1
|
Kanellopoulos P, Nock BA, Krenning EP, Maina T. Reshaping [ 99mTc]Tc-DT11 to DT14D Tagged with Trivalent Radiometals for NTS 1R-Positive Cancer Theranostics. Pharmaceutics 2025; 17:310. [PMID: 40142972 PMCID: PMC11944670 DOI: 10.3390/pharmaceutics17030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Radiotheranostics of neurotensin subtype 1 receptor (NTS1R)-expressing tumors, like pancreatic, gastrointestinal, or prostate cancer, has attracted considerable attention in recent years. Still, the fast degradation of neurotensin (NT)-based radioligands, by angiotensin-converting enzyme (ACE), neprilysin (NEP), and other proteases, has considerably compromised their efficacy. The recently introduced [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; N4, 6-(carboxy)-1,4,8,11-tetraazaundecane) has displayed promising uptake in NTS1R-positive tumors in mice and enhanced resistance to both ACE and NEP by virtue of the lateral MPBA-PEG4 (MPBA, 4-(4-methylphenyl)butyric acid; PEG4, 14-amino-3,6,9,12-tetraoxatetradecan-1-oic acid) chain attached to the ε-NH2 of Lys7. We were next interested in investigating whether these qualities could be retained in DT14D, likewise modified at Lys7 but carrying the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) via a (βAla)3 spacer at the α-NH2 of Lys7. This chelator switch enables the labeling of DT14D with a wide range of trivalent radiometals suitable for true theranostic applications, not restricted to the diagnostic imaging of NTS1R-positive lesions only by single-photon emission computed tomography (SPECT). Methods: DT14D was labeled with Ga-67 (a surrogate for the positron emission tomography radionuclide Ga-68), In-111 (for SPECT), and Lu-177 (applied in radiotherapy). The resulting radioligands were tested in NTS1R-expressing pancreatic cancer AsPC-1 cells and mice models. Results: [67Ga]Ga/[111In]In/[177Lu]Lu-DT14D displayed high affinity for human NTS1R and internalization in AsPC-1 cells. They remained >70% intact 5 min after entering the mice's circulation, displaying NTS1R-specific uptake in AsPC-1 xenografts. Conclusions: Suitably side-chain modified NT analogs show enhanced metabolic stability and hence better prospects for radiotheranostic application in NTS1R-positive cancer.
Collapse
Affiliation(s)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| |
Collapse
|
2
|
Erfani M, Mikaeili A, Fallah Z, Goudarzi M. Preclinical evaluation of a new technetium-99m labeled neurotensin analogue for NTSR1 targeted radionuclide imaging. Bioorg Chem 2024; 153:107858. [PMID: 39395320 DOI: 10.1016/j.bioorg.2024.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
Neurotensin is a regulatory peptide that can act as a growth factor on different types of normal and cancerous cells. Binding of Neurotensin to relevant receptors leads to cell proliferation, survival, migration and invasion by changing intracellular enzyme activity. Therefore, the design of a neurotensin-based radiopeptide plays an important role in targeted imaging or therapy of neurotensin receptor-positive tumors. A [Lys8]-neurotensin (7-13) peptide was synthesized and attached to HYNIC as a chelator via a linker. The labeling procedure was carried out at 100 °C for 10 min using 99mTc as a radionuclide and EDDA/tricine as coligands. Stability of the labeled peptide in human serum was determined using RTLC and HPLC methods. The receptor binding internalization was studied using HT-29 colon carcinoma cells, and tissue biodistribution was evaluated in mice bearing CT-26 tumors. The [99mTc]Tc-Tricine/EDDA/HYNIC-GABA-[Lys8]-neurotensin (7-13) peptide demonstrated a labeling yield of over 98 %, a specific activity of 37.00 GBq/µmol, high stability in human serum, a nanomolar range of Kd, and a tumor uptake of 0.36 ± 0.15 % ID/g at 1-h post-injection. These results suggest that the labeled peptide is a suitable imaging agent for neurotensin receptor-positive tumors.
Collapse
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Azadeh Mikaeili
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Zhila Fallah
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Goudarzi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
3
|
Ertl F, Kopanchuk S, Dijon NC, Veikšina S, Tahk MJ, Laasfeld T, Schettler F, Gattor AO, Hübner H, Archipowa N, Köckenberger J, Heinrich MR, Gmeiner P, Kutta RJ, Holliday ND, Rinken A, Keller M. Dually Labeled Neurotensin NTS 1R Ligands for Probing Radiochemical and Fluorescence-Based Binding Assays. J Med Chem 2024; 67:16664-16691. [PMID: 39261089 PMCID: PMC11440508 DOI: 10.1021/acs.jmedchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The determination of ligand-receptor binding affinities plays a key role in the development process of pharmaceuticals. While the classical radiochemical binding assay uses radioligands, fluorescence-based binding assays require fluorescent probes. Usually, radio- and fluorescence-labeled ligands are dissimilar in terms of structure and bioactivity, and can be used in either radiochemical or fluorescence-based assays. Aiming for a close comparison of both assay types, we synthesized tritiated fluorescent neurotensin receptor ligands ([3H]13, [3H]18) and their nontritiated analogues (13, 18). The labeled probes were studied in radiochemical and fluorescence-based (high-content imaging, flow cytometry, fluorescence anisotropy) binding assays. Equilibrium saturation binding yielded well-comparable ligand-receptor affinities, indicating that all these setups can be used for the screening of new drugs. In contrast, discrepancies were found in the kinetic behavior of the probes, which can be attributed to technical differences of the methods and require further studies with respect to the elucidation of the underlying mechanisms.
Collapse
Affiliation(s)
- Fabian
J. Ertl
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nicola C. Dijon
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Franziska Schettler
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraβe
31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Roger J. Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Nicholas D. Holliday
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Bibika M, Kanellopoulos P, Rouchota M, Loudos G, Nock BA, Krenning EP, Maina T. Diagnosis of Prostate Cancer with a Neurotensin-Bombesin Radioligand Combination-First Preclinical Results. Pharmaceutics 2024; 16:1223. [PMID: 39339259 PMCID: PMC11435135 DOI: 10.3390/pharmaceutics16091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity and therapeutic efficacy. Toward this goal, we explored a first example of a combined application of [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; NTS1R-specific) and [99mTc]Tc-DB7(DB7, N4-PEG2-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; GRPR-specific) in prostate cancer models. Methods: Accordingly, the behavior of [99mTc]Tc-DT11 was compared with that of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture in prostate adenocarcinoma PC-3 cells and xenografts in mice. The impact of stabilizing both radiotracers by Entresto®, as a source of the potent neprilysin inhibitor sacubitrilat, was also investigated. Results: The PC-3 cell binding of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture surpassed that of [99mTc]Tc-DT11. Likewise, the PC-3 tumor uptake of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture at 4 h post-injection was superior (7.70 ± 0.89%IA/g) compared with [99mTc]Tc-DT11 (4.23 ± 0.58%IA/g; p < 0.0001). Treatment with Entresto® led to further enhancement of the tumor uptake (to 11.57 ± 1.92%IA/g; p < 0.0001). Conclusions: In conclusion, this first preclinical study on prostate cancer models revealed clear advantages of dual NTS1R/GRPR targeting, justifying further assessment of this promising concept in other cancer models.
