1
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
2
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
3
|
Zhan X, Wang D, Wang H, Chen H, Wu X, Li T, Qi J, Chen T, Wu D, Gao Y. Revitalizing Skin Repair: Unveiling the Healing Power of Livisin, a Natural Peptide Calcium Mimetic. Toxins (Basel) 2023; 16:21. [PMID: 38251238 PMCID: PMC10819626 DOI: 10.3390/toxins16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. Livisin exhibited strong protease inhibitory activity, water solubility, and stability, yet its wound-healing properties have not yet been studied. In this study, we assessed the impact of livisin on wound healing and investigated the underlying mechanism contributing to its effect. Our findings revealed livisin effectively stimulated the migration of keratinocytes, with the underlying mechanisms involved the activation of CaSR as a peptide calcium mimetic. This activation resulted in the stimulation of the CaSR/E-cadherin/EGFR/ERK signaling pathways. Moreover, the therapeutic effects of livisin were partially reduced by blocking the CaSR/E-cadherin/EGFR/ERK signaling pathway. The interaction between livisin and CaSR was further investigated by molecular docking. Additionally, studies using a mouse full-thickness wound model demonstrated livisin could accelerate skin wound healing by promoting re-epithelialization and collagen deposition. In conclusion, our study provides experimental evidence supporting the use of livisin in skin wound healing, highlighting its potential as an effective therapeutic option.
Collapse
Affiliation(s)
- Xuehui Zhan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Danni Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Hanfei Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Xinyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Tao Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Junmei Qi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| |
Collapse
|
4
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Gujjarlapudi M, Kotarya B, Mohanraj SS, Gupta D, Prasad ER, Kalle AM, Jaba J, Ponnusamy D, Padmasree K. Development of a rapid process for purification of Bowman-Birk and Kunitz inhibitors from legume seeds, and evaluation of their biophysical, insecticidal, and antimicrobial properties. Int J Biol Macromol 2023; 238:124050. [PMID: 36933601 DOI: 10.1016/j.ijbiomac.2023.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Bowman-Birk inhibitor (BBI ~10 kDa) and Kunitz inhibitor (KI ~20 kDa) are serine protease/proteinase inhibitor(s) [PI(s)] ubiquitously found in several Leguminous plant species with insecticidal and therapeutic properties. Due to narrow molecular mass differences, the separation of these inhibitors from a single seed variety is tedious. The present study is aimed to develop a rapid protocol (<24 h) for purifying BBI and KI from legume seeds using mild trichloroacetic acid (TCA) extraction followed by trypsin-affinity chromatography. The mature seeds of Vigna radiata and Cajanus platycarpus are used as a model to purify BBI and KI using this protocol. The BBI and KI purified from the seeds of V. radiata are labeled as VrBBI & VrKI, and C. platycarpus are labeled as CpBBI & CpKI, respectively. These PIs are confirmed by immunodetection and MALDI-TOF studies and further characterized for their structural (CD & fluorescence spectroscopy) and functional properties (temperature & DTT stability). BBI(s) purified using the above process are effective in the management of castor semi-looper 'Achaea janata', while KI(s) are effective in the management of pod borer 'Helicoverpa armigera'. Besides, both BBI(s) and KI(s) have significant potential in controlling the growth of methicillin-sensitive 'Staphylococcus aureus', a gram-positive pathogenic bacterium.
Collapse
Affiliation(s)
- Mariyamma Gujjarlapudi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | - Bharti Kotarya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | | | - Deepali Gupta
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | - Elaprolu R Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Arunasree M Kalle
- Department of Animal Biology, University of Hyderabad, Hyderabad 500 046, India
| | - Jagdish Jaba
- Entomology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502 324, India
| | - Duraimurugan Ponnusamy
- Crop Protection Section, ICAR-Indian Institute of Oilseeds Research, Hyderabad 500 030, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Wu Y, Li W, Zhu H, Martin GJO, Ashokkumar M. Ultrasound-enhanced interfacial adsorption and inactivation of soy trypsin inhibitors. ULTRASONICS SONOCHEMISTRY 2023; 94:106315. [PMID: 36738694 PMCID: PMC9932488 DOI: 10.1016/j.ultsonch.2023.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In this study, liquid-liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor-stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid-liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.
Collapse
Affiliation(s)
- Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wu Li
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Haiyan Zhu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Chen F, Lin L, Zhao M. Co-extraction of soy protein and polysaccharide with lipid-lowering activity: Characterization of functional property, nutritional property and colonic fermentation property through a metabolomics approach. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Herwade AP, Barale SS, Sonawane KD, Pawar PK. In vivo developmental studies of Helicoverpa armigera and in silico molecular interactions with trypsin reveal the bio-insecticidal potential of trypsin inhibitor (SSTI) isolated from Solanum surattense. Int J Biol Macromol 2022; 223:335-345. [PMID: 36374713 DOI: 10.1016/j.ijbiomac.2022.10.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
We report the impact of gut protease inhibition on the development of Helicoverpa armigera by trypsin inhibitor and the use of molecular modeling to understand the mechanism of trypsin inhibition. Larvae of H. armigera fed on an artificial diet containing 150 and 300 μg/ml SSTI showed a negative impact on the insects' development in terms of mean larval weight, larval fatality, survival rate, and nutritional indices. Prominent physical abnormalities like curled wings, malformed appendages, and small body size were observed during the development. Gene expression studies revealed down regulation in trypsin (HaTry 1, 2, 3, 4, 6, 8) and chymotrypsin (HaChy 1, 2, 3, 4) genes of the larval gut upon treatment of SSTI. Homology modeling has been used to build the three-dimensional structure of SSTI, which showed β-sheets having a stable canonical inhibitory loop (CIL) with conserved lysine residue. Molecular docking studies showed the strong binding of SSTI at the active site of trypsin. Molecular dynamic (MD) simulation revealed the stable interactions of the rigid CIL of SSTI at the active site of trypsin, leading to its destabilization. Conserved lysine63 of the P1 site in SSTI forms a strong hydrogen bonding network with residues Asp189 and Ser190 of trypsin.
Collapse
Affiliation(s)
- Abhijeet P Herwade
- Department of Biotechnology, Shivaji University, Kolhapur 416004, MS, India
| | - Sagar S Barale
- Department of Microbiology, Shivaji University, Kolhapur 416004, MS, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur 416004, MS, India; Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, MS, India; Department of Biochemistry, Shivaji University, Kolhapur 416004, MS, India; Department of Chemistry, Shivaji University, Kolhapur 416004, MS, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur 416004, MS, India.
| |
Collapse
|
9
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
10
|
Vishvakarma R, Mishra A. Characterization of a Novel Protease Inhibitor from the Edible Mushroom
Agaricus bisporus. Protein Pept Lett 2022; 29:460-472. [DOI: 10.2174/0929866529666220405161903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Background:
Protease inhibitors inhibit the activity of protease enzymes, hence are essentially involved in the regulation of the metabolic processes involving protease enzymes and protection the host organism against external damage due to proteases. These inhibitors are abundantly present in all living organisms but have not been much reported in mushrooms. Mushrooms are one of the major food components of humans with delicious taste and high nutritional value. Mushrooms also have therapeutic and economic significance. The edible mushrooms with medicinal properties are much in commercial demand. To date, the presence of protease inhibitors has not been reported much in edible mushrooms. The present study reports the characterization of a protease inhibitor isolated from the common white button mushroom Agaricus bisporus.
