1
|
Louka A, Spacho N, Korovesis D, Adamis K, Papadopoulos C, Kalaitzaki E, Tavernarakis N, Neochoritis CG, Eleftheriadis N. Crafting Molecular Tools for 15-Lipoxygenase-1 in a Single Step. Angew Chem Int Ed Engl 2025; 64:e202418291. [PMID: 39523872 PMCID: PMC11795718 DOI: 10.1002/anie.202418291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Small molecule modulators are powerful tools for selectively probing and manipulating proteins in native biological systems. However, the development of versatile modulators that exhibit desired properties is hindered by the lack of a rapid and robust synthetic strategy. Here, we develop a facile and reliable one-step methodology for the generation of multifunctional toolboxes encompassing a wide variety of chemical modulators with different desired features. These modulators bind irreversibly to the protein target via a selective warhead. Key elements are introduced onto the warhead in a single step using multi-component reactions. To illustrate the power of this new technology, we synthesized a library of diverse modulators designed to explore a highly challenging and poorly understood protein, human 15-lipoxygenase-1. Modulators made include; activity-based/photoaffinity probes, chemosensors, photocrosslinkers, as well as light-controlled and high-affinity inhibitors. The efficacy of our compounds was successfully established through the provision of on demand inhibition and labeling of our target protein in vitro, in cellulo and in vivo; thus, proving that this technology has promising potential for applications in many complex biological systems.
Collapse
Affiliation(s)
- Anastasia Louka
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Ntaniela Spacho
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Dimitris Korovesis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
| | | | | | | | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
- Division of Basic SciencesSchool of MedicineUniversity of CreteVoutes70013 HeraklionGreece
| | | | | |
Collapse
|
2
|
Spacho N, Casertano M, Imperatore C, Papadopoulos C, Menna M, Eleftheriadis N. Investigating the Catalytic Site of Human 15-Lipoxygenase-1 via Marine Natural Products. Chemistry 2024; 30:e202402279. [PMID: 39041705 DOI: 10.1002/chem.202402279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.
Collapse
Affiliation(s)
- Ntaniela Spacho
- Department of Chemistry, University of Crete, 70013, Voutes, Heraklion, Greece
| | - Marcello Casertano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | |
Collapse
|
3
|
Soccio M, Laus MN, Flagella Z, Pastore D. Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules 2018; 23:E3244. [PMID: 30544620 PMCID: PMC6320953 DOI: 10.3390/molecules23123244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
In the last decades, increasing demand of antioxidant-rich foods and growing interest in their putative role in prevention of degenerative diseases have promoted development of methods for measuring Antioxidant Capacity (AC). Nevertheless, most of these assays use radicals and experimental conditions far from the physiological ones, and are able to estimate only one or a few antioxidant mechanisms. On the other hand, the novel LOX/RNO and LOX⁻FL methods, based on secondary reactions between the soybean lipoxygenase (LOX)-1 isoenzyme and either 4-nitroso-N,N-dimethylaniline (RNO) or fluorescein (FL), may provide a more comprehensive AC evaluation. In fact, they are able to detect simultaneously many antioxidant functions (scavenging of some physiological radical species, iron ion reducing and chelating activities, inhibition of the pro-oxidant apoenzyme) and to highlight synergism among phytochemicals. They are applied to dissect antioxidant properties of several natural plant products: food-grade antioxidants, cereal and pseudocereal grains, grain-derived products, fruits. Recently, LOX⁻FL has been used for ex vivo AC measurements of human blood samples after short- and long-term intakes of some of these foods, and the effectiveness in improving serum antioxidant status was evaluated using the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as an AC/Peroxide Level ratio. An overview of data is presented.
Collapse
Affiliation(s)
- Mario Soccio
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Zina Flagella
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
4
|
Rahimi S, Kim YJ, Sukweenadhi J, Zhang D, Yang DC. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6007-6019. [PMID: 27811076 PMCID: PMC5100016 DOI: 10.1093/jxb/erw358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production.
Collapse
Affiliation(s)
- Shadi Rahimi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Crop Science, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Johan Sukweenadhi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| |
Collapse
|
5
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016; 55:12300-5. [PMID: 27612308 PMCID: PMC5218545 DOI: 10.1002/anie.201606876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity-based probes of 15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15-LOX-1 activity-based probe for the efficient activity-based labeling of recombinant 15-LOX-1. 15-LOX-1-dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity-based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity-based labeling of 15-LOX-1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.
