1
|
Ji M, Zhang Z, Gao F, Yang S, Wang J, Wang X, Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling. Phytother Res 2023; 37:759-773. [PMID: 36200803 DOI: 10.1002/ptr.7658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 02/17/2023]
Abstract
Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.
Collapse
Affiliation(s)
- Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Efficacy and safety of cinepazide maleate injection in patients with acute ischemic stroke: a multicenter, randomized, double-blind, placebo-controlled trial. BMC Neurol 2020; 20:282. [PMID: 32664877 PMCID: PMC7359492 DOI: 10.1186/s12883-020-01844-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ischemic stroke is a leading cause of morbidity and mortality. Thrombolytic therapy improves disability and survival rates; however, to be effective, it must be given within 4.5 h of onset. Moreover, thrombolytic therapy is frequently contraindicated. Therefore, alternative therapeutic options are required. In China, cinepazide maleate injection has been shown to improve the cerebral collateral circulation and further reduce disability in stroke patients; however, very few studies investigating this therapy have been conducted to date. Therefore, this study aimed to further confirm the efficacy and safety of cinepazide maleate injection in patients with acute ischemic stroke. METHODS Patients with acute ischemic stroke were administered an intravenous infusion of 320 mg cinepazide maleate or placebo once daily for 14 days. All patients were also administered basic therapy (citicoline sodium). The primary efficacy endpoint was the proportion of patients with a modified Rankin scale (mRS) ≤2 on day 90. Secondary efficacy endpoints included Barthel Index ≥95. Safety was evaluated by recording all adverse events (AEs), monitoring laboratory parameters and vital signs, and electrocardiogram. RESULTS In total, 937 patients with an acute ischemic stroke were included, with a mean (standard deviation, SD) National Institutes of Health Stroke Scale score of 8.8 (2.4) and a mean (SD) stroke onset of 30.9 (11.4) hours prior. Following treatment for 90 days, the proportion of patients with an mRS score ≤ 2 was significantly higher in the cinepazide maleate group than in the control group (60.9% vs. 50.1%; p = 0.0004). Moreover, the proportion of patients with a Barthel Index of ≥95 on day 90 was also significantly higher in the cinepazide maleate group than in the control group (53.4% vs. 46.7%; p = 0.0230). There were no statistically significant differences in safety parameters between the cinepazide maleate and control groups. CONCLUSIONS The results of this study show that cinepazide maleate injection is superior to placebo in improving neurological function and activities of daily living, reducing disability, and promoting functional recovery in patients with acute ischemic stroke. Cinepazide maleate injection was safe and well tolerated with no unexpected AEs reported. TRIAL REGISTRATION Chinese Clinical Trial Registry CTR20160292 and ChiCTR1900023827 . Retrospectively registered June 13, 2019.
Collapse
|
4
|
Tamiji Z, Salahinejad M, Niazi A. Molecular modeling of potential PET imaging agents for adenosine receptor in Parkinson’s disease. Struct Chem 2017. [DOI: 10.1007/s11224-017-1044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Madeira MH, Boia R, Ambrósio AF, Santiago AR. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:4761081. [PMID: 28250576 PMCID: PMC5307009 DOI: 10.1155/2017/4761081] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria H. Madeira
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Raquel Boia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F. Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Ana R. Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
7
|
Chen JF, Lee CF, Chern Y. Adenosine receptor neurobiology: overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:1-49. [PMID: 25175959 DOI: 10.1016/b978-0-12-801022-8.00001-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Chien-fei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediators Inflamm 2014; 2014:805198. [PMID: 25165414 PMCID: PMC4138795 DOI: 10.1155/2014/805198] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.
Collapse
|
9
|
|
10
|
Abstract
Protection against neuronal damage is a major objective of current research in areas such as stroke medicine, Alzheimer's disease and other neurodegenerative conditions. Adenosine receptors are important modulators of cell survival, and thus agents targeting these receptors could be valuable therapeutic agents. Agonists at A(1) receptors and antagonists at A(2A) receptors are known to protect acutely against neuronal damage caused by toxins or ischemia-reperfusion, and these compounds can also protect against the cell damage inflicted by reactive oxygen species. Even endogenous adenosine may be neuroprotective, since its levels rise substantially in association with a period of ischemia-reperfusion. Unfortunately, there is growing evidence that the efficacy of adenosine receptor activation can be reduced by the concomitant activation of glutamate receptors responding to N-methyl-D-aspartate (NMDA), probably acting via the release of nitric oxide. Such problems will need to be resolved before adenosine receptor agonists can proceed far as neuroprotective agents. The use of receptor antagonists may prove a more valuable approach.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
11
|
Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. Biosystems 2013; 115:13-22. [PMID: 23665268 DOI: 10.1016/j.biosystems.2013.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease.
Collapse
|
12
|
Dai SS, Zhou YG. Adenosine 2A receptor: a crucial neuromodulator with bidirectional effect in neuroinflammation and brain injury. Rev Neurosci 2011; 22:231-9. [PMID: 21476942 DOI: 10.1515/rns.2011.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent developments that have contributed to our understanding of how adenosine 2A receptors (A2ARs) modulate brain damage in various animal models of acute neurological injuries, including brain ischemia, traumatic brain injury, spinal cord injury and hemorrhage stroke. The main conclusions are: (1) pharmacological, neurochemical and molecular/genetic approaches to the complex actions of A2AR in different cellular elements suggest that A2AR activation exerts bidirectional effect (detrimental or protective) after brain insults; (2) modulation of glutamate excitotoxicity and neuroinflammation are involved in the protection of A2AR agonists or antagonists, but the bidirectional effect of A2AR is largely due to the bidirectional regulation of neuroinflammation (anti-inflammation or proinflammation) by A2AR on immune cells such as microglia cells and peripheral bone marrow cells; and (3) the bidirectional effect of A2AR on neuroinflammation and brain injury depends on the distinct and sometimes opposite actions of A2AR in various cellular elements and on different injury models and associated pathological conditions. The local glutamate level in the brain injury is one of the crucial factors that contribute to the direction of A2AR effect on neuroinflammation and brain injury outcome. These developments presented here clearly highlight the complexity of using A2AR agents therapeutically in acute neuronal injuries and confirm that A2AR ligands have many promising characteristics that encourage the pursuit of their full therapeutic potential.
Collapse
Affiliation(s)
- Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Third Military Medical University, 400038 Chongqing, China
| | | |
Collapse
|
13
|
Giust D, León D, Ballesteros-Yañez I, Da Ros T, Albasanz JL, Martín M. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem Neurosci 2011; 2:363-9. [PMID: 22816023 DOI: 10.1021/cn200016q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 12/20/2022] Open
Abstract
The most known fullerenes are spherical carbon compounds composed of 60 carbon atoms. C(60) fullerenes have shown biochemical and biomedical properties in the last years such as as blockade of apoptosis and neuroprotection. The nucleoside adenosine has a neuroprotective role mainly due to inhibition of glutamate release, which is a neurotransmitter related to excitotoxicity and cell death. In the present work, we have determined the presence of adenosine receptors in SK-N-MC cells, a neuroepithelioma human cell line, and analyzed the effect of fullerenes in these receptors by using radioligand binding, immunoblotting, and quantitative real time PCR assays. Results demonstrated that SK-N-MC cells endogenously express adenosine receptors. Fullerene exposure of these cells did not affect cell viability measured by MTT reduction assay. However, adenosine A(1) and A(2A) receptors were both increased in SK-N-MC cells after treatment. These results suggest for the first time the modulation of adenosine receptors after C(60) fullerenes exposure.