Objective:
The objective of the present study is to characterize the novel protease inhibitor from Agaricus bisporus to determine its nature and activity at varying environmental conditions.
Method:
The protease inhibitor was characterized through SDS PAGE, gel filtration chromatography, and de novo sequencing to determine its molecular mass, and sequence respectively. The optimum pH and temperature, and the pH and thermal stability were studied to determine the optimum working range of the protease inhibitor. The protease inhibitory activity (%) was determined in presence of metal ions, surfactants, oxidizing agents, and reducing agents. The kinetic parameters and the type of inhibition exhibited by the protease inhibitor were determined using casein and trypsin protease enzyme.
Results:
The protease inhibitor was found to be a low molecular mass compound of 25 kDa. The de novo sequencing matched the inhibitor against a 227 amino acid containing peptide molecular mass of 24.6 kDa molecular mass. The protease inhibitory activity (%) was found highest at pH 7.0 and temperature 50 0C, and was stable from pH 4.0-9.0 and temperature 30-80 0C. In presence of metal ions, the residual protease inhibitory activity (%) enhanced in presence of Na+, Mg2+, and Fe3+. The residual activity increased in presence of the surfactant SDS slightly in comparison to control, while decreased in the case of Triton-X and Tween 20. The presence of oxidizing agents, hydrogen peroxide, and dimethyl sulfoxide decreased the residual inhibitory activity. The protease inhibitor was unaffected by the reducing agents: dithiothreitol and β-mercaptoethanol up to 2mM concentration but decreased at higher concentrations. The inhibitor exhibited uncompetitive inhibition against trypsin with an inhibitory constant of 166 nM, indicating a strong affinity towards the protease, with a half-life of 93.90 minutes at 37 0C.
Conclusion:
Protease inhibitors isolated from mushrooms are generally small in size, more stable, and tolerant towards varying external conditions. The protease inhibitor isolated from Agaricus bisporus also exhibited similar characteristics.
Collapse
Affiliation(s)
- Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh-226026, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
11
|
Cid-Gallegos MS, Corzo-Ríos LJ, Jiménez-Martínez C, Sánchez-Chino XM. Protease Inhibitors from Plants as Therapeutic Agents- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:20-29. [PMID: 35000105 DOI: 10.1007/s11130-022-00949-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 05/18/2023]
Abstract
Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- M S Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - L J Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, México City, C.P. 07340, México
| | - C Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - X M Sánchez-Chino
- CONACYT, Departamento de Salud, El Colegio de La Frontera Sur-Villahermosa, Tabasco, México.
| |
Collapse
|
12
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|
13
|
Tang W, Wang X, Kou M, Yan H, Gao R, Li C, Song W, Zhang Y, Wang X, Liu Y, Li Z, Li Q. The sweetpotato GIGANTEA gene promoter is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:143-154. [PMID: 34628175 DOI: 10.1016/j.plaphy.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
GIGANTEA (GI) is known to play significant roles in various molecular pathways. Nevertheless, the underlying mechanism of the transcriptional regulation of GI remains obscure in sweetpotato. In the present study, a 1518-bp promoter sequence was obtained from the Ipomoea batatas GIGANTEA (IbGI) gene, and several potential cis-elements responsive to light, phytohormones and abiotic stresses were identified by in silico analysis. In order to functionally validate the IbGI promoter, the 5' deletion analysis of the promoter was performed by cloning the full-length promoter (D0) and its four deletion fragments, D1 (1235 bp), D2 (896 bp), D3 (549 bp) and D4 (286 bp), upstream of the β-glucuronidase (GUS) reporter gene. Then, these were stably transformed in Arabidopsis plants. All transgenic seedlings exhibited stable GUS activity in the condition of control, but with decreased activity in the condition of most treatments. Interestingly, merely D1 seedlings that contained an abscisic acid responsive cis-element (ABRE-element) had an extremely powerful GUS activity under the treatment of ABA, which implies that fragment spanning nucleotides of -1235 to -896 bp might be a crucial component for the responses of ABA. Eight different types of potential transcriptional regulators of IbGI were isolated by Y1H, including TGA2.2, SPLT1 and GADPH, suggesting the complex interaction mode of protein-DNA on the IbGI promoter. Taken together, these present results help to better understand the transcriptional regulation mechanism of the IbGI gene, and provides an insight into the IbGI promoter, which can be considered as an alternation for breeding transgenic plants.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xiaoxiao Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Hui Yan
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Chen Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Qiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, 221131, PR China.
| |
Collapse
|
14
|
Kårlund A, Paukkonen I, Gómez-Gallego C, Kolehmainen M. Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare (Basel) 2021; 9:1002. [PMID: 34442141 PMCID: PMC8394810 DOI: 10.3390/healthcare9081002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.
Collapse
Affiliation(s)
- Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Isa Paukkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| |
Collapse
|
15
|
Sato A, da Fonseca IIM, Nagamine MK, de Toledo GF, Olio R, Hernandez-Blazquez FJ, Yano T, Yeh ES, Dagli MLZ. Effects of Alpha-Connexin Carboxyl-Terminal Peptide (aCT1) and Bowman-Birk Protease Inhibitor (BBI) on Canine Oral Mucosal Melanoma (OMM) Cells. Front Vet Sci 2021; 8:670451. [PMID: 34179163 PMCID: PMC8222509 DOI: 10.3389/fvets.2021.670451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Oral mucosal melanomas (OMM) are aggressive cancers in dogs, and are good models for human OMM. Gap junctions are composed of connexin units, which may have altered expression patterns and/or subcellular localization in cancer cells. Cell-to-cell communication by gap junctions is often impaired in cancer cells, including in melanomas. Meanwhile, the upregulated expression of the gap junction protein connexin 43 (Cx43) inhibits melanoma progression. The α-connexin carboxyl-terminal (aCT1) peptide reportedly maintains Cx43 expression and cell-cell communication in human mammary cells and increases the communication activity through gap junctions in functional assays, therefore causing decreased cell proliferation. The Bowman-Birk protease inhibitor (BBI), a component of soybeans, induces Cx43 expression in several tumor cells as a trypsin–chymotrypsin inhibition function, with antineoplastic effects. This study investigated the effect of aCT1 peptide and BBI treatment, alone or in combination, on TLM1 canine melanoma cell viability. Cell viability after treatment with aCT1, the reverse sequence peptide (R-pep), and/or BBI for 5 days was analyzed by PrestoBlue assay. Immunofluorescence was used to observe Cx43 localization and expression. aCT1 (200 μM) alone did not significantly decrease cell viability in TLM1 cells, whereas BBI (400 μg/ml) alone significantly decreased the TLM1 viability. Combined treatment with both aCT1 (200 μM) and BBI (400 μg/ml) significantly decreased cell viability in TLM1 cells. Cx43 expression, as identified by immunostainings in TLM1 cells, was increased in the cell membrane after the combination treatment with BBI and aCT1. This dual treatment can be combined to achieve the anticancer activity, possibly by increasing Cx 43 expression and affecting Cx43 migration to the cell membrane. In conclusion, a treatment strategy targeting Cx43 with BBI and aCT1 may possibly lead to new effective therapies for canine OMM.
