1
|
Lin S, Chang Y, Lee W, Chiang C, Liu S, Lee H, Jeng L, Shyu W. Role of STAT3-FOXO3 Signaling in the Modulation of Neuroplasticity by PD-L1-HGF-Decorated Mesenchymal Stem Cell-Derived Exosomes in a Murine Stroke Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404882. [PMID: 39049677 PMCID: PMC11423231 DOI: 10.1002/advs.202404882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
The limited therapeutic strategies available for stroke leave many patients disabled for life. This study assessed the potential of programmed death-ligand 1 (PD-L1) and hepatocyte growth factor (HGF)-engineered mesenchymal stem cell-derived exosomes (EXO-PD-L1-HGF) in enhancing neurological recovery post-stroke. EXO-PD-L1-HGF, which efficiently endocytosed into target cells, significantly diminishes the H2O2-induced neurotoxicity and increased the antiapoptotic proteins in vitro. EXO-PD-L1-HGF attenuates inflammation by inhibiting T-cell proliferation and increasing the number of CD8+CD122+IL-10+ regulatory T cells. Intravenous injection of EXO-PD-L1-HGF could target stromal cell-derived factor-1α (SDF-1α+) cells over the peri-infarcted area of the ischemic brain through CXCR4 upregulation and accumulation in neuroglial cells post-stroke. EXO-PD-L1-HGF facilitates endogenous nestin+ neural progenitor cell (NPC)-induced neurogenesis via STAT3-FOXO3 signaling cascade, which plays a pivotal role in cell survival and neuroprotection, thereby mitigating infarct size and enhancing neurological recovery in a murine stroke model. Moreover, increasing populations of the immune-regulatory CD19+IL-10+ and CD8+CD122+IL-10+ cells, together with reducing populations of proinflammatory cells, created an anti-inflammatory microenvironment in the ischemic brain. Thus, innovative approaches employing EXO-PD-L1-HGF intervention, which targets SDF-1α+ expression, modulates the immune system, and enhances the activation of resident nestin+ NPCs, might significantly alter the brain microenvironment and create a niche conducive to inducing neuroplastic regeneration post-stroke.
Collapse
Affiliation(s)
- Syuan‐Ling Lin
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
| | - Yi‐Wen Chang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei100Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Shih‐Ping Liu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Hsu‐Tung Lee
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei114Taiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichung402Taiwan
- Division of neurosurgical Oncology Neurological InstituteTaichung Veterans General HospitalTaichung407Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung404Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
- Department of Occupational TherapyAsia UniversityTaichung413Taiwan
| |
Collapse
|
2
|
Jiang Q, Liao J, Tan J, Hu H. Comparison of minimal access and open breast surgery: a propensity score-matched study on postoperative immune function in breast cancer. World J Surg Oncol 2024; 22:183. [PMID: 39010087 PMCID: PMC11251114 DOI: 10.1186/s12957-024-03447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Minimal access breast surgery (MABS) is commonly employed in the management of breast cancer, but there is limited research on the postoperative immune function associated with MABS. OBJECTIVE This study aimed to assess the postoperative immune function in breast patients who underwent MABS or conventional open breast surgery (COBS). METHODS We retrospectively analyzed the medical records of 829 breast cancer patients treated with either MABS or COBS at a single hospital between January 2020 and June 2023. Among them, 116 matched pairs were obtained through 1:1 propensity score matching (PSM). Flow cytometry was used to measure the percentages of CD3+, CD4+, and CD8+ cells, as well as the CD4+/CD8+ ratio, on three different time points: preoperative day 1 (PreD1), postoperative day 1 (PostD1), and postoperative day 7 (PostD7). RESULTS Both the MABS and COBS groups demonstrated a significant reduction in the percentages of CD3+, CD4+, and CD8+ cells, along with the CD4+/CD8+ ratio, from PreD1 to PostD1. Interestingly, the MABS group showed a reversal of these parameters, returning to preoperative levels by PostD7. Conversely, the COBS group showed an increase in these parameters from PostD1 to PostD7, but they still remained significantly lower than preoperative levels at PostD7. CONCLUSION MABS treatment may result in reduced postoperative immune suppression and faster recovery of preoperative immune function compared to COBS in patients.
Collapse
Affiliation(s)
- QiHua Jiang
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, Jiangxi Province, China
| | - Jing Liao
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, Jiangxi Province, China
| | - JunTao Tan
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Breast Diseases, Third Hospital of Nanchang, No. 1268, Jiuzhou Street, Chaoyang New Town, Xihu District, Nanchang City, Jiangxi Province, China
| | - Hai Hu
- Department of Breast Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, Jiangxi Province, China.
- Department of General Surgery, Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
5
|
Arsava EM, Gungor L, Sirin H, Sorgun MH, Aykac O, Batur Caglayan HZ, Kozak HH, Ozturk S, Topcuoglu MA. Muscle mass as a modifier of stress response in acute ischemic stroke patients. Sci Rep 2024; 14:10088. [PMID: 38698153 PMCID: PMC11066052 DOI: 10.1038/s41598-024-60829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
Stroke triggers a systemic inflammatory response over the ensuing days after the cerebral insult. The age and comorbidities of the stroke population make them a vulnerable population for low muscle mass and sarcopenia, the latter being another clinical condition that is closely associated with inflammation, as shown by increased levels of pro-inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR). In this study, we evaluated the relationship between post-stroke NLR changes and muscle mass in a prospective cohort of acute ischemic stroke patients (n = 102) enrolled in the Muscle Assessment in Stroke Study Turkey (MASS-TR). Admission lumbar computed tomography images were used to determine the cross-sectional muscle area of skeletal muscles at L3 vertebra level and calculate the skeletal muscle index (SMI). The median (IQR) SMI was 44.7 (39.1-52.5) cm2/m2, and the NLR at admission and follow-up were 4.2 (3.0-10.5) and 9.4 (5.7-16.2), respectively. While there was no relationship between SMI and admission NLR, a significant inverse correlation was observed between SMI and follow-up NLR (r = - 0.26; P = 0.007). Lower SMI remained significantly associated (P = 0.036) with higher follow-up NLR levels in multivariate analysis. Our findings highlight the importance of muscle mass as a novel factor related to the level of post-stroke stress response.
Collapse
Affiliation(s)
- Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06230, Altindag, Ankara, Turkey.
| | - Levent Gungor
- Department of Neurology, Ondokuz Mayis University, Samsun, Turkey
| | - Hadiye Sirin
- Department of Neurology, Ege University, Izmir, Turkey
| | | | - Ozlem Aykac
- Department of Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | | | | | | | - Mehmet Akif Topcuoglu
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06230, Altindag, Ankara, Turkey
| |
Collapse
|
6
|
Bucci T, Pastori D, Pignatelli P, Ntaios G, Abdul-Rahim AH, Violi F, Lip GY. Albumin Levels and Risk of Early Cardiovascular Complications After Ischemic Stroke: A Propensity-Matched Analysis of a Global Federated Health Network. Stroke 2024; 55:604-612. [PMID: 38323429 PMCID: PMC10896196 DOI: 10.1161/strokeaha.123.044248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND No studies have investigated the association between albumin levels and the risk of early cardiovascular complications in patients with ischemic stroke. METHODS Retrospective analysis with a federated research network (TriNetX) based on electronic medical records (International Classification of Diseases-Tenth Revision-Clinical Modification and logical observation identifiers names and codes) mainly reported between 2000 and 2023, from 80 health care organizations in the United States. Based on albumin levels measured at admission to the hospital, patients with ischemic stroke were categorized into 2 groups: (1) reduced (≤3.4 g/dL) and (2) normal (≥3.5 g/dL) albumin levels. The primary outcome was a composite of all-cause death, heart failure, atrial fibrillation, ventricular arrhythmias, myocardial infarction, and Takotsubo cardiomyopathy 30 days from the stroke. Secondary outcomes were the risk for each component of the primary outcome. Cox regression analyses were used to calculate hazard ratios (HRs) and 95% CIs following propensity score matching. RESULTS Overall, 320 111 patients with stroke had normal albumin levels (70.9±14.7 years; 48.9% females) and 183 729 (57.4%) had reduced albumin levels (72.9±14.3 years; 50.3% females). After propensity score matching, the primary outcomes occurred in 36.0% of patients with reduced and 26.1% with normal albumin levels (HR, 1.48 [95% CI, 1.46-1.50]). The higher risk in patients with reduced albumin levels was consistent also for all-cause death (HR, 2.77 [95% CI, 2.70-2.84]), heart failure (HR, 1.31 [95% CI, 1.29-1.34]), atrial fibrillation (HR, 1.11 [95% CI, 1.09-1.13]), ventricular arrhythmias (HR, 1.38 [95% CI, 1.30-1.46]), myocardial infarction (HR, 1.60 [95% CI, 1.54-1.65]), and Takotsubo cardiomyopathy (HR, 1.51 [95% CI, 1.26-1.82]). The association between albumin levels and the risk of cardiovascular events was independent of advanced age, sex, multimorbidity, and other causes of hypoalbuminemia. A progressively increased risk of adverse events was found in patients with mild and severe reduced compared to normal albumin levels. CONCLUSIONS Albumin levels are associated with the risk of early cardiovascular events and death in patients with ischemic stroke. The potential pathophysiological or therapeutic roles of albumin in patients with stroke warrant further investigation.
Collapse
Affiliation(s)
- Tommaso Bucci
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, United Kingdom (T.B., D.P., A.H.A.-R., G.Y.H.L.)
