1
|
Hosaini M, Abbasnejad M, Kooshki R, Esmaeili-Mahani S, Raoof M, Naderi R, Aarab G, Lobbezoo F. The involvement of orexin-1 receptors in modulation of feeding and anxiety-like behavior in rats with complete Freund's adjuvant-induced temporomandibular joint disorder. Odontology 2025; 113:764-775. [PMID: 39843662 PMCID: PMC11950102 DOI: 10.1007/s10266-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 10/29/2024] [Indexed: 01/24/2025]
Abstract
Orexin-A (OXA), a neuropeptide produced in the hypothalamus, is recognized for its role in modulating orofacial nociception and regulating feeding behaviors, as well as its impact on psychophysiological responses. This study investigated the role of orexin-1 receptors (OX1R) in modulating nociceptive behaviors induced by noxious stimulation of the temporomandibular joint (TMJ) and the associated changes in mood and feeding behaviors in rats with complete Freund's adjuvant (CFA)-induced temporomandibular disorders (TMDs). Bilateral cannulation of the lateral ventricles was performed in rats. To induce nociception, CFA was injected unilaterally into the left TMJ of the rats. Nociceptive behaviors were assessed using the hot plate and tail flick tests, while anxiety-like behavior and food intake were evaluated using an elevated plus maze (EPM) and a food preference device, respectively. The results demonstrated a significant increase in nociceptive scores and anxiety-like behaviors, along with reductions in water and food consumption following CFA injection. However, post-treatment with OXA at concentrations of 50 and 100 pM/rat significantly decreased thermal nociceptive scores, alleviated anxiety-like behavior, and increased water and food intake. These beneficial effects were reversed when OXA was co-administered with SB-334867 (40 nM/rat), an OX1R antagonist. Collectively, our findings suggest that OX1R signaling plays a role in the modulation of anxiety-like behavior and abnormalities in food intake in CFA-treated rats. Understanding the involvement of OXA and its receptors in CFA-induced TMJ nociception and behavioral changes may pave the way for potential therapeutic interventions targeting OX1R signaling in the management of TMD-associated symptoms.
Collapse
Affiliation(s)
- Mojtaba Hosaini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Reyhaneh Naderi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghizlane Aarab
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Orofacial Pain and Jaw Function, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
2
|
Evans AK, Saw NL, Woods CE, Vidano LM, Blumenfeld SE, Lam RK, Chu EK, Reading C, Shamloo M. Impact of high-fat diet on cognitive behavior and central and systemic inflammation with aging and sex differences in mice. Brain Behav Immun 2024; 118:334-354. [PMID: 38408498 PMCID: PMC11019935 DOI: 10.1016/j.bbi.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Aging and age-related diseases are associated with cellular stress, metabolic imbalance, oxidative stress, and neuroinflammation, accompanied by cognitive impairment. Lifestyle factors such as diet, sleep fragmentation, and stress can potentiate damaging cellular cascades and lead to an acceleration of brain aging and cognitive impairment. High-fat diet (HFD) has been associated with obesity, metabolic disorders like diabetes, and cardiovascular disease. HFD also induces neuroinflammation, impairs learning and memory, and may increase anxiety-like behavior. Effects of a HFD may also vary between sexes. The interaction between Age- and Sex- and Diet-related changes in neuroinflammation and cognitive function is an important and poorly understood area of research. This study was designed to examine the effects of HFD on neuroinflammation, behavior, and neurodegeneration in mice in the context of aging or sex differences. In a series of studies, young (2-3 months) or old (12-13 months) C57BL/6J male mice or young male and female C57Bl/6J mice were fed either a standard diet (SD) or a HFD for 5-6 months. Behavior was assessed in Activity Chamber, Y-maze, Novel Place Recognition, Novel Object Recognition, Elevated Plus Maze, Open Field, Morris Water Maze, and Fear Conditioning. Post-mortem analyses assessed a panel of inflammatory markers in the plasma and hippocampus. Additionally, proteomic analysis of the hypothalamus, neurodegeneration, neuroinflammation in the locus coeruleus, and neuroinflammation in the hippocampus were assessed in a subset of young and aged male mice. We show that HFD increased body weight and decreased locomotor activity across groups compared to control mice fed a SD. HFD altered anxiety-related exploratory behavior. HFD impaired spatial learning and recall in young male mice and impaired recall in cued fear conditioning in young and aged male mice, with no effects on spatial learning or fear conditioning in young female mice. Effects of Age and Sex were observed on neuroinflammatory cytokines, with only limited effects of HFD. HFD had a more significant impact on systemic inflammation in plasma across age and sex. Aged male mice had induction of microglial immunoreactivity in both the locus coeruleus (LC) and hippocampus an effect that HFD exacerbated in the hippocampal CA1 region. Proteomic analysis of the hypothalamus revealed changes in pathways related to metabolism and neurodegeneration with both aging and HFD in male mice. Our findings suggest that HFD induces widespread systemic inflammation and limited neuroinflammation. In addition, HFD alters exploratory behavior in male and female mice, and impairs learning and memory in male mice. These results provide valuable insight into the impact of diet on cognition and aging pathophysiology.