Collapse
Affiliation(s)
- Ayami Sato
- School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil.,Institute of Life Innovation Studies, Toyo University, Tokyo, Japan
| | | | - Márcia Kazumi Nagamine
- School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | | | - Rennan Olio
- School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | | | - Tomohiro Yano
- Institute of Life Innovation Studies, Toyo University, Tokyo, Japan
| | - Elizabeth Shinmay Yeh
- Department of Pharmacology and Toxicology, Simon Comprehensive Cancer Center, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Maria Lucia Zaidan Dagli
- School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Xie Y, Ravet K, Pearce S. Extensive structural variation in the Bowman-Birk inhibitor family in common wheat (Triticum aestivum L.). BMC Genomics 2021; 22:218. [PMID: 33765923 PMCID: PMC7995804 DOI: 10.1186/s12864-021-07475-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bowman-Birk inhibitors (BBI) are a family of serine-type protease inhibitors that modulate endogenous plant proteolytic activities during different phases of development. They also inhibit exogenous proteases as a component of plant defense mechanisms, and their overexpression can confer resistance to phytophagous herbivores and multiple fungal and bacterial pathogens. Dicot BBIs are multifunctional, with a "double-headed" structure containing two separate inhibitory loops that can bind and inhibit trypsin and chymotrypsin proteases simultaneously. By contrast, monocot BBIs have a non-functional chymotrypsin inhibitory loop, although they have undergone internal duplication events giving rise to proteins with multiple BBI domains. RESULTS We used a Hidden Markov Model (HMM) profile-based search to identify 57 BBI genes in the common wheat (Triticum aestivum L.) genome. The BBI genes are unevenly distributed, with large gene clusters in the telomeric regions of homoeologous group 1 and 3 chromosomes that likely arose through a series of tandem gene duplication events. The genomes of wheat progenitors also contain contiguous clusters of BBI genes, suggesting this family underwent expansion before the domestication of common wheat. However, the BBI gene family varied in size among different cultivars, showing this family remains dynamic. Because of these expansions, the BBI gene family is larger in wheat than other monocots such as maize, rice and Brachypodium. We found BBI proteins in common wheat with intragenic homologous duplications of cysteine-rich functional domains, including one protein with four functional BBI domains. This diversification may expand the spectrum of target substrates. Expression profiling suggests that some wheat BBI proteins may be involved in regulating endogenous proteases during grain development, while others were induced in response to biotic and abiotic stresses, suggesting a role in plant defense. CONCLUSIONS Genome-wide characterization reveals that the BBI gene family in wheat is subject to a high rate of homologous tandem duplication and deletion events, giving rise to a diverse set of encoded proteins. This information will facilitate the functional characterization of individual wheat BBI genes to determine their role in wheat development and stress responses, and their potential application in breeding.
Collapse
Affiliation(s)
- Yucong Xie
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Karl Ravet
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
17
|
Isolation and functional diversity of Bowman-Birk type serine proteinase inhibitors from Hyacinthus orientalis. Biochem J 2021; 478:1287-1301. [PMID: 33666645 DOI: 10.1042/bcj20201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are plant-derived serine proteinase inhibitors. Endogenously, they function as defense molecules against pathogens and insects, but they also have been explored for applications in cancer treatment and inflammatory disorders. Here, we isolated 15 novel BBIs from the bulb of Hyacinthus orientalis (termed HOSPIs). These isoinhibitors consisted of two or three chains, respectively, that are linked by disulfides bonds based on proposed cleavage sites in the canonical BBI reactive site loop. They strongly inhibited trypsin (Ki = 0.22-167 nM) and α-chymotrypsin (Ki = 19-1200 nM). Notably, HOSPI-B4 contains a six-residue reactive loop, which appears to be the smallest such motif discovered in BBIs to date. HOSPI-A6 and -A7 contain an unusual reactive site, i.e. Leu-Met at the P1-P1' position and have strong inhibitory activity against trypsin, α-chymotrypsin, and elastase. Analysis of the cDNA encoding HOSPIs revealed that the precursors have HOSPI-like domains repeated at least twice with a defined linker sequence connecting individual domains. Lastly, mutational analysis of HOSPIs suggested that the linker sequence does not affect the inhibitory activity, and a Thr residue at the P2 site and a Pro at the P3' site are crucial for elastase inhibition. Using mammalian proteases as representative model system, we gain novel insight into the sequence diversity and proteolytic activity of plant BBI. These results may aid the rational design of BBI peptides with potent and distinct inhibitory activity against human, pathogen, or insect serine proteinases.
Collapse
|
18
|
Joehnke MS, Jeske S, Ispiryan L, Zannini E, Arendt EK, Bez J, Sørensen JC, Petersen IL. Nutritional and anti-nutritional properties of lentil ( Lens culinaris) protein isolates prepared by pilot-scale processing. FOOD CHEMISTRY-X 2021; 9:100112. [PMID: 33851134 PMCID: PMC8039371 DOI: 10.1016/j.fochx.2020.100112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/16/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Two lentil protein isolates (LPIs) and a lentil flour (LF) were prepared in pilot-scale. Nutritional and anti-nutritional properties of LPIs were examined in comparison to LF. Total galacto-oligosaccharides (GOS) contents of LPIs were reduced by 58–91%. Trypsin inhibitor activity (TIA) levels of LPIs were reduced by 81–87%. In vitro protein digestibility (IVPD) values of LPIs were improved by 35–53%.
Lentil (Lens culinaris) is a high-protein crop with a promising potential as a plant-based protein source for human nutrition. This study investigated nutritional and anti-nutritional properties of whole seed lentil flour (LF) compared to lentil protein isolates (LPIs) prepared in pilot-scale by isoelectric precipitation (LPI–IEP) and ultrafiltration (LPI–UF). Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) profiles showed significant reductions in total galacto-oligosaccharides (GOS) contents by 58% and 91% in LPI–IEP and LPI–UF, respectively, compared to LF. Trypsin inhibitor activity (TIA) levels based on dry protein mass were lowered by 81% in LPI–IEP and 87% in LPI–UF relative to LF. Depending on the stage of digestion, the in vitro protein digestibility (IVPD) of LPIs was improved by 35–53% compared to LF, with both products showing a similar long-term protein digestibility to that of bovine serum albumin (BSA). This work supports the use of purified LPI products as a novel source of high quality protein for food applications.