- Department of General and Specialized Surgery, Sapienza University of Rome, Italy (T.B.)
| | - Daniele Pastori
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, United Kingdom (T.B., D.P., A.H.A.-R., G.Y.H.L.)
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (D.P., P.P., F.V.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (D.P., P.P., F.V.)
| | - George Ntaios
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece (G.N.)
| | - Azmil H. Abdul-Rahim
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, United Kingdom (T.B., D.P., A.H.A.-R., G.Y.H.L.)
- Stroke Division, Department of Medicine for Older People, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Prescot, United Kingdom (A.H.A.-R.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (D.P., P.P., F.V.)
| | - Gregory Y.H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, United Kingdom (T.B., D.P., A.H.A.-R., G.Y.H.L.)
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Denmark (G.Y.H.L.)
| |
Collapse
|
7
|
Yu W, Ma J, Guo W, Xu J, Xu J, Li S, Ren C, Wu L, Wu C, Li C, Chen J, Duan J, Ma Q, Song H, Zhao W, Ji X. Night shift work was associated with functional outcomes in acute ischemic stroke patients treated with endovascular thrombectomy. Heliyon 2024; 10:e25916. [PMID: 38390161 PMCID: PMC10881325 DOI: 10.1016/j.heliyon.2024.e25916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Objective This study aimed to explore the impact of late night shift work on the functional outcomes of patients with acute ischemic stroke (AIS) treated with endovascular thrombectomy (EVT). Methods Consecutive AIS patients who underwent EVT between June 2019 and June 2021 were enrolled and divided into non-night shift work and night shift work groups based on their occupational histories. The primary outcome was the modified Rankin Scale score defined 3-month functional outcome. The secondary outcomes were 3-month mortality, symptomatic intracerebral hemorrhage (sICH), ICH and early recanalization. Results A total of 285 patients were enrolled, 35 patients (12.3%) were night shift workers, who were younger (P < 0.001) and had a significantly higher prevalence of smoking (P < 0.001), hyperlipidemia (P = 0.002), coronary heart disease (P = 0.031), and atrial fibrillation (P < 0.001). The 3-month favorable outcomes were achieved in 44.8% and 25.7% of patients in the non-night shift work and night shift work groups, respectively (adjusted odds ratio [OR]: 0.24, 95% CI: 0.10-0.57; adjusted P = 0.001). No difference was found in 3-month mortality (adjusted OR: 0.43; 95% CI: 0.14-1.25, adjusted P = 0.121), rates of ICH (adjusted OR: 0.73; 95% CI: 0.33-1.60; adjusted P = 0.430), sICH (adjusted OR: 0.75; 95% CI: 0.34-1.67; adjusted P = 0.487), or early successful recanalization (adjusted OR: 0.42; 95% CI: 0.12-1.56; adjusted P = 0.197). These results were consistent after PSM analysis. Conclusion Our findings suggest that late night shift work is significantly associated with unfavorable outcomes in patients with AIS after EVT.
Collapse
Affiliation(s)
- Wantong Yu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Chuanhui Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Feng Y, Bai X, Li W, Cao W, Xu X, Yu F, Fu Z, Tian Q, Guo X, Wang T, Sha A, Chen Y, Gao P, Wang Y, Chen J, Ma Y, Chen F, Dmytriw AA, Regenhardt RW, Lu J, Ma Q, Yang B, Jiao L. Postoperative neutrophil-lymphocyte ratio predicts unfavorable outcome of acute ischemic stroke patients who achieve complete reperfusion after thrombectomy. Front Immunol 2022; 13:963111. [PMID: 36275640 PMCID: PMC9585914 DOI: 10.3389/fimmu.2022.963111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Only approximately half of anterior circulation large vessel occlusion (LVO) patients receiving endovascular treatment (EVT) have a favorable outcome. The aim of this study was to explore the association of dynamic inflammatory markers (i.e., neutrophil to lymphocyte ratios, NLR, measured at different times after EVT) as well as other potential influencing factors with unfavorable outcome among acute ischemic stroke (AIS) patients who achieved complete reperfusion after EVT. Methods Patients treated with EVT for LVO between January 2019 to December 2021 were prospectively enrolled. Complete reperfusion was defined as modified thrombolysis in cerebral infarction (mTICI) grade 3. A modified Rankin scale at 90 days (mRS90) of 3-6 was defined as unfavorable outcome (i.e., futile reperfusion). A logistic regression analysis was performed with unfavorable outcome as a dependent variable. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were then used to determine the diagnostic values of NLR and other relevant factors. Results 170 patients with complete reperfusion (mTICI 3) were included in this study. Unfavorable outcome was observed in 70 (41.2%). Higher NLR within 24h (p=0.017) and at 3-7d (p=0.008) after EVT were an independent risk factors for unfavorable outcome at 3 months. In addition, older age, higher NIHSS scores, poor collaterals, and general anesthesia were independent predictors of unfavorable outcomes. When accounting for NLR, the diagnostic efficiency improved compared to conventional characteristics. Conclusion Our findings suggest that advanced age, increased stroke severity, poor collaterals, general anesthesia, and NLR are independent predictors for an unfavorable clinical outcome following complete reperfusion after EVT. Neuroinflammation may merit particular attention in future studies.
Collapse
Affiliation(s)
- Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Liaocheng Brain Hospital, Liaocheng, China
| | - Wenbo Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Fan Yu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhaolin Fu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, United States
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Arman Sha
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanfei Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Peng Gao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabing Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Fei Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert W Regenhardt
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Scott XO, Chen SH, Hadad R, Yavagal D, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. J Cereb Blood Flow Metab 2022; 42:1827-1839. [PMID: 35673992 PMCID: PMC9536118 DOI: 10.1177/0271678x221106956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Inflammation plays an important role in the pathogenesis of stroke. The differential expression of inflammatory and angiogenic factors in thrombi and plasma remain undefined. In this observational cohort study, we evaluated angiogenic factors and inflammatory cytokines, in cerebral thrombi, local cerebral plasma (CP), and peripheral plasma (PP) in patients with acute ischemic stroke. Protein analysis of thrombi, CP and PP were used to measure angiogenic and inflammatory proteins using electrochemiluminescence. Our data indicate that VEGF-A, VEGF-C, bFGF, IL-4, IL-13, IL-1β, IL-2, IL-8, IL-16, IL-6 and IL-12p70 were higher in the thrombi of acute ischemic stroke patients than in the CP and PP of stroke patients. Moreover, the protein levels of GM-CSF were lower in the PP than in the CP and the clot. Moreover, VEGF-D, Flt-1, PIGF, TIE-2, IL-5, TNF-β, IL-15, IL-12/IL-23p40, IFN-γ and IL-17A were higher in PP and CP than in thrombi. Our results show that cytokines mediating the inflammatory response and proteins involved in angiogenesis are differentially expressed in thrombi within the cerebral and peripheral circulations. These data highlight the importance of identifying new biomarkers in different compartments of the circulatory system and in thrombi that may be used for the diagnosis and treatment of stroke patients.
Collapse
Affiliation(s)
- Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie H Chen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric C Peterson
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Starke
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:299-315. [PMID: 35034743 DOI: 10.1016/b978-0-12-819410-2.00016-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
11
|
Zhu F, Chen H, Xu M, Zhang X, Yu J, Pan Y, Zhu W. Cryptotanshinone possesses therapeutic effects on ischaemic stroke through regulating STAT5 in a rat model. PHARMACEUTICAL BIOLOGY 2021; 59:465-471. [PMID: 33915069 PMCID: PMC8871624 DOI: 10.1080/13880209.2021.1914672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Cryptotanshinone (CT), a lipophilic compound extracted from roots of Salvia miltiorrhiza Bunge (Lamiaceae) (Danshen), has multiple properties in diseases, such as pulmonary fibrosis, lung cancer, and osteoarthritis. Our previous findings suggest that CT plays a protective role in cerebral stroke. However, the molecular mechanisms underlying CT protection in ischaemic stroke remain unclear. OBJECTIVE This study examines the effect of CT on ischaemic stroke. MATERIALS AND METHODS We used the middle cerebral artery occlusion (MCAO) rat (Sprague-Dawley rats, 200 ± 20 g, n = 5) model with a sham operation group was treated as negative control. MCAO rats were treated with 15 mg/kg CT using intragastric administration. Moreover, TGF-β (5 ng/mL) was used to treat MCAO rats as a positive control group. RESULTS The 50% inhibitory concentration (IC50) of CT on CD4+ cell damage was 485.1 μg/mL, and median effective concentration (EC50) was 485.1 μg/mL. CT attenuates the infarct region in the MCAO model. The percentage of CD4+CD25+FOXP3+ Treg cells in the peripheral blood of the MCAO group was increased with CT treatment. The protein level of FOXP3 and the phosphorylation of STAT5 were recovered in the CD4+CD25+ Treg cells of model group after treated with CT. Importantly, the effects of CT treatment were blocked by treatment with the inhibitor STAT5-IN-1 in CD4+ T cells of the MCAO model. DISCUSSION AND CONCLUSION Our findings not only enhance the understanding of the mechanisms underlying CT treatment, but also indicate its potential value as a promising agent in the treatment of ischaemic stroke. Further study will be valuable to examine the effects of CT on patients with ischaemic stroke.