Collapse
Affiliation(s)
- Davide Giust
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - David León
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Inmaculada Ballesteros-Yañez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Tatiana Da Ros
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
14
|
Nobre HV, Cunha GMDA, de Vasconcelos LM, Magalhães HIF, Oliveira Neto RN, Maia FD, de Moraes MO, Leal LKAM, Viana GSDB. Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells. Neurochem Int 2009; 56:51-8. [PMID: 19782116 DOI: 10.1016/j.neuint.2009.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 08/16/2009] [Accepted: 09/02/2009] [Indexed: 12/20/2022]
Abstract
In this study, the cytoprotective effects of caffeine (CAF) and 8-(3-chlorostyryl)-caffeine (CSC), A(2A) receptor antagonists, were tested against 6-OHDA-induced cytotoxicity, in rat mesencephalic cells. Both drugs significantly increased the number of viable cells, after their exposure to 6-OHDA, as measured by the MTT assay. While nitrite levels in the cells were drastically increased by 6-OHDA, their concentrations were brought toward normality after CAF or CSC, indicating that both drugs block 6-OHDA-induced oxidative stress which leads to free radicals generation. A complete blockade of 6-OHDA-induced lipid peroxidation, considered as a major source of DNA damage, was observed after cells treatment with CAF or CSC. 6-OHDA decreased the number of normal cells while increasing the number of apoptotic cells. In the CAF plus 6-OHDA group, a significant recover in the number of viable cells and a decrease in the number of apoptotic cells were seen, as compared to the group treated with 6-OHDA alone. A similar effect was observed after cells exposure to CSC in the presence of 6-OHDA. Unexpectedly, while a significant lower number of activated microglia was observed after cells exposure to CAF plus 6-OHDA, this was not the case after cells exposure to CSC under the same conditions. While CAF lowered the percentage of reactive astrocytes increased by 6-OHDA, CSC presented no effect. The effects of these drugs were also examined on the releases of myeloperoxidase (MPO), an inflammatory marker, and lactate dehydrogenase (LDH), a marker for cytotoxicity, in human neutrophils, in vitro. CSC and CAF (0.1, 1 and 10 microg/ml) produced inhibitions of the MPO release from PMA-stimulated cells, ranging from 45 to 83%. In addition, CSC and CAF (5, 50 and 100 microg/ml) did not show any cytotoxicity in the range of concentrations used, as determined by the LDH assay. All together, our results showed a strong neuroptrotection afforded by caffeine or CSC, on rat mesencephalic cells exposed to 6-OHDA. Furthermore, CSC and caffeine actions, inhibiting MPO as well as LDH releases, would contribute to their possible benefit in the treatment of neurodegenerative diseases, including DP. These effects are partially due to the ability of these A(2A) antagonists to decrease the cells free radicals production and oxidative stress, that are major components of 6-OHDA-induced cytotoxicity.
Collapse
Affiliation(s)
- Hélio Vitoriano Nobre
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Saransaari P, Oja SS. Adenosine receptor agonists affect taurine release from mouse brain stem slices in ischemia. Amino Acids 2009; 38:1387-93. [DOI: 10.1007/s00726-009-0351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/09/2009] [Indexed: 12/22/2022]
|
16
|
Abstract
Despite major advances in a variety of neuroscientific research fields, the majority of neurodegenerative and neurological diseases are poorly controlled by currently available drugs, which are largely based on a neurocentric drug design. Research from the past 5 years has established a central role of glia to determine how neurons function and, consequently, glial dysfunction is implicated in almost every neurodegenerative and neurological disease. Glial cells are key regulators of the brain's endogenous neuroprotectant and anticonvulsant adenosine. This review will summarize how glial cells contribute to adenosine homeostasis and how glial adenosine receptors affect glial function. We will then move on to discuss how glial cells interact with neurons and the vasculature, and outline new methods to study glial function. We will discuss how glial control of adenosine function affects neuronal cell death, and its implications for epilepsy, traumatic brain injury, ischemia, and Parkinson's disease. Eventually, glial adenosine-modulating drug targets might be an attractive alternative for the treatment of neurodegenerative diseases. There are, however, several major open questions that remain to be tackled.
Collapse
|
17
|
Xie X, Mhaskar Y, Arbogast LA, Trammell RA, Hughes LF, Toth LA. Adenosine receptor antagonists and behavioral activation in NF-kappaB p50 subunit knockout mice. Life Sci 2009; 85:226-34. [PMID: 19508875 DOI: 10.1016/j.lfs.2009.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 05/05/2009] [Accepted: 05/26/2009] [Indexed: 11/29/2022]
Abstract
AIMS Our previous work revealed that mice lacking the p50 subunit of transcription factor nuclear factor kappa B (NF-kappaB) (p50 KO mice) and genetically intact F2 mice have similar locomotion under basal conditions, yet p50 KO mice show greater locomotor activation after caffeine ingestion. In this report, we test whether KO mice display altered caffeine pharmacokinetics or increased caffeine-induced DA turnover relative to F2 mice, and evaluate the impact of intraperitoneal administration of specific adenosine and DA receptor antagonists on locomotor activity. MAIN METHODS Concentrations of DA and caffeine were measured using high performance liquid chromatography. DA turnover was measured after treatment of mice with an inhibitor of tyrosine hydroxylase. Locomotor activity was measured using telemetry. KEY FINDINGS The data reveal that 1) caffeine concentrations in blood and brain are similar in KO and F2 mice after oral or intraperitoneal administration; 2) KO mice show greater DA turnover under basal conditions, but turnover is similar in both strains after caffeine administration; 3) the specific A2AAR antagonist SCH 58261 induces greater locomotion in KO versus F2 mice; and 4) the activating effect of SCH 58261 in KO mice is prevented by prior treatment with the D2R antagonist raclopride. SIGNIFICANCE These findings support the conclusions that 1) A2AAR has a major impact on behavioral activation of p50 KO mice, and 2) D2R mediated neurotransmission is important to this effect.
Collapse
Affiliation(s)
- Xiaobin Xie
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9611, USA
| | | | | | | | | | | |
Collapse
|
18
|
Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage 2009; 46:577-83. [PMID: 19289172 DOI: 10.1016/j.neuroimage.2009.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/30/2009] [Accepted: 03/04/2009] [Indexed: 11/21/2022] Open
Abstract
Caffeine is a popular psychostimulant, typically found in beverages. While low to intermediate doses of caffeine are associated with positive feelings and increased mental performance and alertness, high doses induce negative feelings such as insomnia, anxiety and nervousness. We investigate if this nonlinear dose-response is present for caffeine's effects on functional activation. Twenty-seven healthy subjects were assigned randomly to four different groups: saline, 1 mg/kg, 2.5 mg/kg and 5 mg/kg doses of caffeine. Simultaneous ASL/BOLD timeseries were collected both before and after an intravenous infusion of saline or caffeine and the task-induced CBF and BOLD percent changes were compared. The maximum increase in BOLD response was associated with the intermediate caffeine dose of 2.5 mg/kg, which increased BOLD response by 32.2% and 32.5% in motor and visual areas respectively. The maximum increase in CBF response was associated with the highest caffeine dose of 5 mg/kg. This difference could be related to a different density of A(1) and A(2A) adenosine receptors in the brain.