Collapse
Key Words
- AA, amino acids
- ANC(s), anti-nutritional compound(s)
- ANOVA, analysis of variance
- Alternative protein sources
- DH, degree of hydrolysis
- DM, dry matter
- E:S ratios, enzyme:substrate ratios
- FODMAPs
- FODMAPs, fermentable oligo-, di- and monosaccharides, and polyols
- FOS, Fructans and fructo-oligosaccharides
- GOS, galacto-oligosaccharides
- HPAEC-PAD, high performance anion exchange chromatography coupled with pulsed amperometric detection
- IBS, irritable bowel syndrome
- IEP, isoelectric precipitation
- IVPD %, in vitro protein digestibility
- IVPD P %, pepsin digestibility
- IVPD PT % 1+1 h, short-term protein digestibility
- IVPD PT % 1+24 h, long-term protein digestibility
- IVPD PT % 1+3 h, medium-term protein digestibility
- In vitro protein digestibility
- LF(s), lentil flour(s)
- LP, lentil protein(s)
- LPC(s), lentil protein concentrate(s)
- LPI(s), lentil protein isolate(s)
- LPI–IEP, lentil protein isolate prepared by IEP
- LPI–UF, lentil protein isolate prepared by UF
- Lens culinaris
- Lentil flour
- Lentil protein isolates
- MW(s), molecular weight(s)
- OPA, o-phthaldialdehyde
- PD, protein digestibility
- Pilot-scale processing
- RFO, raffinose family oligosaccharides
- TCA, trichloroacetic acid
- TIA, trypsin inhibitor activity
- TIU, trypsin inhibitor unit
- TNBS, trinitrobenzenesulfonic acid
- TU, trypsin activity unit
- Trypsin inhibitor activity
- UF, ultrafiltration
- l–BAPA, N–α–benzoyl–l–arginine–4–nitroanilide
Collapse
Affiliation(s)
| | - Stephanie Jeske
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,School of Food and Nutritional Sciences and APC Microbiome Institute Ireland, University College Cork, Ireland
| | - Jürgen Bez
- Fraunhofer-Institut für Verfahrenstechnik und Verpackung, Freising, Germany
| | | | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
19
|
Lima VC, Luz AB, Amarante MDSM, Lima MC, Carvalho FM, Figueredo JB, Santos PP, Camillo CS, Ladd FV, Maciel BL, Uchôa AF, Morais AH. Tamarind Multifunctional Protein: Safety and Anti-Inflammatory Potential in Intestinal Mucosa and Adipose Tissue in a Preclinical Model of Diet-Induced Obesity. Obes Facts 2021; 14:357-369. [PMID: 34256373 PMCID: PMC8406341 DOI: 10.1159/000516548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Obesity has emerged as one of the main public health problems. This condition triggers a series of hormonal and metabolic changes related to a low-grade chronic inflammatory condition. The trypsin inhibitor purified from tamarind (TTIp) seeds is a promising anti-inflammatory molecule, but its safety needs to be evaluated. This study aimed to evaluate TTIp bioactive dose effects on organs involved in its metabolism (liver and pancreas) and affected tissues (small intestine and perirenal adipose tissue) in an obesity model. METHODS Three groups of adult male Wistar rats were used (n = 5). Two of these groups had diet-induced obesity, and a third group was eutrophic. TTIp was administered by gavage in one of the obese groups for 10 days, while the remaining groups received a vehicle. The chromatographic profile and the inhibition assay corroded the purification of the inhibitor. Physical and behavioral changes, liver enzymes, and stereological and histopathological analyses of tissues were evaluated. RESULTS TTIp did not cause visible signs of toxicity, nor caused changes in liver enzymes, the liver, and pancreatic tissues. TTIp did not cause changes in the intestinal mucosa, showing improvement in the villi's histopathological characteristics compared to the group of animals with obesity without treatment with TTIp (p = 0.004). The analysis of perirenal adipose tissue showed that the average sectional area of animals with obesity that received TTIp did not differ from the control. There was a difference between the high glycemic load diet group and the group treated with the inhibitor (351.8 ± 55.5) (p = 0.016). In addition, the group that received TTIp had no inflammatory infiltrates. CONCLUSION Based on histological and stereological analysis, the use of TTIp is potentially safe and anti-inflammatory in the evaluated obesity model and can be investigated as a possible adjuvant in obesity therapy.
Collapse
Affiliation(s)
- Vanessa C.O. Lima
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Anna B.S. Luz
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Fabiana M.C. Carvalho
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Julia B.S. Figueredo
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Pedro P.A. Santos
- Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Christina S. Camillo
- Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernando V.L. Ladd
- Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna L.L. Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriana F. Uchôa
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Proteome Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana H.A. Morais
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence to: Ana H.A. Morais,
| |
Collapse
|
20
|
Camiscia P, Silva JM, Picó G, Woitovich Valetti N. Extraction and purification of peroxidase and trypsin inhibitor from soybean hulls: A strategy to revalue a waste as a source of different types of molecules of biotechnological interest. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ranacyclin-NF, a Novel Bowman-Birk Type Protease Inhibitor from the Skin Secretion of the East Asian Frog, Pelophylax nigromaculatus. BIOLOGY 2020; 9:biology9070149. [PMID: 32630758 PMCID: PMC7407945 DOI: 10.3390/biology9070149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023]
Abstract
Serine protease inhibitors are found in plants, animals and microorganisms, where they play important roles in many physiological and pathological processes. Inhibitor scaffolds based on natural proteins and peptides have gradually become the focus of current research as they tend to bind to their targets with greater specificity than small molecules. In this report, a novel Bowman–Birk type inhibitor, named ranacyclin-NF (RNF), is described and was identified in the skin secretion of the East Asian frog, Pelophylax nigromaculatus. A synthetic replicate of the peptide was subjected to a series of functional assays. It displayed trypsin inhibitory activity with an inhibitory constant, Ki, of 447 nM and had negligible direct cytotoxicity. No observable direct antimicrobial activity was found but RNF improved the therapeutic potency of Gentamicin against Methicillin-resistant Staphylococcus aureus (MRSA). RNF shared significant sequence similarity to previously reported and related inhibitors from Odorrana grahami (ORB) and Rana esculenta (ranacyclin-T), both of which were found to be multi-functional. Two analogues of RNF, named ranacyclin-NF1 (RNF1) and ranacyclin-NF3L (RNF3L), were designed based on some features of ORB and ranacyclin-T to study structure–activity relationships. Structure–activity studies demonstrated that residues outside of the trypsin inhibitory loop (TIL) may be related to the efficacy of trypsin inhibitory activity.
