1
|
Setiawan L, Setiabudy R, Kresno SB, Sutandyo N, Syahruddin E, Jovianti F, Nadliroh S, Mubarika S, Setiabudy R, Siregar NC. Circulating miR-10b, soluble urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 as predictors of non-small cell lung cancer progression and treatment response. Cancer Biomark 2024; 39:137-153. [PMID: 38073374 PMCID: PMC11002724 DOI: 10.3233/cbm-220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Despite advances in lung cancer treatment, most lung cancers are diagnosed at an advanced stage. Expression of microRNA10b (miR-10b) and fibrinolytic activity, as reflected by soluble urokinase-type plasminogen activator receptor (suPAR) and plasminogen activator inhibitor 1 (PAI-1), are promising biomarker candidates. OBJECTIVE To assess the expression of miR-10b, and serum levels of suPAR and PAI-1 in advanced stage non-small cell lung cancer (NSCLC) patients, and their correlation with progression, treatment response and prognosis. METHODS The present prospective cohort and survival study was conducted at Dharmais National Cancer Hospital and included advanced stage NSCLC patients diagnosed between March 2015 and September 2016. Expression of miR-10b was quantified using qRT-PCR. Levels of suPAR and PAI-1 were assayed using ELISA. Treatment response was evaluated using the RECIST 1.1 criteria. Patients were followed up until death or at least 1 year after treatment. RESULTS Among the 40 patients enrolled, 25 completed at least four cycles of chemotherapy and 15 patients died during treatment. Absolute miR-10b expression ⩾ 592,145 copies/μL or miR-10b fold change ⩾ 0.066 were protective for progressive disease and poor treatment response, whereas suPAR levels ⩾ 4,237 pg/mL was a risk factor for progressive disease and poor response. PAI-1 levels > 4.6 ng/mL was a protective factor for poor response. Multivariate analysis revealed suPAR as an independent risk factor for progression (ORadj, 13.265; 95% confidence intervals (CI), 2.26577.701; P= 0.006) and poor response (ORadj, 15.609; 95% CI, 2.221-109.704; P= 0.006), whereas PAI-1 was an independent protective factor of poor response (ORadj, 0.127; 95% CI, 0.019-0.843; P= 0.033). CONCLUSIONS Since miR-10b cannot be used as an independent risk factor for NSCLC progression and treatment response, we developed a model to predict progression using suPAR levels and treatment response using suPAR and PAI-1 levels. Further studies are needed to validate this model.
Collapse
Affiliation(s)
- Lyana Setiawan
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Rahajuningsih Setiabudy
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Siti Boedina Kresno
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Elisna Syahruddin
- Department of Pulmonology, Faculty of Medicine, University of Indonesia/Persahabatan General Hospital, Jakarta, Indonesia
| | | | | | - Sofia Mubarika
- Department of Histology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Nurjati C. Siregar
- Department of Anatomical Pathology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Mari V, Angerilli V, Munari G, Scarpa M, Bao QR, Pucciarelli S, Fassan M, Spolverato G. Molecular Determinants of Peritoneal Dissemination in Gastric Adenocarcinoma. Dig Dis 2022; 41:49-65. [PMID: 35940137 DOI: 10.1159/000526333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peritoneal dissemination represents a poor prognostic indicator in gastric cancer. Despite a comprehensive molecular characterization of this disease, no peritoneal dissemination-specific signature has been identified, limiting the tailoring of the surgical and oncological treatments. In this review, we outline the available literature focusing on the role of the different molecular pathways involved in the acquisition of peritoneal metastatic dissemination. SUMMARY According to our results, several molecular determinants are associated with peritoneal carcinomatosis and are involved in several cellular and molecular carcinogenetic processes. However, a comprehensive understanding of the complex molecular landscape of gastric carcinosis is still lacking. KEY MESSAGES More efforts should be made toward the integration of molecular and histologic data to perform a risk prediction assessment of peritoneal dissemination based on molecular profiling and histological evaluation.
Collapse
Affiliation(s)
- Valentina Mari
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Marco Scarpa
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Gaya Spolverato
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| |
Collapse
|
3
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
4
|
Akdoğan Ö, Atak Yücel A, Gök Sargin Z, Sönmez C, Esendağli Yilmaz G, Özenirler S. Evaluation of Plasma Urokinase-Type Plasminogen Activator Receptor (UPAR) in Patients With Chronic Hepatitis B, C and Non-Alcoholic Fatty Liver Disease (NAFLD) as Serological Fibrosis Marker. J Clin Exp Hepatol 2019; 9:29-33. [PMID: 30765936 PMCID: PMC6363952 DOI: 10.1016/j.jceh.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/08/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/AIMS Progressive hepatic fibrosis is the main predictor of outcome and prognosis in chronic liver diseases. The importance of the coagulation cascade has been defined in liver fibrosis; however, the role of the fibrinolytic pathway has not been clear yet. We aimed to evaluate the association between the plasma levels of soluble urokinase Plasminogen Activator Receptor (uPAR) and the severity of liver fibrosis in chronic hepatitis B, C and Non-Alcoholic Fatty Liver Disease (NAFLD). METHODS 96 chronic hepatitis B, 22 chronic hepatitis C and 11 NAFLD patients together with 47 healthy controls were enrolled in the study. uPAR plasma levels were detected by Enzyme-Linked Immunosorbent Assay (ELISA) method. RESULTS The plasma levels of uPAR in patients with chronic hepatitis B and C significantly exceeded those of healthy controls (P < 0.001) while mean uPAR levels in patients with NAFLD were not different from healthy controls. Mean uPAR levels in chronic viral hepatitis patients with F1-F3 fibrosis and F4-F6 fibrosis were higher than those of control group (P < 0.001). Mean uPAR level in patients with F4-F6 fibrosis was significantly higher than that of patients with F1-F3 fibrosis (P < 0.001). CONCLUSION This is the first study that investigated uPAR as a fibrosis marker in NAFLD and chronic hepatitis B patients. It is suggested that plasma levels of uPAR are closely related to the fibrosis stage in chronic hepatitis B and C and that uPAR might be a noninvasive marker of liver fibrosis.
Collapse
Key Words
- ALT, Alanine Aminotransferase
- ECM, Extracellular Matrix
- ELISA, Enzyme-Linked Immunosorbent Assay
- HRP, Horseradish Peroxidase
- HSCs, Hepatic Stellate Cells
- MMPs, Matrix Metalloproteinases
- NAFLD, Non-Alcoholic Fatty Liver Disease
- NIA, Necro-Inflammatory Activity
- OD, Optical Densities
- PAIs, Plasminogen Activator Inhibitors
- TGF-beta, Transforming Growth Factor-beta
- TIMPs, Tissue Inhibitors of Metalloproteinases
- hepatitis B
- hepatitis C
- non-alcoholic fatty liver disease
- tPA, tissue-type Plasminogen Activator
- uPA, urokinase-type Plasminogen Activator
- uPAR, urokinase Plasminogen Activator Receptor
- urokinease-type plasminogen activator receptor
Collapse
Affiliation(s)
- Özlem Akdoğan
- Department of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayşegül Atak Yücel
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Zeynep Gök Sargin
- Department of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey,Address for correspondence: Zeynep Gök Sargin, Department of Gastroenterology, Faculty of Medicine, Gazi University, 06510 Beşevler, Ankara, Turkey. Tel.: +90 3122027578; fax: +90 3122129016; mobile: +90 5078179704.
| | - Cemile Sönmez
- Sexually Transmitted Research Laboratory, National Public Health Institution of Turkey, Ankara, Turkey
| | | | - Seren Özenirler
- Department of Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Luebke T, Baldus SE, Spieker D, Grass G, Bollschweiler E, Schneider PM, Thiele J, Dienes HP, Hoelscher AH, Moenig SP. Is the Urokinase-type Plasminogen Activator System a Reliable Prognostic Factor in Gastric Cancer? Int J Biol Markers 2018; 21:162-9. [PMID: 17013798 DOI: 10.1177/172460080602100305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aim The aim of this prospective study was to evaluate the clinical and prognostic impact of immunohisto-chemically assessed uPA and PAI-1 in patients with gastric cancer. Methods This prospective study analyzed specimens obtained from 105 gastric cancer patients who underwent gastrectomy with extended lymphadenectomy. The immunohistochemical expression of uPA and PAI-1 was studied semiquantitatively in the tumor epithelium and was correlated with the clinicopathological features of each patient. Results Univariate analysis revealed no statistically significant association of uPA levels with pT and pN category (p=0.655 and 0.053, respectively), grading (p=0.374), depth of tumor invasion (p=0.665), UICC classification (p=0.21) and the Laurén classification (p=0.578). PAI-1 expression showed no statistically significant correlation with pT, pN and M category (p=0.589, 0.414, and 0.167, respectively), grading (p=0.273), and the Laurén classification (p=0.368). Only the UICC classification was significantly correlated with PAI-1 (p=0.016). Kaplan-Meier analysis revealed no significant association of uPA and PAI-1 with overall survival (p=0.0929 and 0.0870, respectively). Conclusions Our results could not verify any prognostic value of uPA and PAI-1 levels in patients with gastric carcinoma. Therefore, the uPA-system as a biologically defined prognostic marker to identify high-risk gastric cancers should be applied with caution. However, considering the number of patients involved and the borderline level of significance observed in this study, a larger number of events may have resulted in significant differences.