Collapse
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Stephanie A Thee
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Martijn R H Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niek G J Leus
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
6
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Stephanie A. Thee
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Martijn R. H. Zwinderman
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Niek G. J. Leus
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
7
|
Identification of 6-benzyloxysalicylates as a novel class of inhibitors of 15-lipoxygenase-1. Eur J Med Chem 2015; 94:265-75. [PMID: 25771032 DOI: 10.1016/j.ejmech.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Lipoxygenases metabolize polyunsaturated fatty acids into signalling molecules such as leukotrienes and lipoxins. 15-lipoxygenase-1 (15-LOX-1) is an important mammalian lipoxygenase and plays a crucial regulatory role in several respiratory diseases such as asthma, COPD and chronic bronchitis. Novel potent and selective inhibitors of 15-LOX-1 are required to explore the role of this enzyme in drug discovery. In this study we describe structure activity relationships for 6-benzyloxysalicylates as inhibitors of human 15-LOX-1. Kinetic analysis suggests competitive inhibition and the binding model of these compounds can be rationalized using molecular modelling studies. The most potent derivative 37a shows a Ki value of 1.7 μM. These structure activity relationships provide a basis to design improved inhibitors and to explore 15-LOX-1 as a drug target.
Collapse
|
8
|
Abstract
It is well accepted that high levels of low-density lipoprotein (LDL) cholesterol in the plasma are associated with increased risk of atherosclerosis. The cellular and molecular mechanisms linking the two however, have not been fully resolved. One of the processes involved in atherogensis that has been intensively studied in this regard is the oxidation of LDL. Oxidation may convert LDL into an atherogenic form, which incites an inflammatory and proliferative response characteristic of the atherosclerotic lesion. One of the potential mediators in this process is the lipid peroxidating enzyme 15-lipoxygenase, which has been shown to be induced in the atherosclerotic lesion and is capable of oxidizing LDL. In this article, we review the motivation for looking at mechanisms of LDL oxidation and the proposed involvement of 15-lipoxygenase in the pathogenesis of the disease.
Collapse
Affiliation(s)
- D Harats
- Dror Harats, Mary A. Mulkins, and Elliott Sigal are at Syntex Discovery Research, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
9
|
Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. Atherosclerosis 2010; 214:331-7. [PMID: 21130457 DOI: 10.1016/j.atherosclerosis.2010.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/18/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Lectin-like oxidized LDL receptor-1 (LOX-1), the endothelial receptor for OxLDL, is believed to be responsible for a number of OxLDL-induced effects in the endothelium. METHODS AND RESULTS In the present study we showed that LDL modified by 15-lipoxygenase (15LO-LDL), a form of minimally modified lipoprotein, beside its ability to induce pro-inflammatory responses such as oxidative stress and the expression of adhesion molecules, significantly increases LOX-1 expression in endothelial cells, both at transcriptional and at protein level. Such effect is likely to be mediated by p38 MAPK and NF-kB pathways. We then permanently overexpressed LOX-1 in an endothelial cell line and showed that 15LO-LDL were a ligand for LOX-1, and that the interaction LOX-1/15LO-LDL upregulated ICAM-1 surface expression. CONCLUSION Altogether these results indicate minimally modified LDL as a new inducer for LOX-1 expression and as a new ligand for LOX-1.
Collapse
|
10
|
Abstract
Oxidized low-density lipoprotein (Ox-LDL) has been studied for over 25 years. Numerous pro- and anti-atherogenic properties have been attributed to Ox-LDL. Yet, Ox-LDL has neither been defined nor characterized, as its components and composition change depending on its source, method of preparation, storage, and use. It contains unoxidized and oxidized fatty acid derivatives both in the ester and free forms, their decomposition products, cholesterol and its oxidized products, proteins with oxidized amino acids and cross-links, and polypeptides with varying extents of covalent modification with lipid oxidation products, and many others. It seems to exist in vivo in some form not yet fully characterized. Until its pathophysiological significance, and how it is generated in vivo are determined, the nature of its true identity will be only of classical interest. In this review, its components, their biological actions and methods of preparation will be discussed.
Collapse
Affiliation(s)
- Sampath Parthasarathy
- Division of Cardiothoracic Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | |
Collapse
|
11
|
Clària J, Horrillo R, Martínez-Clemente M, Morán-Salvador E, Titos E, González-Périz A, Ferré N. [Basic mechanisms of hepatocellular injury. Role of inflammatory lipid mediators]. GASTROENTEROLOGIA Y HEPATOLOGIA 2009; 31:682-92. [PMID: 19174085 DOI: 10.1016/s0210-5705(08)75816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/20/2022]
Abstract
The presence of a lesion in the cellular parenchyma is common to a large number of chronic liver diseases, such as viral hepatitides, alcoholic hepatitis, chronic cholestasis and steatohepatitis. Although the pathogenesis may vary according to the etiological agent, a series of mechanisms is common to all. Notable among these mechanisms are Kupffer cell activation and inflammatory cell recruitment, free oxygen radical formation and the development of oxidative stress, cytokine production, mainly TNFa and TGFb, and inflammatory mediator release due to arachidonic acid oxidation through the COX-2 and 5-LO pathways.