Collapse
Affiliation(s)
- Andrew K Evans
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Nay L Saw
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Claire E Woods
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Laura M Vidano
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Sarah E Blumenfeld
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Rachel K Lam
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Emily K Chu
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | | | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304.
| |
Collapse
|
3
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 PMCID: PMC10931973 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Maness EB, Blumenthal SA, Burk JA. Dual orexin/hypocretin receptor antagonism attenuates NMDA receptor hypofunction-induced attentional impairments in a rat model of schizophrenia. Behav Brain Res 2023; 450:114497. [PMID: 37196827 PMCID: PMC10330488 DOI: 10.1016/j.bbr.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from inhibitory failure in attention-relevant cortical regions, and available antipsychotics often fail to address this issue. Orexin/hypocretin receptors are found throughout the brain and are expressed on neurons relevant to both attention and schizophrenia, highlighting them as a potential target to treat schizophrenia-associated attentional dysfunction. In the present experiment, rats (N = 14) trained in a visual sustained attention task that required discrimination of trials which presented a visual signal from trials during which no signal was presented. Once trained, rats were then co-administered the psychotomimetic N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801: 0 or 0.1 mg/kg, intraperitoneal injections) and the dual orexin receptor antagonist filorexant (MK-6096: 0, 0.1, or 1 mM, intracerebroventricular infusions) prior to task performance across six sessions. Dizocilpine impaired overall accuracy during signal trials, slowed reaction times for correctly-responded trials, and increased the number of omitted trials throughout the task. Dizocilpine-induced increases in signal trial deficits, correct response latencies, and errors of omission were reduced following infusions of the 0.1 mM, but not 1 mM, dose of filorexant. As such, orexin receptor blockade may improve attentional deficits in a state of NMDA receptor hypofunction.
Collapse
Affiliation(s)
- Eden B Maness
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA; VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Sarah A Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
5
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
6
|
Maness EB, Blumenthal SA, Burk JA. Dual orexin/hypocretin receptor antagonism attenuates attentional impairments in an NMDA receptor hypofunction model of schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527043. [PMID: 36778441 PMCID: PMC9915718 DOI: 10.1101/2023.02.05.527043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a neuropsychiatric condition that is associated with impaired attentional processing and performance. Failure to support increasing attentional load may result, in part, from abnormally overactive basal forebrain projections to the prefrontal cortex, and available antipsychotics often fail to address this issue. Orexin/hypocretin receptors are expressed on corticopetal cholinergic neurons, and their blockade has been shown to decrease the activity of cortical basal forebrain outputs and prefrontal cortical cholinergic neurotransmission. In the present experiment, rats (N = 14) trained in a visual sustained attention task that required discrimination of trials which presented a visual signal from trials during which no signal was presented. Once trained, rats were then co-administered the psychotomimetic N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801: 0 or 0.1 mg/kg, intraperitoneal injections) and the dual orexin receptor antagonist filorexant (MK-6096: 0, 0.1, or 1 mM, intracerebroventricular infusions) prior to task performance across six sessions. Dizocilpine impaired overall accuracy during signal trials, slowed reaction times for correctly-responded trials, and increased the number of omitted trials throughout the task. Dizocilpine-induced increases in signal trial deficits, correct response latencies, and errors of omission were reduced following infusions of the 0.1 mM, but not 1 mM, dose of filorexant. Orexin receptor blockade, perhaps through anticholinergic mechanisms, may improve attentional deficits in a state of NMDA receptor hypofunction. Highlights Schizophrenia is associated with attentional deficits that may stem from abnormally reactive BF projections to the prefrontal cortexOrexin receptor antagonists decrease acetylcholine release and reduce prefrontal cortical activityThe dual orexin receptor antagonist filorexant alleviated impairments of attention following NMDA receptor blockade.