Collapse
Affiliation(s)
- Maria Bibika
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | | | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | - Eric P Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| |
Collapse
|
5
|
Ferreira FP, Pereira SS, Costa MM, Guimarães M, Albrechtsen NJW, Holst JJ, Nora M, Monteiro MP. Individuals with type 2 diabetes have higher density of small intestinal neurotensin-expressing cells. Mol Cell Biochem 2023; 478:2779-2787. [PMID: 36920577 PMCID: PMC10627918 DOI: 10.1007/s11010-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Neurotensin (NT) is a gastro-intestinal hormone involved in several pathways that regulate energy and glucose homeostasis. NT was hypothesized to act in synergy with incretin hormones to potentiate its anti-diabetic effects. Additionally, circulating NT levels were shown to rise after bariatric surgery-induced weight loss. Knowledge of NT-secreting cells distribution along the small intestine and its variation according to diabetes status could provide insights on NT role in mediating type 2 diabetes (T2D) improvement after bariatric surgery. So, our aims were to characterize NT-expressing cell distribution along the human small intestine and to compare the relative density of NT-expressing cells in the small intestine of individuals with and without T2D undergoing bariatric surgery for obesity treatment. Autopsy-derived small intestine fragments (n = 30) were obtained at every 20 cm along the entire intestinal length. Additionally, jejunum biopsies (n = 29) were obtained during elective gastric bypass interventions from patients with (n = 10) or without T2D (n = 18). NT-expressing cells were identified by immunohistochemistry and quantified via computerized morphometric analysis. NT-expressing cell density increased along the human small intestine. NT-expressing cell density was significantly higher from 200 cm distal to the duodenojejunal flexure onward, as well as in subjects with T2D when compared to those without T2D. NT-expressing cell density increases along the human small gut, and a higher density is found in individuals with T2D. This finding suggests a potential role for NT in the mechanisms of disease and T2D improvement observed after bariatric surgery.
Collapse
Affiliation(s)
- Filipa P Ferreira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Sofia S Pereira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal.
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Madalena M Costa
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marta Guimarães
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mário Nora
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Mariana P Monteiro
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
6
|
Kanellopoulos P, Nock BA, Rouchota M, Loudos G, Krenning EP, Maina T. Side-Chain Modified [ 99mTc]Tc-DT1 Mimics: A Comparative Study in NTS 1R-Positive Models. Int J Mol Sci 2023; 24:15541. [PMID: 37958525 PMCID: PMC10647616 DOI: 10.3390/ijms242115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Radiolabeled neurotensin analogs have been developed as candidates for theranostic use against neurotensin subtype 1 receptor (NTS1R)-expressing cancer. However, their fast degradation by two major peptidases, neprilysin (NEP) and angiotensin-converting enzyme (ACE), has hitherto limited clinical success. We have recently shown that palmitoylation at the ε-amine of Lys7 in [99mTc]Tc-[Lys7]DT1 (DT1, N4-Gly-Arg-Arg-Pro-Tyr-Ile-Leu-OH, N4 = 6-(carboxy)-1,4,8,11-tetraazaundecane) led to the fully stabilized [99mTc]Tc-DT9 analog, displaying high uptake in human pancreatic cancer AsPC-1 xenografts but unfavorable pharmacokinetics in mice. Aiming to improve the in vivo stability of [99mTc]Tc-DT1 without compromising pharmacokinetics, we now introduce three new [99mTc]Tc-DT1 mimics, carrying different pendant groups at the ε-amine of Lys7: MPBA (4-(4-methylphenyl)butyric acid)-[99mTc]Tc-DT10; MPBA via a PEG4-linker-[99mTc]Tc-DT11; or a hydrophilic PEG6 chain-[99mTc]Tc-DT12. The impact of these modifications on receptor affinity and internalization was studied in NTS1R-positive cells. The effects on stability and AsPC-1 tumor uptake were assessed in mice without or during NEP/ACE inhibition. Unlike [99mTc]Tc-DT10, the longer-chain modified [99mTc]Tc-DT11 and [99mTc]Tc-DT12 were significantly stabilized in vivo, resulting in markedly improved tumor uptake compared to [99mTc]Tc-DT1. [99mTc]Tc-DT11 was found to achieve the highest AsPC-1 tumor values and good pharmacokinetics, either without or during NEP inhibition, qualifying for further validation in patients with NTS1R-positive tumors using SPECT/CT.
Collapse
Affiliation(s)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR “Demokritos”, 15310 Athens, Greece; (M.R.); (G.L.)
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR “Demokritos”, 15310 Athens, Greece; (M.R.); (G.L.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| |
Collapse
|
7
|
Kanellopoulos P, Nock BA, Krenning EP, Maina T. Toward Stability Enhancement of NTS 1R-Targeted Radioligands: Structural Interventions on [ 99mTc]Tc-DT1. Pharmaceutics 2023; 15:2092. [PMID: 37631306 PMCID: PMC10459693 DOI: 10.3390/pharmaceutics15082092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast degradation of intravenously injected NT-radioligands by neprilysin (NEP) and angiotensin-converting enzyme (ACE) has compromised their clinical applicability. Aiming at metabolic stability enhancements, we herein introduce (i) DT7 ([DAsn14]DT1) and (ii) DT8 ([β-Homoleucine13]DT1), modified at the C-terminus, along with (iii) DT9 ([(palmitoyl)Lys7]DT1), carrying an albumin-binding domain (ABD) at Lys7. The biological profiles of the new [99mTc]Tc-radioligands were compared with [99mTc]Tc-DT1, using NTS1R-expressing AsPC-1 cells and mice models without or during NEP/ACE inhibition. The radioligands showed enhanced in vivo stability vs. [99mTc]Tc-DT1, with [99mTc]Tc-DT9 displaying full resistance to both peptidases. Furthermore, [99mTc]Tc-DT9 achieved the highest cell internalization and tumor uptake even without NEP/ACE-inhibition but with unfavorably high background radioactivity levels. Hence, unlike C-terminal modification, the introduction of a pendant ABD group in the linker turned out to be the most promising strategy toward metabolic stability, cell uptake, and tumor accumulation of [99mTc]Tc-DT1 mimics. To improve the observed suboptimal pharmacokinetics of [99mTc]Tc-DT9, the replacement of palmitoyl on Lys7 by other ABD groups is currently being pursued.