Collapse
Affiliation(s)
- Juan Clària
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Centro de Investigación Biomédica Esther Koplowitz (CIBEK) y CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
Krause BR, Sliskovic DR, Ma Bocan T. Section Review—Cardiovascular & Renal: Emerging Therapies in Atherosclerosis. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.5.353] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Notas G, Miliaraki N, Kampa M, Dimoulios F, Matrella E, Hatzidakis A, Castanas E, Kouroumalis E. Patients with primary biliary cirrhosis have increased serum total antioxidant capacity measured with the crocin bleaching assay. World J Gastroenterol 2005; 11:4194-8. [PMID: 16015688 PMCID: PMC4615441 DOI: 10.3748/wjg.v11.i27.4194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: The balance between oxidants and antioxidants can play an important role in the initiation and development of liver diseases. Recently, we have described a new automated method for the determination of total antioxidant capacity (TAC) in human serum and plasma.
METHODS: We measured TAC and corrected TAC (CTAC -abstraction of interactions due to endogenous uric acid, bilirubin and albumin) in 52 patients with chronic liver diseases (41 patients with primary biliary cirrhosis (PBC), 10 patients with chronic hepatitis C and 13 patients with viral HCV cirrhosis) as well as in 10 healthy controls. In 23 PBC patients measurement were also done 6 mo after treatment with ursodeoxycholic acid (UDCA). The TAC assay was based on a modification of the crocin bleaching assay. The results were correlated with routine laboratory measurements and the histological stage of PBC.
RESULTS: There were no significant differences in TAC between the various groups. However, CTAC was consi-derably increased in the PBC group compared to controls and cirrhotics. Analysis of these patients according to disease stages showed that this increase was an early phenomenon observed only in stages I and II compared to controls, cirrhotics and patients with chronic hepatitis C). After 6 mo of treatment with UDCA, levels of CTAC decreased to those similar to that of controls.
CONCLUSION: Patients in the early stages of PBC present with high levels of corrected total antioxidant capacity and this maybe related to the pathophysiology of the disease. UDCA treatment restores the levels of CTAC to control levels.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Gastroenterology and Hepatology, University of Crete, School of Medicine, PO Box 2208, Heraklion 71003, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu YJ, Pan BS. Inhibition of fish gill lipoxygenase and blood thinning effects of green tea extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4860-4864. [PMID: 15264926 DOI: 10.1021/jf034982d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of the present study was to determine whether green tea extracts are inhibitory to lipid oxidations catalyzed by lipoxygenase (LOX) and hemoglobin (Hb) using fish as an animal model. Green tea was extracted with water. LOX was extracted from the gills of grey mullet and tilapia, respectively. The LOX activity was determined using chemiluminescence and high-pressure liquid chromatography. The green tea extract showed inhibitory effects on both LOX-catalyzed and Hb-catalyzed oxidation of arachidonic acid and linoleic acid. Blood thinning effects were observed ex vivo by mixing the green tea extract with fish red blood cells and showed that the flow behavior of fish blood becomes closer to the Newtonian type with a thinner consistency. Similar effects were found on tilapia and grey mullet.
Collapse
Affiliation(s)
- Yu Ju Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | | |
Collapse
|
15
|
Voss AA, Lango J, Ernst-Russell M, Morin D, Pessah IN. Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. J Biol Chem 2004; 279:34514-20. [PMID: 15197184 DOI: 10.1074/jbc.m404290200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal-type ryanodine receptor (RyR1) undergoes covalent adduction by nitric oxide (NO), redox-induced shifts in cation regulation, and non-covalent interactions driven by the transmembrane redox potential that enable redox sensing. Tight redox regulation of RyR1 is thought to be primarily mediated through highly reactive (hyperreactive) cysteines. Of the 100 cysteines per subunit of RyR1, approximately 25-50 are reduced, with 6-8 considered hyperreactive. Thus far, only Cys-3635, which undergoes selective adduction by NO, has been identified. In this report, RyR1-enriched junctional sarcoplasmic reticulum is labeled with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM, 1 pmol/microg of protein) in the presence of 10 mm Mg(2+), conditions previously shown to selectively label hyperreactive sulfhydryls and eliminate redox sensing. The CPM-adducted RyR1 is separated by gel electrophoresis and subjected to in-gel tryptic digestion. Isolation of CPM-adducted peptides is achieved by analytical and microbore high-performance liquid chromatography utilizing fluorescence and UV detection. Subsequent analysis using two direct and one tandem mass spectrometry methods results in peptide masses and sequence data that, compared with the known primary sequence of RyR1, enable unequivocal identification of CPM-adducted cysteines. This work is the first to directly identify seven hyperreactive cysteines: 1040, 1303, 2436, 2565, 2606, 2611, and 3635 of RyR1. In addition to Cys-3635, the nitrosylation site, six additional cysteines may contribute toward redox regulation of the RyR1 complex.