Collapse
|
19
|
Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J, Leonardi S, Lightowler S, McAteer S, Merrett A, Misra A, Padfield A, Reece M, Saadi M, Selwood DL, Stratton GC, Surry D, Todd R, Tong X, Ruston V, Upton R, Weiss SM. Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 2009; 52:33-47. [PMID: 19072055 DOI: 10.1021/jm800961g] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antagonism of the human A(2A) receptor has been implicated as a point of therapeutic intervention in the alleviation of the symptoms associated with Parkinson's disease. This is thought to occur, at least in part, by increasing the sensitivity of the dopaminergic neurons to the residual, depleted levels of striatal dopamine. We herein describe a novel series of functionalized triazolo[4,5-d]pyrimidine derivatives that display functional antagonism of the A(2A) receptor. Optimization of these compounds has resulted in improvements in potency, selectivity, and the pharmacokinetic properties of key derivatives. These efforts have led to the discovery of 60 (V2006/BIIB014), which demonstrates strong oral activity in commonly used models of Parkinson's disease. Furthermore, this derivative has shown excellent preclinical pharmacokinetics and has successfully completed phase I clinical studies. This compound is presently undergoing further clinical evaluation in collaboration with Biogen Idec.
Collapse
|
20
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
21
|
Gulyani S, Earley CJ, Camandola S, Maudsley S, Ferré S, Mughal MR, Martin B, Cheng A, Gleichmann M, Jones BC, Allen RP, Mattson MP. Diminished iron concentrations increase adenosine A(2A) receptor levels in mouse striatum and cultured human neuroblastoma cells. Exp Neurol 2008; 215:236-42. [PMID: 19013457 DOI: 10.1016/j.expneurol.2008.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/25/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Brain iron insufficiency has been implicated in several neurological disorders. The dopamine system is consistently altered in studies of iron deficiency in rodent models. Changes in striatal dopamine D(2) receptors are directly proportional to the degree of iron deficiency. In light of the unknown mechanism for the iron deficiency-dopamine connection and because of the known interplay between adenosinergic and dopaminergic systems in the striatum we examined the effects of iron deficiency on the adenosine system. We first attempted to assess whether there is a functional change in the levels of adenosine receptors in response to this low iron. Mice made iron-deficient by diet had an increase in the density of striatal adenosine A(2A) (A(2A)R) but not A(1) receptor (A(1)R) compared to mice on a normal diet. Between two inbred murine strains, which had 2-fold differences in their striatal iron concentrations under normal dietary conditions, the strain with the lower striatal iron had the highest striatal A(2A)R density. Treatment of SH-SY5Y (human neuroblastoma) cells with an iron chelator resulted in increased density of A(2A)R. In these cells, A(2A)R agonist-induced cyclic AMP production was enhanced in response to iron chelation, also demonstrating a functional upregulation of A(2A)R. A significant correlation (r(2)=0.79) was found between a primary marker of cellular iron status (transferrin receptor (TfR)) and A(2A)R protein density. In conclusion, the A(2A)R is increased across different iron-insufficient conditions. The relation between A(2A)R and cellular iron status may be an important pathway by which adenosine may alter the function of the dopaminergic system.
Collapse
Affiliation(s)
- Seema Gulyani
- Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A. Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 2008; 62:671-81. [PMID: 18566974 DOI: 10.1002/syn.20539] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine A(2A) receptors are found on striatal neurones projecting to the external pallidum. KW-6002 (istradefylline) is a potent and selective antagonist for the adenosine A(2A) receptors in the CNS and acts to inhibit the excessive activity of this pathway in the MPTP marmoset model of PD, thus relieving parkinsonism. The objectives of this study were to investigate the regional binding of the novel positron emission tomography tracer [(11)C]KW-6002 in the healthy human brain and the rat brain, along with receptor occupancy by cold KW-6002 at varying doses in human. The highest [(11)C]KW-6002 uptake in the rat brain was seen in striatum and lower levels in cortex and cerebellum. Brain [(11)C]KW-6002 uptake was well characterized in humans by a two-tissue compartmental model with a blood volume term, and the ED(50) of cold KW-6002 was 0.5 mg in the striatum. Over 90% receptor occupancy was achieved with daily oral doses of greater than 5 mg. In humans, blockable binding was present in all gray matter structures including the cerebellum, which has not been reported to express A(2A) receptors. MRS 1745, an A(2B) receptor selective antagonist, had no effect on the cerebellar binding of [(11)C]KW-6002 in rats, suggesting that this blockable signal is unlikely to result from an affinity for adenosine A(2B) receptors.
Collapse
Affiliation(s)
- D J Brooks
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ye Y, Wei J, Dai X, Gao Q. Computational studies of the binding modes of A 2A adenosine receptor antagonists. Amino Acids 2008; 35:389-96. [PMID: 17978889 PMCID: PMC7087644 DOI: 10.1007/s00726-007-0604-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/12/2007] [Indexed: 11/25/2022]
Abstract
A molecular docking study was performed on several structurally diverse A(2A) AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A(2A) adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson's disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as pi-pi stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A(2A) antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A(2A) AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A(2A) AR antagonists and for the design of novel active ligands.
Collapse
Affiliation(s)
- Y. Ye
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - J. Wei
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - X. Dai
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| | - Q. Gao
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| |
Collapse
|
24
|
Adenosine modulates excitatory synaptic transmission and suppresses neuronal death induced by ischaemia in rat spinal motoneurones. Pflugers Arch 2008; 457:441-51. [PMID: 18584206 DOI: 10.1007/s00424-008-0542-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Although adenosine is an important neuromodulator, its role in modulating motor functions at the level of the spinal cord is poorly understood. In the present study, we investigated the effects of adenosine on excitatory synaptic transmission and neuronal death induced by experimental ischaemia by using whole-cell patch-clamp recordings from lamina IX neurones in spinal cord slices. Adenosine significantly decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) in almost all neurones examined that could be mimicked by an A(1) receptor agonist, N (6)-cyclopentyladenosine (CPA), and inhibited by an A(1) receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX). Interestingly, adenosine increased mEPSC frequency in the presence of DPCPX in a subpopulation of neurones. In these neurones, an A(2A) receptor agonist, 2-[4-(2-carbonylethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680), increased mEPSC frequency. Adenosine also induced an outward current that was blocked by the addition of Cs(+) and tetraethylammonium into the patch-pipette solution and inhibited in the presence of Ba(2+). The adenosine-induced outward current was mimicked by CPA, but not CGS21680, and inhibited by DPCPX. Moreover, superfusing with ischaemia simulating medium (ISM) generated an agonal inward current in all of the neurones tested. The latencies of the inward currents induced by ISM were significantly prolonged by adenosine or CPA, but not by CGS21680. These results suggest that adenosine receptors are functionally expressed in both the pre- and postsynaptic sites of lamina IX neurones and that their activation may exert multiple effects on motor function. Moreover, this study has provided a cellular basis for an involvement of A(1) receptors in the neuroprotective actions of adenosine.