Collapse
|
22
|
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 2020; 148:869-879. [DOI: 10.1016/j.ijbiomac.2020.01.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
23
|
Reihill JA, Ouyang X, Yang Z, Douglas LEJ, Zhou M, Chen T, Martin SL. A Novel Serine Protease Inhibitor PE-BBI Ameliorates Cockroach Extract-Mediated Airway Epithelial Barrier Dysfunction. Biomolecules 2020; 10:biom10040515. [PMID: 32231120 PMCID: PMC7226075 DOI: 10.3390/biom10040515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Epithelial barrier dysfunction, characteristic of allergic airway disease may be, at least in part, due to the action of allergen-associated protease activities. Cockroach allergy is a major global health issue, with cockroaches containing considerable serine trypsin-like protease (TLP) activity. The present study sought to evaluate two novel protease inhibitors (PE-BBI and pLR-HL), recently isolated from amphibian skin secretions, for their potential to neutralise cockroach TLP activity and to determine any protective effect on cockroach-induced airway epithelial barrier disruption. Inhibitor potencies against the cockroach-associated activities were determined using a fluorogenic peptide substrate-based activity assay. 16HBE14o- cells (16HBE; a bronchial epithelial cell line) were treated with cockroach extract (CRE) in the presence or absence of the compounds in order to assess cell viability (RealTime Glo luminescent assay) and epithelial barrier disruption (transepithelial resistance and paracellular dextran flux). PE-BBI potently and selectively inhibited CRE TLP activity (pIC50 -8), but not host (16HBE) cell surface activity, which conferred protection of 16HBE cells from CRE-induced cell damage and barrier disruption. Novel protease inhibitor strategies such as PE-BBI may be useful for the treatment of allergic airway disease caused by cockroach proteases.
Collapse
|
24
|
Lokya V, Swathi M, Mallikarjuna N, Padmasree K. Response of Midgut Trypsin- and Chymotrypsin-Like Proteases of Helicoverpa armigera Larvae Upon Feeding With Peanut BBI: Biochemical and Biophysical Characterization of PnBBI. FRONTIERS IN PLANT SCIENCE 2020; 11:266. [PMID: 32265951 PMCID: PMC7105688 DOI: 10.3389/fpls.2020.00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Proteinase/Protease inhibitors (PIs) from higher plants play an important role in defense and confer resistance against various insect pests and pathogens. In the present study, Bowman-Birk Inhibitor (BBI) was purified from mature seeds of an interspecific advanced hybrid peanut variety (4368-1) using chromatographic techniques. The biochemical and biophysical characteristics such as low molecular mass, presence of several isoinhibitors and higher-ordered dimer/tetramer, predominance of antiparallel β-sheets and random coils in secondary structure, reactive sites against trypsin and chymotrypsin, broad spectrum of stability toward extreme pH and temperature along with MALDI TOF-TOF analysis (ProteomeXchange identifier PXD016933) ascertained the purified biomolecule from peanut as BBI (PnBBI). Surface plasmon resonance competitive binding analysis revealed the bifunctional PnBBI is a trypsin specific inhibitor with 1:2 stoichiometry as compared to chymotrypsin. A concentration-dependent self-association tendency of PnBBI was further confirmed by 'red shift' in the far-UV CD spectra. Furthermore, the insecticidal potential of PnBBI against Helicoverpa armigera was assessed by in vitro assays and in vivo feeding experiments. A significant reduction in larval body weight was observed with concomitant attenuation in the activity of midgut trypsin-like proteases of H. armigera (HaTPs) fed on PnBBI supplemented diet. The one and two-dimensional zymography studies revealed the disappearance of several isoforms of HaTP upon feeding with PnBBI. qRT-PCR analysis further suggests the role of PnBBI in not only inhibiting the activity of midgut trypsin and chymotrypsin-like proteases but also in modulating their expression. Taken together, the results provide a biochemical and molecular basis for introgressed resistance in peanut interspecific advanced hybrid variety against H. armigera.
Collapse
Affiliation(s)
- Vadthya Lokya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Marri Swathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Truncation of Huia versabilis Bowman-Birk inhibitor increases its selectivity, matriptase-1 inhibitory activity and proteolytic stability. Biochimie 2020; 171-172:178-186. [PMID: 32169666 DOI: 10.1016/j.biochi.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/04/2020] [Indexed: 01/14/2023]
Abstract
A gradual truncation of the primary structure of frog skin-derived Huia versabilis Bowman-Birk peptidic inhibitor (HV-BBI) resulted in 18-times stronger inhibitor of matriptase-1 (peptide 6, Ki = 8 nm) in comparison to the full-length HV-BBI (Ki = 155 nm). Analogous increase in the inhibitory activity in correlation with the peptide length reduction was not observed in case of other serine proteases, bovine trypsin (Ki = 151 nm for peptide 6 and Ki = 120 nm for HV-BBI) and plasmin (Ki = 120 nm for peptide 6 and 82 nm for HV-BBI). Weaker binding affinity to these enzymes emphasized an inhibitory specificity of peptide 6. Molecular dynamic analysis revealed that the observed variations in the binding affinity of peptide 6 and HV-BBI with matriptase-1 are associated with the entropic differences of the unbound peptides. Moreover, several aspects explaining differences in the inhibition of matriptase-1 by peptide 6 (bearing the C-terminal amide group) and its two analogues, peptide 6∗ (having the C-terminal carboxyl group, Ki = 473 nm) and cyclic peptide 6∗∗ (Ki = 533 nm), both exhibiting more than 50-fold reduced inhibitory potency, were discovered. It was also shown that peptide 6 presented significantly higher resistance to proteolytic degradation in human serum than HV-BBI. Additional investigations revealed that, in contrast to some amphibian-derived inhibitors, HV-BBI and its truncated analogues do not possess bactericidal activity, thus they cannot be considered as bifunctional agents.
Collapse
|
26
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
27
|
Cristina Oliveira de Lima V, Piuvezam G, Leal Lima Maciel B, Heloneida de Araújo Morais A. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J Enzyme Inhib Med Chem 2019; 34:405-419. [PMID: 30734596 PMCID: PMC6327991 DOI: 10.1080/14756366.2018.1542387] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
Abstract
The increase in non-communicable chronic diseases has aroused interest in the research of adjuvants to the classic forms of treatments. Obesity and metabolic syndrome are the main targets of confrontation because they relate directly to other chronic diseases. In this context, trypsin inhibitors, molecules with wide heterologous application, appear as possibilities in the treatment of overweight and obesity due to the action on satiety related mechanisms, mainly in the modulation of satiety hormones, such as cholecystokinin. In addition, trypsin inhibitors have the ability to also act on some biochemical parameters related to these diseases, thus, emerging as potential candidates and promising molecules in the treatment of the obesity and metabolic syndrome. Thus, the present article proposes to approach, through a systematic literature review, the advantages, disadvantages and viabilities for the use of trypsin inhibitors directed to the treatment of overweight and obesity.