Collapse
Affiliation(s)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| |
Collapse
|
8
|
Kühl T, Georgieva MG, Hübner H, Lazarova M, Vogel M, Haas B, Peeva MI, Balacheva AA, Bogdanov IP, Milella L, Ponticelli M, Garev T, Faraone I, Detcheva R, Minchev B, Petkova-Kirova P, Tancheva L, Kalfin R, Atanasov AG, Antonov L, Pajpanova TI, Kirilov K, Gastreich M, Gmeiner P, Imhof D, Tzvetkov NT. Neurotensin(8-13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease. Eur J Med Chem 2023; 254:115386. [PMID: 37094450 DOI: 10.1016/j.ejmech.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Martina I Peeva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Aneliya A Balacheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Ivan P Bogdanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Tsvetomir Garev
- UMBALSM "N. I. Pirogov"-Hospital, 1606 Pette Kyosheta, Sofia, Bulgaria
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100, Potenza, Italy
| | - Roumyana Detcheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria; Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, Blvd. Tsarigradsko Chaussee 72, 1784, Sofia, Bulgaria
| | - Tamara I Pajpanova
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Kiril Kirilov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria; Department of Natural Sciences, New Bulgarian University, 21 Montevideo Str., Sofia, 1618, Bulgaria
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
9
|
Sánchez ML, Coveñas R. The Neurotensinergic System: A Target for Cancer Treatment. Curr Med Chem 2021; 29:3231-3260. [PMID: 34711154 DOI: 10.2174/0929867328666211027124328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scientific interest regarding the involvement of peptides in cancer has increased in the last years. In tumor cells the overexpression of peptides and their receptors is known and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk and worse sensitivity to chemotherapy agents. OBJECTIVE The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR) and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver and pancreatic cancers, glioblastoma, neuroendocrine tumors and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested such as: molecules regulating the expression of the NT precursor, influence of the diet in the development of tumors, molecules and signaling pathways activated by NT and antitumor therapeutic strategies targeting the neurotensinergic system. CONCLUSION NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| | - Rafael Coveñas
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| |
Collapse
|
10
|
Renard E, Moreau M, Bellaye PS, Guillemin M, Collin B, Prignon A, Denat F, Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J Med Chem 2021; 64:8564-8578. [PMID: 34107209 DOI: 10.1021/acs.jmedchem.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Emma Renard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Mélanie Guillemin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Bertrand Collin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Aurélie Prignon
- UMS28 Laboratoire d'Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
11
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
12
|
Kanellopoulos P, Nock BA, Krenning EP, Maina T. Optimizing the Profile of [ 99mTc]Tc-NT(7-13) Tracers in Pancreatic Cancer Models by Means of Protease Inhibitors. Int J Mol Sci 2020; 21:ijms21217926. [PMID: 33114537 PMCID: PMC7663772 DOI: 10.3390/ijms21217926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The overexpression of neurotensin subtype 1 receptors (NTS1Rs) in human tumors may be elegantly exploited for directing neurotensin (NT)-based radionuclide carriers specifically to cancer sites for theranostic purposes. We have recently shown that [99mTc]Tc–DT1 ([99mTc]Tc–[N4–Gly7]NT(7–13)) and [99mTc]Tc–DT5 ([99mTc]Tc–[N4–βAla7,Dab9]NT(7–13)) show notably improved uptake in human colon adenocarcinoma WiDr xenografts in mice treated with neprilysin (NEP) inhibitors and/or angiotensin-converting enzyme (ACE) inhibitors compared with untreated controls. Aiming toward translation of this promising approach in NTS1R-positive pancreatic ductal adenocarcinoma (PDAC) patients, we now report on the impact of registered NEP/ACE inhibitors on the performance of [99mTc]Tc–DT1 and [99mTc]Tc–DT5 in pancreatic cancer models. Methods: The cellular uptake of [99mTc]Tc–DT1 and [99mTc]Tc–DT5 was tested in a panel of pancreatic cell lines, and their stability was assessed in mice treated or not treated with Entresto, lisinopril, or their combinations. Biodistribution was conducted in severe combined immunodeficiency (SCID) mice bearing pancreatic AsPC-1 xenografts. Results: The Entresto + lisinopril combination maximized the metabolic stability of the fast-internalizing [99mTc]Tc–DT1 in mice, resulting in notably enhanced tumor uptake (7.05 ± 0.80% injected activity (IA)/g vs. 1.25 ± 0.80% IA/g in non-treated controls at 4 h post-injection; p < 0.0001). Conclusions: This study has shown the feasibility of optimizing the uptake of [99mTc]Tc–DT1 in pancreatic cancer models with the aid of clinically established NEP/ACE inhibitors, in favor of clinical translation prospects.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece;
- Molecular Pharmacology, School of Medicine, University of Crete, Heraklion, 70013 Crete, Greece
- Correspondence: (P.K.); (T.M.); Tel.: +30-210-650-3891 (P.K.); +30-210-650-3908 (T.M.)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece;
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece;
- Correspondence: (P.K.); (T.M.); Tel.: +30-210-650-3891 (P.K.); +30-210-650-3908 (T.M.)
| |
Collapse
|
13
|
Neurotensins and their therapeutic potential: research field study. Future Med Chem 2020; 12:1779-1803. [PMID: 33032465 DOI: 10.4155/fmc-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.
Collapse
|
14
|
Kanellopoulos P, Kaloudi A, de Jong M, Krenning EP, Nock BA, Maina T. Key-Protease Inhibition Regimens Promote Tumor Targeting of Neurotensin Radioligands. Pharmaceutics 2020; 12:pharmaceutics12060528. [PMID: 32526874 PMCID: PMC7356968 DOI: 10.3390/pharmaceutics12060528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neurotensin subtype 1 receptors (NTS1R) represent attractive molecular targets for directing radiolabeled neurotensin (NT) analogs to tumor lesions for diagnostic and therapeutic purposes. This approach has been largely undermined by the rapid in vivo degradation of linear NT-based radioligands. Herein, we aim to increase the tumor targeting of three 99mTc-labeled NT analogs by the in-situ inhibition of two key proteases involved in their catabolism. DT1 ([N4-Gly7]NT(7-13)), DT5 ([N4-βAla7,Dab9]NT(7-13)), and DT6 ([N4-βAla7,Dab9,Tle12]]NT(7-13)) were labeled with 99mTc. Their profiles were investigated in NTS1R-positive colon adenocarcinoma WiDr cells and mice treated or not with the neprilysin (NEP)-inhibitor phosphoramidon (PA) and/or the angiotensin converting enzyme (ACE)-inhibitor lisinopril (Lis). Structural modifications led to the partial stabilization of 99mTc-DT6 in peripheral mice blood (55.1 ± 3.9% intact), whereas 99mTc-DT1 and 99mTc-DT5 were totally degraded within 5 min. Coinjection of PA and/or Lis significantly stabilized all three analogs, leading to a remarkable enhancement of tumor uptake for 99mTc-DT1 and 99mTc-DT5, but was less effective in the case of poorly internalizing 99mTc-DT6. In conclusion, NEP and/or ACE inhibition represents a powerful tool to improve tumor targeting and the overall pharmacokinetics of NT-based radioligands, and warrants further validation in the field of NTS1R-targeted tumor imaging and therapy.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
- Molecular Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Aikaterini Kaloudi
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine Erasmus MC, 3015 CN Rotterdam, The Netherlands;
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
- Correspondence: ; Tel.: +30-210-650-3908
| |
Collapse
|
15
|
Schindler L, Bernhardt G, Keller M. Modifications at Arg and Ile Give Neurotensin(8-13) Derivatives with High Stability and Retained NTS 1 Receptor Affinity. ACS Med Chem Lett 2019; 10:960-965. [PMID: 31223455 DOI: 10.1021/acsmedchemlett.9b00122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Due to its expression in various malignant tumors, the neurotensin receptor 1 (NTS1R) has been suggested and explored as a target for tumor diagnosis and therapy. Animal model-based investigations of various radiolabeled NTS1R ligands derived from the hexapeptide neurotensin(8-13) (NT(8-13)), e.g. 68Ga- and 18F-labeled compounds for PET diagnostics, give rise to optimize such radiotracers for clinical use. As NT(8-13) is rapidly degraded in vivo; structural modifications are required in terms of increased metabolic stability. In this study, the stabilization of the peptide backbone of NT(8-13) against enzymatic degradation was systematically explored by performing an N-methyl scan, replacing Ile12 by tert-butylglycine12 (Tle12) and N-terminal acylation. N-Methylation of either arginine, Arg8, or Arg9, combined with the Ile12/Tle12 exchange, proved to be most favorable with respect to NTS1R affinity (K i < 2 nM) and stability in human plasma (t 1/2 > 48 h), a valuable result regarding the development of radiopharmaceuticals derived from NT(8-13).