Collapse
|
25
|
Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neurosci Lett 2007; 432:146-50. [PMID: 18201823 DOI: 10.1016/j.neulet.2007.12.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/22/2007] [Accepted: 12/10/2007] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that caffeine, one of the major components of coffee, has a protective effect against developing PD. However, the detailed mechanisms of how caffeine suppresses neuronal death have not been fully elucidated. We investigated the cytoprotective mechanisms of caffeine using human dopaminergic neuroblastoma SH-SY5Y cells as a PD model. Caffeine prevented the apoptotic cell death induced by serum/retinoic acid (RA) deprivation, MPP+, rotenone, and 6-OHDA in SH-SY5Y cells in a dose dependent manner. Caffeine lowered caspase-3 activity induced by serum/RA deprivation and 6-OHDA administration, and also decreased the number of apoptotic condensed and/or fragmented nuclei. Akt was phosphorylated 60 min after caffeine administration in a dose dependent manner; PI3K inhibitors, wortmannin and LY294002 canceled this cytoprotective effect of caffeine. On the other hand, MAPKs such as Erk1/2, p38, or JNK were not activated by caffeine. These results suggest that caffeine has a cytoprotective effect due to the activation of the PI3K/Akt pathways in SH-SY5Y cells.
Collapse
|
26
|
Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007; 83:310-31. [DOI: 10.1016/j.pneurobio.2007.09.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/10/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
27
|
Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG. Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 2007; 22:337-52. [PMID: 17712616 DOI: 10.1007/s11011-007-9064-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review summarises the potential contributions of two groups of compounds to cerebral dysfunction and damage in metabolic disease. The kynurenines are oxidised metabolites of tryptophan, the kynurenine pathway being the major route for tryptophan catabolism in most tissues. The pathway includes quinolinic acid -- an agonist at N-methyl-D-aspartate (NMDA) receptors, kynurenic acid -- an antagonist at glutamate and nicotinic receptors, and other redox active compounds that are able to generate free radicals under many physiological and pathological conditions. The pathway is activated in immune-competent cells, including glia in the central nervous system, and may contribute substantially to delayed neuronal damage following an infarct or metabolic insult. Adenosine is an ubiquitous purine that can protect neurons by suppressing excitatory neurotransmitter release, reducing calcium fluxes and inhibiting NMDA receptors. The extent of brain injury is critically dependent on the balance between the two opposing forces of kynurenines and purines.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
28
|
Abstract
There have been over 2000 publications in the last year addressing the topic of neuroprotection. Novel and emerging therapeutic targets that have been explored include cerebral inflammation, hypothermia, neural transplantation and repair and gene therapy. Unfortunately, with few exceptions, the successes of experimental neuroprotection have not been translated into clinical practice. The possible reasons for the discrepancy between experimental success and clinical benefit are explored.
Collapse
Affiliation(s)
- D K Menon
- Department of Anaesthesiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
29
|
Wei J, Wang S, Gao S, Dai X, Gao Q. 3D-Pharmacophore Models for Selective A2A and A2B Adenosine Receptor Antagonists. J Chem Inf Model 2007; 47:613-25. [PMID: 17330954 DOI: 10.1021/ci600410m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional pharmacophore models were generated for A2A and A2B adenosine receptors (ARs) based on highly selective A2A and A2B antagonists using the Catalyst program. The best pharmacophore model for selective A2A antagonists (Hypo-A2A) was obtained through a careful validation process. Four features contained in Hypo-A2A (one ring aromatic feature (R), one positively ionizable feature (P), one hydrogen bond acceptor lipid feature (L), and one hydrophobic feature (H)) seem to be essential for antagonists in terms of binding activity and A2A AR selectivity. The best pharmacophore model for selective A2B antagonists (Hypo-A2B) was elaborated by modifying the Catalyst common features (HipHop) hypotheses generated from the selective A2B antagonists training set. Hypo-A2B also consists of four features: one ring aromatic feature (R), one hydrophobic aliphatic feature (Z), and two hydrogen bond acceptor lipid features (L). All features play an important role in A2B AR binding affinity and are essential for A2B selectivity. Both A2A and A2B pharmacophore models have been validated toward a wide set of test molecules containing structurally diverse selective antagonists of all AR subtypes. They are capable of identifying correspondingly high potent antagonists and differentiating antagonists between subtypes. The results of our study will act as a valuable tool for retrieving structurally diverse compounds with desired biological activities and designing novel selective adenosine receptor ligands.
Collapse
Affiliation(s)
- Jing Wei
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | | | | | | | | |
Collapse
|
30
|
Fatokun AA, Stone TW, Smith RA. Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 2006; 1132:193-202. [PMID: 17188658 DOI: 10.1016/j.brainres.2006.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Oxidative stress, resulting from excessive production of reactive oxygen species (ROS), is a pathological state that causes profound cellular damage and eventual death resulting from the overactivation of glutamate receptors, and the generation of nitric oxide, superoxide and hydrogen peroxide (H(2)O(2)). As such, H(2)O(2) represents an important model for studying the neuropathology of oxidative stress in a variety of CNS disorders. The effects of H(2)O(2) on the viability of post-natal cerebellar granule neurons (CGNs), the nature of the cell death involved and the potential protection by adenosine receptors against the damage were examined in the current study. Hydrogen peroxide (10-400 microM) reduced CGN viability in a concentration- and time-dependent manner. The addition of catalase (100 U/ml) prevented this effect, and the non-specific COX inhibitor aspirin (1 mM) also alleviated the damage. A combination of H(2)O(2) (5 microM) and Cu(2+) (0.5 mM) resulted in a significant damage that was not prevented by the hydroxyl radical scavenger mannitol (50 mM). The permeability transition pore blocker cyclosporin A, the caspase-3 inhibitor Z-DEVD-fmk (40 microM) and the PARP-1 inhibitor DPQ (10 microM) each significantly protected against peroxide damage. While the A(1) adenosine receptor agonist CPA and the A(2A) receptor antagonist ZM241385 (each at 100 nM) elicited protection, the A(1) adenosine receptor blocker DPCPX and the A(2A) receptor agonist CGS21680 (each at 100 nM) showed no effect. The data demonstrate that H(2)O(2) induced oxidative stress in CGNs, involving both apoptotic and necrotic death, and this can be ameliorated by A(1) receptor activation or A(2A) receptor blockade.
Collapse
Affiliation(s)
- Amos A Fatokun
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
31
|
Abstract
Focal permanent or transient cerebral artery occlusion produces massive cell death in the central core of the infarction, whereas in the peripheral zone (penumbra) nerve cells are subjected to various determining survival and death signals. Cell death in the core of the infarction and in the adult brain is usually considered a passive phenomenon, although events largely depend on the partial or complete disruption of crucial metabolic pathways. Cell death in the penumbra is currently considered an active process largely dependent on the activation of cell death programs leading to apoptosis. Yet cell death in the penumbra includes apoptosis, necrosis, intermediate and other forms of cell death. A rather simplistic view implies poor prospects regarding cell survival in the core of the infarction and therapeutic expectations in the control of cell death and cell survival in the penumbra. However, the capacity for neuroprotection depends on multiple factors, primarily the use of the appropriate agent, at the appropriate time and during the appropriate interval. Understanding the mechanisms commanding cell death and survival area is as important as delimiting the therapeutic time window and the facility of a drug to effectively impact on specific targets. Moreover, the detrimental effects of homeostasis and the activation of multiple pathways with opposing signals following ischemic stroke indicate that better outcome probably does not depend on a single compound but on several drugs acting in combination at the optimal time in a particular patient.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
32
|
Peng H, Kumaravel G, Yao G, Sha L, Wang J, Van Vlijmen H, Bohnert T, Huang C, Vu CB, Ensinger CL, Chang H, Engber TM, Whalley ET, Petter RC. Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J Med Chem 2005; 47:6218-29. [PMID: 15566292 DOI: 10.1021/jm0494321] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines was synthesized. Some of these analogues show high affinity and excellent selectivity for adenosine A(2a) receptor versus the adenosine A(1) receptor. Structure-activity-relationship (SAR) studies based on octahydropyrrolo[1,2-a]pyrazine and octahydropyrido[1,2-a]pyrazine with various capping groups are reported. Among these analogues, the most potent and selective A(2a) antagonist 26 h has a K(i) value of 0.2 nM and is 16 500-fold selective with respect to the A(1) receptor. Among a number of compounds tested, compounds 21a and 21c exhibited significantly improved metabolic stability. Compounds 21a, 21c, and 18a showed good oral efficacy in rodent catalepsy models of Parkinson's disease.