Collapse
Affiliation(s)
- T Luebke
- Department of Surgery, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Xu P, Andreasen PA, Huang M. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci 2017; 13:1222-1233. [PMID: 29104489 PMCID: PMC5666521 DOI: 10.7150/ijbs.21597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| |
Collapse
|
8
|
Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 2017; 74:2761-2771. [PMID: 28331999 PMCID: PMC11107711 DOI: 10.1007/s00018-017-2496-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called "minimal residual disease". Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as "cancer dormancy". Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for "dormancy" of tumor cells.
Collapse
MESH Headings
- Acidosis/complications
- Acidosis/immunology
- Acidosis/pathology
- Animals
- Apoptosis
- Cell Proliferation
- Humans
- Hydrogen-Ion Concentration
- Immunologic Surveillance
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasm Recurrence, Local/etiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual/complications
- Neoplasm, Residual/immunology
- Neoplasm, Residual/pathology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Silvia Peppicelli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Elena Andreucci
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Jessica Ruzzolini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Margheri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Gabriella Fibbi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Mario Del Rosso
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| | - Lido Calorini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| |
Collapse
|
9
|
Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev 2015; 33:823-32. [PMID: 24984804 DOI: 10.1007/s10555-014-9506-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumors are ecosystems which develop from stem cells endowed with unlimited self-renewal capability and genetic instability, under the effects of mutagenesis and natural selection imposed by environmental changes. Abnormal vascularization, reduced lymphatic network, uncontrolled cell growth frequently associated with hypoxia, and extracellular accumulation of glucose metabolites even in the presence of an adequate oxygen level are all factors contributing to reduce pH in the extracellular space of tumors. Evidence is accumulating that acidity is associated with a poor prognosis and participates actively to tumor progression. This review addresses some of the most experimental evidences providing that acidity of tumor environment facilitates local invasiveness and metastatic dissemination, independently from hypoxia, with which acidity is often but not always associated. Clinical investigations have also shown that tumors with acidic environment are associated with resistance to chemotherapy and radiation-induced apoptosis, suppression of cytotoxic lymphocytes, and natural killer cells tumoricidal activity. Therefore, new technologies for functional and molecular imaging as well as strategies directed to target low extracellular pH and low pH-adapted tumor cells might represent important issues in oncology.
Collapse
|
10
|
Sentani K, Matsuda M, Oue N, Uraoka N, Naito Y, Sakamoto N, Yasui W. Clinicopathological significance of MMP-7, laminin γ2 and EGFR expression at the invasive front of gastric carcinoma. Gastric Cancer 2015; 17:412-22. [PMID: 24048760 DOI: 10.1007/s10120-013-0302-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND For several types of cancer, including gastric cancer (GC), tumor cells at the invasive front are considered to have a more aggressive behavior compared with those in the more central region. The aim of the present study was to analyze the expression of MMP-7, laminin γ2 and EGFR in a large number of GCs and to investigate how these expression patterns correlate with clinicopathologic parameters, infiltrative patterns, histology or mucin phenotype. METHODS We immunohistochemically examined the expression of MMP-7, laminin γ2 and EGFR using a tissue microarray analysis of 790 GCs, and evaluated their clinicopathological significance. RESULTS MMP-7, cytoplasmic laminin γ2, extracellular laminin γ2 and EGFR expression were observed in 25, 25, 8 and 21 % of the 790 GC cases, respectively. Expression of MMP-7, cytoplasmic laminin γ2 and EGFR was associated with advanced T grade, N grade and tumor stage. Extracellular laminin γ2 expression was not associated with any clinicopathologic parameters, infiltrative patterns, histology or mucin phenotype. Furthermore, we investigated the correlations of MMP-7, laminin γ2 and EGFR expression. MMP-7 expression was significantly more frequent in positive expression of cytoplasmic laminin γ2 than negative cases, and EGFR expression was significantly more frequent in positive expression of cytoplasmic laminin γ2 and MMP-7. CONCLUSIONS Molecular expression of MMP-7, laminin γ2 or EGFR, and their combinations, may be associated with GC tumor aggressiveness. Assessment of expression of these molecules at the invasive front of primary tumors is clinically significant in predicting the malignant behavior of GC.
Collapse
Affiliation(s)
- Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Guo H, Lu Y, Wang J, Liu X, Keller ET, Liu Q, Zhou Q, Zhang J. Targeting the Notch signaling pathway in cancer therapeutics. Thorac Cancer 2014; 5:473-86. [PMID: 26767041 DOI: 10.1111/1759-7714.12143] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022] Open
Abstract
Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway.
Collapse
Affiliation(s)
- Huajiao Guo
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Yi Lu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Jianhua Wang
- Department of Biochemistry and Molecular & Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education Shanghai, China; Institute of Medical Science, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xia Liu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| | - Qian Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China; Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Bao YN, Cao X, Luo DH, Sun R, Peng LX, Wang L, Yan YP, Zheng LS, Xie P, Cao Y, Liang YY, Zheng FJ, Huang BJ, Xiang YQ, Lv X, Chen QY, Chen MY, Huang PY, Guo L, Mai HQ, Guo X, Zeng YX, Qian CN. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle 2014; 13:1958-69. [PMID: 24763226 DOI: 10.4161/cc.28921] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial-mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK-STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Ying-Na Bao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Radiotherapy; Affiliated Hospital of Inner Mongolia Medical University; Hohhot City, Inner Mongolia Autonomous Region, China
| | - Xue Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | | | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ying-Ying Liang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Fang-Jing Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| |
Collapse
|
13
|
Lee JH, Oh MH, Park JS, Na GJ, Gil HW, Yang JO, Lee EY, Hong SY. Urokinase, urokinase receptor, and plasminogen activator inhibitor-1 expression on podocytes in immunoglobulin A glomerulonephritis. Korean J Intern Med 2014; 29:176-82. [PMID: 24648800 PMCID: PMC3956987 DOI: 10.3904/kjim.2014.29.2.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/06/2012] [Accepted: 05/23/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND/AIMS The purpose of this study was to investigate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), and plasminogen activator inhibitor (PAI)-1 on podocytes in immunoglobulin A (IgA) glomerulonephritis (GN). METHODS Renal biopsy specimens from 52 IgA GN patients were deparaffinized and subjected to immunohistochemical staining for uPA, PAI-1, and uPAR. The biopsies were classified into three groups according to the expression of uPA and uPAR on podocytes: uPA, uPAR, and a negative group. The prevalences of the variables of the Oxford classification for IgA GN were compared among the groups. RESULTS On podocytes, uPA was positive in 11 cases and uPAR was positive in 38 cases; by contrast, PAI-1 was negative in all cases. Expression of both uPA and uPAR on podocytes was less frequently accompanied by tubulointerstitial fibrosis. CONCLUSIONS Our results suggest a possible protective effect of podocyte uPA/uPAR expression against interstitial fibrosis.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jae-Seok Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Gyoung-Jae Na
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye-Wook Gil
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong-Oh Yang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Eun-Young Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
14
|
Gamage DG, Hendrickson TL. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 2013; 48:446-64. [DOI: 10.3109/10409238.2013.831024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Noh H, Hong S, Huang S. Role of urokinase receptor in tumor progression and development. Am J Cancer Res 2013; 3:487-95. [PMID: 23843896 PMCID: PMC3706692 DOI: 10.7150/thno.4218] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Elevated level of urokinase receptor (uPAR) is detected in various aggressive cancer types and is closely associated with poor prognosis of cancers. Binding of uPA to uPAR triggers the conversion of plasminogen to plasmin and the subsequent activation of metalloproteinases. These events confer tumor cells with the capability to degrade the components of the surrounding extracellular matrix, thus contributing to tumor cell invasion and metastasis. uPA-uPAR interaction also elicits signals that stimulate cell proliferation/survival and the expression of tumor-promoting genes, thus assisting tumor development. In addition to its interaction with uPA, uPAR also interacts with vitronectin and this interaction promotes cancer metastasis by activating Rac and stimulating cell migration. Although underlying mechanisms are yet to be fully elucidated, uPAR has been shown to facilitate epithelial-mesenchymal transition (EMT) and induce cancer stem cell-like properties in breast cancer cells. The fact that uPAR lacks intracellular domain suggests that its signaling must be mediated through its co-receptors. Indeed, uPAR interacts with diverse transmembrane proteins including integrins, ENDO180, G protein-coupled receptors and growth factor receptors in cancer cells and these interactions are proven to be critical for the role of uPAR in tumorigenesis. Inhibitory peptide that prevents uPA-uPAR interaction has shown the promise to prolong patients' survival in the early stage of clinical trial. The importance of uPAR's co-receptor in uPAR's tumor-promoting effects implicate that anti-cancer therapeutic agents may also be developed by disrupting the interactions between uPAR and its functional partners.