Collapse
Affiliation(s)
| | - Grasiela Piuvezam
- Department of Collective Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Heloneida de Araújo Morais
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
28
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
29
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
30
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part I. Structure, Biological Activity, and Mechanisms of Action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Identification and pharmaceutical evaluation of novel frog skin-derived serine proteinase inhibitor peptide-PE-BBI (Pelophylax esculentus Bowman-Birk inhibitor) for the potential treatment of cancer. Sci Rep 2018; 8:14502. [PMID: 30267012 PMCID: PMC6162207 DOI: 10.1038/s41598-018-32947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022] Open
Abstract
Amphibian venom-derived peptides have high potential in the field of anticancer drug discovery. We have isolated a novel Bowman-Birk proteinase inhibitor (BBI)-type peptide from the skin secretion of Pelophylax esculentus (PE) named PE-BBI, and evaluated its bio-functions and anti-cancer activity in vitro. PE-BBI is a heptadecapeptide with C-terminal amidation. The mRNA sequence and primary structure of PE-BBI were identified using RT-PCR and LC/MS, respectively. A trypsin inhibitory assay was used to characterize the serine proteinase inhibitory activity of synthetic PE-BBI. PE-BBI’s myotropic activity was analyzed using isolated rat bladder and rat-tail artery smooth muscle tissues, and the anti-cancer ability of PE-BBI using human colorectal cancer cells. PE-BBI’s mechanism of action was investigated using Discovery studio software. PE-BBI showed trypsin inhibitory activity (Ki = 310 ± 72 nM), strong myotropic activity, and cytotoxicity that were specific to cancer cells, and no side effect to normal epithelial cells. The docking stimulation showed that PE-BBI had high affinity to several members of human kallikrein related peptidase (KLK) family. This finding helps to enrich our understanding of BBI peptides’ mode of action. Moreover, the data presented here validates frog secretions as sources of potential novel proteinase inhibitors for cancer treatment.
Collapse
|
32
|
Mohanraj SS, Tetali SD, Mallikarjuna N, Dutta-Gupta A, Padmasree K. Biochemical properties of a bacterially-expressed Bowman-Birk inhibitor from Rhynchosia sublobata (Schumach.) Meikle seeds and its activity against gut proteases of Achaea janata. PHYTOCHEMISTRY 2018; 151:78-90. [PMID: 29674106 DOI: 10.1016/j.phytochem.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Crude proteinase inhibitors (CPIs) extracted from the seeds of Rhynchosia sublobata, a wild relative of pigeon pea showed pronounced inhibitory activity on the larval gut trypsin-like proteases of lepidopteran insect pest - Achaea janata. Consequently, a full-length cDNA of Bowman-Birk inhibitor gene (RsBBI1) was cloned from the immature seeds of R. sublobata. It contained an ORF of 360 bp encoding a 119-amino acid polypeptide (13.3 kDa) chain with an N-terminus signal sequence comprising of 22 amino acids. The amino acid sequence and phylogenetic analysis together revealed that RsBBI1 exhibited a close relation with BBIs from soybean and Phaseolus spp. A cDNA sequence corresponding to RsBBI1 mature protein (89 amino acid stretch) was expressed in E. coli. The recombinant rRsBBI1 protein with a molecular mass of 9.97 kDa was purified using trypsin affinity chromatography. The purified rRsBBI1 exhibited non-competitive mode of inhibition of both bovine trypsin (Ki of 358 ± 11 nM) and chymotrypsin (Ki of 446 ± 9 nM). Its inhibitory activity against these proteases was stable at high temperatures (>95 °C) and a wide pH range but sensitive to reduction with dithiothreitol (DTT), indicating the importance of disulphide bridges in exhibiting its activity. Also, rRsBBI1 showed significant inhibitory activity (IC50 = 70 ng) on A. janata larval gut trypsin-like proteases (AjGPs). Conversely, it showed <1% inhibitory activity (IC50 = 8 μg) on H. armigera larval gut trypsin-like proteases (HaGPs) than it has against AjGPs. Besides, in vivo feeding experiments clearly indicated the deleterious effects of rRsBBI1 on larval growth and development in A. janata which suggests it can be further exploited for such properties.
Collapse
Affiliation(s)
- Soundappan S Mohanraj
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Nalini Mallikarjuna
- Legume Cell Biology, Grain Legumes Program, International Crop Research Institute for Semi-Arid Tropics, Hyderabad 502 324, India
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Kollipara Padmasree
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
33
|
Palayam M, Ganapathy J, Balu KE, Pennathur G, Krishnasamy G. Structural insights into a multifunctional inhibitor, 'AMTIN' from tubers of Alocasia macrorrhizos and its possible role in dengue protease (NS2B-NS3) inhibition. Int J Biol Macromol 2018; 113:681-691. [PMID: 29505868 DOI: 10.1016/j.ijbiomac.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 11/25/2022]
Abstract
Protease inhibitors from plants play major role in defensive mechanism against various pathogenic organisms. AMTIN from the tubers of Alocasia macrorrhiza has been purified and characterized as multi-functional Kunitz type protease inhibitor. AMTIN is varied from other KTIs by having three different loops specific for binding to trypsin/amylase and subtilisin that are located approximately 30Ǻ away from one another as evidenced from crystallographic efforts. Biochemical studies on AMTIN reveal simultaneous binding of protease/amylase and have been cross validated using in-silico tools to model Amylase - AMTIN - Trypsin complex without any steric clashes. Apart from multi functionality, the remarkable structural and functional stability of AMTIN at high temperature, presence of many phosphorylation, myristoylation and glycosylation sites and molecular docking studies with dengue viral protease (NS2B-NS3) makes this protein interesting. Hence AMTIN can be considered as a template to design effective antivirals against dengue virus.
Collapse
Affiliation(s)
- Malathy Palayam
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | | | - Kanal Elamparithi Balu
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | - Gautam Pennathur
- Center for Biotechnology, Anna University, Chennai 600025, India
| | - Gunasekaran Krishnasamy
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India.
| |
Collapse
|
34
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
35
|
Ramalho SR, Bezerra CDS, Lourenço de Oliveira DG, Souza Lima L, Maria Neto S, Ramalho de Oliveira CF, Valério Verbisck N, Rodrigues Macedo ML. Novel Peptidase Kunitz Inhibitor from Platypodium elegans Seeds Is Active against Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1349-1358. [PMID: 29239611 DOI: 10.1021/acs.jafc.7b04159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel Kunitz-type inhibitor from Platypodium elegans seeds (PeTI) was purified and characterized. The mass spectrometry analyses of PeTI indicated an intact mass of 19 701 Da and a partial sequence homologous to Kunitz inhibitors. PeTI was purified by ion exchange and affinity chromatographies. A complex with a 1:1 ratio was obtained only for bovine trypsin, showing a Ki = 0.16 nM. Stability studies showed that PeTI was stable over a wide range of temperature (37-80 °C) and pH (2-10). The inhibitory activity of PeTI was affected by dithiothreitol (DTT). Bioassays of PeTI on Spodoptera frugiperda showed negative effects on larval development and weight gain, besides extending the insect life cycle. The activities of digestive enzymes, trypsin and chymotrypsin, were reduced by feeding larvae with 0.2% PeTI in an artificial diet. In summary, we describe a novel Kunitz inhibitor with promising biotechnological potential for pest control.