Collapse
Affiliation(s)
- Eden B. Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA, 02132, USA
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Sarah A. Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Joshua A. Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA, 23187, USA
| |
Collapse
|
7
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
8
|
von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int J Mol Sci 2022; 23:ijms23052778. [PMID: 35269920 PMCID: PMC8911243 DOI: 10.3390/ijms23052778] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Life on earth has evolved under the influence of regularly recurring changes in the environment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks, generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to these circadian rhythms, which persist in constant conditions and can be entrained to environmental rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents. In recent decades, research has made great advances in the elucidation of the molecular circadian clockwork and circadian light perception. This review summarizes the role of light and the circadian clock in rhythmic brain function, with a focus on the complex interaction between the different components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| |
Collapse
|
9
|
Abounoori M, Maddah MM, Ardeshiri MR. Orexin neuropeptides modulate the hippocampal-dependent memory through basolateral amygdala interconnections. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100035. [PMID: 36324409 PMCID: PMC9616276 DOI: 10.1016/j.cccb.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
Orexin neuropeptides roles in hippocampal-dependent memory formation. Orexin neuropeptides activate the neural circuits of the basolateral amygdala. The power of memorization is modulated by the level of orexin neuropeptides.
Orexin neuropeptides have functional roles in hippocampal-dependent memory formation via the consolidation and retrieval of passive avoidance and spatial memories. The effects of these neuropeptides have been confirmed on the induction of long-term potentiation (LTP). The orexinergic system seems to have modulatory effects by sending projection fibers to several brain parts, such as the hippocampus and amygdala. Orexin neuropeptides activate the neural circuits of the basolateral amygdala during different arousal events with various emotional loads. Therefore, this system plays a vital role in creating appropriate behavioral reactions and responses particular to the situation. This review aimed to report new progression and advances in the hippocampus function in memory by focusing on its relationship with the amygdala through the orexinergic system.
Collapse
|
10
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
11
|
Shahsavari F, Abbasnejad M, Raoof M, Esmaeili-Mahani S. The rostral ventromedial medulla orexin 1 receptors and extracellular signal-regulated kinase in hippocampus are involved in modulation of anxiety behavior induced by dental pulp nociception in adult male rats. Arch Oral Biol 2020; 116:104778. [PMID: 32474210 DOI: 10.1016/j.archoralbio.2020.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To explore the role of rostral ventromedial medulla (RVM) orexin 1 receptors (OX1R) on orofacial nociception -induced anxiety and locomotion in rats. DESIGN Forty two adult male Wistar rats (220-270 gr) were randomly divided into 7 groups (n = 6) as follows: untreated control, capsaicin, capsaicin vehicle-treated group (sham operation), capsaicin groups pretreated by intra-RVM administration orexin 1 receptor (OX1R) agonist (orexin A) or antagonist (SB-334867) and the capsaicin groups treated by drugs vehicles (DMSO or aCSF). Orofacial nociception was induced by intradental application of capsaicin (100 μg) into the incisors of rats. Anxiety level and locomotor activity were measured by the elevated plus maze (EPM) and open field (OF) tests, respectively. Hippocampal levels of phosphorylated extracellular signal regulated Kinase (p-ERK) was also assessed by western blotting. RESULTS Intradental application of capsaicin significantly increased anxiety and decreased locomotion behaviors. Intra-RVM microinjection of orexin-A significantly prevented capsaicin-induced anxiety-like behavior and increased locomotor activity in the EPM and OF tests. These effects were inhibited by SB-334867. Furthermore, orexin-A significantly increased p-ERK levels in capsaicin-treated rats. This effect was inhibited by pretreatment of the rats with SB-334867. CONCLUSIONS The results suggest that both OX1R signaling in the RVM and hippocampal p-ERK signaling are involved in orofacial nociception-induced anxiety as well as locomotor activity.