Collapse
Affiliation(s)
- Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
16
|
Richard T, Petit E, Pouységu L, Monti JP, Bondon A, Sylla T, Mérillon JM, Quideau S, Da Costa G. Impact of polyphenols on receptor-ligand interactions by NMR: the case of neurotensin (NT)-neurotensin receptor fragment (NTS1) complex. J Biomol Struct Dyn 2019; 38:1467-1478. [PMID: 31046599 DOI: 10.1080/07391102.2019.1608863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ligand-receptor interactions can be implicated in many pathological events such as chronic neurodegenerative diseases. Thus, the discovery of molecules disrupting this type of interactions could be an interesting therapeutic approach. Polyphenols are well known for their affinity for proteins and several studies have characterized these direct interactions. But studying the direct influence of multi-therapeutic drugs on a ligand-receptor complex relevant to a neurodegenerative disorder is a challenging issue. Solution NMR, molecular modeling and iterative calculations were used to obtain information about the interaction between a phenolic compound, α-glucogallin (α-2) and a ligand/fragment receptor complex neurotensin (NT) and its receptor NTS1. The α-2 was shown to bind to NT and a peptidic fragment of its NTS1 receptor, independently. Although the formation of the corresponding ligand-receptor complex did not seem to be affected, this experimental modeling protocol will enable the evaluation of other anti-amyloidogenic compounds such as blockers of NT-NTS1 binding. These types of studies help in understanding the specificity and influence in binding and can provide information to develop new molecules with a putative pharmacological interest.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tristan Richard
- Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche OEnologie, Villenave d'Ornon, France
| | - Eva Petit
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole d'Ingénieurs de Purpan, Unité Propre Physiologie, Pathologie et Génétique Végétales (PPGV), Toulouse, France
| | | | - Jean-Pierre Monti
- Université de Bordeaux, Laboratoire de Physique et Biophysique, Bordeaux, France
| | - Arnaud Bondon
- Université de Rennes, CNRS, ISCR - UMR 6226, Rennes, France
| | - Tahiri Sylla
- Université de Bordeaux, ISM (CNRS-UMR 5255), Talence, France
| | - Jean-Michel Mérillon
- Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche OEnologie, Villenave d'Ornon, France
| | | | - Grégory Da Costa
- Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche OEnologie, Villenave d'Ornon, France
| |
Collapse
|
17
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Kitching MO, Dixon OE, Baumann M, Baxendale IR. Flow-Assisted Synthesis: A Key Fragment of SR 142948A. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Olivia E. Dixon
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Marcus Baumann
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| | - Ian R. Baxendale
- Department of Chemistry; University of Durham; South Road DH1 3LE Durham UK
| |
Collapse
|
19
|
Maschauer S, Einsiedel J, Hübner H, Gmeiner P, Prante O. 18F- and 68Ga-Labeled Neurotensin Peptides for PET Imaging of Neurotensin Receptor 1. J Med Chem 2016; 59:6480-92. [DOI: 10.1021/acs.jmedchem.6b00675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
20
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
21
|
Jia Y, Shi W, Zhou Z, Wagh NK, Fan W, Brusnahan SK, Garrison JC. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. Nucl Med Biol 2015; 42:816-23. [PMID: 26302836 DOI: 10.1016/j.nucmedbio.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/25/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR1) is overexpressed in many cancer types. Neurotensin (NT), a 13 amino acid peptide, is the native ligand for NTR1 and exhibits high (nM) affinity to the receptor. Many laboratories have been investigating the development of diagnostic and therapeutic radiopharmaceuticals for NTR1-positive cancers based on the NT peptide. To improve the biological performance for targeting NTR1, we proposed NT analogs with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelation system and different lengths of spacers. METHODS We synthesized four NTR1-targeted conjugates with spacer lengths from 0 to 9 atoms (null (N0), β-Ala-OH (N1), 5-Ava-OH (N2), and 8-Aoc-OH (N3)) between the DOTA and the pharmacophore. In vitro competitive binding, internalization and efflux studies were performed on all four NT analogs. Based on these findings, metabolism studies were carried out on our best performing conjugate, (177)Lu-N1. Lastly, in vivo biodistribution and SPECT/CT imaging studies were performed using (177)Lu-N1 in an HT-29 xenograft mouse model. RESULTS As shown in the competitive binding assays, the NT analogs with different spacers (N1, N2 and N3) exhibited lower IC50 values than the NT analog without a spacer (N0). Furthermore, N1 revealed higher retention in HT-29 cells with more rapid internalization and slower efflux than the other NT analogs. In vivo biodistribution and SPECT/CT imaging studies of (177)Lu-N1 demonstrated excellent accumulation (3.1 ± 0.4%ID/g) in the NTR1-positive tumors at 4h post-administration. CONCLUSIONS The DOTA chelation system demonstrated some modest steric inhibition of the pharmacophore. However, the insertion of a 4-atom hydrocarbon spacer group restored optimal binding affinity of the analog. The in vivo assays indicated that (177)Lu-N1 could be used for imaging and radiotherapy of NTR1-positive tumors.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wen Shi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Zhengyuan Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Nilesh K Wagh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wei Fan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Susan K Brusnahan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830.
| |
Collapse
|
22
|
Kuhre RE, Bechmann LE, Wewer Albrechtsen NJ, Hartmann B, Holst JJ. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx. Am J Physiol Endocrinol Metab 2015; 308:E1123-30. [PMID: 25898949 DOI: 10.1152/ajpendo.00012.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/20/2015] [Indexed: 01/11/2023]
Abstract
Neurotensin (NT) is a neurohormone produced in the central nervous system and in the gut epithelium by the enteroendocrine N cell. NT may play a role in appetite regulation and may have potential in obesity treatment. Glucose ingestion stimulates NT secretion in healthy young humans, but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide, which causes hyperpolarization, eliminated the response. Luminal inhibition of the sodium-glucose cotransporter 1 (SGLT1) (by phloridzin) eliminated glucose-stimulated release as well as secretion stimulated by luminal methyl-α-D-glucopyranoside (20% wt/vol), a metabolically inactive SGLT1 substrate, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose stimulates NT secretion by uptake through SGLT1 and GLUT2, both causing depolarization either as a consequence of sodium-coupled uptake (SGLT1) or by closure of KATP channels (GLUT2 and SGLT1) secondary to the ATP-generating metabolism of glucose.