Collapse
|
16
|
Potential role of kringle-integrin interaction in plasmin and uPA actions (a hypothesis). J Biomed Biotechnol 2012; 2012:136302. [PMID: 23125522 PMCID: PMC3480031 DOI: 10.1155/2012/136302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 12/02/2022] Open
Abstract
We previously showed that the kringle domains of plasmin and angiostatin, the N-terminal four kringles (K1–4) of plasminogen, directly bind to integrins. Angiostatin blocks tumor-mediated angiogenesis and has great therapeutic potential. Angiostatin binding to integrins may be related to the antiinflammatory action of angiostatin. We reported that plasmin induces signals through protease-activated receptor (PAR-1), and plasmin-integrin interaction may be required for enhancing plasmin concentration on the cell surface, and enhances its signaling function. Angiostatin binding to integrin does not seem to induce proliferative signals. One possible mechanism of angiostatin's inhibitory action is that angiostatin suppresses plasmin-induced PAR-1 activation by competing with plasmin for binding to integrins. Interestingly, plasminogen did not interact with αvβ3, suggesting that the αvβ3-binding sites in the kringle domains of plasminogen are cryptic. The kringle domain of urokinase-type plasminogen activator (uPA) also binds to integrins. The uPA-integrin interaction enhances uPA concentrations on the cell surface and enhances plasminogen activation on the cell surface. It is likely that integrins bind to the kringle domain, and uPAR binds to the growth factor-like domain (GFD) of uPA simultaneously, making the uPAR-uPA-integrin ternary complex. We present a docking model of the ternary complex.
Collapse
|
17
|
Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. ACTA ACUST UNITED AC 2012; 1:165-76. [PMID: 16804563 PMCID: PMC1483066 DOI: 10.1017/s1740925x04000237] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diffuse, extensive infiltration of malignant gliomas into the surrounding normal brain is believed to rely on modification of the proteolysis of extracellular matrix components. Our previous results clearly demonstrate that uPA, uPAR and MMP-9 concentrations increase significantly during tumor progression and that tumor growth can be inhibited with antisense stable clones of these molecules. Because antisense-mediated gene silencing does not completely inhibit the translation of target mRNA and high concentrations of antisense molecules are required to achieve gene silencing, we used the RNAi approach to silence uPA, uPAR and MMP-9 in this study. We examined a cytomegalovirus (CMV) promoter-driven DNA-template approach to induce hairpin RNA (hpRNA)-triggered RNAi to inhibit uPA, uPAR and MMP-9 gene expression with a single construct. uPAR protein levels and enzymatic activity of uPA and MMP-9 were found to significantly decrease in cells transfected with a plasmid expressing hairpin siRNA for uPAR, uPA and MMP-9. pU(2)M-transfected SNB19 cells significantly decreased uPA, uPAR and MMP-9 expression compared to mock and EV/SV-transfected cells, determined by immunohistochemical analysis. Furthermore, the effect of the single constructs for these molecules was a specific inhibition of their respective protein levels, as demonstrated by immunohistochemical analysis. After transfection with a plasmid vector expressing dsRNA for uPA, uPAR and MMP-9, glioma-cell invasion was retarded compared with mock and EV/SV-treated groups, demonstrated by Matrigel-invasion assay and spheroid-invasion assay. Downregulation of uPA, uPAR and MMP-9 using RNAi inhibited angiogenesis in an in vitro (co-culture) model. Direct intratumoral injections of plasmid DNA expressing hpRNA for uPA, uPAR and MMP-9 significantly regressed pre-established intracranial tumors in nude mice. In addition, cells treated with RNAi for uPAR, uPA and MMP-9 showed reduced pERK levels compared with parental and EV/SV-treated SNB19 cells. Our results support the therapeutic potential of RNAi as a method for gene therapy in treating gliomas.
Collapse
Affiliation(s)
| | - Sajani S. Lakka
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences
| | | | | | - Meena Gujrati
- Department of PathologyThe University of Illinois College of Medicine Peoria, IL
| | - Jasti S. Rao
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences
- Department of Neurosurgery
- Correspondence should be addressed to: Jasti S. Rao, PhD, Program of Cancer Biology, University of Illinois, College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA, phone: +1 309 671 3445, fax: 309-671-3442,
| |
Collapse
|
18
|
Martin PM, Ouafik L. Angiogenèse: retour au fondamental. ONCOLOGIE 2012. [DOI: 10.1007/s10269-012-2152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Yue J, Zhang K, Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. CANCER MICROENVIRONMENT 2012; 5:275-83. [PMID: 22437309 DOI: 10.1007/s12307-012-0101-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is an extracellular scaffold composed of complex mixtures of proteins that plays a pivotal role in tumor progression. ECM remodeling is crucial for tumor migration and invasion during the process of metastasis. ECM can be remodeled by several processes including synthesis, contraction and proteolytic degradation. In order to cross through the ECM barriers, malignant cells produce a spectrum of extracellular proteinases including matrix metalloproteinases (MMPs), serine proteases (mainly the urokinase plasminogen activator (uPA) system) and cysteine proteases to degrade ECM components. As major adhesion molecules to support cell attachment to ECM, integrins play critical roles in tumor progression by enhancing tumor cell survival, migration and invasion. Previous studies have shown that integrins can regulate the expression and activity of these proteases through different pathways. This review summarizes the roles of MMPs and uPA system in ECM remodeling and discusses the regulatory functions of integrins on these proteases in invasive tumors.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
20
|
Martin PM, Dussert C, Ouafik L. Stroma : partenaire actif mais sous-estiméde la tumorigenèse, « quand le dialogue remplace le monologue ». ONCOLOGIE 2010. [DOI: 10.1007/s10269-010-1892-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Martin PM, Dussert C, Romain S, Ouafik L. Relations du système plasminogène-plasmine et cancer. ONCOLOGIE 2010. [DOI: 10.1007/s10269-010-1893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 2009; 584:1923-30. [PMID: 20036661 DOI: 10.1016/j.febslet.2009.12.039] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 01/11/2023]
Abstract
Plasma membrane urokinase-type plasminogen activator (uPA)-receptor (uPAR) is a GPI-anchored protein that binds with high-affinity and activates the serine protease uPA, thus regulating proteolytic activity at the cell surface. In addition, uPAR is a signaling receptor that often does not require its protease ligand or its proteolytic function. uPAR is highly expressed during tissue reorganization, inflammation, and in virtually all human cancers. Since its discovery, in vitro and in vivo models, as well as retrospective clinical studies have shown that over-expression of components of the uPA/uPAR-system correlates with increased proliferation, migration, and invasion affecting the malignant phenotype of cancer. uPAR regulates the cells-extracellular matrix interactions promoting its degradation and turnover through the plasminogen activation cascade.