Collapse
Affiliation(s)
- Feihong Zhu
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Hehe Chen
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Meifei Xu
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Xiajun Zhang
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Jing Yu
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Yali Pan
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
| | - Weixin Zhu
- Department of Rehabilitation, Jinhua Central Hospital, Jinhua City, P.R. China
- CONTACT Weixin Zhu Department of Rehabilitation, Jinhua Central Hospital, Mingyue Street No. 351, Jinhua City321000, P.R. China
| |
Collapse
|
12
|
Wong LM, Phoon LQ, Wei LK. Epigenetics Modifications in Large-Artery Atherosclerosis: A Systematic Review. J Stroke Cerebrovasc Dis 2021; 30:106033. [PMID: 34598837 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES In recent years, the evidence of the relationship between epigenetics and acute ischemic stroke (AIS) were accumulating, however, the epigenetic characteristics that directs specifically towards the aetiology of large-artery atherosclerosis (LAA) remain ambiguous. The aim of this study was to highlight the overall evidence concerning the epigenetic mechanisms associated with the occurrence of LAA. MATERIALS AND METHODS Studies that involve investigations related to epigenetic markers (DNA methylation and RNA modifications) and LAA were retrieved from eleven scientific publication databases. The studies were screened through the pre-set inclusion and exclusion criteria prior to the NOS evaluation. RESULTS Eligible studies (n=25) were evaluated. Of which, six reported on DNA methylation and 19 studies assessed RNA modifications (16 on miRNAs, two on lncRNAs, and one study on circRNA). Hypomethylation of MTRNR2L8 and ERα promoters; microRNAs (miR-7-2-3p, miR-16, miR-34a-5p, miR-126, miR-143, miR-200b, miR-223, miR-503, miR-1908, miR-146a rs2910164 C/G, miR-149 rs2292832 T/C, miR-200b rs7549819 T/C, miR-34a rs2666433); lncRNA of ZFAS1; and circRNA of hsa_circRNA_102488 were associated with LAA significantly. CONCLUSION Current systematic review highlighted hypomethylation of miRNAs and lncRNA might be the potential biomarkers for LAA.
Collapse
Affiliation(s)
- Li Min Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia
| | - Lee Quen Phoon
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia
| | - Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia.
| |
Collapse
|
13
|
Li X, Liu H, Yang Z, Duan H, Wang Z, Cheng Z, Song Z, Wu X. Study on the interaction of hyaluronidase with certain flavonoids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Nguyen VA, Crewther SG, Howells DW, Wijeratne T, Ma H, Hankey GJ, Davis S, Donnan GA, Carey LM. Acute Routine Leukocyte and Neutrophil Counts Are Predictive of Poststroke Recovery at 3 and 12 Months Poststroke: An Exploratory Study. Neurorehabil Neural Repair 2021; 34:844-855. [PMID: 32940147 DOI: 10.1177/1545968320948607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Aims. White blood cell (WBC) and neutrophil counts (NC) are common markers of inflammation and neurological stroke damage and could be expected to predict poststroke outcomes. Objective. The aim of this study was to explore the prognostic value of early poststroke WBC and NC to predict cognition, mood, and disability outcomes at 3 and 12 months poststroke. Methods. Routine clinical analyses WBC and NC were collected at 3 time points in the first 4 days of hospitalization from 156 acute stroke patients. Correlations using hierarchical or ordinal regressions were explored between acute WBC and NC and functional recovery, depression, and cognition at 3 and 12 months poststroke, after covarying for age and baseline stroke severity. Results. We found significant increases in NC between <12 hours and 24 to 48 hours time points (P = .05). Hierarchical regressions, covaried for age and baseline stroke severity, found that 24 to 48 hours WBC (P = .05) and NC (P = .04) significantly predicted 3-month cognition scores. Similarly, 24 to 48 hours WBC (P = .05) and NC (P = .02) predicted cognition scores at 12 months. Increases in WBC and NC were predictive of increased cognition scores at both 3 and 12 months (positive recovery) though there were no significant associations between WBC and NC and disability or depression scores. Conclusions. Routine acute stroke clinical laboratory tests such as WBC and NC taken between 24 and 48 hours poststroke are predictive of cognition poststroke. It is interpreted that higher rapid immunological activation in the acute phase is an indicator for the trajectory of positive stroke recovery.
Collapse
Affiliation(s)
- Vinh A Nguyen
- La Trobe University, College of Science, Health and Engineering, Bundoora, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Sheila G Crewther
- La Trobe University, College of Science, Health and Engineering, Bundoora, Victoria, Australia
| | | | - Tissa Wijeratne
- Melbourne Medical School, Western Health, Sunshine Hospital, St Albans, Victoria, Australia
| | - Henry Ma
- Department of Medcine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Graeme J Hankey
- University of Western Australia, Perth, Western Australia, Australia
| | - Stephen Davis
- Melbourne Brain Centre, Royal Melbourne Hospital and University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey A Donnan
- Melbourne Brain Centre, Royal Melbourne Hospital and University of Melbourne, Parkville, Victoria, Australia
| | - Leeanne M Carey
- La Trobe University, College of Science, Health and Engineering, Bundoora, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| |
Collapse
|
15
|
Baranovicova E, Kalenska D, Grendar M, Lehotsky J. Metabolomic Recovery as a Result of Ischemic Preconditioning Was More Pronounced in Hippocampus than in Cortex That Appeared More Sensitive to Metabolomic Blood Components. Metabolites 2021; 11:metabo11080516. [PMID: 34436457 PMCID: PMC8398863 DOI: 10.3390/metabo11080516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
The study of an organism's response to ischemia at different levels is essential to understand the mechanism of the injury as well as protection. We used the occlusion of four vessels as an animal model of global cerebral ischemia to investigate metabolic alterations in cerebral cortex, hippocampus, blood plasma, as well as in a remote organ, the heart, in rats undergoing 24 h postischemic reperfusion. By inducing sublethal ischemic stimuli, we focused on endogenous phenomena known as ischemic tolerance that is currently the best known and most effective way of protecting against ischemic injury. NMR spectroscopy was used to analyze relative metabolite levels in homogenates from rats' cerebral cortex, hippocampus, and heart together with deproteinized blood plasma. In individual animals subjected to global cerebral ischemia, relative concentrations of the essential amino acids isoleucine, valine, phenylalanine, and tyrosine in cerebral cortex correlated with those in blood plasma (p < 0.05, or boundary significant p < 0.09). This did not apply for the hippocampus, suggesting a closer relation between ischemic cortex and metabolomic blood components. Hippocampal non-participation on correlation with blood components may emphasize the observed partial or full normalization the post-ischemically altered levels of a number of metabolites in the preconditioned animals. Remarkably, that was observed for cortex to a lesser extent. As a response to the global cerebral ischemia in heart tissue, we observed decreased glutamate and increased 3-hydroxybutyrate. Ischemically induced semi-ketotic state and other changes found in blood plasma partially normalized when ischemic preconditioning was introduced. Some metabolomic changes were so strong that even individual metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Marian Grendar
- Biomedical Center BioMed, Bioinformatical Unit, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-442
| |
Collapse
|
16
|
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in Post-Ischemic Neurodegeneration of the Brain: Friend, Foe, or Both? Int J Mol Sci 2021; 22:4405. [PMID: 33922467 PMCID: PMC8122836 DOI: 10.3390/ijms22094405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the leading causes of neurological mortality, disability, and dementia worldwide is cerebral ischemia. Among the many pathological phenomena, the immune system plays an important role in the development of post-ischemic degeneration of the brain, leading to the development of neuroinflammatory changes in the brain. After cerebral ischemia, the developing neuroinflammation causes additional damage to the brain cells, but on the other hand it also plays a beneficial role in repair activities. Inflammatory mediators are sources of signals that stimulate cells in the brain and promote penetration, e.g., T lymphocytes, monocytes, platelets, macrophages, leukocytes, and neutrophils from systemic circulation to the brain ischemic area, and this phenomenon contributes to further irreversible ischemic brain damage. In this review, we focus on the issues related to the neuroinflammation that occurs in the brain tissue after ischemia, with particular emphasis on ischemic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, PL 20-090 Lublin, Poland;
| |
Collapse
|
17
|
Chen Z, Hu Q, Huo Y, Zhang R, Fu Q, Qin X. Serum Interleukin-33 is a Novel Predictive Biomarker of Hemorrhage Transformation and Outcome in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2020; 30:105506. [PMID: 33307292 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Hemorrhage Transformation (HT) in acute ischemic stroke (AIS) depends on multiple factors. Some studies have shown that serum interleukin-33 (IL-33) is of central significance as a neuroprotective factor. However, the relationship between serum IL-33 and HT in AIS has not been evaluated. OBJECTIVE To investigate the relationship between serum IL-33 concentration and HT in AIS. METHODS We recruited 151 consecutive non-thrombolytic patients with AIS clinically diagnosed in The First Affiliated Hospital of Chongqing Medical University from December 2018 to October 2019. If the patients showed radiographic presentation of HT within two weeks following admission, they were assigned to the HT group; others were assigned to the non-HT group. There were 40 healthy control subjects recruited during the same period. Serum IL-33 concentration was detected by ELISA and the independent risk value of HT in AIS was predicted by multivariate logistic regression. The accuracy was analyzed by receiver operating characteristic (ROC) curves. In three months after admission, the functional outcome was measured by modified Rankin scale (mRS). RESULTS ROC curve showed that the area under the curve (AUC) of serum IL-33 was 0.739 (95% CI: 0.657-0.821, P < .001) in predicting HT in AIS. When serum IL-33 concentration was ≤ 67.66 ng/L, the sensitivity and specificity of the prediction were 81.3% and 63%, respectively. Multivariate logistic regression analysis showed that serum IL-33 concentration ≤ 67.66 ng/L was an independent predictor of HT in AIS (OR = 5.773, 95% CI: 1.685-19.792, P = .005). The follow-up results of mRS showed a higher probability of an unfavorable outcome in those with HT compared to those without HT (OR = 6.520, 95% CI: 2.530-16.803, P < .001). CONCLUSIONS HT in AIS is negatively correlated with outcome. Furthermore, serum IL-33 is an independent predictive biomarker of HT and outcome in AIS.