Collapse
Affiliation(s)
- Fatemeh Shahsavari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran.
| | - Maryam Raoof
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem Pharmacol 2018; 157:43-50. [PMID: 30171834 DOI: 10.1016/j.bcp.2018.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 01/11/2023]
|
13
|
Clarke RE, Verdejo-Garcia A, Andrews ZB. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity. J Neurochem 2018; 147:715-729. [PMID: 29704424 DOI: 10.1111/jnc.14455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
Abstract
Emerging evidence from human imaging studies suggests that obese individuals have altered connectivity between the hypothalamus, the key brain region controlling energy homeostasis, and cortical regions involved in decision-making and reward processing. Historically, animal studies have demonstrated that the lateral hypothalamus is the key hypothalamic region involved in feeding and reward. The lateral hypothalamus is a heterogeneous structure comprised of several distinct types of neurons which are scattered throughout. In addition, the lateral hypothalamus receives inputs from a number of cortical brain regions suggesting that it is uniquely positioned to be a key integrator of cortical information and metabolic feedback. In this review, we summarize how human brain imaging can inform detailed animal studies to investigate neural pathways connecting cortical regions and the hypothalamus. Here, we discuss key cortical brain regions that are reciprocally connected to the lateral hypothalamus and are implicated in decision-making processes surrounding food.
Collapse
Affiliation(s)
- Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Antonio Verdejo-Garcia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Vic., Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
14
|
Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats. Neurobiol Learn Mem 2018; 149:98-106. [DOI: 10.1016/j.nlm.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023]
|
15
|
Molecular Imaging of the Serotonergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:173-210. [DOI: 10.1016/bs.irn.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Farahmandfar M, Kadivar M, Rastipisheh S. Blockade of dorsal hippocampal orexin-1 receptors impaired morphine-induced state-dependent learning. Neuropeptides 2016; 60:13-19. [PMID: 27751532 DOI: 10.1016/j.npep.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/18/2016] [Accepted: 10/09/2016] [Indexed: 11/26/2022]
Abstract
Behavioral abnormalities associated with opiate addiction include memory and learning deficits, which are the result of some alterations in the neuromodulatory systems. Recently, orexin has shown to influence drug addiction neural circuitry, specifically in mediating reward-related perception and memory. To explore the possible interaction of orexinergic and opioidergic system on modulation of learning and memory, we have investigated the effects of intra-dorsal hippocampal (intra-CA1) administration of orexin-1 receptor agonist and the competitive orexin-1 antagonist, SB-334867, on morphine-induced memory impairment by using step-down passive avoidance task in mice. Pre-training injection of morphine (5mg/kg, i.p.) impaired memory, which was restored when 24h later the same dose of the drug was administered. Pre-test administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) had not a significant effect on the retention latency compared to the saline-treated animals, but it restored the memory impairment induced by pre-training morphine (5mg/kg, i.p.). Pre-test administration of SB-334867 (10, 20 and 40nmol, intra-CA1) by itself decreased the retention latencies of passive avoidance task. Co-administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) and morphine (1mg/kg, i.p.) on the test day induced morphine state-dependent memory. Conversely, pre-test injection of SB-334867 (10, 20 and 40nmol, intra-CA1) inhibited the orexin-1-induced potentiation of morphine state-dependent learning on the test day. It is concluded that dorsal hippocampal orexin-1 receptors may be involved, at least in part, in morphine state-dependent learning in mice.