Collapse
|
23
|
Palwai NR, Zang XP, Harrison RG, Benbrook D, Pento JT. Selective growth inhibition of cancer cells by L-methioninase-containing fusion protein targeted to the urokinase receptor. Pharmacology 2009; 84:271-5. [PMID: 19797936 DOI: 10.1159/000242997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/13/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND We have reported the development of a novel fusion protein (FP) consisting of an amino-terminal fragment of urokinase linked to the amino terminus of the enzyme L-methioninase (L-M). The present study compared the effect of this novel FP on the proliferation of human ovarian, skin, breast endometrial and pancreatic cancer cell lines. METHODS The FP, L-M and a mutated FP, with reduced L-M activity, were produced by recombinant methods. The effect of treatment with FP, L-M and mutated FP on the proliferation of the cancer cells was measured in vitro using an MTS assay. RESULTS The inhibitory effect of the FP was found to be significantly greater than that of L-M alone or the mutated FP. In addition, the FP produced a greater inhibitory effect on an ovarian cancer cell line than on comparable normal, non-cancerous cells. Further, the FP produced a dose-dependent inhibition of the proliferation of pancreatic cancer cell lines. CONCLUSION These results suggest that this FP is a potent and selective inhibitor of the proliferation of various cancer cell lines and has potential as a therapeutic agent for the treatment of various methionine-dependent cancers.
Collapse
Affiliation(s)
- Naveen R Palwai
- Bioengineering Center and School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73117, USA
| | | | | | | | | |
Collapse
|
24
|
Malignant progression of invasive tumour cells seen in hypoxia present an accumulation of β-catenin in the nucleus at the tumour front. Exp Mol Pathol 2009; 87:109-16. [DOI: 10.1016/j.yexmp.2009.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/30/2022]
|
25
|
Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase. Mol Cell Biochem 2009; 335:235-47. [PMID: 19784757 DOI: 10.1007/s11010-009-0273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.
Collapse
|
26
|
Abstract
Sexual reproduction in the ocean necessitates only the combination of gametes, followed by absorption of nutrients and oxygen from the surrounding watery medium. As life moved from the sea to the land, reproductive strategies required compensation for the loss of this aquatic environment. For the mammals, and scattered other animals, the solution to this problem was the development of the placenta, the means by which the fetus extracts nutrients from its environment. As the animals that utilized the placenta evolved from small rodent-like creatures with short gestations to larger animals with prolonged gestations, the demands of the developing fetus grew. Whereas the placenta of the fetal pig, with a gestational period of a little less than four months, can extract sufficient nutrients from the mother by simple diffusion across the uterus to the placenta, the human fetus needs a far more complex uteroplacental relationship.
Collapse
|
27
|
Karthikeyan C, Moorthy NHN, Trivedi P. QSAR study of substituted 2-pyridinyl guanidines as selective urokinase-type plasminogen activator (uPA) inhibitors. J Enzyme Inhib Med Chem 2009; 24:6-13. [DOI: 10.1080/14756360701810355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- C. Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal 462036, MP, India
| | - N.S. Hari Narayana Moorthy
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal 462036, MP, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal 462036, MP, India
| |
Collapse
|
28
|
Novak U, Kaye AH. Brain tumour invasion: Many cooks can spoil the broth. J Clin Neurosci 2008; 6:455-63. [PMID: 18639180 DOI: 10.1016/s0967-5868(99)90000-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 05/11/1999] [Indexed: 01/10/2023]
Affiliation(s)
- U Novak
- Department of Surgery, University of Melbourne, The Royal Melbourne Hospital, Parkville 3050, Australia
| | | |
Collapse
|
29
|
Liang X, Yang X, Tang Y, Zhou H, Liu X, Xiao L, Gao J, Mao Z. RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 2008; 44:1172-80. [PMID: 18486529 DOI: 10.1016/j.oraloncology.2008.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/07/2008] [Accepted: 03/06/2008] [Indexed: 01/21/2023]
Abstract
RNA interference (RNAi) has emerged as an effective method to target specific genes for silencing. Overexpression of urokinase-type plasminogen activator receptor (uPAR) has been implicated in progression and metastasis of oral cancer. In our study, RNAi was introduced to downregulate the expression of uPAR in the highly malignant oral squamous cell carcinoma (OSCC) cells. Our data demonstrated that siRNA targeting of uPAR leads to the efficient and specific inhibition of endogenous uPAR mRNA and protein expression as determined by quantitative real-time RT-PCR and Western blotting. Furthermore, simultaneous silencing of uPAR resulted in a dramatic reduction of tumor cell proliferation activity, adhesion, migration and invasion in vitro compared to the controls. These findings provide further evidence for the involvement of uPAR in a variety of cancer key cellular events as a versatile signaling orchestrator, and suggest that RNAi-directed targeting of uPAR can be used as a potent and specific therapeutic tool for the treatment of oral cancer, especially in inhibiting and/or preventing cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Xinhua Liang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Malignant breast cancer can be a debilitating disease due to metastasis to tissues such as brain or bone. The metastatic process involves the invasion of tumor cells into the adjacent tissue, followed by systemic dissemination and colonization of secondary organs. These processes require interactions between tumor cells and a changing microenvironment, which drive cell proliferation, migration, invasion and colonization, as well as promoting cell survival. The integrin family of cell adhesion receptors has been shown to play a critical role in all of these processes, consistent with their extracellular matrix binding properties. Experiments in cultured epithelial cells and in vivo models have demonstrated that integrins can promote various stages of metastasis by modulating the effects of growth factor receptors, extracellular proteases and chemotactic molecules. Integrins may therefore play a pivotal role in multiple mechanisms of metastasis. As a result, they represent promising targets for effective treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Donald E White
- Molecular Oncology Group, McGill University, Montreal, H3A 1A1, Canada
| | | |
Collapse
|
31
|
Offersen BV, Pfeiffer P, Andreasen P, Overgaard J. Urokinase plasminogen activator and plasminogen activator inhibitor type-1 in nonsmall-cell lung cancer: relation to prognosis and angiogenesis. Lung Cancer 2007; 56:43-50. [PMID: 17207889 DOI: 10.1016/j.lungcan.2006.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/05/2006] [Accepted: 11/27/2006] [Indexed: 01/13/2023]
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) have previously been suggested as prognostic markers in nonsmall-cell lung carcinomas (NSCLC). We investigate whether uPA and PAI-1 are prognostic markers in NSCLC and whether they are related to angiogenesis. MATERIALS AND METHODS Frozen tumour tissue from surgical specimens from 118 previously untreated patients diagnosed with NSCLC in the period 1984-1991 were investigated. All patients were treated with surgery, and no chemo- or radiotherapy was given. UPA and PAI-1 levels were assessed using a sandwich ELISA method. RESULTS Both uPA and PAI-1 were independent of classical histopathological parameters as well as of microvessel density and vascular pattern. Using death within the first 5 years as endpoint, neither of the factors were prognostic markers in univariate analysis, however, significantly higher levels of uPA and PAI-1 were seen in tumours with an angiogenic vascular pattern. In multivariate analysis, high disease stage (P<0.0001), adenocarcinoma (P=0.007), old age (P=0.02), and presence of an angiogenic pattern (P=0.05) were identified as independent markers of death within 5 years. CONCLUSIONS The present study investigated the prognostic role of the protein levels of uPA and PAI-1 in 118 tumour specimens from patients diagnosed with NSCLC. Neither of the factors were identified as prognostic markers when evaluated with survival as endpoint. However, in tumours previously identified as non-angiogenic we found significantly lower contents of both uPA and PAI-1 as compared to angiogenic tumours, thus we hypothesize that uPA and PAI-1 stimulate angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Birgitte Vrou Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Bld. 5, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
32
|
Shanmukhappa K, Sabla GE, Degen JL, Bezerra JA. Urokinase-type plasminogen activator supports liver repair independent of its cellular receptor. BMC Gastroenterol 2006; 6:40. [PMID: 17134505 PMCID: PMC1697812 DOI: 10.1186/1471-230x-6-40] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/29/2006] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The urokinase-type (uPA) and tissue-type (tPA) plasminogen activators regulate liver matrix remodelling through the conversion of plasminogen (Plg) to the active protease plasmin. Based on the efficient activation of plasminogen when uPA is bound to its receptor (uPAR) and on the role of uPA in plasmin-mediated liver repair, we hypothesized that uPA requires uPAR for efficient liver repair. METHODS To test this hypothesis, we administered one dose of carbon tetrachloride (CCl4) to mice with single or combined deficiencies of uPA, uPAR and tPA, and examined hepatic morphology, cellular proliferation, fibrin clearance, and hepatic proteolysis 2-14 days later. RESULTS Absence of uPAR alone or the combined absence of uPAR and tPA had no impact on the resolution of centrilobular injury, but the loss of receptor-free uPA significantly impaired the clearance of necrotic hepatocytes up to 14 days after CCl4. In response to the injury, hepatocyte proliferation was normal in mice of all genotypes, except for uPAR-deficient (uPAR degrees) mice, which had a reproducible but mild decrease by 33% at day 2, with an appropriate restoration of liver mass by 7 days similar to experimental controls. Immunostaining and zymographic analysis demonstrated that uPA alone promoted fibrin clearance from centrilobular regions and efficiently activated plasminogen. CONCLUSION uPA activates plasminogen and promotes liver matrix proteolysis during repair via a process that neither requires its receptor uPAR nor requires a contribution from its functional counterpart tPA.