Collapse
Affiliation(s)
- Rune Ehrenreich Kuhre
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Ellegaard Bechmann
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Shih YP, Chou CC, Chen YL, Huang KF, Wang AHJ. Linked production of pyroglutamate-modified proteins via self-cleavage of fusion tags with TEV protease and autonomous N-terminal cyclization with glutaminyl cyclase in vivo. PLoS One 2014; 9:e94812. [PMID: 24733552 PMCID: PMC3986218 DOI: 10.1371/journal.pone.0094812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022] Open
Abstract
Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities.
Collapse
Affiliation(s)
- Yan-Ping Shih
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Chen
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| | - Andrew H.- J. Wang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| |
Collapse
|
24
|
Driessen TM, Zhao C, Whittlinger A, Williams H, Gammie SC. Endogenous CNS expression of neurotensin and neurotensin receptors is altered during the postpartum period in outbred mice. PLoS One 2014; 9:e83098. [PMID: 24416154 PMCID: PMC3885409 DOI: 10.1371/journal.pone.0083098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors.
Collapse
Affiliation(s)
- Terri M. Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Whittlinger
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Horecia Williams
- Department of Animal Science, Fort Valley State University, Fort Valley, Georgia, United States of America
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
25
|
Erfani M, Zarrabi Ahrabi N, Shafiei M, Shirmardi SP. A (99m) Tc-tricine-HYNIC-labeled peptide targeting the neurotensin receptor for single-photon imaging in malignant tumors. J Labelled Comp Radiopharm 2014; 57:125-31. [PMID: 24395489 DOI: 10.1002/jlcr.3176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022]
Abstract
In this study, a new neurotensin (NT) analog was labeled with (99m) Tc via HYNIC chelator and tricine as coligand and investigated further. An NT (7-13) analog was prepared, and labeling with (99m) Tc was performed. The internalization rate and biodistribution of radiopeptide were studied in HT-29 cells and nude mice bearing tumor, respectively. Radiolabeling with (99m) Tc was performed at high specific activities (54 MBq/nmol) with an acceptable labeling yield (>95%). In vitro cell line studies showed a specific internalization uptake up to 13.23 ± 0.45% during 4 h which was blocked in the presence of excess cold peptide to 0.83 ± 0.15%. In biodistribution studies, uptake was observed in NT receptor-positive organs so that after 1 h the uptakes in mouse intestine and tumor were 1.23 ± 0.16% ID/g and 1.12 ± 0.11% ID/g, respectively. In animals co-injected with excess cold peptide, reduction uptake in tumor and intestines were 73% (1.10% vs. 0.29% ID/g at 4 h) and 61% (1.22% vs. 0.47% ID/g at 4 h) respectively. Predominant renal excretion pathway with a highest accumulation of activity in bladder was observed for this radiopeptide. This radiolabeled peptide could be a candidate for detection of NT positive tumors.
Collapse
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), PO Box: 11365-3486, end of Karegar Ave., Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Da Costa G, Bondon A, Coutant J, Curmi P, Monti JP. Intermolecular interactions between the neurotensin and the third extracellular loop of human neurotensin 1 receptor. J Biomol Struct Dyn 2013; 31:1381-92. [DOI: 10.1080/07391102.2012.736776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Ahrabi NZ, Erfani M, Parivar K, Beiki D, Jalilian AR. Preparation and evaluation of a new neurotensin analog labeled with 99mTc for targeted imaging of neurotensin receptor positive tumors. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2795-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Da Costa G, Bondon A, Delalande O, Mouret L, Monti JP. Elucidation by NMR solution of neurotensin in small unilamellar vesicle environment: molecular surveys for neurotensin receptor recognition. J Biomol Struct Dyn 2013; 31:809-17. [DOI: 10.1080/07391102.2012.712459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Identification of Dmt-D-Lys-Phe-Phe-OH as a highly antinociceptive tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20. Pharmacol Rep 2013; 65:836-46. [DOI: 10.1016/s1734-1140(13)71064-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 03/07/2013] [Indexed: 11/19/2022]
|
30
|
Baxendale IR, Cheung S, Kitching MO, Ley SV, Shearman JW. The synthesis of neurotensin antagonist SR 48692 for prostate cancer research. Bioorg Med Chem 2013; 21:4378-87. [PMID: 23721919 DOI: 10.1016/j.bmc.2013.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 01/03/2023]
Abstract
An improved synthesis of the molecule SR 48692 is presented and its use as a neurotensin antagonist biological probe for use in cancer research is described. The preparation includes an number of enhanced chemical conversions and strategies to overcome some of the limiting synthetic transformations in the original chemical route.
Collapse
Affiliation(s)
- I R Baxendale
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. REGULATORY PEPTIDES 2011; 170:7-17. [PMID: 21549161 DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
Abstract
Among various hormones, which are synthesized by intestinal cells and influence enteric function, neurotensin (NT) has gained scientific attention the last three decades. This neuropeptide, mainly located in neuronal synaptic vesicles of hypothalamus and in neuroendocrine cells of the small bowel, participates in enteric digestive processes, gut motility and intestinal inflammatory mechanisms by cooperating with other regulators such as histamine, substance P and somatostatin. NT plays an important role mainly in intestinal lipid metabolism by cooperating with cholecystokinin and establishes a hormonal brain-gut-adipose tissue connection, which could adjust appetite, weight status and generally eating behavior with the amount and the content (particularly fat) of food intake. Moreover, NT achieves a multi-level control of intestinal motility by cooperating with the enteric- and central nervous system, and other enteric hormones (such as somatostatin). NT regulates motility patterns related to the efficiency of the digestive process, stool emptying, transition from the fasted to the postprandial state and reestablishment of the fasted status. In addition, NT possesses a long-term enteroprotective role towards the intestinal tract, despite the fact that under certain circumstances NT may participate in short-term subcellular pathways promoting an acute inflammatory response. The aim of this review is two-fold. First, is to provide an up-to-date synopsis of the available knowledge regarding the involvement of neurotensin in enteric functional status, and highlight its significance in physiological and pathological conditions. Second, is to propose new research directions concerning the role of neurotensin and other intestinal regulatory peptides in the establishment of the brain-gut axis and in the development of functional disorders of the abdominal tract. Conclusively, to clarify the areas, in which an experimental therapeutic intervention, based on NT analogs, may lead to encouraging results.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
32
|
Röhrich A, Bergmann R, Kretzschmann A, Noll S, Steinbach J, Pietzsch J, Stephan H. A novel tetrabranched neurotensin(8-13) cyclam derivative: synthesis, 64Cu-labeling and biological evaluation. J Inorg Biochem 2011; 105:821-32. [PMID: 21497581 DOI: 10.1016/j.jinorgbio.2011.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/21/2011] [Accepted: 02/21/2011] [Indexed: 12/11/2022]
Abstract
New macrocyclic 1,4,8,11-tetraazacyclotetradecane (cyclam) derivatives with 1, 2 and 4 neurotensin(8-13) units 4, 5 and 7 have been synthesized. Compounds 4 and 5 were prepared by the reaction of non-stabilized neurotensin(8-13) and cyclamtetrapropionic acid 2 using 1-ethyl-3-(3-dimethylaminocarbonyl)carbodiimide-hydrochloride and N-hydroxysulfosuccinimide. The tetrameric compound 7 was synthesized by Michael addition of neurotensin(8-13) acrylamide 6 and cyclam 1. The copper(II) complexation behavior of 4, 5 and 7 was investigated by UV/visible spectrophotometry and shows that the metal center resides inside the N4 chromophore with additional apical interactions established with pendant arms. The novel tetrabranched NT(8-13) cyclam 7 with nanomolar neurotensin receptor 1 binding affinity was efficiently radiolabeled with (64)Cu under mild conditions. (64)Cu⊂7 showed slow transchelation in the presence of a large amount of cyclam as competing ligand, while it completely remains intact in the presence of EDTA. The in vivo behavior of (64)Cu⊂7 was studied in rats and mice. The metabolic stability in rodent models was high with a half-life of intact (64)Cu⊂7 in plasma of 34 min in rats and 60 min in the mice, respectively. The binding affinity was high enough to demonstrate in vivo binding of (64)Cu⊂7 to NTR1 overexpressing HT-29 tumor xenotransplants in nude mice. Regarding elimination, (64)Cu⊂7 showed a substantial renal and reticuloendothelial accumulation. On the other hand, metabolization of the compound in vivo with a resulting metabolite-postulated to be the (64)Cu-cyclam-tetraarginine complex-also showed long retention in the circulating blood, preventing a better contrast of tumor imaging.