Collapse
Affiliation(s)
- Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
17
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
18
|
Cho CH, Lee HJ, Woo HG, Choi JH, Greenwood TA, Kelsoe JR. CDH13 and HCRTR2 May Be Associated with Hypersomnia Symptom of Bipolar Depression: A Genome-Wide Functional Enrichment Pathway Analysis. Psychiatry Investig 2015; 12. [PMID: 26207136 PMCID: PMC4504925 DOI: 10.4306/pi.2015.12.3.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although bipolar disorder is highly heritable, the identification of specific genetic variations is limited because of the complex traits underlying the disorder. We performed a genome-wide association study of bipolar disorder using a subphenotype that shows hypersomnia symptom during a major depressive episode. We investigated a total of 2,191 cases, 1,434 controls, and 703,012 single nucleotide polymorphisms (SNPs) in the merged samples obtained from the Translational Genomics Institute and the Genetic Association Information Network. The gene emerging as the most significant by statistical analysis was rs1553441 (odds ratio=0.4093; p=1.20×10(-5); Permuted p=6.0×10(-6)). However, the 5×0(-8) threshold for statistical significance required in a genome-wide association study was not achieved. The functional enrichment pathway analysis showed significant enrichments in the adhesion, development-related, synaptic transmission-related, and cell recognition-related pathways. For further evaluation, each gene of the enriched pathways was reviewed and matched with genes that were suggested to be associated with psychiatric disorders by previous genetic studies. We found that the cadherin 13 and hypocretin (orexin) receptor 2 genes may be involved in the hypersomnia symptom during a major depressive episode of bipolar disorder.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- San Diego VA Healthcare System, San Diego, CA, USA
| |
Collapse
|
19
|
Larhammar M, Patra K, Blunder M, Emilsson L, Peuckert C, Arvidsson E, Rönnlund D, Preobraschenski J, Birgner C, Limbach C, Widengren J, Blom H, Jahn R, Wallén-Mackenzie Å, Kullander K. SLC10A4 is a vesicular amine-associated transporter modulating dopamine homeostasis. Biol Psychiatry 2015; 77:526-36. [PMID: 25176177 DOI: 10.1016/j.biopsych.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors. RESULTS We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.
Collapse
Affiliation(s)
| | | | - Martina Blunder
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lina Emilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Emma Arvidsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniel Rönnlund
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Jerker Widengren
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden..
| |
Collapse
|
20
|
Kistner A, Lhommée E, Krack P. Mechanisms of body weight fluctuations in Parkinson's disease. Front Neurol 2014; 5:84. [PMID: 24917848 PMCID: PMC4040467 DOI: 10.3389/fneur.2014.00084] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/16/2014] [Indexed: 11/13/2022] Open
Abstract
Typical body weight changes are known to occur in Parkinson’s disease (PD). Weight loss has been reported in early stages as well as in advanced disease and malnutrition may worsen the clinical state of the patient. On the other hand, an increasing number of patients show weight gain under dopamine replacement therapy or after surgery. These weight changes are multifactorial and involve changes in energy expenditure, perturbation of homeostatic control, and eating behavior modulated by dopaminergic treatment. Comprehension of the different mechanisms contributing to body weight is a prerequisite for the management of body weight and nutritional state of an individual PD patient. This review summarizes the present knowledge and highlights the necessity of evaluation of body weight and related factors, as eating behavior, energy intake, and expenditure in PD.