Collapse
Affiliation(s)
- Kumar Shanmukhappa
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition. Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gregg E Sabla
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition. Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jay L Degen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jorge A Bezerra
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition. Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Kobayashi H, Yagyu T, Kondo T, Kurita N, Inagaki K, Haruta S, Kawaguchi R, Kitanaka T, Sakamoto Y, Yamada Y, Kanayama N, Terao T. Suppression of Urokinase Receptor Expression by Thalidomide Is Associated with Inhibition of Nuclear Factor κB Activation and Subsequently Suppressed Ovarian Cancer Dissemination. Cancer Res 2005; 65:10464-71. [PMID: 16288038 DOI: 10.1158/0008-5472.can-04-3789] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thalidomide has been used to treat a variety of diseases ranging from alleviation of autoimmune disorders to prevention of metastasis of cancers. It has been shown previously that increased levels of urokinase-type plasminogen activator receptor (uPAR) correlate well with higher invasive phenotype. We examined whether thalidomide is able to suppress the expression of uPAR mRNA and protein in human ovarian cancer cell line HRA and human chondrosarcoma cell line HCS-2/8. Here, we show that: (a) thalidomide suppresses the expression of constitutive and transforming growth factor-beta1 (TGF-beta1)-induced uPAR mRNA and protein; (b) a nuclear factor kappaB (NF-kappaB) activation system (phosphorylation of IkappaB-alpha and degradation of IkappaB-alpha) is necessary for the TGF-beta1-induced increase in uPAR expression, because L-1-tosylamido-2-phenylethyl chloromethyl ketone, a NF-kappaB inhibitor, reduced the uPAR production as well as mRNA expression; (c) thalidomide failed to further strengthen L-1-tosylamido-2-phenylethyl chloromethyl ketone's action; (d) the once-daily i.p. administration of thalidomide (400 microg/g body weight/d) decreased progressive growth of HRA tumors and ascites formation in an in vivo animal model; and (e) the once-daily i.p. administration of thalidomide in combination with paclitaxel (i.p., 100 microg/20 g at days 2 and 5) significantly decreased progressive growth of HRA cells in a synergistic fashion. We conclude that thalidomide down-regulates constitutive and TGF-beta1-stimulated uPAR mRNA and protein expression possibly through suppression of NF-kappaB activation. Furthermore, combination therapy with thalidomide plus paclitaxel may be an effective way to markedly reduce i.p. tumor growth and ascites in ovarian cancer dissemination.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res 2004; 64:6109-18. [PMID: 15342394 DOI: 10.1158/0008-5472.can-04-1014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most frequent solid childhood malignancy. Despite aggressive therapy, mortality is high due to rapid tumor progression to advanced stages. The molecules and mechanisms underlying poor prognosis are not well understood. Here, we report that cultured human neuroblastoma cells express the hepatocyte growth factor (HGF) and its receptor c-Met. Binding of HGF to c-Met triggers receptor autophosphorylation, indicating functional relevance of this interaction. HGF activates several downstream effectors of c-Met such as the mitogen-activated protein kinases extracellular signal-regulated kinase 1/extracellular signal-regulated kinase 2 and phospholipase C-gamma, whereas signal transducer and activator of transcription 3 is constitutively activated in neuroblastoma cells expressing c-Met. In addition, HGF is able to stimulate expression and proteolytic activity of matrix metalloproteinase-2 and tissue-type plasminogen activator in neuroblastoma cells, thereby promoting degradation of extracellular matrix components. We show that HGF stimulates invasion of neuroblastoma cells in vitro and in vivo, and it promotes the formation of angiogenic neuroblastomas in vivo. These processes can be blocked by specific inhibitors of the mitogen-activated protein kinase cascade, by inhibitors of phospholipase C-gamma, and also by the expression of a dominant negative signal transducer and activator of transcription 3 mutant. Our data provide the first evidence that the HGF/c-Met pathway is essential for invasiveness and malignant progression of human neuroblastomas. They further suggest that specific inhibitors of this pathway may be suitable as therapeutic agents to improve clinical outcome of neuroblastomas.
Collapse
Affiliation(s)
- Monica Hecht
- Abteilung Pädiatrie I, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Kranenburg O, Gebbink MFBG, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta Rev Cancer 2004; 1654:23-37. [PMID: 14984765 DOI: 10.1016/j.bbcan.2003.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 09/03/2003] [Indexed: 12/13/2022]
Abstract
Cells that have acquired a proliferative advantage form islets of hyperplasia during the initial stages of tumor development. Like normal cells, they require oxygen and nutrients to survive and proliferate. The centre of the islets is characterized by low oxygen pressure and low pH, conditions that stimulate the sprouting of new capillaries from nearby vascular beds. It is now well established that neovascularisation (angiogenesis) of the hyperplasias is essential for further development of the tumor. The family of ras oncogenes promotes the initiation of tumor growth by stimulating tumor cell proliferation, but also ensures tumor progression by stimulating tumor-associated angiogenesis. Oncogenic Ras proteins stimulate a number of effector pathways that culminate in the transcriptional activation of genes that control angiogenesis. Moreover, Ras signaling leads to stabilization of the produced mRNAs and, possibly, to enhanced initiation of their translation. In this review we describe the mechanisms that underlie Ras regulation of vascular endothelial growth factor (VEGF), cyclooxygenases (COX-1/-2), thrombospondins (TSP-1/-2), urokinase plasminogen activator (uPA) and matrix metalloproteases-2 and -9 (MMP-2/-9). As a result of these Ras-regulated changes in gene expression, the tumor cells cause stimulation of endothelial cells in nearby vascular beds (directly via VEGF, and indirectly via COX-produced prostaglandins) and promote remodeling of the extracellular matrix (by lowering TSP and increasing uPA/MMPs). The latter effect makes growth factors available for endothelial cell activation and migration. In addition, tumor cell-activated stromal cells also contribute to the stimulation of angiogenesis by further enhancing the production and secretion of pro-angiogenic factors into the tumor stroma.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
36
|
Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 2004; 15:2156-2163. [PMID: 15004225 PMCID: PMC404012 DOI: 10.1091/mbc.e03-12-0894] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is often lethal when invasion and/or metastasis occur. Tumor progression to the metastatic phenotype is mainly dependent on tumor cell invasiveness. Secondary bile acids, particularly deoxycholic acid (DCA), are implicated in promoting colon cancer growth and progression. Whether DCA modulates beta-catenin and promotes colon cancer cell growth and invasiveness remains unknown. Because beta-catenin and its target genes urokinase-type plasminogen activator receptor (uPAR) and cyclin D1 are overexpressed in colon cancers, and are linked to cancer growth, invasion, and metastasis, we investigated whether DCA activates beta-catenin signaling and promotes colon cancer cell growth and invasiveness. Our results show that low concentrations of DCA (5 and 50 microM) significantly increase tyrosine phosphorylation of beta-catenin, induce urokinase-type plasminogen activator, uPAR, and cyclin D1 expression and enhance colon cancer cell proliferation and invasiveness. These events are associated with a substantial loss of E-cadherin binding to beta-catenin. Inhibition of beta-catenin with small interfering RNA significantly reduced DCA-induced uPAR and cyclin D1 expression. Blocking uPAR with a neutralizing antibody significantly suppressed DCA-induced colon cancer cell proliferation and invasiveness. These findings provide evidence for a novel mechanism underlying the oncogenic effects of secondary bile acids.