Collapse
Affiliation(s)
- Hairuo Peng
- Department of Medicinal Chemistry, Biogen Idec Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and Brain Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:191-270. [PMID: 15797469 DOI: 10.1016/s0074-7742(05)63007-3] [Citation(s) in RCA: 510] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
Pintor A, Galluzzo M, Grieco R, Pèzzola A, Reggio R, Popoli P. Adenosine A 2A receptor antagonists prevent the increase in striatal glutamate levels induced by glutamate uptake inhibitors. J Neurochem 2004; 89:152-6. [PMID: 15030399 DOI: 10.1111/j.1471-4159.2003.02306.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Active uptake by neurons and glial cells is the main mechanism for maintaining extracellular glutamate at low, non-toxic concentrations. Activation of adenosine A(2A) receptors increases extracellular glutamate levels, while A(2A) receptor antagonists reduce stimulated glutamate outflow. Whether a modulation of the glutamate uptake system is involved in the effects elicited by A(2A) receptor blockers has never been investigated. This study examined the ability of adenosine A(2A) receptor antagonists to prevent the increase in glutamate levels induced by blockade of the glutamate uptake. In rats implanted with a microdialysis probe in the dorsal striatum, perfusion with 4 mm l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC, a transportable competitive inhibitor of glutamate uptake), or 10 mm dihydrokainic acid (DHK, a non-transportable competitive inhibitor that mainly blocks the glial glutamate transporter GLT-1), significantly increased extracellular glutamate levels. The effects of PDC and DHK were completely prevented by the adenosine A(2A) receptor antagonists SCH 58261 (0.01 mg/kg i.p.) and/or ZM 241385 (5 nm via probe). Since an impairment in glutamate transporter function is thought to play a major role in neurodegenerative disorders, the regulation of glutamate uptake may be one of the mechanisms of the neuroprotective effects of A(2A) receptor antagonists.
Collapse
Affiliation(s)
- A Pintor
- Department of Pharmacology, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Brooke RE, Deuchars J, Deuchars SA. Input-specific modulation of neurotransmitter release in the lateral horn of the spinal cord via adenosine receptors. J Neurosci 2004; 24:127-37. [PMID: 14715946 PMCID: PMC6729584 DOI: 10.1523/jneurosci.4591-03.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of adenosine A2A receptors (A2ARs) in the CNS produces a variety of neuromodulatory actions dependent on the region and preparation examined. In autonomic regions of the spinal cord, A1R activation decreases excitatory synaptic transmission, but the effects of A2AR stimulation are unknown. We sought to determine the location and function of the A2ARs in the thoracic spinal cord, focusing on the intermediolateral cell column (IML). A2AR immunoreactivity was observed throughout the gray matter, with particularly dense immunostaining in regions containing sympathetic preganglionic neurons (SPNs), namely, the IML and intercalated nucleus. Electron microscopy revealed A2AR immunoreactivity within presynaptic terminals and in postsynaptic structures in the IML. To study the functional relevance of these A2ARs, visualized whole-cell patch-clamp recordings were made from electrophysiologically identified SPNs and interneurons within the IML. The A2AR agonist c2-[p-(carboxyethyl)phenethylamino]-5'-N-ethylcarboxyamidoadenosine (CGS 21680) had no significant effect on EPSPs but increased the amplitude of IPSPs elicited by stimulation of the lateral funiculus. These effects were attributable to activation of presynaptic A2ARs because CGS 21680 application altered the paired pulse ratio. Furthermore, neurons in the IML that have IPSPs increased via A2AR activation also receive excitatory inputs that are inhibited by A1R activation. These data show that activating A2ARs increase inhibitory but not excitatory transmission onto neurons in the IML. Simultaneous activation of A1Rs and A2ARs therefore could facilitate inhibition of the postsynaptic neuron, leading to an overall reduction of sympathetic nervous activity.
Collapse
Affiliation(s)
- Ruth E Brooke
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | |
Collapse
|
36
|
Trincavelli ML, Falleni A, Chelli B, Tuscano D, Costa B, Gremigni V, Lucacchini A, Martini C. A(2A) adenosine receptor ligands and proinflammatory cytokines induce PC 12 cell death through apoptosis. Biochem Pharmacol 2003; 66:1953-62. [PMID: 14599553 DOI: 10.1016/j.bcp.2003.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A(2A) adenosine receptor-mediated signaling affects a variety of important processes in the central nervous system both in physiological and pathological conditions, and has been indicated as possible novel therapeutic target in several nervous system diseases. In the present work, cell death induction was investigated after neuronal PC 12 cell treatment with proinflammatory cytokines and adenosine receptor ligands. Interleukin-1-beta (IL-1-beta, 500 U/mL), tumor necrosis factor-alpha (TNF-alpha, 1000 U/mL) and the non selective adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA), caused a significant reduction of cell viability with a maximal effect within 3-48 hr. Moreover, an addictive effect was detected when the cells were simultaneously treated with Interleukin-1-beta and NECA for 3 hr. To investigate the adenosine receptor subtypes involved in PC 12 cell death, the effects of several adenosine receptor agonists/antagonists were evaluated. The endogenous nucleoside, adenosine, and the selective A(2A) adenosine receptor agonist, 2-(carboxyethylphenylethylamino)adenosine-5'-carboxamide (CGS21680) reduced PC 12 cell viability. This effect was counteracted by the selective A(2A) adenosine receptor antagonist, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3e]-1,2,4-triazolo[1,5c]pyrimidine (SCH58261), but not by selective A(2B) adenosine receptor antagonist N-(4-acethylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide (MRS1706), suggesting the specific involvement of A(2A) adenosine receptor subtype in adenosine-mediated cytotoxicity. Moreover, the selective A(1) adenosine receptor agonist, N(6)-cyclohexyladenosine (CHA), did not induce any significant effect on cell viability. By ELISA immunoassay cell death detection and transmission electron microscopy (TEM) we demonstrated that A(2A) adenosine receptor ligands and cytokines induced cell death through an apoptotic pathway. In conclusion, our results showed that A(2A) adenosine receptors are involved in the control of PC 12 cell survival/death and may contribute to modulate cellular activity in response to tissue damage associated with inflammatory mediator production.