Collapse
Affiliation(s)
- Anika Röhrich
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Myers RM, Shearman JW, Kitching MO, Ramos-Montoya A, Neal DE, Ley SV. Cancer, chemistry, and the cell: molecules that interact with the neurotensin receptors. ACS Chem Biol 2009; 4:503-25. [PMID: 19462983 DOI: 10.1021/cb900038e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The literature covering neurotensin (NT) and its signalling pathways, receptors, and biological profile is complicated by the fact that the discovery of three NT receptor subtypes has come to light only in recent years. Moreover, a lot of this literature explores NT in the context of the central nervous system and behavioral studies. However, there is now good evidence that the up-regulation of NT is intimately involved in cancer development and progression. This Review aims to summarize the isolation, cloning, localization, and binding properties of the accepted receptor subtypes (NTR1, NTR2, and NTR3) and the molecules known to bind at these receptors. The growing role these targets are playing in cancer research is also discussed. We hope this Review will provide a useful overview and a one-stop resource for new researchers engaged in this field at the chemistry-biology interface.
Collapse
Affiliation(s)
- Rebecca M. Myers
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - James W. Shearman
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew O. Kitching
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Antonio Ramos-Montoya
- CRUK-Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David E. Neal
- CRUK-Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Steven V. Ley
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
34
|
A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 2008; 36:37-47. [PMID: 18690434 DOI: 10.1007/s00259-008-0894-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/11/2008] [Indexed: 01/02/2023]
|
35
|
Schilling S, Wasternack C, Demuth HU. Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol Chem 2008. [DOI: 10.1515/bc.2008.111_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Schilling S, Wasternack C, Demuth HU. Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol Chem 2008; 389:983-91. [DOI: 10.1515/bc.2008.111] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSeveral mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures ofCarica papayaand human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Collapse
|
37
|
Janssen PJJM, de Visser M, Verwijnen SM, Bernard BF, Srinivasan A, Erion JL, Breeman WAP, Vulto AG, Krenning EP, de Jong M. Five Stabilized 111In-labeled neurotensin analogs in nude mice bearing HT29 tumors. Cancer Biother Radiopharm 2007; 22:374-81. [PMID: 17651043 DOI: 10.1089/cbr.2007.369.a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotensin (NT) receptors are overexpressed in different human tumors, such as human ductal pancreatic adenocarcinoma. New stable neurotensin analogs with high receptor affinity have been synthesized by replacing arginine residues with lysine and arginine derivatives. The aim of this study was to explore the biodistribution, tumor uptake, kidney localization, and stability characteristics of these new analogs in order to develop new diagnostic tools for exocrine pancreatic cancer. Four (111)In-labeled DTPA-chelated NT analogs and one (111)In-labeled DOTA-chelated NT analog were evaluated in NMRI nude mice bearing NT receptor-positive HT29 tumors. Experiments with a coinjection of unlabeled NT or lysine were performed to investigate receptor-mediated uptake and kidney protection, respectively. In addition, the in vivo serum stability of the most promising analog was analyzed. In the biodistribution study in mice, at 4 hours postinjection, a low percentage of the injected dose per gram (%ID/g) of tissue for all compounds was found in NT receptor-negative organs, such as the blood, spleen, pancreas, liver, muscle, and femur. A high uptake was found in the colon, intestine, kidneys, and in implanted HT29 tumors. The coinjection of excess unlabeled neurotensin significantly reduced tumor uptake, showing tumor uptake to be receptor-mediated. To a lesser extent, this was also observed for the colon, but not for other tissues. We concluded that DTPA-(Pip)Gly-Pro-(PipAm)Gly-Arg-Pro-Tyr-tBuGly-Leu-OH and the DOTA-linked counterpart have the most favorable biodistribution properties regarding tumor uptake.
Collapse
|
38
|
Maina T, Nikolopoulou A, Stathopoulou E, Galanis AS, Cordopatis P, Nock BA. [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 2007; 34:1804-14. [PMID: 17594090 DOI: 10.1007/s00259-007-0489-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/22/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate the applicability of [(99m)Tc]Demotensin 5 and 6 [Formula: see text] in the targeted diagnostic imaging of neurotensin subtype 1 receptor (NTS1-R)-expressing tumours. METHODS Labelling of Demotensin 5 and 6 with (99m)Tc was conducted by brief incubation with (99m)TcO(4) (-), SnCl(2) and citrate anions in alkaline medium at ambient temperature. Affinities of conjugates for the NTS1-R were determined by competition binding experiments in WiDr cell membranes using [(125)I-Tyr(3)]NT as the radioligand. Saturation binding assays were conducted for [(99m)Tc/(99g)Tc]Demotensin 6 in WiDr cell membranes. Internalisation of [(99m)Tc]Demotensin 5 and 6 was studied at 37 degrees C in WiDr cells. Biodistribution of [(99m)Tc]Demotensin 5 and 6 was performed in female Swiss nu/nu mice bearing human WiDr xenografts. RESULTS Unlabelled conjugates showed a high affinity for the human NTS1-R (Demotensin 5 IC(50)=0.03+/-0.01 nM; Demotensin 6 IC(50)=0.08+/-0.02 nM), while high affinity was also exhibited by (radio)metallated [(99m)Tc/(99g)Tc]Demotensin 6 (K (d)=0.13+/-0.01 nM). [(99m)Tc]Demotensin 5 and 6 internalised rapidly and specifically in WiDr cells. After injection in WiDr tumour-bearing mice, radiopeptides, and especially the doubly stabilised [(99m)Tc]Demotensin 6, showed NTS1-R-mediated uptake in the intestines and in the implanted tumour (4.30+/-0.45%ID/g at 1 h post injection) and rapid renal excretion from non-target tissues into the urine. CONCLUSION [(99m)Tc]Demotensin 6 shows a favourable preclinical profile and further testing in patients is warranted to monitor its eventual applicability as a radiotracer in the diagnostic imaging of NTS1-R-positive tumours.