Collapse
Affiliation(s)
- Andrew A Voss
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
16
|
Lapenna D, Ciofani G, Pierdomenico SD, Giamberardino MA, Cuccurullo F. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation. Free Radic Biol Med 2003; 35:1203-9. [PMID: 14607519 DOI: 10.1016/s0891-5849(03)00508-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potential antioxidant effects of the hydrophobic therapeutic agent lipoic acid (LA) and of its reduced form dihydrolipoic acid (DHLA) on the peroxidation of either linoleic acid or human non-HDL fraction catalyzed by soybean 15-lipoxygenase (SLO) and rabbit reticulocyte 15-lipoxygenase (RR15-LOX) were investigated. DHLA, but not LA, did inhibit SLO-dependent lipid peroxidation, showing an IC(50) of 15 microM with linoleic acid and 5 microM with the non-HDL fraction. In specific experiments performed with linoleic acid, inhibition of SLO activity by DHLA was irreversible and of a complete, noncompetitive type. In comparison with DHLA, the well-known lipoxygenase inhibitor nordihydroguaiaretic acid and the nonspecific iron reductant sodium dithionite inhibited SLO-dependent linoleic acid peroxidation with an IC(50) of 4 and 100 microM, respectively, while the hydrophilic thiol N-acetylcysteine, albeit possessing iron-reducing and radical-scavenging properties, was ineffective. Remarkably, DHLA, but not LA, was also able to inhibit the peroxidation of linoleic acid and of the non-HDL fraction catalyzed by RR15-LOX with an IC(50) of, respectively, 10 and 5 microM. Finally, DHLA, but once again not LA, could readily reduce simple ferric ions and scavenge efficiently the stable free radical 1,1-diphenyl-2-pycrylhydrazyl in ethanol; DHLA was considerably less effective against 2,2'-azobis(2-amidinopropane) dihydrochloride-mediated, peroxyl radical-induced non-HDL peroxidation, showing an IC(50) of 850 microM. Thus, DHLA, at therapeutically relevant concentrations, can counteract 15-lipoxygenase-dependent lipid peroxidation; this antioxidant effect may stem primarily from reduction of the active ferric 15-lipoxygenase form to the inactive ferrous state after DHLA-enzyme hydrophobic interaction and, possibly, from scavenging of fatty acid peroxyl radicals formed during lipoperoxidative processes. Inhibition of 15-lipoxygenase oxidative activity by DHLA could occur in the clinical setting, eventually resulting in specific antioxidant and antiatherogenic effects.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento and Centro di Scienze dell'Invecchiamento-Fondazione Universita' G. d'Annunzio, Chieti, Italy.
| | | | | | | | | |
Collapse
|
17
|
Xu W, Takahashi Y, Sakashita T, Iwasaki T, Hattori H, Yoshimoto T. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. J Biol Chem 2001; 276:36454-9. [PMID: 11479307 DOI: 10.1074/jbc.m105093200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxidative modification of low density lipoprotein (LDL) has been implicated in the early stage of atherosclerosis through multiple potential pathways, and 12/15-lipoxygenase is suggested to be involved in this oxidation process. We demonstrated previously that the 12/15-lipoxygenase overexpressed in mouse macrophage-like J774A.1 cells was required for the cell-mediated LDL oxidation. However, the mechanism of the oxidation of extracellular LDL by the intracellular 12/15-lipoxygenase has not yet been elucidated. In the present study, we found that not only the LDL receptor but also LDL receptor-related protein (LRP), both of which are cell surface native LDL-binding receptors, were down-regulated by the preincubation of the cells with cholesterol or LDL and up-regulated by lipoprotein-deficient serum. Moreover, 12/15-lipoxygenase-expressing cell-mediated LDL oxidation was decreased by the preincubation of the cells with LDL or cholesterol and increased by the preincubation with lipoprotein-deficient serum. Heparin-binding protein 44, an antagonist of the LDL receptor family, also suppressed the cell-mediated LDL oxidation in a dose-dependent manner. The cell-mediated LDL oxidation was dose-dependently blocked by an anti-LRP antibody but not by an anti-LDL receptor antibody. Furthermore, antisense oligodeoxyribonucleotides against LRP reduced the cell-mediated LDL oxidation under the conditions in which the expression of LRP was decreased. The results taken together indicate that LRP was involved essentially for the cell-mediated LDL oxidation by 12/15-lipoxygenase expressed in J774A.1 cells, suggesting an important pathophysiological role of this receptor-enzyme system as the initial trigger of the progression of atherosclerosis.
Collapse
Affiliation(s)
- W Xu
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Parthasarathy S, Santanam N, Ramachandran S, Meilhac O. Potential role of oxidized lipids and lipoproteins in antioxidant defense. Free Radic Res 2000; 33:197-215. [PMID: 10993475 DOI: 10.1080/10715760000301381] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The atherogenic oxidative modification of low-density lipoprotein is suggested to occur in the aortic intima. There is reasonable evidence to suggest that antioxidants might be beneficial in preventing or retarding the progression of atherosclerosis. Exercise, estrogens, and substitution of polyunsaturated fat for saturated fat are beneficial in the prevention of atherosclerosis. Yet, paradoxically, they are capable of inducing an oxidative stress. To reconcile with this paradox, we postulate that under certain conditions an oxidative stress might be beneficial by inducing antioxidant enzymes in arterial cells. However, those with genetic deficiency in antioxidant enzymes or those who poorly respond to oxidative stress or those with overwhelming plasma oxidative stress might need additional antioxidant protection.