Collapse
Affiliation(s)
- Zhenlei Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Qingzhe Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Yingchao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Qing Fu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China and Chongqing Key Laboratory of Neurobiology, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
18
|
Nikolic D, Jankovic M, Petrovic B, Novakovic I. Genetic Aspects of Inflammation and Immune Response in Stroke. Int J Mol Sci 2020; 21:ijms21197409. [PMID: 33049931 PMCID: PMC7582307 DOI: 10.3390/ijms21197409] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic determinants play important role in the complex processes of inflammation and immune response in stroke and could be studied in different ways. Inflammation and immunomodulation are associated with repair processes in ischemic stroke, and together with the concept of preconditioning are promising modes of stroke treatment. One of the important aspects to be considered in the recovery of patients after the stroke is a genetic predisposition, which has been studied extensively. Polymorphisms in a number of candidate genes, such as IL-6, BDNF, COX2, CYPC19, and GPIIIa could be associated with stroke outcome and recovery. Recent GWAS studies pointed to the variant in genesPATJ and LOC as new genetic markers of long term outcome. Epigenetic regulation of immune response in stroke is also important, with mechanisms of histone modifications, DNA methylation, and activity of non-coding RNAs. These complex processes are changing from acute phase over the repair to establishing homeostasis or to provoke exaggerated reaction and death. Pharmacogenetics and pharmacogenomics of stroke cures might also be evaluated in the context of immuno-inflammation and brain plasticity. Potential novel genetic treatment modalities are challenged but still in the early phase of the investigation.
Collapse
Affiliation(s)
- Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, 11000 Belgrade, Serbia
- Correspondence:
| | - Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Bojana Petrovic
- Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
19
|
Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res Bull 2020; 164:314-324. [PMID: 32858128 DOI: 10.1016/j.brainresbull.2020.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and neurological disorders. Baicalin is one of the important flavonoids, which is extracted from Scutellaria baicalensis Georgi. Recently, numerous in vivo and in vitro studies have shown that baicalin has salutary effects for anti-inflammatory and immunomodulatory and has been demonstrated to exert beneficial therapeutic properties in cerebrovascular and neurological diseases. In this review, we aim to discuss that baicalin exerts anti-inflammatory effects through multiple pathways and targets, thus affecting the production of a variety of inflammatory cytokines and neuroprotective process of neurological diseases; furthermore, the related targets of the anti-inflammatory effects of baicalin were analyzed via using the tools of network pharmacology, to provide theoretical basis and innovative ideas for the future clinical application of baicalin.
Collapse
|
20
|
Mao LL, Chen WY, Ma AJ, Ji LL, Huang TT. High serum OX40 ligand correlates with severity and mortality in patients with massive cerebral infarction. Medicine (Baltimore) 2020; 99:e20883. [PMID: 32702829 PMCID: PMC7373542 DOI: 10.1097/md.0000000000020883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OX40 ligand (OX40L) is a member of tumor necrosis factors (TNF)/TNFR superfamily and is mainly expressed in activated T cells and participates in various inflammatory reactions. However, it remains unclear about the role of serum OX40L as a biomarker of cerebral infarction (CI). This study aimed to explore the possibility of serum OX40L as a meaningful predictor in mortality of CI. Severe CI patients were included to collect clinicopathological and laboratory data and measure serum OX40L level. Patients were followed up after discharge and 60-day survival rate was used as the study endpoint. The results showed that of all 294 patients, 123 (41.8%) died within 60 days after admission. Serum OX40L levels were significantly higher in patients with severe CI compared to healthy controls, and were significantly higher in nonsurvivors compared to survivors (P < .05). The levels of OX40L were correlated with Glasgow Coma Scale score, serum creatinine and high-sensitive C-reactive protein. Multivariate logistic regression analysis showed that serum OX40L level was an independent prognostic factor for 60-day mortality, after control of pulmonary infection, glasgow coma scale score and high-sensitive C-reactive protein (odds ratio = 1.089; 95% confidence interval = 1.053-1.126; P < .001). The receiver operating characteristic (ROC) curve was used to predict the best cut-off of serum OX40L for 60-day survival as 35.5 ng/mL. Patients with high serum OX40L levels (>35.5 ng/mL) had a significantly higher mortality within 60 days (hazard ratio = 2.885; 95% confidence interval = 1.901-4.378). In conclusion, OX40L is a serum biomarker of patients with CI and associated with severity and mortality of this disease.
Collapse
Affiliation(s)
- Lun-Lin Mao
- Department of Neurology, Wujin Hospital Affiliated to Jiangsu University
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China
| | - Wen-Ya Chen
- Department of Neurology, Wujin Hospital Affiliated to Jiangsu University
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China
| | - Ai-Jin Ma
- Department of Neurology, Wujin Hospital Affiliated to Jiangsu University
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China
| | - Li-Li Ji
- Department of Neurology, Wujin Hospital Affiliated to Jiangsu University
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China
| | - Ting-Ting Huang
- Department of Neurology, Wujin Hospital Affiliated to Jiangsu University
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
21
|
Amruta N, Rahman AA, Pinteaux E, Bix G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J Neuroimmunol 2020; 346:577318. [PMID: 32682140 PMCID: PMC7794086 DOI: 10.1016/j.jneuroim.2020.577318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Stroke is the leading cause of death and the main cause of disability in surviving patients. The detrimental interaction between immune cells, glial cells, and matrix components in stroke pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is being directed toward understanding the exact neuroinflammatory events that take place as a result of stroke. The initiation of a potent cytokine response, along with immune cell activation and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. This highlights the need for a better understanding of the neuroinflammatory and fibrotic processes, as well as the need to identify new mechanisms and potential modulators. In this review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling inhibitors in order to identify new pharmacological means of intervention.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Abir A Rahman
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
22
|
Lin KC, Chen KH, Wallace CG, Chen YL, Ko SF, Lee MS, Yip HK. Combined Therapy With Hyperbaric Oxygen and Melatonin Effectively Reduce Brain Infarct Volume and Preserve Neurological Function After Acute Ischemic Infarct in Rat. J Neuropathol Exp Neurol 2020; 78:949-960. [PMID: 31504676 DOI: 10.1093/jnen/nlz076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study tested the hypothesis that combined hyperbaric oxygen (HBO) and melatonin (Mel) was superior to either one for protecting the brain functional and parenchymal integrity from acute ischemic stroke (IS) injury. Adult-male Sprague-Dawley rats were divided into groups 1 (sham-operated control), 2 (IS), 3 (IS + HBO), 4 (IS + Mel), and 5 (IS + HBO-Mel). By day 28 after IS, the brain infarct area (BIA) was lowest in group 1, highest in group 2, significantly higher in groups 3 and 4 than in group 5, but not different between groups 3 and 4. The neurological function at day 7, 14, and 28 exhibited an opposite pattern to BIA among the 5 groups. The protein expressions of inflammatory (IL-1β/IL-6/iNOS/TNF-α/p-NF-κB), apoptotic (cleaved-caspase3/cleaved-PARP/mitochondrial Bax), mitochondrial/DNA-damaged (cytochrome-C/γ-H2AX), oxidative stress (NOX-1/NOX-2), and autophagy (i.e. ratio of CL3B-II/CL3B-I) biomarkers displayed an identical pattern of BIA among 5 groups. Cellular expressions of inflammation (F4/80+/GFAP+) and DNA-damaged biomarker (γ-H2AX+) exhibited an identical pattern, whereas the integrities of myelin sheath/neuron (MPB+/NeuN+), endothelial cell (CD31+/vWF+), and number of small vessels exhibited an opposite pattern of BIA among the 5 groups. Combined HBO-Mel therapy offered an additional benefit in protecting the brain against IS injury.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine
- Institute for Translational Research in Biomedicine
| | | | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine
- Institute for Translational Research in Biomedicine
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Li XM, Wang XY, Feng XW, Shao MM, Liu WF, Ma QQ, Wang EP, Chen J, Shao B. Serum interleukin-33 as a novel marker for long-term prognosis and recurrence in acute ischemic stroke patients. Brain Behav 2019; 9:e01369. [PMID: 31397082 PMCID: PMC6749472 DOI: 10.1002/brb3.1369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Interleukin-33, a newly identified member of interleukin-1 family, had been confirmed to play a crucial role in regulating inflammatory responses in various disease. However, the exact role of interleukin-33 in the disease process of acute ischemic stroke still remains unclear. This study aims to demonstrate the relationship between interleukin-33 levels and long-term functional outcome as well as ischemic stroke recurrence. METHODS Three hundred and four first-ever acute ischemic stroke patients were recruited and basic information and history of all subjects taken within 72 hr on admission. The functional outcome was estimated by Barthel index. The multivariate logistic regression was used to analyze the prognosis, while the Cox proportional hazard model was applied to assess the recurrence risk. RESULTS Out of 304 subjects, 259 patients successfully completed scheduled two-year follow-up. We found that higher interleukin-33 levels correlated positively with better prognosis as compared with those with lower interleukin-33 levels who presented with poorer outcome (62.45 ± 20.50 ng/ml vs. 51.58 ± 19.16 ng/ml, p < .001). After adjustment of all confounders, interleukin-33 was associated with the one-year prognosis with an adjusted odds ratio of 0.956 (95% confidence interval, 0.937-0.976, p < .001). Furthermore, interleukin-33 levels were also closely related to recurrent ischemic stroke with an adjusted hazard ratio of 0.979 (95% confidence interval, 0.961-0.997, p = .025). CONCLUSIONS IL-33 can be used to predict the long-term outcomes and ischemic stroke recurrence in first-ever acute ischemic stroke patients.
