: 10.1095/biolreprod.112.104745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
43
|
Gadella BM. Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation. Reprod Fertil Dev 2013; 25:26-37. [DOI: 10.1071/rd12277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent findings have refined our thinking on sperm interactions with the cumulus–oocyte complex (COC) and our understanding of how, at the molecular level, the sperm cell fertilises the oocyte. Proteomic analyses has identified a capacitation-dependent sperm surface reordering that leads to the formation of functional multiprotein complexes involved in zona–cumulus interactions in several mammalian species. During this process, multiple docking of the acrosomal membrane to the plasma membrane takes place. In contrast with the dogma that the acrosome reaction is initiated when spermatozoa bind to the zona pellucida (ZP), it has been established recently that, in mice, the fertilising spermatozoon initiates its acrosome reaction during its voyage through the cumulus before it reaches the ZP. In fact, even acrosome-reacted mouse spermatozoa collected from the perivitelline space can fertilise another ZP-intact oocyte. The oviduct appears to influence the extracellular matrix properties of the spermatozoa as well as the COC. This may influence sperm binding and penetration of the cumulus and ZP, and, in doing so, increase monospermic while decreasing polyspermic fertilisation rates. Structural analysis of the ZP has shed new light on how spermatozoa bind and penetrate this structure and how the cortical reaction blocks sperm–ZP interactions. The current understanding of sperm interactions with the cumulus and ZP layers surrounding the oocyte is reviewed with a special emphasis on the lack of comparative knowledge on this topic in humans, as well as in most farm mammals.
Collapse
|
44
|
Abstract
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function.
Collapse
Affiliation(s)
- Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | | | | |
Collapse
|
45
|
Fu-Jun L, Xiao-Fang S. Comparative analysis of human reproductive proteomes identifies candidate proteins of sperm maturation. Mol Biol Rep 2012; 39:10257-63. [PMID: 23053934 DOI: 10.1007/s11033-012-1902-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/30/2012] [Indexed: 01/23/2023]
Abstract
Male reproductive proteomes provide basis for studying gene products and its involvement or regulation in sperm physiology. Here, a comparative study between these proteomes was performed to find potential proteins and functions associated with human sperm maturation. Seven reproductive proteomes associated with human sperm physiology were integrated. Gene ontology analysis were performed using DAVID and Panther tools to determine enriched functions. Total of 270 proteins overlapped between epididymal, prostatic milieu and sperm proteome were thought to be candidate proteins involved in sperm maturation, and they showed enriched functions of proteasomal protein catabolic process and protein folding. 34 epididymal milieu proteins and 274 prostatic milieu proteins were contributed to the composition of seminal fluids proteome. Literatures have confirmed the involvements in sperm maturation of many of these proteins The spatial expressions of 24 epididymal milieu proteins involved in chaperone and antioxidant activity were authenticated by real-time RT-PCR. These proteins may serve as candidate molecules for future studies of sperm maturation and male infertility.
Collapse
Affiliation(s)
- Liu Fu-Jun
- Central Laboratory, Yu-Huang-Ding Hospital/Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | | |
Collapse
|
46
|
Kerkhofs S, Dubois V, De Gendt K, Helsen C, Clinckemalie L, Spans L, Schuit F, Boonen S, Vanderschueren D, Saunders PTK, Verhoeven G, Claessens F. A role for selective androgen response elements in the development of the epididymis and the androgen control of the 5
α
reductase II gene. FASEB J 2012; 26:4360-72. [DOI: 10.1096/fj.11-202283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanie Kerkhofs
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Karel De Gendt
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Christine Helsen
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Liesbeth Clinckemalie
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Lien Spans
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular MedicineKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Steven Boonen
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Dirk Vanderschueren
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences UnitThe Queen's Medical Research InstituteEdinburghUK
| | - Guido Verhoeven
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| |
Collapse
|
47
|
Ahmad G, Moinard N, Esquerré-Lamare C, Mieusset R, Bujan L. Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men. Fertil Steril 2012; 97:546-53. [DOI: 10.1016/j.fertnstert.2011.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/06/2011] [Accepted: 12/16/2011] [Indexed: 01/07/2023]
|
48
|
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiol Rev 2011; 91:1305-55. [DOI: 10.1152/physrev.00028.2010] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca2+ is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca2+-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca2+ with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca2+ channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca2+ and SLO3 for K+, which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carmen Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
49
|
Gómez Montoto L, Varea Sánchez M, Tourmente M, Martín-Coello J, Luque-Larena JJ, Gomendio M, Roldan ERS. Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: head first. Reproduction 2011; 142:819-30. [PMID: 21954130 DOI: 10.1530/rep-11-0232] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sperm competition favours an increase in sperm swimming velocity that maximises the chances that sperm will reach the ova before rival sperm and fertilise. Comparative studies have shown that the increase in sperm swimming speed is associated with an increase in total sperm size. However, it is not known which are the first evolutionary steps that lead to increases in sperm swimming velocity. Using a group of closely related muroid rodents that differ in levels of sperm competition, we here test the hypothesis that subtle changes in sperm design may represent early evolutionary changes that could make sperm swim faster. Our findings show that as sperm competition increases so does sperm swimming speed. Sperm swimming velocity is associated with the size of all sperm components. However, levels of sperm competition are only related to an increase in sperm head area. Such increase is a consequence of an increase in the length of the sperm head, and also of the presence of an apical hook in some of the species studied. These findings suggest that the presence of a hook may modify the sperm head in such a way that would help sperm swim faster and may also be advantageous if sperm with larger heads are better able to attach to the epithelial cells lining the lower isthmus of the oviduct where sperm remain quiescent before the final race to reach the site of fertilisation.
Collapse
Affiliation(s)
- Laura Gómez Montoto
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Vennekens R, Wissenbach U, Middendorff R, Flockerzi V, Freichel M. Male Fertility Depends on Ca2+ Absorption by TRPV6 in Epididymal Epithelia. Sci Signal 2011; 4:ra27. [DOI: 10.1126/scisignal.2001791] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|