Collapse
Affiliation(s)
- Maria L Trincavelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA. A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 2003; 100:31-48. [PMID: 14550503 DOI: 10.1016/s0163-7258(03)00084-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine can be released from a variety of cells throughout the body, as the result of increased metabolic rates, in concentrations that can have a profound impact on the vasculature, immunoescaping, and growth of tumor masses. It is recognized that the concentrations of this nucleoside are increased in cancer tissues. Therefore, it is not surprising that adenosine has been shown to be a crucial factor in determining the cell progression pathway, either during apoptosis or during cytostatic state. From the perspective of cancer, the most important question then may be "Can activation and/or blockade of the pathways downstream of the adenosine receptor contribute to tumor development?" Rigorous examinations of the role of adenosine in in vivo and in vitro systems need to be investigated. The present review therefore proposes multiple adenosine-sustained ways that could prime tumor development together with the critical combinatorial role played by adenosine receptors in taking a choice between proliferation and death. This review proposes that adenosine acts as a potent regulator of normal and tumor cell growth. It is hypothesized that this effect is dependent on extracellular adenosine concentrations, cell surface expression of different adenosine receptor subtypes, and signal transduction mechanisms activated following the binding of specific agonists. We venture to suggest that the clarification of the role of adenosine and its receptors in cancer development may hold great promise for the treatment of chemotherapy in patients affected by malignancies.
Collapse
Affiliation(s)
- Stefania Merighi
- Pharmacology Unit, Department of Clinical and Experimental Medicine, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The activation of adenosine A1, A2 andA3 receptors can protect neurones against damage generated by mechanical or hypoxic/ischaemic insults as well as excitotoxins. A1 receptors are probably effective by suppressing transmitter release and producing neuronal hyperpolarisation. They are less likely to be of therapeutic importance due to the plethora of side effects resulting from A1 agonism, although the existence of receptor subtypes and recent synthetic chemistry efforts to increase ligand selectivity, may yet yield clinically viable compounds. Activation of A2A receptors can protect neurons, although there is much uncertainty as to whether agonists are acting centrally or via a peripheral mechanism such as altering blood flow or immune cell function. Selective antagonists at the A2A receptor, such as 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-yl-amino]ethyl)phenol (ZM 241385) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), can also protect against neuronal death produced by ischaemia or excitotoxicity. In addition, A2A receptor antagonists can reduce damage produced by combinations of subthreshold doses of the endogenous excitotoxin quinolinic acid and free radicals. Since the A2A receptors do not seem to be activated by normal endogenous levels of adenosine, their blockade should not generate significant side effects, so that A2A receptor antagonists appear to be promising candidates as new drugs for the prevention of neuronal damage. Adenosine A3 receptors have received less attention to date, but agonists are clearly able to afford protection against damage when administered chronically. Given the disappointing lack of success of NMDA receptor antagonists in human stroke patients, despite their early promise in animal models, it is possible that A2A receptor antagonists could have a far greater clinical utility.
Collapse
Affiliation(s)
- Trevor W Stone
- Division of Neuroscienec and Biomedical Systems, West Medical Bldg, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
39
|
Chen JF, Schwarzschild MA. Gene knockout approach to adenosine A2A receptors in Parkinson's disease. Drug Dev Res 2003. [DOI: 10.1002/ddr.10215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Schaddelee MP, Voorwinden HL, van Tilburg EW, Pateman TJ, Ijzerman AP, Danhof M, de Boer AG. Functional role of adenosine receptor subtypes in the regulation of blood-brain barrier permeability: possible implications for the design of synthetic adenosine derivatives. Eur J Pharm Sci 2003; 19:13-22. [PMID: 12729857 DOI: 10.1016/s0928-0987(03)00034-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this investigation was to determine the functional role of adenosine receptor subtypes in the regulation of blood-brain barrier (BBB) permeability. The presence of the equilibrative es and ei nucleoside transporters at the BBB was also determined. Studies were conducted in an experimental in vitro BBB model comprising bovine brain capillary endothelial cells (BCECs) and rat astrocytes (RAs). The presence of the receptors and transporters was investigated by a combination of RT-PCR and radioligand binding assays. Changes in paracellular permeability were investigated on basis of changes in trans-endothelial-electrical-resistance (TEER) and transport of paracellular markers. In BCECs the presence of A(2A) and A(3) receptors and the es nucleoside transporter was demonstrated. The A(1) receptor was absent, while the presence of the A(2B) receptor and the ei nucleoside transporter remained uncertain. In RAs the presence of all four receptor subtypes and the es and ei nucleoside transporters was demonstrated. Upon application of selective agonists no significant changes in TEER or the transport of the paracellular markers were observed. The functional role of adenosine receptor subtypes in regulating the paracellular permeability of the BBB is probably small. It is unlikely therefore that the BBB transport of synthetic adenosine analogues is modified by permeability changes. The es nucleoside transporter might play a role in the BBB transport of synthetic adenosine analogues.
Collapse
Affiliation(s)
- Marloes P Schaddelee
- Leiden/Amsterdam Center for Drug Research, Divisions of Pharmacology, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Fabian MJ, Proctor KG. Hemodynamic actions of acute ethanol after resuscitation from traumatic brain injury. THE JOURNAL OF TRAUMA 2002; 53:864-75. [PMID: 12435936 DOI: 10.1097/00005373-200211000-00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purposes of this study were to determine how clinically relevant levels of acute ethanol (EtOH) influence cerebral perfusion pressure (CPP), cerebral venous O saturation (Scvo ), and systemic hemodynamics after fluid resuscitation from traumatic brain injury (TBI); and to test the hypothesis that the actions of EtOH on these variables are mediated by adenosine. METHODS Anesthetized swine were ventilated (Fio = 0.4) and instrumented. In protocol 1, EtOH (3.5 g/kg, n = 11) or its vehicle (n = 17) was administered orally before TBI + 40% hemorrhage. At 90 minutes post-TBI, resuscitation consisted of shed blood + saline. In protocol 2, either saline (n = 15) or an adenosine-regulating agent (5-amino-4-imidazolecarboxamide riboside) in saline (1 mg/kg bolus + 12 mg/kg/h intravenously [i.v.]) (n = 5), was administered i.v. before TBI + 45% hemorrhage. At 90 minutes post-TBI, resuscitation consisted of saline only (three times shed blood volume). In protocol 3, EtOH was administered i.v. (1 g/kg; 20% vol/vol in saline) followed by either an adenosine receptor antagonist (theophylline, 10 mg/kg) or an adenosine uptake inhibitor (dipyridamole, 0.25 mg/kg). RESULTS In protocol 1, with no EtOH, 11 of 17 (65%) survived post-TBI hypotension. Mean arterial blood pressure, cardiac index, and mixed venous oxygen saturation were stable for 1 hour at 40% to 60% below their respective baselines, whereas lactate increased three- to fourfold (all p < 0.05). After fluid resuscitation, most variables rapidly corrected, but intracranial pressure was increased 10 to 15 mm Hg (p < 0.05). With EtOH, 9 of 11 (82%) survived post-TBI hypotension (p = 0.42 vs. no EtOH). After resuscitation from TBI, there were significant effects of EtOH on systemic hemodynamics (mean arterial pressure, cardiac index, mixed venous oxygen saturation), on CPP, on lactate, and on Scvo at normo- and hypercapnia (all p < 0.05). The data from protocol 2 showed that essentially none of these changes were duplicated with an adenosine-regulating agent. In protocol 3, i.v EtOH produced small but significant changes in Scvo, intracranial pressure, and lactate, at normo-, hyper-, and hypocapnia. Dipyridamole and theophylline tended to have opposite, albeit small and not statistically significant, effects on these variables relative to EtOH alone.(2) (2) CONCLUSION Acute EtOH (200-300 mg/dL) did not increase mortality after TBI + secondary hypotension, as long as cardiopulmonary support was provided. With EtOH, CPP was maintained and cerebral blood flow appeared to be adequate, if not excessive, with respect to cerebral metabolic demand, as judged by changes in Scvo at normo-, hyper-, and hypocapnia. These changes were probably not mediated, but might have been modulated, by increases in endogenous adenosine.