Collapse
Affiliation(s)
- Xian-Mei Li
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yang Wang
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Wen Feng
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Meng Shao
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Fang Liu
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qin-Qin Ma
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - En-Pei Wang
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bei Shao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, Chen X, Yang S, Jin K, Shao B. The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke. Aging Dis 2019; 10:544-556. [PMID: 31164999 PMCID: PMC6538221 DOI: 10.14336/ad.2018.0820] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is an unavoidable process and contributes to the destruction of cerebral tissue during the acute ischemic stroke (AIS) phase and has not been addressed fully to date. Insightful understanding of correlation of inflammatory mediators and stroke outcome may provide new biomarkers or therapeutic approaches for ischemic stroke. Here, we prospectively recruited 180 first-ever AIS patients within 72 hrs after stroke onset. We used the National Institutes of Health Stroke Scale (NIHSS) to quantify stroke severity and modified Rankin scale (mRS) to assess the 3-month outcome for AIS patients. Initially, we screened 35 cytokines, chemokines, and growth factors in sera from 75 AIS patients and control subjects. Cytokines that were of interest were further investigated in the 180 AIS patients and 14 heathy controls. We found that IL-1RA, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, EGF, G-CSF, Flt-3L, GM-CSF and Fractalkine levels were significantly decreased in severe stroke patients. In particular, IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-15, G-CSF and GM-CSF were significantly reduced in AIS patients with poor outcome, compared to those with good prognosis. IL-6 was notably higher in the poor outcome group. Only IL-9 level decreased in the large infarct volume group. After adjusting for confounders, we found that IL-5 was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.042 (P = 0.007), whereas IL-6 was an independent risk predictor for AIS patients with an adjusted OR of 1.293 (P = 0.003). Our study suggests the levels of serum cytokines are related to stroke severity, short-term prognosis and cerebral infarct volume in AIS patients.
Collapse
Affiliation(s)
- Xianmei Li
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Siyang Lin
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoli Chen
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Wensi Huang
- 3Department of Neurology, The People's Hospital of Pingyang, Wenzhou, China
| | - Qian Li
- 4Department of Neurology, Jinhua Municipal Central Hospital, Wenzhou, China
| | - Hongxia Zhang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xudong Chen
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohua Yang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kunlin Jin
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Bei Shao
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Arac A, Grimbaldeston MA, Galli SJ, Bliss TM, Steinberg GK. Meningeal Mast Cells as Key Effectors of Stroke Pathology. Front Cell Neurosci 2019; 13:126. [PMID: 31001088 PMCID: PMC6457367 DOI: 10.3389/fncel.2019.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is the leading cause of adult disability in the United States. Because post-stroke inflammation is a critical determinant of damage and recovery after stroke, understanding the interplay between the immune system and the brain after stroke holds much promise for therapeutic intervention. An understudied, but important aspect of this interplay is the role of meninges that surround the brain. All blood vessels travel through the meningeal space before entering the brain parenchyma, making the meninges ideally located to act as an immune gatekeeper for the underlying parenchyma. Emerging evidence suggests that the actions of immune cells resident in the meninges are essential for executing this gatekeeper function. Mast cells (MCs), best known as proinflammatory effector cells, are one of the long-term resident immune cells in the meninges. Here, we discuss recent findings in the literature regarding the role of MCs located in the meningeal space and stroke pathology. We review the latest advances in mouse models to investigate the roles of MCs and MC-derived products in vivo, and the importance of using these mouse models. We examine the concept of the meninges playing a critical role in brain and immune interactions, reevaluate the perspectives on the key effectors of stroke pathology, and discuss the opportunities and challenges for therapeutic development.
Collapse
Affiliation(s)
- Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Stephen J. Galli
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Tonya M. Bliss
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- Stanford Stroke Center, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gary K. Steinberg
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- Stanford Stroke Center, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Zhang H, Xiong X, Gu L, Xie W, Zhao H. CD4 T cell deficiency attenuates ischemic stroke, inhibits oxidative stress, and enhances Akt/mTOR survival signaling pathways in mice. Chin Neurosurg J 2018; 4. [PMID: 32832192 PMCID: PMC7398241 DOI: 10.1186/s41016-018-0140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Inhibition of CD4 T cells reduces stroke-induced infarction by inhibiting neuroinflammation in the ischemic brain in experimental stroke. Nevertheless, little is known about its effects on neuronal survival signaling pathways. In this study, we investigated the effects of CD4 T cell deficits on oxidative stress and on the Akt/mTOR cell signaling pathways after ischemic stroke in mice. Methods MHC II gene knockout C57/BL6 mice, with significantly decreased CD4 T cells, were used. Stroke was induced by 60-min middle cerebral artery (MCA) occlusion. Ischemic brain tissues were harvested for Western blotting. Results The impairment of CD4 T cell production resulted in smaller infarction. The Western blot results showed that iNOS protein levels robustly increased at 5 h and 24 h and then returned toward baseline at 48 h in wild-type mice after stroke, and gene KO inhibited iNOS at 5 h and 24 h. In contrast, the anti-inflammatory marker, arginase I, was found increased after stroke in WT mice, which was further enhanced in the KO mice. In addition, stroke resulted in increased phosphorylated PTEN, Akt, PRAS40, P70S6, and S6 protein levels in WT mice, which were further enhanced in the animals whose CD4 T cells were impaired. Conclusion The impairment of CD4 T cell products prevents ischemic brain injury, inhibits inflammatory signals, and enhances the Akt/mTOR cell survival signaling pathways.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd., MSLS Bldg., Room P306, Stanford, CA 94305, USA.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd., MSLS Bldg., Room P306, Stanford, CA 94305, USA.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lijuan Gu
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd., MSLS Bldg., Room P306, Stanford, CA 94305, USA.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiying Xie
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd., MSLS Bldg., Room P306, Stanford, CA 94305, USA.,Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd., MSLS Bldg., Room P306, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Liu DD, Chu SF, Chen C, Yang PF, Chen NH, He X. Research progress in stroke-induced immunodepression syndrome (SIDS) and stroke-associated pneumonia (SAP). Neurochem Int 2018; 114:42-54. [DOI: 10.1016/j.neuint.2018.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
|
28
|
Consoli D, Vidale S, Arnaboldi M, Cavallini A, Consoli A, Galati F, Guidetti D, Micieli G, Rasura M, Sterzi R, Toni D, Inzitari D. Infections and Chlamydia pneumoniae antibodies influence the functional outcome in thrombolysed strokes. J Neurol Sci 2017; 381:95-99. [DOI: 10.1016/j.jns.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
|
29
|
Kaiafa G, Savopoulos C, Kanellos I, Mylonas KS, Tsikalakis G, Tegos T, Kakaletsis N, Hatzitolios AI. Anemia and stroke: Where do we stand? Acta Neurol Scand 2017; 135:596-602. [PMID: 27480069 DOI: 10.1111/ane.12657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
Abstract
Anemia seems to have a clear relationship with cerebrovascular events (CVEs), as there is a direct connection between central nervous system, blood supply, and tissue oxygen delivery. Anemia is considered a hyperkinetic state which disturbs endothelial adhesion molecule genes that may lead to thrombus formation. Furthermore, blood flow augmentation and turbulence may result in the migration of this thrombus, thus producing artery-to-artery embolism. It is for this reason that anemia is characterized as "the fifth cardiovascular risk factor." Anemia is consistently present in patients with acute stroke, ranging from 15% to 29%, while the mortality rate was significantly higher in patients suffering from anemia at the time of admission. Different types of anemia (sickle cell disease, beta thalassemia, iron deficiency anemia [IDA]) have been associated with increased cardiovascular and CVE risk. The relation between hemoglobin level and stroke would require further investigation. Unfortunately, treatment of anemia in cardiovascular and cerebrovascular disease still lacks clear targets and specific therapy has not developed. However, packed red blood cell transfusion is generally reserved for therapy in patients with CVEs. What is more, treatment of IDA prevents thrombosis and the occurrence of stroke; although iron levels should be checked, chronic administration favors thrombosis. Regarding erythropoietin (EPO), as there is lack of studies in anemic stroke patients, it would be desirable to utilize both neuroprotective and hematopoietic properties of EPO in anemic stroke patients. This review aims to clarify the poorly investigated and defined issues concerning the relation of anemia and CVEs.