Collapse
Affiliation(s)
- Andrea Kistner
- Movement Disorder Unit, Department of Psychiatry and Neurology, University Hospital Grenoble , Grenoble , France ; Unité 836, Équipe 11, INSERM, Grenoble Institut des Neurosciences , Grenoble , France
| | - Eugénie Lhommée
- Movement Disorder Unit, Department of Psychiatry and Neurology, University Hospital Grenoble , Grenoble , France ; Unité 836, Équipe 11, INSERM, Grenoble Institut des Neurosciences , Grenoble , France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, University Hospital Grenoble , Grenoble , France ; Unité 836, Équipe 11, INSERM, Grenoble Institut des Neurosciences , Grenoble , France ; Joseph Fourier University , Grenoble , France
| |
Collapse
|
21
|
Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014; 34:3607-21. [PMID: 24599460 DOI: 10.1523/jneurosci.3388-13.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock. Here we show both orexinergic innervation and expression of genes encoding orexin receptors (OX1 and OX2) in the mouse SCN, with OX1 being upregulated at dusk. Remarkably, we find through in vitro physiological recordings that orexin predominantly suppresses mouse SCN Period1 (Per1)-EGFP-expressing clock cells. The mechanisms underpinning these suppressions vary across the circadian cycle, from presynaptic modulation of inhibitory GABAergic signaling during the day to directly activating leak K(+) currents at night. Orexin also augments the SCN clock-resetting effects of neuropeptide Y (NPY), another neurochemical correlate of arousal, and potentiates NPY's inhibition of SCN Per1-EGFP cells. These results build on emerging literature that challenge the widely held view that orexin signaling is exclusively excitatory and suggest new mechanisms for avoiding conflicts between circadian clock signals and homeostatic cues in the brain.
Collapse
|
22
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
23
|
Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci 2013; 7:256. [PMID: 24391536 PMCID: PMC3868890 DOI: 10.3389/fnins.2013.00256] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022] Open
Abstract
Emerging findings suggest the existence of a cross-talk between hypocretinergic and endocannabinoid systems. Although few studies have examined this relationship, the apparent overlap observed in the neuroanatomical distribution of both systems as well as their putative functions strongly point to the existence of such cross-modulation. In agreement, biochemical and functional studies have revealed the existence of heterodimers between CB1 cannabinoid receptor and hypocretin receptor-1, which modulates the cellular localization and downstream signaling of both receptors. Moreover, the activation of hypocretin receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol culminating in the retrograde inhibition of neighboring cells and suggesting that endocannabinoids could contribute to some hypocretin effects. Pharmacological data indicate that endocannabinoids and hypocretins might have common physiological functions in the regulation of appetite, reward and analgesia. In contrast, these neuromodulatory systems seem to play antagonistic roles in the regulation of sleep/wake cycle and anxiety-like responses. The present review attempts to piece together what is known about this interesting interaction and describes its potential therapeutic implications.
Collapse
Affiliation(s)
- Africa Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
24
|
Different levels in orexin concentrations and risk factors associated with higher orexin levels: comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282641. [PMID: 24102051 PMCID: PMC3786501 DOI: 10.1155/2013/282641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
This study sought to explore the degree of orexin levels in Chinese opiate and methamphetamine addicts and the differences between them. The cross-sectional study was conducted among detoxified drug addicts from Mandatory Detoxification Center (MDC) in five Chinese cities. Orexin levels were assayed with radioimmunoassay (RIA). Mann-Whitney U test and Kruskal-Wallis test were used to detect differences across groups, and logistic regression was used to explore the association between orexin levels and characteristics of demographic and drug abuse. Between November 2009 and January 2011, 285 opiates addicts, 112 methamphetamine addicts, and 79 healthy controls were enrolled. At drug withdrawal period, both opiate and methamphetamine addicts had lower median orexin levels than controls, and median orexin levels in opiate addicts were higher than those in methamphetamine addicts (all above P < 0.05). Adjusted odds of the above median concentration of orexin were higher for injection than "chasing the dragon" (AOR = 3.1, 95% CI = 1.2-7.9). No significant factors associated with orexin levels of methamphetamine addicts were found. Development of intervention method on orexin system by different administration routes especially for injected opiate addicts at detoxification phase may be significant and was welcome.
Collapse
|
25
|
Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci 2013; 33:5275-84. [PMID: 23516292 DOI: 10.1523/jneurosci.3200-12.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated "two-enclosure homecage test" devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. A conventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation.