Collapse
|
36
|
Peddada KV, Brown A, Verma V, Nebbioso M. Therapeutic potential of curcumin in major retinal pathologies. Int Ophthalmol 2018; 39:725-734. [DOI: 10.1007/s10792-018-0845-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
37
|
Velasques J, Cardoso MH, Abrantes G, Frihling BE, Franco OL, Migliolo L. The rescue of botanical insecticides: A bioinspiration for new niches and needs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:14-25. [PMID: 29183583 DOI: 10.1016/j.pestbp.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Crop protection is the basis of plant production and food security. Additionally, there are many efforts focused on increasing defensive mechanisms in order to avoid the damaging effects of insects, which still represent significant losses worldwide. Plants have naturally evolved different mechanisms to discourage herbivory, including chemical barriers such as the induction of defensive proteins and secondary metabolites, some of which have a historical link with bio-farming practices and others that are yet to be used. In the context of global concern regarding health and environmental impacts, which has been translated into political action and restrictions on the use of synthetic pesticides, this review deals with a description of some historical commercial phytochemicals and promising proteinaceous compounds that plants may modulate to defeat insect attacks. We present a broader outlook on molecular structure and mechanisms of action while we discuss possible tools to achieve effective methods for the biological control of pests, either by the formulation of products or by the development of new plant varieties with enhanced chemical defenses.
Collapse
Affiliation(s)
- Jannaina Velasques
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Guilherme Abrantes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Breno Emanuel Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
38
|
Anti-angiogenic potential of trypsin inhibitor purified from Cucumis melo seeds: Homology modeling and molecular docking perspective. Int J Biol Macromol 2017; 96:118-128. [DOI: 10.1016/j.ijbiomac.2016.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
|
39
|
Indarte M, Lazza CM, Assis D, Caffini NO, Juliano MA, Avilés FX, Daura X, López LMI, Trejo SA. A Bowman-Birk protease inhibitor purified, cloned, sequenced and characterized from the seeds of Maclura pomifera (Raf.) Schneid. PLANTA 2017; 245:343-353. [PMID: 27778107 DOI: 10.1007/s00425-016-2611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
A new BBI-type protease inhibitor with remarkable structural characteristics was purified, cloned, and sequenced from seeds of Maclura pomifera , a dicotyledonous plant belonging to the Moraceae family. In this work, we report a Bowman-Birk inhibitor (BBI) isolated, purified, cloned, and characterized from Maclura pomifera seeds (MpBBI), the first of this type from a species belonging to Moraceae family. MpBBI was purified to homogeneity by RP-HPLC, total RNA was extracted from seeds of M. pomifera, and the 3'RACE-PCR method was applied to obtain the cDNA, which was cloned and sequenced. Peptide mass fingerprinting (PMF) analysis showed correspondence between the in silico-translated protein and MpBBI, confirming that it corresponds to a new plant protease inhibitor. The obtained cDNA encoded a polypeptide of 65 residues and possesses 10 cysteine residues, with molecular mass of 7379.27, pI 6.10, and extinction molar coefficient of 9105 M-1 cm-1. MpBBI inhibits strongly trypsin with K i in the 10-10 M range and was stable in a wide array of pH and extreme temperatures. MpBBI comparative modeling was applied to gain insight into its 3D structure and highlighted some distinguishing features: (1) two non-identical loops, (2) loop 1 (CEEESRC) is completely different from any known BBI, and (3) the amount of disulphide bonds is also different from any reported BBI from dicot plants.
Collapse
Affiliation(s)
- Martín Indarte
- PHusisTherapeutics, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Cristian M Lazza
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Diego Assis
- Departamento de Biofisica, Universidade Federal de São Paulo, Vila Clementino, São Paulo, 04044-020, Brazil
| | - Néstor O Caffini
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - María A Juliano
- Departamento de Biofisica, Universidade Federal de São Paulo, Vila Clementino, São Paulo, 04044-020, Brazil
| | - Francesc X Avilés
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Laura M I López
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, 1888 Florencio Varela, Buenos Aires, Argentina.
- CITEC, Gonnet, B1897, Buenos Aires, Argentina.
| | - Sebastián A Trejo
- Laboratorio de Neurofisiología del Instituto Multidisciplinar de Biología Celular (IMBICE), La Plata, B1906APO, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Li X, Hua Y, Chen Y, Kong X, Zhang C. Two-step complex behavior between Bowman–Birk protease inhibitor and ι -carrageenan: Effect of protein concentration, ionic strength and temperature. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Riley BT, Ilyichova O, Costa MGS, Porebski BT, de Veer SJ, Swedberg JE, Kass I, Harris JM, Hoke DE, Buckle AM. Direct and indirect mechanisms of KLK4 inhibition revealed by structure and dynamics. Sci Rep 2016; 6:35385. [PMID: 27767076 PMCID: PMC5073354 DOI: 10.1038/srep35385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
The kallikrein-related peptidase (KLK) family of proteases is involved in many aspects of human health and disease. One member of this family, KLK4, has been implicated in cancer development and metastasis. Understanding mechanisms of inactivation are critical to developing selective KLK4 inhibitors. We have determined the X-ray crystal structures of KLK4 in complex with both sunflower trypsin inhibitor-1 (SFTI-1) and a rationally designed SFTI-1 derivative to atomic (~1 Å) resolution, as well as with bound nickel. These structures offer a structural rationalization for the potency and selectivity of these inhibitors, and together with MD simulation and computational analysis, reveal a dynamic pathway between the metal binding exosite and the active site, providing key details of a previously proposed allosteric mode of inhibition. Collectively, this work provides insight into both direct and indirect mechanisms of inhibition for KLK4 that have broad implications for the enzymology of the serine protease superfamily, and may potentially be exploited for the design of therapeutic inhibitors.