Collapse
Affiliation(s)
- G. Kaiafa
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - C. Savopoulos
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - I. Kanellos
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - K. S. Mylonas
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - G. Tsikalakis
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - T. Tegos
- First Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - N. Kakaletsis
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
- First Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - A. I. Hatzitolios
- First Propaedeutic Department of Internal Medicine; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
30
|
Edwards HB, Mallick AA, O'Callaghan FJK. Immunotherapy for arterial ischaemic stroke in childhood: a systematic review. Arch Dis Child 2017; 102:410-415. [PMID: 27864289 DOI: 10.1136/archdischild-2016-311034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/13/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is little evidence about either prevention or treatment of childhood arterial ischaemic stroke (AIS). However, drugs that regulate the immune and inflammatory response could theoretically prevent occurrence or recurrence of AIS. Additionally, as an acute treatment, they may limit the neurological damage caused by AIS. Here, we systematically review the evidence on the use of immunotherapy in childhood AIS. DESIGN A systematic review of publications in databases Embase and Medline from inception. All types of evidence were included from trials, cohorts, case-control and cross-sectional studies and case reports. RESULTS 34 reports were included: 32 observational studies and 2 trials. Immunotherapy was used in two key patient groups: arteriopathy and acute infection. The majority were cases of varicella and primary angiitis of the central nervous system. All three cohorts and 80% of the case studies were treated with steroids. Recurrence rates were low. Analytical studies weakly associated steroids with lower odds of new stroke and neurological deficits, and better cognitive outcomes in the context of Moyamoya disease and tuberculosis. CONCLUSIONS Immunotherapies are used in children with AIS, mainly as steroids for children with arteriopathy. However, there is currently little robust evidence to either encourage or discourage this practice. There is weak evidence consistent with the hypothesis that in certain children at risk, steroids may both reduce the risk of occurrent/recurrent stroke and enhance neurological outcomes. As the potential benefit is still uncertain, this indicates that a trial of steroids in childhood AIS may be justified.
Collapse
Affiliation(s)
- Hannah B Edwards
- School of Social and Community Medicine, University of Bristol and National Institute for Health Research (NIHR), Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Bristol, UK
| | - Andrew A Mallick
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Level 6, Education and Research Centre, Bristol, UK
| | - Finbar J K O'Callaghan
- Department of Clinical Neurosciences, University College London and Great Ormond Street Hospital for Children Institute of Child Health, University College London, London, UK
| |
Collapse
|
31
|
Liu P, Li R, Antonov AA, Wang L, Li W, Hua Y, Guo H, Wang L, Liu P, Chen L, Tian Y, Xu F, Zhang Z, Zhu Y, Huang Y. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression. J Proteome Res 2017; 16:773-779. [PMID: 28092160 DOI: 10.1021/acs.jproteome.6b00779] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke remains a major public health problem worldwide; it causes severe disability and is associated with high mortality rates. However, early diagnosis of stroke is difficult, and no reliable biomarkers are currently established. In this study, mass-spectrometry-based metabolomics was utilized to characterize the metabolic features of the serum of patients with acute ischemic stroke (AIS) to identify novel sensitive biomarkers for diagnosis and progression. First, global metabolic profiling was performed on a training set of 80 human serum samples (40 cases and 40 controls). The metabolic profiling identified significant alterations in a series of 26 metabolites with related metabolic pathways involving amino acid, fatty acid, phospholipid, and choline metabolism. Subsequently, multiple algorithms were run on a test set consisting of 49 serum samples (26 cases and 23 controls) to develop different classifiers for verifying and evaluating potential biomarkers. Finally, a panel of five differential metabolites, including serine, isoleucine, betaine, PC(5:0/5:0), and LysoPE(18:2), exhibited potential to differentiate AIS samples from healthy control samples, with area under the receiver operating characteristic curve values of 0.988 and 0.971 in the training and test sets, respectively. These findings provided insights for the development of new diagnostic tests and therapeutic approaches for AIS.
Collapse
Affiliation(s)
- Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education , Xuefu Road No. 246, Harbin 150001, China
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Anton A Antonov
- Accendo Data LLC , Coral Springs, Florida 33067, United States
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Yunfei Hua
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Huimin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Lijuan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Peijia Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University , Xuefu Road No. 246, Harbin 150001, China
| | - Yin Huang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education , Xuefu Road No. 246, Harbin 150001, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education , Tongjia Lane No. 24, Nanjing 210009, China
| |
Collapse
|
32
|
Qian L, Yuanshao L, Wensi H, Yulei Z, Xiaoli C, Brian W, Wanli Z, Zhengyi C, Jie X, Wenhui Z, Tieer Y, Hong W, Jincai H, Kunlin J, Bei S. Serum IL-33 Is a Novel Diagnostic and Prognostic Biomarker in Acute Ischemic Stroke. Aging Dis 2016; 7:614-622. [PMID: 27699084 PMCID: PMC5036956 DOI: 10.14336/ad.2016.0207] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/07/2016] [Indexed: 01/12/2023] Open
Abstract
Interleukin-33 (IL-33), a newly recognized IL-1 family member, is expressed in various tissues and cells, and involved in pathogenesis of many human diseases. For example, IL-33 plays a protective role in cardiovascular diseases. However, the role of IL-33 in acute ischemic stroke (AIS) remains unclear. This study aims to investigate whether IL-33 level in AIS patient serum can be used as a potential diagnostic and prognostic marker. The study included two hundred and six patients with first-ever ischemic stroke, who were admitted within 72 hours after stroke onset. The serum level of IL-33 was measured with ELISA and the severity of AIS patients on admission was evaluated based on the National Institutes of Health Stroke Scale (NIHSS) score. The functional outcome at 3 months was determined using the Barthel index (BI). We found that serum IL-33 was significantly higher (P < 0.001) in patients with AIS [57.68 ng/L (IQR, 44.95-76.73)] compared with healthy controls [47.48 ng/L (IQR, 38.67-53.78)]. IL-33 was an independent diagnostic biomarker for AIS with an OR of 1.051 (95%Cl, 1.018-1.085; P=0.002). Serum IL-33 was higher (P < 0.05) in the stroke patients with small cerebral infarction volume compared to AIS patients with large cerebral infarction. In addition, serum IL-33 was also significantly higher (P = 0.001) in the patients with mild stroke, compared to the patients with severe stroke. Furthermore, serum IL-33 level in AIS patients with a worse outcome was higher (P < 0.001) compared to AIS patients with a better outcome. IL-33 was also an independent predictor for the functional outcome with an adjusted OR of 0.932 (95% CI, 0.882-0.986). Our results suggest that the lower level of serum IL-33 is associated with large infarction volume and greater stroke severity in AIS patients. Thus, IL-33 can be used as a novel and independent diagnostic and predicting prognostic marker in AIS.
Collapse
Affiliation(s)
- Li Qian
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Lin Yuanshao
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Huang Wensi
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Zhou Yulei
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Chen Xiaoli
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Wang Brian
- 3Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Zhang Wanli
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Cai Zhengyi
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Xue Jie
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Zhang Wenhui
- 2Department of Clinical Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Yu Tieer
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Wang Hong
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - He Jincai
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| | - Jin Kunlin
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research,; 3Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Shao Bei
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research
| |
Collapse
|
33
|
Interleukin 6 promoter 174 G/C polymorphisms in acute ischemic stroke: G allele is protective but not associated with IL-6 levels or stroke outcome. J Neuroimmunol 2016; 293:22-27. [DOI: 10.1016/j.jneuroim.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
|
34
|
Zhang W, Zhao R, Li X, Cui X, Zhao Z, Mao Y, Wu F, Tang Q. Effect of Yi-nao-jie-yu decoction on γ-aminobutyric acid type A receptor in the hippocampus and serum inflammatory factors in a rat model of poststroke anxiety. Neuropsychiatr Dis Treat 2016; 12:2827-2837. [PMID: 27843317 PMCID: PMC5098770 DOI: 10.2147/ndt.s115116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The Yi-nao-jie-yu decoction (YNJYD) is a herbal preparation widely used in the clinics of traditional Chinese medicine and has been recently used as an important new therapeutic agent in poststroke anxiety (PSA). The neuroendocrine-immune system plays an important role in PSA mechanisms, although the modulating effects of YNJYD remain unknown. This study investigated the potential effects of YNJYD on the neuroendocrine-immune system in a rat model of PSA. MATERIALS AND METHODS The PSA model was induced by injecting collagenase (type VII) into the right globus pallidus, accompanied by empty water bottle stimulation for 2 weeks. The sham group and the PSA model group were gavaged with saline, while the treatment groups received buspirone (BuSpar) or YNJYD. Behavior was evaluated with the open field test and elevated plus maze once a week. Pathological changes were observed by hematoxylin and eosin staining. Serum levels of tumor necrosis factor, interleukin (IL)-6, adrenocorticotropic hormone, thyroid stimulating hormone, free triiodothyronine, free thyroxine, IL-1α, and cortisol were detected by radioimmunoassay. Expression of the γ-aminobutyric acid type A receptor (GABAAR) α2 subunit was examined by Western blot and real-time polymerase chain reaction. RESULTS YNJYD-treated rats exhibited significantly better recovery than BuSpar-treated rats at 21 days and 28 days in the open field test and elevated plus maze. Hematoxylin and eosin staining revealed neural repair in the hippocampus in the treatment groups. Serum levels of IL-1α in the YNJYD group were significantly less than those in the model group and the BuSpar group. GABAAR protein and mRNA expressions were higher in the PSA model group than in the sham group, and YNJYD reversed these effects. CONCLUSION YNJYD alleviated the symptoms of PSA mainly by decreasing IL-1α levels and downregulating GABAAR expression in the hippocampus to maintain a neuroendocrine-mmune system balance.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Encephalopathy, The Third Affiliated Hospital
| | - Ruizhen Zhao
- Department of Encephalopathy, The Third Affiliated Hospital
| | - Xiaoli Li
- Department of Encephalopathy, The Third Affiliated Hospital
| | - Xia Cui
- Department of Encephalopathy, The Third Affiliated Hospital
| | - Zijun Zhao
- Department of Encephalopathy, The Third Affiliated Hospital
| | | | - Fengzhi Wu
- Center of Journals, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Qisheng Tang
- Department of Encephalopathy, The Third Affiliated Hospital
| |
Collapse
|
35
|
Klebe D, McBride D, Flores JJ, Zhang JH, Tang J. Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. J Neuroimmune Pharmacol 2015; 10:576-86. [PMID: 25946986 PMCID: PMC4636976 DOI: 10.1007/s11481-015-9613-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
Cerebral hemorrhages account for 15-20 % of stroke sub-types and have very poor prognoses. The mortality rate for cerebral hemorrhage patients is between 40 and 50 %, of which at least half of the deaths occur within the first 2 days, and 75 % of survivors are incapable of living independently after 1 year. Current emergency interventions involve lowering blood pressure and reducing intracranial pressure by controlled ventilations or, in the worst case scenarios, surgical intervention. Some hemostatic and coagulatherapeutic interventions are being investigated, although a few that were promising in experimental studies have failed in clinical trials. No significant immunomodulatory intervention, however, exists for clinical management of cerebral hemorrhage. The inflammatory response following cerebral hemorrhage is particularly harmful in the acute stage because blood-brain barrier disruption is amplified and surrounding tissue is destroyed by secreted proteases and reactive oxygen species from infiltrated leukocytes. In this review, we discuss both the destructive and regenerative roles the immune response play following cerebral hemorrhage and focus on microglia, macrophages, and T-lymphocytes as the primary agents directing the response. Microglia, macrophages, and T-lymphocytes each have sub-types that significantly influence the over-arching immune response towards either a pro-inflammatory, destructive, or an anti-inflammatory, regenerative, state. Both pre-clinical and clinical studies of cerebral hemorrhages that selectively target these immune cells are reviewed and we suggest immunomodulatory therapies that reduce inflammation, while augmenting neural repair, will improve overall cerebral hemorrhage outcomes.