Collapse
Affiliation(s)
- S Parthasarathy
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
19
|
Harats D, Shaish A, George J, Mulkins M, Kurihara H, Levkovitz H, Sigal E. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20:2100-5. [PMID: 10978255 DOI: 10.1161/01.atv.20.9.2100] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the possible role of the human lipid-oxidizing enzyme 15-lipoxygenase (15-LO) in atherosclerosis, we overexpressed it specifically in the vascular wall of C57B6/SJL mice by using the murine preproendothelin-1 promoter. The mice overexpressing 15-LO were crossbred with low density lipoprotein (LDL) receptor-deficient mice to investigate atherogenesis. High levels of 15-LO were expressed in the atherosclerotic lesion in the double-transgenic mice as assessed by immunohistochemistry. The double-transgenic, 15-LO-overexpressing, LDL receptor-deficient mice (LDLR-/-/15LO) developed significantly larger atherosclerotic lesions at the aortic sinus compared with lesions in the LDL receptor-deficient (LDLR-/-) mice after 3 and 6 weeks (107,000 versus 28,000 microm(2) [P:<0.001] and 121,000 versus 87,000 microm(2) [P:<0.05], respectively) of an atherogenic diet. LDL from the LDLR-/-/15LO mice was more susceptible to oxidation than was the LDL from the control LDLR-/- mice, as shown by a shorter lag period for copper-induced conjugated diene formation. On the other hand, no differences were found in the levels of serum anti-oxidized LDL antibodies between the study groups. There were also no differences with respect to the density of macrophages and T lymphocytes infiltrating the lesions in both experimental groups. Taken together, these results support the hypothesis that 15-LO overexpression in the vessel wall is associated with enhanced atherogenesis.
Collapse
Affiliation(s)
- D Harats
- Institute of Lipid & Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The literature relating lipid and lipoprotein oxidation to atherosclerosis has expanded enormously in recent years. Papers on the "oxidative modification hypothesis" of atherogenesis have ranged from the most basic studies of the chemistry and enzymology of LDL oxidation, through studies of the biological effects of oxidized LDL on cultured cells, and on to in vivo studies of the effects of antioxidants on atherosclerosis in animals and humans. The data in support of this theory are mounting but many key questions remain unanswered. For example, while it is generally agreed that LDL undergoes oxidation and that oxidized LDL is present in arterial lesions, it is still not known how and where LDL gets oxidized in vivo nor which of its many biological effects demonstrable in vitro are relevant to atherogenesis in vivo. This brief review is not intended to be comprehensive but rather to offer a perspective and a context for this Forum. We discuss the strengths and weaknesses of each line of evidence, try to identify areas in which further research is needed, assess the relevance of the hypothesis to the human disease, and point to some of the potential targets for therapy.
Collapse
Affiliation(s)
- G M Chisolm
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | |
Collapse
|
21
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARalpha, -delta, and -gamma, which are members of the steriod receptor superfamily. The first member of the family (PPARalpha) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARalpha being involved in beta-oxidation pathways, and PPARgamma in the differentiation of adipocytes. Little is known about the functions of PPARdelta, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands.
Collapse
Affiliation(s)
- D Bishop-Bailey
- Vascular Biology Center, Department of Physiology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut, CT 06030-3505, USA.
| |
Collapse
|
22
|
Sakashita T, Takahashi Y, Kinoshita T, Yoshimoto T. Essential involvement of 12-lipoxygenase in regiospecific andstereospecific oxidation of low density lipoprotein by macrophages. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:825-31. [PMID: 10504415 DOI: 10.1046/j.1432-1327.1999.00803.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To establish a role of the 12-lipoxygenase on the generation of oxidized low density lipoprotein (LDL) in macrophages that leads to foam cell formation in atherosclerosis, we overexpressed 12-lipoxygenases in a macrophage-like cell line, J774A.1, that does not show intrinsic enzyme activity. When the 12-lipoxygenase-expressing cells were incubated with 400 microg.mL-1 LDL in Dulbecco's modified Eagle's medium at 37 degrees C for 12 h, LDL oxidation, as determined by thiobarbituric acid reactive substance, was markedly increased compared with the mock-transfected cells. Oxygenated products in the modified LDL were examined by HPLC before and after alkaline hydrolysis. Most of the oxygenated derivatives were of an esterified form, and the major product was identified as 13S-hydroxyoctadeca-9Z,11E-dienoic acid. These results clearly demonstrate that esterified fatty acids in LDL are oxygenated by the 12-lipoxygenases expressed in the J774A.1 cells. Furthermore, the oxidized LDL generated by intracellular 12-lipoxygenases was recognized by a scavenger receptor as assessed by macrophage degradation assay.