Collapse
|
26
|
Hoever P, Dorffner G, Beneš H, Penzel T, Danker-Hopfe H, Barbanoj MJ, Pillar G, Saletu B, Polo O, Kunz D, Zeitlhofer J, Berg S, Partinen M, Bassetti CL, Högl B, Ebrahim IO, Holsboer-Trachsler E, Bengtsson H, Peker Y, Hemmeter UM, Chiossi E, Hajak G, Dingemanse J. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 2012; 91:975-85. [PMID: 22549286 PMCID: PMC3370822 DOI: 10.1038/clpt.2011.370] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The orexin system is a key regulator of sleep and wakefulness. In a multicenter, double-blind, randomized, placebo-controlled, two-way crossover study, 161 primary insomnia patients received either the dual orexin receptor antagonist almorexant, at 400, 200, 100, or 50 mg in consecutive stages, or placebo on treatment nights at 1-week intervals. The primary end point was sleep efficiency (SE) measured by polysomnography; secondary end points were objective latency to persistent sleep (LPS), wake after sleep onset (WASO), safety, and tolerability. Dose-dependent almorexant effects were observed on SE, LPS, and WASO. SE improved significantly after almorexant 400 mg vs. placebo (mean treatment effect 14.4%; P < 0.001). LPS (–18 min (P = 0.02)) and WASO (–54 min (P < 0.001)) decreased significantly at 400 mg vs. placebo. Adverse-event incidence was dose-related. Almorexant consistently and dose-dependently improved sleep variables. The orexin system may offer a new treatment approach for primary insomnia.
Collapse
Affiliation(s)
- P Hoever
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bettica P, Squassante L, Groeger JA, Gennery B, Winsky-Sommerer R, Dijk DJ. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 2012; 37:1224-33. [PMID: 22237311 PMCID: PMC3306884 DOI: 10.1038/npp.2011.310] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/08/2022]
Abstract
Orexins have a role in sleep regulation, and orexin receptor antagonists are under development for the treatment of insomnia. We conducted a randomised, double-blind, placebo-controlled, four-period crossover study to investigate the effect of single doses of the dual orexin receptor antagonist SB-649868 (10 or 30 mg) and a positive control zolpidem (10 mg), an allosteric modulator of GABA(A) receptors. Objective and subjective sleep parameters and next-day performance were assessed in 51 healthy male volunteers in a traffic noise model of situational insomnia. Compared with placebo, SB-649868 10 and 30 mg increased total sleep time (TST) by 17 and 31 min (p<0.001), whereas after zolpidem TST was increased by 11.0 min (p=0.012). Wake after sleep onset was reduced significantly by 14.7 min for the SB-6489698 30 mg dose (p<0.001). Latency to persistent sleep was significantly reduced after both doses of SB-6489698 (p=0.003), but not after zolpidem. Slow wave sleep (SWS) and electroencephalogram (EEG) power spectra in non-REM sleep were not affected by either dose of SB-640868, whereas SWS (p< 0.001) and low delta activity (<=1.0 Hz) were increased, and 2.25-11.0 Hz activity decreased after zolpidem. REM sleep duration was increased after SB-649868 30 mg (p=0.002) and reduced after zolpidem (p=0.049). Latency to REM sleep was reduced by 20.1 (p=0.034) and 34.0 min (p<0.001) after 10 and 30 mg of SB-649868. Sleep-onset REM episodes were observed. SB-649868 was well tolerated. This dual orexin receptor antagonist exerts hypnotic activity, with effects on sleep structure and the EEG that are different from those of zolpidem.