Collapse
Affiliation(s)
- Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Olga Ilyichova
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon J de Veer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Itamar Kass
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
42
|
|
43
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
44
|
Chen X, Wang H, Shen Y, Wang L, Zhou M, Chen T, Shaw C. Kunitzins: Prototypes of a new class of protease inhibitor from the skin secretions of European and Asian frogs. Biochem Biophys Res Commun 2016; 477:302-9. [PMID: 27311856 DOI: 10.1016/j.bbrc.2016.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Amphibian skin secretions contain biologically-active compounds, such as anti-microbial peptides and trypsin inhibitors, which are used by biomedical researchers as a source of potential novel drug leads or pharmacological agents. Here, we report the application of a recently developed technique within our laboratory to "shotgun" clone the cDNAs encoding two novel but structurally-related peptides from the lyophilised skin secretions of one species of European frog, Rana esculenta and one species of Chinese frog, Odorrana schmackeri. Bioanalysis of the peptides established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17, which is a canonical Kunitz-type protease inhibitor motif (-CKAAFC-). Due to the presence of this structural attribute, these peptides were named kunitzin-RE (AAKIILNPKFRCKAAFC) and kunitzin-OS (AVNIPFKVHLRCKAAFC). Synthetic replicates of these two novel peptides were found to display a potent inhibitory activity against Escherichia coli but were ineffective at inhibiting the growth of Staphylococcus aureus and Candida albicans at concentrations up to 160 μM, and both showed little haemolytic activity at concentrations up to 120 μM. Subsequently, kunitzin-RE and kunitzin-OS were found to be a potent inhibitor of trypsin with a Ki of 5.56 μM and 7.56 μM that represent prototypes of a novel class of highly-attenuated amphibian skin protease inhibitor. Substitution of Lys-13, the predicted residue occupying the P1 position within the inhibitory loop, with Phe (F) resulted in decrease in trypsin inhibitor effectiveness and antimicrobial activity against Esherichia coli, but exhibits a potential inhibition activity against chymotrypsin.
Collapse
Affiliation(s)
- Xiaole Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - He Wang
- School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian, China.
| | - Yue Shen
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
45
|
Dan X, Ng TB. Two legume defense proteins suppress the mobility of nasopharyngeal carcinoma cells. J Enzyme Inhib Med Chem 2016; 31:1328-34. [PMID: 27079254 DOI: 10.3109/14756366.2015.1132709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 16-kDa trypsin inhibitor was isolated from an edible legume using various chromatographic procedures. The protein was unadsorbed on Affi-gel blue gel but adsorbed on DEAE-Sepharose and Mono Q following which media the protein was subsequently subjected to gel filtration on Superdex 75 and a final 21-fold purification was achieved. This trypsin inhibitor showed remarkable pH and thermal stability. Its inhibitory activity was impaired in the presence of 1 mM dithiothreitol. The anti-proliferative and anti-mobility activities of this trypsin inhibitor and a hemagglutinin isolated from the same legume were tested on nasopharyngeal carcinoma cells. These two defense proteins demonstrated discrepant anti-proliferative efficacies that the hemagglutinin could greatly suppress the proliferation of nasopharyngeal carcinoma cells, while the trypsin inhibitor revealed a minor effect. However, these two proteins could both attenuate the mobility of nasopharyngeal carcinoma cells. The present study revealed the potential of applying plant defense proteins in cancer treatment.
Collapse
Affiliation(s)
- Xiuli Dan
- a School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - Tzi Bun Ng
- a School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong , P.R. China
| |
Collapse
|
46
|
Maliar T, Slaba G, Nemeček P, Maliarová M, Benková M, Havrlentová M, Ondrejovič M, Kraic J. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys. Chem Biodivers 2015; 12:1678-95. [DOI: 10.1002/cbdv.201400419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 02/06/2023]
|
47
|
Analysis of key genes of jasmonic acid mediated signal pathway for defense against insect damages by comparative transcriptome sequencing. Sci Rep 2015; 5:16500. [PMID: 26560755 PMCID: PMC4642351 DOI: 10.1038/srep16500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Corn defense systems against insect herbivory involve activation of genes that lead to metabolic reconfigurations to produce toxic compounds, proteinase inhibitors, oxidative enzymes, and behavior-modifying volatiles. Similar responses occur when the plant is exposed to methyl jasmonate (MeJA). To compare the defense responses between stalk borer feeding and exogenous MeJA on a transcriptional level, we employed deep transcriptome sequencing methods following Ostrinia furnacalis leaf feeding and MeJA leaf treatment. 39,636 genes were found to be differentially expressed with O. furnacalis feeding, MeJA application, and O. furnacalis feeding and MeJA application. Following Gene Ontology enrichment analysis of the up- or down- regulated genes, many were implicated in metabolic processes, stimuli-responsive catalytic activity, and transfer activity. Fifteen genes that indicated significant changes in the O. furnacalis feeding group: LOX1, ASN1, eIF3, DXS, AOS, TIM, LOX5, BBTI2, BBTI11, BBTI12, BBTI13, Cl-1B, TPS10, DOX, and A20/AN1 were found to almost all be involved in jasmonate defense signaling pathways. All of the data demonstrate that the jasmonate defense signal pathway is a major defense signaling pathways of Asian corn borer’s defense against insect herbivory. The transcriptome data are publically available at NCBI SRA: SRS965087.
Collapse
|
48
|
Meenu Krishnan V, Murugan K. Purification, characterization and kinetics of protease inhibitor from fruits of Solanum aculeatissimum Jacq. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Lin Y, Hang H, Chen T, Zhou M, Wang L, Shaw C. pLR-HL: A Novel Amphibian Bowman-Birk-type Trypsin Inhibitor from the Skin Secretion of the Broad-folded Frog, Hylarana latouchii. Chem Biol Drug Des 2015; 87:91-100. [PMID: 26228512 DOI: 10.1111/cbdd.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
Abstract
In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a 'shotgun' cloning technique. It contains a disulphide loop between Cys(5) and Cys(15) which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse-phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesized by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nm. The substitution of Lys-8 by Phe (Phe(8) -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μm. Additionally, both the disulphide loops of pLR-HL and Phe(8) -pLR-HL were synthesized and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically active moiety.
Collapse
Affiliation(s)
- Yan Lin
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, Northern Ireland, BT9 7BL, UK.,Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, Northern Ireland, BT9 7BL, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, Northern Ireland, BT9 7BL, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, Northern Ireland, BT9 7BL, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, Northern Ireland, BT9 7BL, UK
| |
Collapse
|
50
|
Karna N, Łęgowska A, Malicki S, Dębowski D, Golik P, Gitlin A, Grudnik P, Wladyka B, Brzozowski K, Dubin G, Rolka K. Investigation of Serine-Proteinase-Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitor 1 (SFTI-1). Chembiochem 2015. [DOI: 10.1002/cbic.201500296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natalia Karna
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Anna Łęgowska
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Stanisław Malicki
- Department of Microbiology; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
- Malopolska Centre of Biotechnology; Jagiellonian Univeristy; Gronostajowa 7a 30-387 Krakow Poland
| | - Dawid Dębowski
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Przemysław Golik
- Department of Microbiology; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Agata Gitlin
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Przemysław Grudnik
- Department of Microbiology; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Benedykt Wladyka
- Department of Microbiology; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
| | - Krzysztof Brzozowski
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Grzegorz Dubin
- Department of Microbiology; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Gronostajowa 7 30-387 Krakow Poland
- Malopolska Centre of Biotechnology; Jagiellonian Univeristy; Gronostajowa 7a 30-387 Krakow Poland
| | - Krzysztof Rolka
- Department of Bioorganic Chemistry; Faculty of Chemistry; University of Gdansk; Wita Stwosza 63 80-308 Gdansk Poland
| |
Collapse
|