Collapse
Affiliation(s)
- Rama Pai
- Medical Service, Department of Veterans Affairs Medical Center, Long Beach, California, USA.
| | | | | |
Collapse
|
37
|
Devy L, de Groot FMH, Blacher S, Hajitou A, Beusker PH, Scheeren HW, Foidart JM, Noël A. Plasmin‐activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity. FASEB J 2004; 18:565-7. [PMID: 14734647 DOI: 10.1096/fj.03-0462fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To generate doxorubicin (Dox) specifically at the tumor site, the chemotherapeutic agent was incorporated into a prodrug by linkage to a peptide specifically recognized by plasmin, which is overproduced in many cancers. ST-9905, which contains an elongated self-elimination spacer, is activated more rapidly in vitro by plasmin than is ST-9802. Prodrug activation in vitro depended on the level of urokinase produced by tumor cells and was inhibited by aprotinin, a plasmin inhibitor. Comparison of equimolar concentrations of ST-9905, ST-9802, and Dox in EF43.fgf-4 and MCF7 models revealed that both prodrugs, in sharp contrast to Dox, displayed antiproliferative and antiangiogenic activities without discernible toxicity. Although MCF7 cells are poor urokinase producers in vitro, prodrug efficacy in this model may be explained by production of plasmin by tumor-infiltrating host cells. Mice treated with equitoxic concentrations (maximum tolerated doses) of prodrugs showed 100% survival and negligible body weight loss, in contrast to results after Dox treatment. ST-9905 was substantially more effective than ST-9802 and induced similar tumor growth inhibition as Dox but without apparent toxicity. This finding may be explained by the elongated spacer, which facilitates enzymatic prodrug activation. These data validate both the use of elongated spacers in vivo and the concept of targeting anticancer prodrugs to tumor-associated plasmin.
Collapse
Affiliation(s)
- Laetitia Devy
- Laboratory of Tumor and Developmental Biology, University of Liège, Tour de Pathologie (B23), Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Grünewald M, Siegemund A, Grünewald A, Schmid A, Koksch M, Schöpflin C, Schauer S, Griesshammer M. Plasmatic coagulation and fibrinolytic system alterations in PNH. Blood Coagul Fibrinolysis 2003; 14:685-95. [PMID: 14517495 DOI: 10.1097/00001721-200310000-00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is characterized pathophysiologically by intravascular lysis of blood cells and clinically by thromboembolic events, often atypical in localization. In this study, we examined the plasmatic coagulation system of PNH patients to investigate a potential relation between coagulation alterations and disease intensity (PNH clone size). We found evidence for both an increase in procoagulant and in fibrinolytic activity, resulting in increased fibrin generation and turnover. Whereas a positive association of the procoagulant potential with PNH clone size was notable, fibrinolytic activity showed an inverse association with clone size. As a possible cause, a growing impairment of fibrinolytic activation and/or an increasing displacement of fibrinolytic activity is assumed. These mechanisms are most likely caused by the detachment of the glycosyl-phosphatidyl-inositol-anchored urokinase plasminogen activator receptor from cell surfaces, causing a progressive resistance to fibrinolytic stimuli, together with a probable shift of the fibrinolytic potential from cell surfaces to soluble, circulating complexes, resulting in a cellular fibrinolysis-steal phenomenon. Together, these processes are accused of mediating an increased thrombophilic risk in PNH. As hereditary prothrombogenic defects were found more frequently in patients suffering ischaemic complications, genetic thrombophilia seems to confer an additional thromboembolic risk in PNH, and should therefore be screened for.
Collapse
|
39
|
Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J 2003; 17:1640-1647. [PMID: 12958170 DOI: 10.1096/fj.02-1011com] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is the second most frequent cancer in the Western world, often lethal when invasion and/or metastasis occur. In addition to hepatocyte growth factor (HGF), colon cancer invasion may be driven by prostaglandins, especially the E2 series (PGE2), generated by the cyclooxygenase-2 (Cox-2) enzyme. While concentration of PGE2 as well as expression of Cox-2, HGF receptor (c-Met-R), epidermal growth factor receptor (EGFR), and beta-catenin are all dramatically increased in colon cancers and implicated in their growth and invasion, the precise role of PGE2 in the latter process remains unclear. Here we provide evidence that PGE2 transactivates c-Met-R (contingent upon functional EGFR), increases tyrosine phosphorylation and nuclear accumulation of beta-catenin, and induces urokinase-type plasminogen activator receptor (uPAR) mRNA expression. This is accompanied by increased beta-catenin association with c-Met-R and enhanced colon cancer cell invasiveness. Inactivation of EGFR and c-Met-R significantly reduced PGE2-induced cancer cell invasiveness. Clinical relevance of these findings is confirmed by our immunohistochemical studies demonstrating that cancer cells in the invasive front overexpress Cox-2, c-Met-R, and beta-catenin. Our findings explain a functional relationship between prostaglandins, EGFR, and c-Met-R in colon cancer growth and invasion.
Collapse
Affiliation(s)
- Rama Pai
- Medical Service, Department of Veterans Affairs Medical Center, Long Beach, California 90822, USA.
| | | | | | | |
Collapse
|
40
|
Fitzpatrick TE, Lash GE, Yanaihara A, Charnock-Jones DS, Macdonald-Goodfellow SK, Graham CH. Inhibition of breast carcinoma and trophoblast cell invasiveness by vascular endothelial growth factor. Exp Cell Res 2003; 283:247-55. [PMID: 12581744 DOI: 10.1016/s0014-4827(02)00044-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen and angiogenic growth factor that enhances endothelial cell invasion through the extracellular matrix (ECM). While various cell types express VEGF receptors, little is known about the biological actions of VEGF on nonendothelial cells. Therefore, the main objective of the present study was to determine the effect of VEGF on the in vitro invasiveness and proliferation of human MDA-MB-231 breast carcinoma cells and human HTR-8/SVneo trophoblast cells. Reverse-transcriptase polymerase chain reaction analysis demonstrated the presence of transcripts encoding VEGF receptors (VEGFR) -1, -2, and -3 as well as neuropilins-1 and -2 in the trophoblast cells, and the presence of transcripts encoding VEGFR-2 and neuropilins-1 and -2 in the breast carcinoma cells. Both cell lines also expressed transcripts for VEGF-A, -B, -C and -D, as well as for placenta growth factor (PlGF). Although incubation with exogenous VEGF-A(165) or VEGF-A(121) did not affect the rate of proliferation of either the trophoblast or the breast carcinoma cells, incubation with these molecules reduced their ability to invade through reconstituted ECM (Matrigel). The effect of VEGF-A(165) on the invasiveness of both cell lines was inhibited by the inclusion of a neutralizing antibody to VEGF. Exogenous VEGF-A(165) also decreased the cell surface expression of the urokinase-type plasminogen activator (a molecule required for invasion) by the breast carcinoma and trophoblast cells. These results indicate that the biological actions of VEGF on certain cell types may differ from the effects of this molecule on vascular endothelial cells, and therefore are relevant to angiogenesis-based therapies.