Collapse
Affiliation(s)
- Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Devin McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jerry J Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Departments of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
36
|
Abstract
In acute stroke, the major factor for recovery is the early use of thrombolysis aimed at arterial recanalization and reperfusion of ischemic brain tissue. Subsequently, neurorehabilitative training critically improves clinical recovery due to augmention of postlesional plasticity. Neuroimaging and electrophysiology studies have revealed that the location and volume of the stroke lesion, the affection of nerve fiber tracts, as well as functional and structural changes in the perilesional tissue and in large-scale bihemispheric networks are relevant biomarkers of post-stroke recovery. However, associated disorders, such as mood disorders, epilepsy, and neurodegenerative diseases, may induce secondary cerebral changes or aggravate the functional deficits and, thereby, compromise the potential for recovery.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf , Düsseldorf , Germany ; Biomedical Research Centre, Heinrich-Heine-University Düsseldorf , Düsseldorf , Germany ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Geoffrey A Donnan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
37
|
Chan A, Yan J, Csurhes P, Greer J, McCombe P. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome. J Neuroimmunol 2015; 286:42-7. [PMID: 26298323 DOI: 10.1016/j.jneuroim.2015.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke.
Collapse
Affiliation(s)
- Adeline Chan
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jun Yan
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Peter Csurhes
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Judith Greer
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Pamela McCombe
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Kim CY, Lee JS, Lee JH, Kim YG, Shin AR, Shim YH, Ha HK. Effect of spatial target reaching training based on visual biofeedback on the upper extremity function of hemiplegic stroke patients. J Phys Ther Sci 2015; 27:1091-6. [PMID: 25995564 PMCID: PMC4433985 DOI: 10.1589/jpts.27.1091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to determine the effect of spatial target reaching training (TRT) based on visual biofeedback (VB) on the upper extremity (UE) function of hemiplegic subjects. [Subjects and Methods] Forty subjects between six and eighteen months post-stroke were enrolled in this study. They were randomly allocated to an experimental group (EG, n=20) and a control group (CG, n=20). All subjects received an hour of routine therapy for stroke three times a week for four weeks. Subjects in EG received additional spatial TRT based on VB using a 2-dimensional motion capture analysis system. Both groups were tested at pre and post-intervention. The motor function of each subject's UE was assessed using the Fugl-Meyer (FM) test of UE and the Wolf Motor Function Test (WMFT). The reaching speed, angle and maximum reach distance were recorded using the motion capture analysis system. The experimental data were analyzed using the paired and independent t-tests. [Results] The mean change scores of the FM Test of UE and WMFT show there was significantly more improvement at post-intervention in EG than in CG. Also, the speed and angle reached showed significantly more increase in the EG compared with the CG. [Conclusions] The findings indicate that UE motor recovery of hemiplegic stroke patients can be enhanced through the use of TRT based on VB.
Collapse
Affiliation(s)
- Chang-Yong Kim
- Department of Health Science, The Graduate School, Korea University, Republic of Korea
| | - Jung-Sun Lee
- Department of Epidemiology and Health Informatics, The Graduate School of Public Health, Korea University, Republic of Korea
| | - Jong-Hun Lee
- Department of Rehabilitation and Medicine, Samsung Medical Center, Republic of Korea
| | - Yang-Gu Kim
- Department of Rehabilitation and Medicine, Samsung Medical Center, Republic of Korea
| | - A-Reum Shin
- Department of Rehabilitation and Medicine, Samsung Medical Center, Republic of Korea
| | - Young-Hun Shim
- Department of Rehabilitation and Medicine, Samsung Medical Center, Republic of Korea
| | - Hyun Kun Ha
- Department of Rehabilitation and Medicine, Samsung Medical Center, Republic of Korea
| |
Collapse
|
39
|
Abstract
Background:Iron deficiency anemia (IDA) has been implicated in the etiology of transient ischemic attack and ischemic stroke. This study aimed to: 1) document IDA prevalence in patients ≥ 65 years of age admitted to hospital with transient ischemic attack or first ischemic stroke, and 2) investigate dietary intake as a predictor of iron status.Methods:Ninety-four patients were enrolled. An algorithm containing values for hemoglobin, ferritin, total iron binding capacity, transferrin saturation, and serum transferrin receptor measured at admission was used to identify IDA. Usual dietary intake was assessed with the Clue II food frequency questionnaire.Results:Prevalence estimates were 6.4% for IDA, 2.1% for iron deficiency without anemia, and 6.4% for anemia from other causes. IDA prevalence was significantly higher than published National Health and Nutrition Examination Survey III (NHANES III) estimates for gender-specific age groups ≥ 70 years (One-Sample Proportion Test; males p = 0.038 [n= 37]; females p = 0.002 [n=44]). A comparison of IDA prevalence against selected controls from the NHANES III database yielded an odds ratio (OR) of 6.3, 95% confidence interval (CI) 0.8 to 53.7, which was not statistically significant (Fisher's Exact Test; n=94; p = 0.118). Multivariate linear regression analysis of dietary intake with indicators of iron status (n=58) revealed only iron supplements (p = 0.013) and heme iron intake (p = 0.038) as negative predictors of total iron binding capacity (p<0.05).Conclusions:These findings support the initiation of a prospective case control study to investigate IDA as a risk factor for ischemic stroke in elderly patients.
Collapse
|
40
|
Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS One 2014; 9:e102550. [PMID: 25036109 PMCID: PMC4103830 DOI: 10.1371/journal.pone.0102550] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
AIMS Epidemiological studies suggest that sex has a role in the pathogenesis of cardioembolic stroke. Since stroke is a vascular disease, identifying sexually dimorphic gene expression changes in blood leukocytes can inform on sex-specific risk factors, response and outcome biology. We aimed to examine the sexually dimorphic immune response following cardioembolic stroke by studying the differential gene expression in peripheral white blood cells. METHODS AND RESULTS Blood samples from patients with cardioembolic stroke were obtained at ≤3 hours (prior to treatment), 5 hours and 24 hours (after treatment) after stroke onset (n = 23; 69 samples) and compared with vascular risk factor controls without symptomatic vascular diseases (n = 23, 23 samples) (ANCOVA, false discovery rate p≤0.05, |fold change| ≥1.2). mRNA levels were measured on whole-genome Affymetrix microarrays. There were more up-regulated than down-regulated genes in both sexes, and females had more differentially expressed genes than males following cardioembolic stroke. Female gene expression was associated with cell death and survival, cell-cell signaling and inflammation. Male gene expression was associated with cellular assembly, organization and compromise. Immune response pathways were over represented at ≤3, 5 and 24 h after stroke in female subjects but only at 24 h in males. Neutrophil-specific genes were differentially expressed at 3, 5 and 24 h in females but only at 5 h and 24 h in males. CONCLUSIONS There are sexually dimorphic immune cell expression profiles following cardioembolic stroke. Future studies are needed to confirm the findings using qRT-PCR in an independent cohort, to determine how they relate to risk and outcome, and to compare to other causes of ischemic stroke.