Collapse
Affiliation(s)
- Matthew J Fabian
- Department of Physiology, University of Tennessee Health Science Center, Memphis, USA
| | | |
Collapse
|
42
|
Saito H, Nishimura M, Shibuya E, Makita H, Tsujino I, Miyamoto K, Kawakami Y. Tissue hypoxia in sleep apnea syndrome assessed by uric acid and adenosine. Chest 2002; 122:1686-94. [PMID: 12426272 DOI: 10.1378/chest.122.5.1686] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE Although the overnight increase in urinary uric acid/creatinine ratio (DeltaUA/Cr) is considered by some to be a marker of tissue hypoxia in patients with obstructive sleep apnea-hypopnea syndrome (OSAS), this index is not universally accepted. The purpose of this study was to confirm the validity of DeltaUA/Cr as a marker of tissue hypoxia by measuring the plasma level of adenosine during sleep, and also to test the hypothesis that the heart rate (HR) response to apnea is a determinant of tissue hypoxia. DESIGN Intergroup comparative study. SETTING A university hospital, Sapporo, Japan. PATIENTS Eighteen patients with OSAS who had apnea-associated, moderate-to-severe arterial desaturation. The patients were classified into two groups: the DeltaUA/Cr-positive group, who were considered to have tissue hypoxia, and the DeltaUA/Cr-normal group, who were not. MEASUREMENTS AND RESULTS Although there were no significant differences between two groups of the patients in either arterial desaturation parameters or the apnea-hypopnea index, the plasma level of adenosine during sleep was significantly higher in the DeltaUA/Cr-positive group than in the DeltaUA/Cr-normal group. Successful treatment with nasal continuous positive airway pressure significantly decreased both DeltaUA/Cr and the plasma level of adenosine only in the DeltaUA/Cr-positive group. The magnitude of the HR increase after the termination of apnea was significantly smaller in the DeltaUA/Cr-positive group. CONCLUSIONS DeltaUA/Cr is a marker of tissue hypoxia, which does not necessarily parallel arterial desaturation indexes in OSAS. Intersubject variability in the HR response to apnea may explain the discrepancy between tissue hypoxia and arterial desaturation indexes.
Collapse
Affiliation(s)
- Hiroshi Saito
- First Department of Medicine, Hokkaido University School of Medicine. Currently at Kohnan Hospital, Kohnan, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Varma MR, Dixon CE, Jackson EK, Peters GW, Melick JA, Griffith RP, Vagni VA, Clark RSB, Jenkins LW, Kochanek PM. Administration of adenosine receptor agonists or antagonists after controlled cortical impact in mice: effects on function and histopathology. Brain Res 2002; 951:191-201. [PMID: 12270497 DOI: 10.1016/s0006-8993(02)03161-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine is an endogenous neuroprotectant via anti-excitotoxic effects at A(1) receptors, and blood flow promoting and anti-inflammatory effects at A(2a) receptors. Previous studies showed improved motor function after fluid percussion injury (FPI) in rats treated with the broad-spectrum adenosine receptor agonist 2-chloroadenosine (2-CA). We studied the effects of 2-CA, a specific A(1) agonist (2-chloro-N(6)-cyclopentyladenosine, CCPA), and a specific A(1) antagonist (8-cyclopentyl-1,3-dipropylxanthine, DPCPX) on motor task and Morris water maze (MWM) performance, and histopathology (contusion volume, hippocampal cell counts) after controlled cortical impact (CCI) in mice. Each agent (12 nmol), or respective vehicle (saline or DMSO) was injected into dorsal hippocampus beneath the contusion immediately after CCI or craniotomy (sham). 2-CA treatment attenuated wire grip deficits after CCI (P<0.05 versus other treatments). DPCPX treatment exacerbated deficits on beam balance (P<0.05 versus sham). No treatment effect was seen on MWM performance, although there was a deleterious effect of the DMSO vehicle used for DPCPX. Contusion volume tended to be attenuated by 2-CA (P=0.08 versus saline) and increased after either DMSO or DPCPX (P<0.05 versus all groups). CA1 and CA3 counts were decreased in all groups versus sham. However, treatment with the selective A(1) agonist CCPA attenuated the CA3 cell loss (P<0.05 versus other treatment). We suggest that the beneficial effect of the broad spectrum adenosine receptor agonist 2-CA on motor function after CCI is not mediated solely by effects at the A(1) receptor.
Collapse
Affiliation(s)
- Manu R Varma
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Paes-De-Carvalho R. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects. AN ACAD BRAS CIENC 2002; 74:437-51. [PMID: 12378312 DOI: 10.1590/s0001-37652002000300007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.
Collapse
|
45
|
Abstract
The overactivation of glutamate receptors is a major cause of Ca(2+) overload in cells, potentially leading to cell damage and death. There is an abundance of agents and mechanisms by which glutamate receptor activation can be prevented or modulated in order to control these effects. They include the well-established, competitive and non-competitive antagonists at the N-methyl-D-aspartate (NMDA) receptors and modulators of desensitisation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. More recently, it has emerged that some compounds can act selectively at different subunits of glutamate receptors, allowing a differential blockade of subtypes. It is also becoming clear that a number of endogenous compounds, including purines, can modify glutamate receptor sensitivity. The kynurenine pathway is an alternative but distinct pathway to the generation of glutamate receptor ligands. The products of tryptophan metabolism via the kynurenine pathway include both quinolinic acid, a selective agonist at NMDA receptors, and kynurenic acid, an antagonist at several glutamate receptor subtypes. The levels of these metabolites change as a result of the activation of inflammatory processes and immune-competent cells, and may have a significant impact on Ca(2+) fluxes and neuronal damage. Drugs which target some of these various sites and processes, or which change the balance between the excitotoxin quinolinic acid and the neuroprotective kynurenic acid, could also have potential as neuroprotective drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences Division of Neuroscience and Biomed. System, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
46
|
Lee HT, Emala CW. Adenosine attenuates oxidant injury in human proximal tubular cells via A(1) and A(2a) adenosine receptors. Am J Physiol Renal Physiol 2002; 282:F844-52. [PMID: 11934694 DOI: 10.1152/ajprenal.00195.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated protection against renal ischemic-reperfusion injury in vivo by A(1)- and A(2a)-adenosine receptor (AR) modulations. To further elucidate the signaling cascades of AR-induced cytoprotection against reperfusion/oxidant-mediated injury, immortalized human proximal tubule (HK-2) cells were treated with H(2)O(2). H(2)O(2) caused dose- and time-dependent HK-2 cell death that was measured by lactate dehydrogenase release and trypan blue dye uptake. Adenosine protected against H(2)O(2)-induced HK-2 cell death by means of A(1)- and A(2a)-AR activation. A(1)-AR-mediated protection involves pertussis toxin-sensitive G proteins and protein kinase C, whereas A(2a)-AR-mediated protection involves protein kinase A activation by means of cAMP and activation of the cAMP response element binding protein. Moreover, protein kinase A activators (forskolin and Sp-isomer cAMP) also protected HK-2 cells against H(2)O(2) injury. De novo gene transcription and protein synthesis are required for both A(1)- and A(2a)-AR-mediated cytoprotection as actinomycin D and cycloheximide, respectively, blocked cytoprotection. Chronic treatments with a nonselective AR agonist abolished the protection by adenosine. Moreover, chronic treatments with a nonselective AR antagonist increased the endogenous tolerance of HK-2 cells against H(2)O(2). We concluded that A(1)- and A(2a)-AR activation protects HK-2 cells against H(2)O(2)-induced injury by means of distinct signaling pathways that require new gene transcription and new protein synthesis.