Collapse
Affiliation(s)
- T Sakashita
- Department of Pharmacology, Kanazawa University School of Medicine, Japan
| | | | | | | |
Collapse
|
23
|
Santanam N, Aug N, Zhou M, Keshava C, Parthasarathy S. Overexpression of human catalase gene decreases oxidized lipid-induced cytotoxicity in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1912-7. [PMID: 10446070 DOI: 10.1161/01.atv.19.8.1912] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) and oxidized fatty acids are proinflammatory and are involved in the pathophysiology of various diseases including atherosclerosis. The effects of these oxidants could be inhibited by the external addition of an antioxidant, suggesting the promotion or propagation of further oxidation. In this study, we describe the stable overexpression of human catalase in smooth muscle cells and the resistance of these cells to cytotoxicity induced not only by the addition of H(2)O(2) but also by the addition of 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results pose an intriguing possibility of the generation of H(2)O(2) from a peroxidized fatty acid. Accordingly, incubation of cells with both 13-HPODE and 13-hydroxyoctadecadienoic acid resulted in the generation of intracellular H(2)O(2). To explain the observed results by which catalase could overcome the effects of 13-HPODE, we propose that oxidized fatty acids are degraded in the cellular peroxisomes, resulting in the generation of H(2)O(2). In other words, the cellular effects of peroxidized fatty acids could be attributed to the generation of H(2)O(2).
Collapse
Affiliation(s)
- N Santanam
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
24
|
Augé N, Santanam N, Mori N, Keshava C, Parthasarathy S. Uptake of 13-hydroperoxylinoleic acid by cultured cells. Arterioscler Thromb Vasc Biol 1999; 19:925-31. [PMID: 10195919 DOI: 10.1161/01.atv.19.4.925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized free fatty acids have profound effects on cultured cells. However, little is known about whether these effects depend on their uptake and metabolism by cells or primarily involve their interaction with cell-surface components. We determined the uptake and metabolism of unoxidized (linoleic or oleic acid) and oxidized linoleic acid (13-hydroperoxyoctadecadienoic acid, 13-HPODE) by endothelial cells, smooth muscle cells, and macrophages. We show that 13-HPODE is poorly taken up by cells. The levels of uptake were dependent on the cell type but were independent of the expression of CD36. 13-HPODE was also poorly used by microsomal lysophosphatidylcholine acyltransferase that is involved in the formation of phosphatidylcholine. Based on these results, we suggest that most of the biological effects of 13-HPODE and other oxidized free fatty acids on cells might involve a direct interaction with cell-surface components. Alternatively, very small amounts of oxidized free fatty acids that enter the cell may have effects, analogous to those of hormones or prostanoids.
Collapse
Affiliation(s)
- N Augé
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
25
|
Spiteller G. Linoleic acid peroxidation--the dominant lipid peroxidation process in low density lipoprotein--and its relationship to chronic diseases. Chem Phys Lipids 1998; 95:105-62. [PMID: 9853364 DOI: 10.1016/s0009-3084(98)00091-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern separation and identification methods enable detailed insight in lipid peroxidation (LPO) processes. The following deductions can be made: (1) Cell injury activates enzymes: lipoxygenases generate lipid hydroperoxides (LOOHs), proteases liberate Fe ions--these two processes are prerequisites to produce radicals. (2) Radicals attack any activated CH2-group of polyunsaturated fatty acids (PUFAs) with about a similar probability. Since linoleic acid (LA) is the most abundant PUFA in mammals, its LPO products dominate. (3) LOOHs are easily reduced in biological surroundings to corresponding hydroxy acids (LOHs). LOHs derived from LA, hydroxyoctadecadienoic acids (HODEs), surmount other markers of LPO. HODEs are of high physiological relevance. (4) In some diseases characterized by inflammation or cell injury HODEs are present in low density lipoproteins (LDL) at 10-100 higher concentration, compared to LDL from healthy individuals.