Collapse
|
41
|
Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis. BMC Genomics 2014; 15:228. [PMID: 24661604 PMCID: PMC3987924 DOI: 10.1186/1471-2164-15-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and functioning of the vascular system. The immunomodulating effect of the peptide discovered in our research and its impact on the vascular system during ischemia are likely to be the key mechanisms underlying the neuroprotective effects of the peptide.
Collapse
Affiliation(s)
- Ekaterina V Medvedeva
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu J, Yan J, Greer JM, Read SJ, Henderson RD, Rose SE, Coulthard A, McCombe PA. Correlation of Adrenomedullin gene expression in peripheral blood leukocytes with severity of ischemic stroke. Int J Neurosci 2013; 124:271-80. [DOI: 10.3109/00207454.2013.837462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Regulatory T cell in stroke: a new paradigm for immune regulation. Clin Dev Immunol 2013; 2013:689827. [PMID: 23983771 PMCID: PMC3747621 DOI: 10.1155/2013/689827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022]
Abstract
Stroke is a common, debilitating trauma that has an incompletely elucidated pathophysiology and lacks an effective therapy. FoxP3+CD25+CD4+ regulatory T cells (Tregs) suppress a variety of normal physiological and pathological immune responses via several pathways, such as inhibitory cytokine secretion, direct cytolysis induction, and antigen-presenting cell functional modulation. FoxP3+CD25+CD4+ Tregs are involved in a variety of central nervous system diseases and injuries, including axonal injury, neurodegenerative diseases, and stroke. Specifically, FoxP3+CD25+CD4+ Tregs exert neuroprotective effects in acute experimental stroke models. These beneficial effects, however, are difficult to elucidate. In this review, we summarized evidence of FoxP3+CD25+CD4+ Tregs as potentially important immunomodulators in stroke pathogenesis and highlight further investigations for possible immunotherapeutic strategies by modulating the quantity and/or functional effects of FoxP3+CD25+CD4+ Tregs in stroke patients.
Collapse
|
44
|
Esmaeili A, Dadkhahfar S, Fadakar K, Rezaei N. Post-stroke immunodeficiency: effects of sensitization and tolerization to brain antigens. Int Rev Immunol 2013; 31:396-409. [PMID: 23083348 DOI: 10.3109/08830185.2012.723078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acute onset of cerebrovascular diseases seems to be related to a number of immunological alternations. After the initial pro-inflammatory response to brain ischemia accompanied by systemic inflammatory response syndrome, stroke interferes with function of the innate and the adaptive immune cells, resulting in systemic immunosuppression. Although post-stroke immunodeficiency could predispose patients to life-threatening infections, it could potentially protect brain via reducing autoimmune reaction to the brain antigens. In this paper, we review current knowledge on the immunological alterations after brain ischemia, particularly effects of infection for stimulation of autoimmune response against brain antigens.
Collapse
Affiliation(s)
- Arash Esmaeili
- Brain and Spinal Injuries Repair Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
45
|
Luengo-Fernandez R, Silver LE, Gutnikov SA, Gray AM, Rothwell PM. Hospitalization resource use and costs before and after TIA and stroke: results from a population-based cohort study (OXVASC). VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2013; 16:280-287. [PMID: 23538179 DOI: 10.1016/j.jval.2012.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/03/2012] [Accepted: 10/15/2012] [Indexed: 06/02/2023]
Abstract
OBJECTIVES High hospitalization rates, prolonged length of stay, and increased risks of subsequent events mean a steep increase in health care usage after stroke. No study, however, has examined to what extent increased costs after transient ischemic attack (TIA) or stroke are due to hospitalizations for the initial event, recurrent events, and/or nonvascular hospitalizations, and how costs compare with the year prior to the event. METHODS We studied patients in a population-based cohort study (Oxford Vascular Study) in the United Kingdom from 2003 to 2007. Hospitalization and cost details were obtained from patients' individualized Hospital Episode Statistics records. RESULTS A total of 295 incident TIA and 439 incident stroke patients were included. For patients with stroke, average costs increased from £1437 in the year pre-event to £6629 in the year post-event (P<0.0001). Sixty-four percent (£4224) of poststroke costs were due to hospitalizations linked to the index stroke, more than 30% of which were given nonvascular primary diagnoses on Hospital Episode Statistics, and £653 (10%) were due to hospitalizations linked to subsequent vascular events. For patients with TIA, costs increased from £876 1 year before the event to £2410 in the year post-event (P<0.0001). Patients with TIA incurred nonsignificantly higher costs due to hospitalizations linked to subsequent vascular events (£774) than for hospitalizations linked to the index TIA (£720). CONCLUSIONS Hospital costs increased after TIA or stroke, primarily because of increased initial cerebrovascular hospitalizations. The finding that costs due to nonvascular diagnoses also increased after TIA or stroke appears, in part, to be explained by the miscoding of TIA/stroke-related hospitalizations in electronic information systems.
Collapse
Affiliation(s)
- Ramon Luengo-Fernandez
- Department of Public Health, Health Economics Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
46
|
Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A, Alexander JS. Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation 2012; 19:155-65. [PMID: 21981016 DOI: 10.1111/j.1549-8719.2011.00141.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cytokines contribute to cerebro-vascular inflammatory and immune responses by inducing ECAMs' expression. Ischemic insults can be separated into aglycemic and hypoxic components. However, whether aglycemia, hypoxia or OGD plays a major role in dysregulating BBB or promotes immune cell infiltration via ECAMs' expression is not clear. We investigated how expression of ICAM-1, VCAM-1, MAdCAM-1, PECAM-1, E- and P-selectin in response to TNF-α, IL-1β and IFN-γ was altered by aglycemia (A), hypoxia (H) or combined oxygen glucose deprivation (OGD). METHODS A cell surface enzyme linked immunoabsorbent assay (cell surface ELISA) was used to analyze ECAM expression. RESULTS We observed that ICAM-1 and PECAM-1 expressions were insensitive to hypoxia, aglycemia or OGD. Conversely, VCAM-1 and E-selectin were increased by hypoxia, but not by aglycemia. MAdCAM-1 and P-selectin were induced by hypoxia, and decreased by aglycemia. Patterns of cytokine-regulated ECAMs' expression were also modified by metabolic conditions. CONCLUSIONS Our results indicate that patterns of inflammation-associated ECAMs represent cumulative influences from metabolic stressors, as well as cytokine activation. The expression of ECAMs following tissue injury reflects mechanistic interactions between metabolic disturbances, and alterations in tissue cytokines. Normalization of tissue metabolism, as well as cytokine profiles, may provide important targets for therapeutic treatment of inflammation.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Departments of Molecular and Cellular Physiology Cell Biology and Anatomy Neurology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Prolonged elevation of cytokine levels after human acute ischaemic stroke with evidence of individual variability. J Neuroimmunol 2012; 246:78-84. [DOI: 10.1016/j.jneuroim.2012.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/16/2023]
|
48
|
Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 2012; 32:598-611. [PMID: 22293986 PMCID: PMC3318155 DOI: 10.1038/jcbfm.2012.6] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following an ischemic stroke, T lymphocytes become activated, infiltrate the brain, and appear to release cytokines and reactive oxygen species to contribute to early inflammation and brain injury. However, some subsets of T lymphocytes may be beneficial even in the early stages after a stroke, and recent evidence suggests that T lymphocytes can also contribute to the repair and regeneration of the brain at later stages. In the hours to days after stroke, T-lymphocyte numbers are then reduced in the blood and in secondary lymphoid organs as part of a 'stroke-induced immunodeficiency syndrome,' which is mediated by hyperactivity of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, resulting in increased risk of infectious complications. Whether or not poststroke T-lymphocyte activation occurs via an antigen-independent process, as opposed to a classical antigen-dependent process, is still controversial. Although considerable recent progress has been made, a better understanding of the roles of the different T-lymphocyte subpopulations and their temporal profile of damage versus repair will help to clarify whether T-lymphocyte targeting may be a viable poststroke therapy for clinical use.
Collapse
Affiliation(s)
- Vanessa H Brait
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
49
|
Yan J, Read SJ, Henderson RD, Hull R, O'Sullivan JD, McCombe PA, Greer JM. Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 2012; 243:89-94. [DOI: 10.1016/j.jneuroim.2011.12.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/24/2011] [Accepted: 12/14/2011] [Indexed: 01/12/2023]
|
50
|
Vandeputte C, Thomas D, Dresselaers T, Crabbe A, Verfaillie C, Baekelandt V, Van Laere K, Himmelreich U. Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 2011; 13:663-71. [PMID: 20700767 DOI: 10.1007/s11307-010-0395-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to evaluate the specificity of magnetic resonance imaging (MRI) contrast in a photothrombotic (PT) stroke model with and without engraftment of superparamagnetic iron oxide (SPIO)-labeled stem cells. PROCEDURES We monitored animals with PT stroke versus animals with PT stroke and stem cell engraftment by T(2)/T(2)*w MRI 4-8 h and 2, 4, 6/7 and 14 days after PT induction. Results were correlated with immunohistochemistry. RESULTS T(2)*w MRI images showed hypointense contrast due to the accumulation of inflammatory cells and corresponding iron accumulation and glial scar formation in the border zone of the lesion, similar as what was observed for SPIO-labeled cells. Histological analysis was thus indispensable to distinguish between labeled transplanted cells and immune cells. CONCLUSION These results raise caution regarding the non-invasive monitoring of SPIO-labeled transplanted stem cells by MRI in models that result in a strong inflammatory response.
Collapse
Affiliation(s)
- Caroline Vandeputte
- Division of Nuclear Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|