Collapse
Affiliation(s)
- Theodosia Maina
- Institute of Radioisotopes - Radiodiagnostic Products, National Center for Scientific Research Demokritos, Ag. Paraskevi Attikis, 153 10 Athens, Greece
| | | | | | | | | | | |
Collapse
|
39
|
Souazé F, Forgez P. Molecular and cellular regulation of neurotensin receptor under acute and chronic agonist stimulation. Peptides 2006; 27:2493-501. [PMID: 16889873 DOI: 10.1016/j.peptides.2006.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/13/2006] [Indexed: 12/25/2022]
Abstract
Neurotensin is a tridecapteptide acting mostly in the brain and gastrointestinal tract. NT binds two G protein coupled receptors (GPCR), NTS1 and NTS2, and a single transmembrane domain receptor, NTS3/gp95/sortilin receptor. NTS1 mediates the majority of NT action in neurons and the periphery. Like many other GPCRs, upon agonist stimulation, NTS1 is internalized, endocytosed, and the cells are desensitized. It is tacitly acknowledged that the intensity and the lasting of cellular responses to NT are dependent on free and functional NTS1 at the cell surface. Understanding how NTS1 expression is regulated at the membrane should provide a better comprehension towards its function. This review analyzes and discusses the current cellular and molecular mechanisms affecting the expression of NTS1 at the cellular membrane upon acute and chronic NT stimulation.
Collapse
Affiliation(s)
- Frédérique Souazé
- INSERM U673-UMPC, Hôpital Saint-Antoine, Bâtiment Raoul Kourilsky, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | |
Collapse
|
40
|
Kitabgi P. Differential processing of pro-neurotensin/neuromedin N and relationship to pro-hormone convertases. Peptides 2006; 27:2508-14. [PMID: 16904237 DOI: 10.1016/j.peptides.2006.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 03/09/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid neurotensin-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by endoproteases that belong to the recently identified family of pro-protein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Pro-NT/NN processing gives rise mainly to NT and NN in the brain, to NT and a large peptide ending with the NN sequence at its C-terminus (large NN) in the gut and to NT, large NN and a large peptide ending with the NT sequence (large NT) in the adrenals. Recent evidence indicates that PC1, PC2 and PC5-A are the pro-hormone convertases responsible for the processing patterns observed in the gut, brain and adrenals, respectively. As NT, NN, large NT and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that post-translational processing of pro-NT/NN in tissues may generate biological diversity.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM U732, Université Pierre et Marie Curie, Hopital St. Antoine, 184 rue du Faubourg St. Antoine, 75571 Paris Cedex 12, France.
| |
Collapse
|
41
|
Kitabgi P. Inactivation of neurotensin and neuromedin N by Zn metallopeptidases. Peptides 2006; 27:2515-22. [PMID: 16904239 DOI: 10.1016/j.peptides.2005.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 12/01/2005] [Indexed: 12/20/2022]
Abstract
The two related peptides neurotensin (NT) and neuromedin N (NN) are efficiently inactivated by peptidases in vitro. Whereas NT is primarily degraded by a combination of three Zn metallo-endopeptidases, namely endopeptidases 24.11, 24.15 and 24.16, in all systems examined, NN is essentially inactivated by the Zn metallo-exopeptidase aminopeptidase M. In this paper we review the work that has led to the identification of the NT- and NN-degrading enzymes and to the purification and cloning of EP 24.16, a previously unidentified peptidase. We provide a brief description of the three NT-inactivating endopeptidases and of their specific and mixed inhibitors, some of them developed in the course of studying NT degradation. Finally, we review in vivo data obtained with these inhibitors that strongly support a physiological role for EP 24.11, 24.15 and 24.16 in the termination of NT-generated signals and for aminopeptidase in terminating NN action. Knowledge of the NT and NN inactivation mechanisms offers the perspective to develop metabolically stable analogs of these peptides with potential therapeutic value.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM, UMR S 732, Université Pierre et Marie Curie-Paris 6, Hopital St-Antoine, 184 rue du Faubourg St-Antoine, 75571 Paris Cedex 12, France.
| |
Collapse
|
42
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
43
|
Kitabgi P. Prohormone convertases differentially process pro-neurotensin/neuromedin N in tissues and cell lines. J Mol Med (Berl) 2006; 84:628-34. [PMID: 16688434 DOI: 10.1007/s00109-006-0044-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six-amino acid neurotensin-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by specialized endoproteases that belong to the family of proprotein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Processing gives rise mainly to NT and NN in the brain, to NT and a large peptide with a C-terminal NN moiety (large NN) in the gut, and to NT, large NN, and a large peptide with a C-terminal NT moiety (large NT) in the adrenals. Recent evidence indicates that PC1, PC2, and PC5-A are the prohormone convertases responsible for the processing patterns observed in the gut, brain, and adrenals, respectively. As NT, NN, large NT, and large NN are all endowed with biological activity, the evidence reviewed in this paper supports the idea that posttranslational processing of pro-NT/NN in tissues may generate biological diversity of pathophysiological relevance.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM U732, Hopital St-Antoine, 184 rue du Faubourg St-Antoine, 75571 PARIS CEDEX 12, France.
| |
Collapse
|
44
|
Zhang K, An R, Gao Z, Zhang Y, Aruva MR. Radionuclide imaging of small-cell lung cancer (SCLC) using 99mTc-labeled neurotensin peptide 8-13. Nucl Med Biol 2006; 33:505-12. [PMID: 16720242 DOI: 10.1016/j.nucmedbio.2006.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/23/2006] [Accepted: 03/05/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To prepare 99m technetium (99mTc)-labeled neurotensin (NT) peptide and to evaluate the feasibility of imaging oncogene NT receptors overexpressed in human small-cell lung cancer (SCLC) cells. METHODS The NT analogue (Nalpha-His)Ac-NT(8-13) was synthesized such that histidine was attached at the N-terminus. The analogue was labeled with [99mTc(H2O)3(CO)3] at pH 7. 99mTc-(Nalpha-His)Ac-NT(8-13) in vitro stability was determined by challenging it with 100 times the molar excess of DTPA, human serum albumin (HSA) and cysteine. The affinity, 99mTc-(Nalpha-His)Ac-NT(8-13) binding to SCLC cell line NCI-H446, was studied in vitro. Biodistribution and imaging with 99mTc-(Nalpha-His)Ac-NT(8-13) were performed at 4 and 12 h postinjection, and tissue distribution and imaging after receptor blocking were carried out at 4 h in nude mice bearing human SCLC tumor. Blood clearance was determined in normal mice. RESULTS The affinity constant (Kd) of 99mTc-(Nalpha-His)Ac-NT(8-13) to SCLC cells was 0.56 nmol/L. When challenged with 100 times the molar excess of DTPA, HSA or cysteine, more than 97+/-1.8% radioactivity remained as 99mTc-(Nalpha-His)Ac-NT(8-13). Tumor-to-muscle ratio was 3.35+/-1.01 at 4 h and 4.20+/-1.35 at 12 h postinjection. The excretory route of 99mTc-(Nalpha-His)Ac-NT(8-13) was chiefly through the renal pathway. In the receptor-blocking group treated with unlabeled (Nalpha-His)Ac-NT(8-13), tumor-to-muscle ratio at 4 h was 1.25+/-0.55. CONCLUSION The results suggest that 99mTc-(Nalpha-His)Ac-NT(8-13) specifically binds to the SCLC cells and made 99mTc-(Nalpha-His)Ac-NT(8-13) a desirable compound for further studies in planar or SPECT imaging of oncogene receptors overexpressed in SCLC cells.