Collapse
Affiliation(s)
- G Spiteller
- Lehrstuhl Organische Chemie I, Universität Bayreuth, Germany.
| |
Collapse
|
26
|
Zhao W, Parrish AR, Ramos KS. Constitutive and inducible expression of cytochrome P450IA1 and P450IB1 in human vascular endothelial and smooth muscle cells. In Vitro Cell Dev Biol Anim 1998; 34:671-3. [PMID: 9794216 DOI: 10.1007/s11626-998-0060-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Abstract
15-Lipoxygenase has been suggested to play a role in atherogenesis. The proposed action of this enzyme is to oxidize low density lipoprotein (LDL) to the extent that LDL becomes a ligand for the macrophage scavenger receptor. 15-Lipoxygenase and oxidized LDL are co-localized in atherosclerotic lesions; antioxidant drugs that block the lipoxygenase also block oxidation of LDL and the progression of experimental atherosclerosis. Biochemical experiments have demonstrated that the lipoxygenase can be induced by cytokines and/or another factor(s) associated with hypercholesterolemia. However, molecular biological work has shown that induction of the enzyme alone is not sufficient to induce lesion formation. Furthermore, the mechanism of action of 15-lipoxygenase in atherogenesis remains unclear. Predictions of the stereochemistry of enzyme-oxidized linoleate products appear to conflict with the available data. In fact, most studies have discovered substantial levels of racemic 13-hydroxyoctadecadienoic acid (13-HODE) in arterial lesions rather than the stereochemically pure 13(S)-HODE expected from purified enzyme. The possibility that the generation of products of 15-lipoxygenase metabolism must occur in a specific cellular location and during a brief time window in the development of the disease has been discussed. It is also possible that the true function of the linoleate metabolites is to modulate gene expression and regulate mitogenesis, and that oxidation of LDL may play a secondary role. The advent of transgenic species that both develop atherosclerosis and either fail to express or overexpress the lipoxygenase presents an opportunity to clarify some of these issues in the near future.
Collapse
Affiliation(s)
- S J Feinmark
- Department of Pharmacology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
28
|
Affiliation(s)
- G H Rao
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
29
|
Leist M, Raab B, Maurer S, Rösick U, Brigelius-Flohé R. Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radic Biol Med 1996; 21:297-306. [PMID: 8855440 DOI: 10.1016/0891-5849(96)00045-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Commercially available calf serum did not supply the cultured murine fibroblast cell line L929 with amounts of selenium and alpha-tocopherol sufficient to protect against peroxide damage. Supplementation of the culture medium with 30 microM alpha-tocopherol or 50 nM sodium selenite led to a substantial increase of cellular alpha-tocopherol concentrations from 18 +/- 3.0 to 3179 +/- 93.0 pmol/10(6) cells or cellular selenium concentrations from 0.17 +/- 0.02 to 1.75 +/- 0.16 ng/10(6) cells, respectively. L929 fibroblasts grown in selenite-containing medium also had markedly raised activities of both cytosolic glutathione peroxidase (from 11 +/- 0.9 to 67.2 +/- 4.2 mU/10(7) cells) and phospholipid hydroperoxide glutathione peroxidase (from 0.2 to 9.5 +/- 0.9 mU/10(7)cells). Supplementation with alpha-tocopherol inhibited single-strand breaks induced by low concentrations of H2O2 only, whereas an adequate selenium supply almost completely inhibited single-strand breaks induced by up to 30 microM H2O2 and also significantly reduced H2O2-induced cell death. An inadequate selenium supply and corresponding increase of GPx activity upon selenite supplementation was also observed with other cell lines, for instance, D10N, ECV-304, HepG2, and THP-1. Our data strengthen the relevance of standardized and adequate supplementation of tissue culture media with antioxidants to improve viability and genetic stability of cultured cells in general and in particular, if they are oxidatively challenged.
Collapse
Affiliation(s)
- M Leist
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | | | | | | | | |
Collapse
|
30
|
Wang W, Chen HJ, Giedd KN, Schwartz A, Cannon PJ, Rabbani LE. T-cell lymphokines, interleukin-4 and gamma interferon, modulate the induction of vascular smooth muscle cell tissue plasminogen activator and migration by serum and platelet-derived growth factor. Circ Res 1995; 77:1095-106. [PMID: 7586221 DOI: 10.1161/01.res.77.6.1095] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Platelet-derived growth factor (PDGF)-induced smooth muscle cell (SMC) fibrinolysis is necessary for SMC migration. In order to determine whether the T-cell lymphokines interleukin-4 (IL-4) and gamma interferon (gamma-IFN) affect SMC fibrinolysis and migration, we examined the effects of human recombinant IL-4 and gamma-IFN on human aortic SMC tissue-type plasminogen activator (TPA), urokinase-type plasminogen activator (UPA), and plasminogen activator inhibitor type-1 (PAI-1) antigen production, as determined by enzyme-linked immunosorbent assays. Although IL-4 had no direct effect on SMC TPA antigen, IL-4 potentiated SMC TPA antigen levels and activity in conditioned media and cellular lysates in media containing 2% fetal bovine serum but did not change UPA or PAI-1 production. gamma-IFN attenuated IL-4 augmentation of SMC TPA antigen production in conditioned media, although gamma-IFN itself had no direct effects on SMC TPA and PAI-1 antigen production. IL-4 augmented PDGF induction of SMC TPA antigen. gamma-IFN inhibited PDGF induction of SMC TPA antigen and IL-4 potentiation of this process. gamma-IFN diminished the promigratory effects of both IL-4 and PDGF on in vitro SMC migration. Tranexamic acid, a plasmin inhibitor, abrogated the stimulation of SMC migration by IL-4. Therefore, IL-4 and gamma-IFN modulate the induction of SMC TPA and SMC migration by 2% fetal bovine serum and PDGF.