Collapse
Affiliation(s)
- Paolo Bettica
- Neuroscience CEDD Discovery Medicine, GlaxoSmithKline, Verona, Italy
| | - Lisa Squassante
- Neurosciences Discovery Biometrics, GlaxoSmithKline, Verona, Italy
| | - John A Groeger
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- School of Applied Psychology, University Cork, Cork, Ireland
| | - Brian Gennery
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | | | - Derk-Jan Dijk
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
28
|
|
29
|
Rainero I, Ostacoli L, Rubino E, Gallone S, Picci LR, Fenoglio P, Negro E, Rosso C, De Martino P, De Marchi M, Furlan PM, Pinessi L. Association between major mood disorders and the hypocretin receptor 1 gene. J Affect Disord 2011; 130:487-91. [PMID: 21071097 DOI: 10.1016/j.jad.2010.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent studies suggested a role for hypocretins in the neurobiology of Major Mood Disorders (MMD). The purpose of this study was to investigate hypocretin involvement in MMD evaluating whether particular alleles or genotypes of the hypocretin pathway genes (HCRT, HCRTR1 and HCRTR2) would modify the occurrence and clinical features of the disease. METHODS We selected for the study 229 MMD patients and 259 healthy age-, sex- and ethnicity-matched controls. Cases and controls were genotyped for several single-nucleotide polymorphisms (SNPs) of the HCRT, HCRTR1, and HCRTR2 genes. RESULTS We found that allelic and genotypic frequencies of the rs2271933 G>A polymorphism (Ile408Val) in the HCRTR1 gene were significantly different between cases and controls (p=0.003 and p=0.0004, respectively). The carriage of the A allele was associated with a significantly increased disease risk (OR:1.60, 95% C.I. 1.22-2.10). In addition, we found a significant association between HCRTR1 haplotypes and the disease (permutation p<0.0001). In the analysis of subgroups we confirmed the association only in patients with unipolar depression. LIMITATIONS Our sample was relatively small and included only cases and controls recruited from Northern Italy. Analysis of the disease subgroups warrants reexamination with more subjects. Finally, the effects of the rs2271933 G>A polymorphism on the hypocretin-1 receptor function are unknown. CONCLUSIONS Our study suggests that the HCRTR1 gene or a linked locus may modulate the risk for Major Mood Disorders and supports recent studies suggesting an involvement of hypocretin neurotransmitter system in affective disorders.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci 2011; 68:2499-512. [PMID: 21318261 PMCID: PMC3134769 DOI: 10.1007/s00018-011-0631-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/25/2010] [Accepted: 01/13/2011] [Indexed: 11/01/2022]
Abstract
Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center.
Collapse
Affiliation(s)
- Jian-Sheng Lin
- INSERM-U628, Integrative Physiology of Brain Arousal Systems, Claude Bernard University, 69373, Lyon, France
| | | | | | | |
Collapse
|
31
|
Puskás N, Papp RS, Gallatz K, Palkovits M. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides 2010; 31:1589-97. [PMID: 20434498 DOI: 10.1016/j.peptides.2010.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022]
Abstract
Orexins are expressed in neurons of the dorsolateral hypothalamus and their axons widely distribute throughout the central nervous system. The noradrenergic cell groups of the lower brainstem belong to the targets of these orexin projections. Double immunostainings for orexin and phenylethanolamine N-methyltransferase (PNMT), as well as orexin and tyrosine hydroxylase (TH) were applied to demonstrate the orexinergic innervation of catecholamine cell groups in the lower brainstem of the mouse and the rat. In various densities, networks of orexin-positive fibers and terminals were present on neurons of each adrenaline (C1, C2, C3) and noradrenaline (locus coeruleus, A1, A2, A4, A5 and A7) cell groups. The most dense networks of orexin fibers and terminals were detected in the locus coeruleus, the subcoeruleus area, and in the nucleus of the solitary tract. By using confocal microscope to analyze triple immunostainings we could detect that about two-third of the orexin-PNMT or orexin-TH immunopositive close contacts contained synaptophysin (a presynapse-specific protein) in the C1, C2 and C3 adrenaline, or in the A1, A2 noradrenaline cell groups, respectively. Orexin-immunopositive axons in the C1, C2, as well as A1, A2 and A6 cell groups have been examined by an electron microscope. Relatively few asymmetrical (excitatory) synaptic contacts could be demonstrated between PNMT- or TH-positive dendrites and orexin terminals, although the vast majority of orexin-positive axons was located in juxtaposition to PNMT- or TH-positive neurons.
Collapse
Affiliation(s)
- Nela Puskás
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó utca 58, 1094 Budapest, Hungary
| | | | | | | |
Collapse
|
32
|
Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro. THE CEREBELLUM 2010; 9:88-95. [PMID: 19921532 DOI: 10.1007/s12311-009-0146-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep-wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM-1 microM) or orexin B (100 nM-1 microM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca(2+)/high-Mg(2+) medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala(11), D-Leu(15)] orexin B, a highly selective orexin 2 receptor (OX(2)R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX(2)R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.
Collapse
|