Collapse
Affiliation(s)
- Kaijun Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.
| | | | | | | | | |
Collapse
|
45
|
García-Garayoa E, Maes V, Bläuenstein P, Blanc A, Hohn A, Tourwé D, Schubiger PA. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl Med Biol 2006; 33:495-503. [PMID: 16720241 DOI: 10.1016/j.nucmedbio.2006.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/10/2006] [Accepted: 01/12/2006] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Overexpression of neurotensin (NT) receptors in exocrine pancreatic cancer and other neuroendocrine cancers make them interesting targets for tumor imaging and therapy. Modifications at the cleavage bonds 8-9 and 11-12 led to the synthesis of NT-XII, NT-XIII and NT-XVIII, three new stabilized analogues. (NalphaHis)Ac was coupled to the N-terminus for labeling with [(99m)Tc]-tricarbonyl. METHODS Stability was tested in vitro in human plasma and HT-29 cells. Binding to NT1 receptors and internalization/efflux were analyzed in intact HT-29 cells. Biodistribution studies were performed in nude mice bearing HT-29 xenografts. RESULTS All analogues were very stable in human plasma, with half-lives of 20-21 days. Degradation in HT-29 cells was more rapid (t(1/2) of 6.5, 5 and 2.5 h for NT-XII, NT-XIII and NT-XVIII, respectively). They also showed high affinity and specificity for NT1 receptors. Bound activity was rapidly internalized at 37 degrees C. The pattern of externalization was different. NT-XII was released more slowly than NT-XIII and NT-XVIII (half of the activity still inside the cells after 24 h). Bigger differences were found in the biodistribution studies. NT-XII showed the highest tumor uptake as well as the best tumor to nontumor ratios. CONCLUSION The modifications introduced in NT(8-13) increased plasma stability, maintaining unaffected the in vitro binding properties. The best biodistribution corresponded to NT-XII, which shows to be a good candidate for NT1 receptors overexpressing tumors. First clinical trials are ongoing.
Collapse
Affiliation(s)
- Elisa García-Garayoa
- Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kitabgi P, Pélaprat D. Characterization of neurotensin receptors. CURRENT PROTOCOLS IN PHARMACOLOGY 2004; Chapter 1:Unit 1.29. [PMID: 22294115 DOI: 10.1002/0471141755.ph0129s24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes procedures for performing competition binding assays with neurotensin receptor subtypes 1 and 2 (NTS1 and NTS2). Binding assays using cloned receptors, brain membranes, and primary cultured mesencephalic neurons are presented. NTS1 binding assays employing either radiolabeled neurotensin or SR 48692 (a nonpeptide neurotensin antagonist) as radioligands are described. These procedures may be used to screen selective ligands at neurotensin receptor subtypes.
Collapse
|
47
|
Bläuenstein P, Garayoa EG, Rüegg D, Blanc A, Tourwé D, Beck-Sickinger A, Schubiger PA. Improving the Tumor Uptake of 99mTc-Labeled Neuropeptides Using Stabilized Peptide Analogues. Cancer Biother Radiopharm 2004; 19:181-8. [PMID: 15186598 DOI: 10.1089/108497804323071959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two neuropeptides, bombesin (BBS) and neurotensin (NT) and their radiolabeled analogues, have great potential for tumour targeting, either for diagnosis (e.g., with 99mTc) or therapy (e.g., with 90Y or 188Re). In this study, we investigated NT(8-13) and BBS(7-14) analogues with Nalpha-histidinyl acetate linked to the N-terminus of the peptide. This His-derivative forms a stable and inert tridentate complex with the 99mTc(CO)3 and the 188Re(CO)3 moieties. The stability of 99mTc-labeled neurotensin and bombesin analogues was tested in human plasma samples and in tumour cell cultures in the presence and absence of specific enzyme inhibitors. The inhibitor of ACE (angiotensin converting enzyme) was the most effective in inhibiting the peptide cleavage of both NT(8-13) and BBS(7-14). In agreement with this finding, the replacement of Ile12 by tert-leucine (NT) and Leu13 by cyclohexylalanin (BBS) brought about a better stability. With NT(8-13) analogues, higher tumour to nontarget (t/nt) ratios and the same affinity to the receptor was observed, but with BBS(7-14) derivatives the affinity was lower and the t/nt ratio was not significantly improved. Toxicity tests showed no effect in mice of up to a five-hundred-fold higher dose than planned for patient application, which started successfully with NT(8-13) analogues.
Collapse
Affiliation(s)
- Peter Bläuenstein
- Center for Radiopharmaceutical Science, Paul Scherrer Institut, Villigen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Nguyen HMK, Cahill CM, McPherson PS, Beaudet A. Receptor-mediated internalization of [3H]-neurotensin in synaptosomal preparations from rat neostriatum. Neuropharmacology 2002; 42:1089-98. [PMID: 12128010 DOI: 10.1016/s0028-3908(02)00054-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.
Collapse
Affiliation(s)
- Ha Minh Ky Nguyen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, 3801 University St., McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
49
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Mazella J. Sortilin/neurotensin receptor-3: a new tool to investigate neurotensin signaling and cellular trafficking? Cell Signal 2001; 13:1-6. [PMID: 11257441 DOI: 10.1016/s0898-6568(00)00130-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The identification of gp95sortilin, a sorting protein, as being the 100 kDa neurotensin (NT) receptor, a non-G-protein coupled receptor, constitutes a new and interesting but intriguing step in the neuropeptide signaling as well as in cellular trafficking. The isolation of the same protein by three different experimental approaches sum up the complexity for researchers involved in the functional significance of the so-called sortilin/neurotensin receptor 3 (NTR3). This review will concentrate on the putative physiological and cellular roles of sortilin/NTR3 as most results so far have proposed hypothetical conclusions rather than concrete evidence.
Collapse
Affiliation(s)
- J Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UPR 0411, Sophia Antipolis, 660 route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|