Collapse
Affiliation(s)
- W Wang
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ezaki M, Witztum JL, Steinberg D. Lipoperoxides in LDL incubated with fibroblasts that overexpress 15-lipoxygenase. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41117-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Lesnik P, Dentan C, Vonica A, Moreau M, Chapman MJ. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Arterioscler Thromb Vasc Biol 1995; 15:1121-30. [PMID: 7627705 DOI: 10.1161/01.atv.15.8.1121] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human plasma contains a multivalent, Kunitz-type proteinase inhibitor termed tissue factor pathway inhibitor (TFPI), which is a specific inhibitor of the action of the factor VII(a)-tissue factor complex in coagulation. A major fraction of plasma TFPI is transported in association with LDL. Because LDL may undergo oxidation in the arterial wall during atherogenesis, we examined the effect of copper- and cell-mediated oxidative modification on TFPI activity associated with LDL. Oxidation mediated by copper ions resulted in a significant inactivation of LDL-associated TFPI (60% to 72% at 24 hours with 2.5 mumol/l CuCl2). The inactivation of TFPI was strongly negatively correlated with both an increase in the net electrical charge of LDL (r = -.80, P < or = .0001) and with the production of thiobarbituric acid-reactive substances (r = -.78, P < or = .0001) and lipid peroxides (r = -.80, P < or = .0001). Cell-mediated oxidation, involving incubation of LDL for 48 hours with either monocyte-like THP1 cells or human monocytes in Ham's F-10 medium, effected a significant decrease (64% and 75%, respectively) in LDL-associated TFPI activity. By contrast, prolonged exposure of LDL to purified soybean lipoxygenase (5000 U/mL) was less effective in inactivating TFPI (47% reduction after incubation for 72 hours at 37 degrees C). We subsequently investigated the mechanism(s) that may underlie such inactivation. Oxidation of LDL is accompanied by the generation of various aldehydes, including malondialdehyde and 4-hydroxynonenal. Chemical modification with these aldehydes revealed a significant inverse correlation between the progressive loss of TFPI activity and both the increase in net electrical charge (r = -.90, P < or = .0001) and the derivatization of free amino acid residues of LDL (r = -.90, P < or = .0001). Specific chemical modification of lysine amino groups by acetylation similarly led to inactivation of LDL-associated TFPI activity. TFPI activity was almost totally abolished (< 1.4%) when the TNBS reactivities of acetylated LDL, malondialdehyde-modified LDL, and 4-hydroxynonenal-modified LDL were 31%, 21%, and 43% that of native LDL, respectively. Our data demonstrate that expression of LDL-associated anticoagulant activity is markedly decreased as a consequence of the oxidative process, and suggest that the progressive aldehydic derivatization of apo B of LDL, and of the associated TFPI protein, may contribute to this phenomenon. Because tissue factor is overexpressed in the atheromatous plaque, it may exert a marked local procoagulant effect.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Lesnik
- Institut National de la Santé et de la Recherche Médicale, Unité de Recherches sur les Lipoprotéines et l'Athérogénèse, Hôpital de la Pitié, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Benz DJ, Mol M, Ezaki M, Mori-Ito N, Zelán I, Miyanohara A, Friedmann T, Parthasarathy S, Steinberg D, Witztum JL. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem 1995; 270:5191-7. [PMID: 7890629 DOI: 10.1074/jbc.270.10.5191] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is strong experimental evidence that oxidized low density lipoprotein (Ox-LDL) plays an important role in atherosclerosis. However, the mechanisms by which Ox-LDL is formed in vivo are unknown. To test whether 15-lipoxygenase (15-LO) could play a role in oxidation of LDL by cells, we expressed 15-LO activity in murine fibroblasts, which do not normally have 15-LO activity, and tested their ability to modify LDL. Using a retroviral vector, we prepared fibroblasts that expressed 2- to 20-fold more 15-LO activity than control fibroblasts infected with a vector containing beta-galactosidase (lacZ). Compared with LDL incubated with lacZ cells, LDL incubated with 15-LO-containing cells were enriched with lipid hydroperoxides. When these LDL samples were subsequently subjected to oxidative stress, they were more susceptible to further oxidative modification, as judged by increased conjugated diene formation and by increased ability to compete with 125I-Ox-LDL for uptake by macrophages. These findings establish that cellular 15-LO can contribute to oxidative modification of LDL, but the quantitative significance of these findings to the in vivo oxidation of LDL remains to be established.
Collapse
Affiliation(s)
- D J Benz
- Department of Medicine, University of California, San Diego, La Jolla 92093-0682
| | | | | | | | | | | | | | | | | | | |
Collapse
|