Collapse
Affiliation(s)
- Tania E Fitzpatrick
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
41
|
Kobayashi H, Suzuki M, Kanayama N, Nishida T, Takigawa M, Terao T. Suppression of urokinase receptor expression by bikunin is associated with inhibition of upstream targets of extracellular signal-regulated kinase-dependent cascade. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3945-57. [PMID: 12180971 DOI: 10.1046/j.1432-1033.2002.03068.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our laboratory showed that bikunin, a Kunitz-type protease inhibitor, suppresses 4beta-phorbol 12-myristate 13-acetate (PMA)- or tumor necrosis factor-alpha (TNFalpha)-induced urokinase-type plasminogen activator (uPA) expression in different cell types. In addition to its effects on protease inhibition, bikunin could be modulating other cellular events associated with the metastatic cascade. To test this hypothesis, we examined whether bikunin was able to suppress the expression of uPA receptor (uPAR) mRNA and protein in a human chondrosarcoma cell line, HCS-2/8, and two human ovarian cancer cell lines, HOC-I and HRA. The present study showed that (a) bikunin suppresses the expression of constitutive and PMA-induced uPAR mRNA and protein in a variety of cell types; (b) an extracellular signal-regulated kinase (ERK) activation system is necessary for the PMA-induced increase in uPAR expression, as PD098059 and U0126, which prevent the activation of MEK1, reduce the uPAR expression; (c) bikunin markedly suppresses PMA-induced phosphorylation of ERK1/2 at the concentration that prevents uPAR expression, but does not reduce total ERK1/2 antigen level; (d) bikunin has no ability to inhibit overexpression of uPAR in cells treated with sodium vanadate; and (e) we further studied the inhibition of uPAR expression by stable transfection of HRA cells with bikunin gene, demonstrating that bikunin secretion is necessary for inhibition of uPAR expression. We conclude that bikunin downregulates constitutive and PMA-stimulated uPAR mRNA and protein possibly through suppression of upstream targets of the ERK-dependent cascade, independent of whether cells were treated with exogenous bikunin or transfected with bikunin gene.
Collapse
MESH Headings
- Bone Neoplasms/pathology
- Butadienes/pharmacology
- Carcinoma/pathology
- Chondrosarcoma/pathology
- Depression, Chemical
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MAP Kinase Kinase 1
- MAP Kinase Signaling System/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/pharmacology
- Membrane Glycoproteins/physiology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nitriles/pharmacology
- Ovarian Neoplasms
- Phosphorylation
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Urokinase Plasminogen Activator
- Recombinant Fusion Proteins/physiology
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Trypsin Inhibitor, Kunitz Soybean
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Adachi Y, Chandrasekar N, Kin Y, Lakka SS, Mohanam S, Yanamandra N, Mohan PM, Fuller GN, Fang B, Fueyo J, Dinh DH, Olivero WC, Tamiya T, Ohmoto T, Kyritsis AP, Rao JS. Suppression of glioma invasion and growth by adenovirus-mediated delivery of a bicistronic construct containing antisense uPAR and sense p16 gene sequences. Oncogene 2002; 21:87-95. [PMID: 11791179 DOI: 10.1038/sj.onc.1204999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 09/06/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
Our previous studies showed that the urokinase-type plasminogen activator receptor (uPAR) and the p16 tumor suppressor gene play a significant role in glioma invasion. We expected that downregulation of uPAR and overexpression of p16 using a bicistronic vector might cause a additive and cooperative effect in the suppression of glioma invasion and growth. The bicistronic construct (Ad-uPAR/p16)-infected glioblastoma cell lines had significantly lower levels of uPAR and higher levels of p16 than controls. Cell cycle analysis showed the bicistronic vector caused G0/G1 arrest of the cell cycle. In vitro glioblastoma cell growth and invasiveness were inhibited in Ad-uPAR/p16-infected cells compared with controls. Ad-uPAR/p16 suppressed the tumor growth of glioblastoma cell lines in an ex vivo intracerebral tumor model and an in vivo subcutaneous tumor model. Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.
Collapse
Affiliation(s)
- Yoshiaki Adachi
- Department of Neurological Surgery, Okayama University Medical School, 2-5-1 shikata-cho, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fong S, Doyle MV, Goodson RJ, Drummond RJ, Stratton JR, McGuire L, Doyle LV, Chapman HA, Rosenberg S. Random peptide bacteriophage display as a probe for urokinase receptor ligands. Biol Chem 2002; 383:149-58. [PMID: 11928809 DOI: 10.1515/bc.2002.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The urokinase receptor is a multi-functional protein that plays a central role in cell surface plasminogen activation, cell migration, and cell adhesion. We previously demonstrated that high affinity peptide ligands for the urokinase receptor, which are urokinase competitors, can be obtained from a 15mer peptide library (Goodson et al., 1994). In order to probe for additional urokinase receptor binding sites we affinity selected the same bacteriophage library on complexes of soluble urokinase receptor (suPAR) and the receptor binding domain of urokinase, residues 1-48 (uPA1-48). Bacteriophage were isolated which bound to suPAR and suPAR:uPA1-48 complexes with high yield. The peptide sequences encoded by these bacteriophage were distinct from those obtained previously on urokinase receptor expressing cells, and comprise two groups based upon effects on su-PAR:1-anilino-8-napthalene sulfonate (ANS) fluorescence, and vitronectin binding competition. Alanine scanning mutagensis of the soluble peptides was used to define minimal regions and key residues for suPAR binding by competition with the parent bacteriophage. A comparison of these results with sequences of domains of both vitronectin and integrin alpha-chains, which have been reported to be important for urokinase receptor binding, suggests that the homology with the peptide sequences selected is functionally significant.
Collapse
Affiliation(s)
- Susan Fong
- Chiron Corporation, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nielsen BS, Sehested M, Duun S, Rank F, Timshel S, Rygaard J, Johnsen M, Danø K. Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. J Transl Med 2001; 81:1485-501. [PMID: 11706057 DOI: 10.1038/labinvest.3780363] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Urokinase plasminogen activator (uPA) regulates a proteolytic cascade that facilitates cancer invasion through degradation of the extracellular matrix, and high levels of uPA in human breast cancer tissue correlate with poor prognosis. We previously found that, in ductal breast cancer, uPA mRNA is highly expressed by myofibroblasts surrounding invasively growing cancer cells. However, the localization of uPA protein has not been settled in the published literature. Because uPA is a secreted molecule, it could conceivably be localized differently from its mRNA. We have studied the localization of uPA immunoreactivity in detail. Twenty-five cases of invasive ductal carcinoma were analyzed with three different uPA antibody preparations, all of which gave an essentially identical stromal staining pattern. Using double immunofluorescence, we identified uPA immunoreactivity in myofibroblasts and macrophages in all cases examined. Additionally, in approximately half of the tumors, we saw uPA staining of endothelial cells. In 3 of the 25 cases, a small subpopulation of the cancer cells was uPA-positive. We conclude that uPA immunoreactivity is almost exclusively associated with stromal cells, which thus play a major role in generation of proteolytic activity in ductal breast cancer.
Collapse
Affiliation(s)
- B S Nielsen
- Finsen Laboratory, Rigshospitalet, Copenhagen.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
de Witte H, van den Hurk M, Sweep F, Benraad T, Geurts-Moespot A, Ruiter D, Verhofstad A. Development of quality control preparations for immunocytochemical assessment of urokinase-type plasminogen activator. Appl Immunohistochem Mol Morphol 2001; 9:281-7. [PMID: 11556758 DOI: 10.1097/00129039-200109000-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Quality control of immunochemical and/or immunocytochemical analyses warrants constant reproducibility and reliability of assay performance. In this respect, stable reference preparations containing known quantities of the components to be assessed may serve purposes in the quality assessment of antigen expression levels, including those of the plasminogen activation system. Quality control preparations for the immunocytochemical assessment of urokinase-type plasminogen activator (uPA) were developed using different combinations of cultured cell lines (BLM and IF6), each expressing immunochemically well-defined (by enzyme-linked immunosorbent assay[ELISA]) amounts of the respective component. Cytospins and frozen sections cut from sucrose/Tissue-Tek blocks containing these cell lines demonstrated stable and homogeneous expression of uPA. An excellent correlation was found between the immunocytochemical staining results and the data obtained by ELISA. Because these cell lines are available in practically unlimited quantities, large numbers of nearly identical quality control preparations can be made over a long period of time. Therefore, the incorporation of (combinations of) cell lines in cytospins or sucrose/Tissue-Tek blocks represents a simple model system in establishing quality control preparations for immunocytochemical assessment of components of the plasminogen activator system.
Collapse
Affiliation(s)
- H de Witte
- Department of Chemical Endocrinology, University Medical Center Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Fox SB, Taylor M, Grøndahl-Hansen J, Kakolyris S, Gatter KC, Harris AL. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol 2001; 195:236-43. [PMID: 11592104 DOI: 10.1002/path.931] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The generation of urokinase plasminogen activator (uPA) by tumours is an important pathway for neoplastic cell invasion and metastasis. Indeed in several tumour types, elevated levels of uPA, its receptor (uPAR) or its inhibitor plasminogen activator inhibitor-1 (PAI-1) is associated with a poorer prognosis. Since endothelial cells also use this proteolytic system to remodel the extracellular matrix during angiogenesis and since angiogenesis, as assessed by microvessel density, is also a predictor of patient survival, this study was designed to investigate the relationship between angiogenesis and the urokinase system in breast tumours. The aims were to assess whether the uPA, uPAR and/or PAI-1 correlates with angiogenic activity and could therefore be a useful objective clinical measure of tumour neovascularization; and to clarify whether the poor outcome associated with high levels of the urokinase system is due to its association with angiogenesis. The study also sought to examine the relationship between the uPA system and vessel remodelling using loss of a basement membrane epitope (LH39) normally associated with established capillaries. The cytosolic levels of uPA, PAI-1 and uPAR were therefore measured by enzyme linked immunoabsorbent assay, together with tumour vascularity, in 136 well-characterized invasive breast carcinomas. There were significant relationships between uPA and uPAR (Spearman r=0.37, p<0.0001), uPA and PAI-1 (Spearman r=0.19, p=0.03) and between uPAR and PAI-1 (Spearman r=0.23 p=0.01). A significant correlation was also observed between PAI-1 and vessel remodelling (Spearman r=0.34, p=0.04), patient age (p=0.01), nodal status (p=0.047) and tumour grade (p=0.04), but no association between tumour vascularity and PAI (p=0.96), uPA (p=0.69) or uPAR (p=0.81) was present. No significant association was seen between any of the urokinase variables and expression of the angiogenic factor thymidine phosphorylase. Furthermore, no significant associations were found between any of the studied parameters and overall survival in a univariate analysis of the cancer patients. A multivariate Cox proportional hazard model of overall survival showed that uPA (p=0.15), but not uPAR (p=0.52) or PAI-1 (p=0.61), gave no additional prognostic information. These findings show that uPA may work via an independent pathway to angiogenesis and therefore combined blockade of uPA and angiogenesis may have additional therapeutic benefits. It also shows, as recently demonstrated in animal models, that PAI-1 may be a key regulator of vascular remodelling in human cancer.
Collapse
Affiliation(s)
- S B Fox
- Anatomical Pathology, Canterbury Health Labs, Christchurch Hospital, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
47
|
Sakamaki H, Ogura N, Kujiraoka H, Akiba M, Abiko Y, Nagura H. Activities of plasminogen activator, plasmin and kallikrein in synovial fluid from patients with temporomandibular joint disorders. Int J Oral Maxillofac Surg 2001; 30:323-8. [PMID: 11518356 DOI: 10.1054/ijom.2001.0053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To measure the activities of plasminogen activator (PA), plasmin and kallikrein, multiple synovial fluid samples were taken from 32 patients with internal derangement (ID) and osteoarthrosis (OA), and nine asymptomatic volunteers. The enzyme activity in synovial fluid from the temporomandibular joint (TMJ) was quantitated by a fluorogenic substrate assay using an enzyme substrate. In fluid samples from the patient group, PA was detected in 24 (31.5%), plasmin in 20 (26.3%) and kallikrein in 53 (96.4%), while none of these enzymes were found in the synovial fluid samples from the control group. There were positive correlations found among PA, plasmin and kallikrein. These results clearly demonstrated increased levels of PA, plasmin and kallikrein activities in the synovial fluid of patients with ID and OA, and suggest that these enzymes may be involved in the pathogenesis of synovitis, as well as the resorption of cartilage and bone in TMJ.
Collapse
Affiliation(s)
- H Sakamaki
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Moriyama T, Kataoka H, Hamasuna R, Yoshida E, Sameshima T, Iseda T, Yokogami K, Nakano S, Koono M, Wakisaka S. Simultaneous up-regulation of urokinase-type plasminogen activator (uPA) and uPA receptor by hepatocyte growth factor/scatter factor in human glioma cells. Clin Exp Metastasis 2001; 17:873-9. [PMID: 11089886 DOI: 10.1023/a:1006729611241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several lines of evidence indicate that hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, c-Met, may play an important role in progression of human glioma. In this study, effects of HGF/SF on urokinase- type plasminogen activator (uPA)-mediated proteolysis network were examined in c-Met-positive human glioma cell lines. Treatment of the glioma cells with various concentrations of HGF/SF resulted in an enhanced secretion of uPA proteins accompanying increased transcription of uPA mRNA in a dose dependent fashion. The levels of uPA receptor (uPAR) mRNAs were also elevated simultaneously upon HGF/SF stimulation, and the cell-surface associated uPA activity was also elevated by the treatment. Since concomitant expression of HGF and its receptor c-Met are frequently observed in malignant gliomas, these results suggest that HGF/SF participates in invasive process of malignant glioma cells not only by its motility-stimulating activity but also through enhanced degradation of the extracellular matrix induced by autocrine activation of uPA proteolysis network.
Collapse
Affiliation(s)
- T Moriyama
- Department of Neurosurgery, Miyazaki Medical College, Kiyotake, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Normal epithelial cells grow as a sheet-like structure. Upon malignant transformation, epithelial cells grow as multicell aggregates. Adopted in tissue culture, most tumor cells revert to adherent monolayer. In tissue culture, as early as 1958, anchorage-independent multicellular spheroid cancer cells have been shown to revert to adherent monolayer in response to extracellular serum signaling factors. Such serum signaling factors have not yet been characterized. Recent studies reveal that the conversion of adherent monolayer to multicellular spheroids is also mediated by serum signaling factors such as carcinoembryonal antigen, interferon-gamma, insulin-like growth factor-II, heregulin beta1 and plasmin. The reports provide a new approach to investigate the regulatory system of tumor cell growth pattern as well as the effect of the change in growth pattern on various cellular functions.
Collapse
Affiliation(s)
- M H Chun
- Bioeast, New York, NY 10128, USA.
| |
Collapse
|
50
|
Braat EA, Collen A, Jie AF, Grimbergen JM, Rijken DC. The inactivation of single-chain urokinase-type plasminogen activator by thrombin on cultured human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:351-8. [PMID: 10996659 DOI: 10.1016/s0167-4889(00)00073-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Single-chain urokinase-type plasminogen activator (scu-PA) is cleaved by thrombin, resulting in an inactive molecule called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T). There is no knowledge about cell-mediated inactivation of scu-PA. We have studied whether scu-PA bound to cultured human umbilical vein endothelial cells (HUVEC) could be inactivated by thrombin. High molecular weight scu-PA was bound to HUVEC and incubated with increasing amounts of thrombin for 30 min at 37 degrees C. Cell-bound urokinase-type plasminogen activator (u-PA) was released and levels of scu-PA, tcu-PA/T and active two-chain u-PA were measured using sensitive bioimmunoassays. Cell-bound scu-PA was efficiently inactivated by thrombin. Fifty percent inactivation of scu-PA occurred at about 0.2 nM thrombin. In the presence of monoclonal anti-urokinase receptor IgG, at least 50% of the binding of scu-PA to HUVEC was inhibited. The relative amount of tcu-PA/T that was generated by thrombin was not affected by the monoclonal antibody. These results indicated that scu-PA bound to HUVEC via the urokinase receptor can be inactivated by thrombin. The efficient inactivation of cell-bound scu-PA suggests that a cofactor for thrombin may be involved, like thrombomodulin or glycosaminoglycans. It is concluded that scu-PA bound to the urokinase receptor on a cell surface can be inactivated by thrombin, which may have profound effects on u-PA-mediated local fibrinolysis and extracellular proteolysis during processes in which thrombin is also involved.
Collapse
Affiliation(s)
- E A Braat
- TNO Prevention and Health, Gaubius Laboratory, P.O. Box 2215, 2301 CE, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|