Collapse
Affiliation(s)
- H T Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032-3784, USA.
| | | |
Collapse
|
47
|
Schwarzschild MA, Chen JF, Ascherio A. Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 2002; 58:1154-60. [PMID: 11971080 DOI: 10.1212/wnl.58.8.1154] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Large prospective epidemiologic studies have linked the consumption of coffee and other caffeinated beverages to a reduced risk of subsequently developing PD. Caffeine as well as more specific antagonists of the adenosine A(2A) receptor have also now been found to attenuate neurotoxicity in a mouse model of PD. The convergence of these epidemiologic and laboratory data supports the possibility that caffeine may reduce the risk of developing PD. However, a neuroprotective effect of caffeine in PD remains unproven; current evidence does not provide a rational basis for recommending caffeine consumption to modify the risk or progression of PD. In addition to possessing neuroprotective potential, caffeine and other A(2A) antagonists have long been known to acutely reverse motor deficits in a variety of PD models. This symptomatic antiparkinsonian benefit of blocking A(2A) receptors, coupled with their remarkably restricted expression in the basal ganglia, have made A(2A) antagonists attractive targets for drug development. Now, with the prospect of a neuroprotective bonus, the novel therapeutic potential of A(2A) antagonists appears all the more promising just as they are entering clinical trials for PD.
Collapse
|
48
|
Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002. [PMID: 11880527 DOI: 10.1523/jneurosci.22-05-01967.2002] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate whether, and by means of which mechanisms, the adenosine A2A receptor antagonist SCH 58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] exerted neuroprotective effects in a rat model of Huntington's disease. In a first set of experiments, SCH 58261 (0.01 and 1 mg/kg) was administered intraperitoneally to Wistar rats 20 min before the bilateral striatal injection of quinolinic acid (QA) (300 nmol/1 microl). SCH 58261 (0.01 but not 1 mg/kg, i.p.) did reduce significantly the effects of QA on motor activity, electroencephalographic changes, and striatal gliosis. Because QA acts by both increasing glutamate outflow and directly stimulating NMDA receptors, a second set of experiments was performed to evaluate whether SCH 58261 acted by preventing the presynaptic and/or the postsynaptic effects of QA. In microdialysis experiments in naive rats, striatal perfusion with QA (5 mm) enhanced glutamate levels by approximately 500%. Such an effect of QA was completely antagonized by pretreatment with SCH 58261 (0.01 but not 1 mg/kg, i.p.). In primary striatal cultures, bath application of QA (900 microm) significantly increased intracellular calcium levels, an effect prevented by the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. In this model, bath application of SCH 58261 (15-200 nm) tended to potentiate QA-induced calcium increase. We conclude the following: (1) the adenosine A2A receptor antagonist SCH 58261 has neuroprotective effects, although only at low doses, in an excitotoxic rat model of HD, and (2) the inhibition of QA-evoked glutamate outflow seems to be the major mechanism underlying the neuroprotective effects of SCH 58261.
Collapse
|
49
|
Behan WMH, Stone TW. Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists. Br J Pharmacol 2002; 135:1435-42. [PMID: 11906956 PMCID: PMC1573275 DOI: 10.1038/sj.bjp.0704613] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Quinolinic acid may be an important endogenous excitotoxin, but its concentrations in brain are low. We have therefore attempted to determine whether its neurotoxicity can be increased by the simultaneous presence of free radicals. 2. Quinolinic acid was injected into the hippocampus of anaesthetized rats at doses of 40 and 80 nmols which produced little neuronal loss, and 120 nmols which produced over 90% neuronal loss. 3. A mixture of xanthine and xanthine oxidase, a known source of free radical reactive oxygen species, also generated little damage alone, but killed over 80% of CA1 neurons when combined with 80 nmols of quinolinic acid. Similarly, the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) potentiated the damage produced by quinolinic acid. 4. The glutamate antagonist 5,7-dichlorokynurenic acid prevented the damage produced by 120 nmols of quinolinic acid, but not that produced by quinolinic acid plus xanthine/xanthine oxidase, indicating that damage was not simply the result of free radical enhancement of NMDA receptor activation. 5. Three chemically dissimilar antagonists at adenosine A(2A) receptors prevented the damage caused by quinolinic acid and xanthine/xanthine oxidase or by quinolinic acid plus SNAP. 6. It is concluded that reactive oxygen species can potentiate the neurotoxicity of quinolinic acid. The site of interaction is probably distal to the NMDA receptor. Blockade of adenosine A(2A) receptors can protect against this combined damage, suggesting potential value in the prevention of brain damage.
Collapse
Affiliation(s)
- W M H Behan
- Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ
| | - T W Stone
- Department of Pathology, University of Glasgow, Glasgow G12 8QQ, U.K
- Author for correspondence:
| |
Collapse
|
50
|
Ross GW, Petrovitch H. Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease. Drugs Aging 2002; 18:797-806. [PMID: 11772120 DOI: 10.2165/00002512-200118110-00001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting 1 to 3% of individuals over the age of 65 years. While effective therapy exists for treating the bradykinesia, rigidity and tremor associated with the disease, the cause is unknown. There is no treatment available to prevent or slow the progressive neuronal loss in the substantia nigra and associated decreased levels of dopamine in the striatum that underlie the cardinal features of the disease. Both retrospective and prospective epidemiological studies have consistently demonstrated an inverse association between cigarette smoking and PD, leading to theories that smoking in general and nicotine in particular might be neuroprotective. Nicotine has been shown in animals to stimulate the release of dopamine in the striatum, and to preserve nigral neurons and striatal dopamine levels in laboratory animals with lesioned nigrostriatal pathways. Coffee and caffeine consumption have also been shown in epidemiological studies to be inversely related to PD risk. Caffeine is an adenosine A(2A) receptor antagonist that enhances locomotor activity in animal models of parkinsonism. Theophylline, a related compound that has A(2A) receptor blocking properties, has been shown in one small trial to improve motor function in patients with PD. Recently, potent and highly selective A(2A) receptor antagonists have been developed that have demonstrated improvement in motor function in animal models of parkinsonism. Exciting findings are emerging that demonstrate attenuation of dopaminergic neurotoxicity with caffeine and other adenosine receptor antagonists in mice given the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that these compounds may be neuroprotective. Evidence for the neuroprotective potential of nicotine and caffeine is compelling, but further work is needed before testing these and related compounds in clinical trials for both individuals at high risk of developing PD and those with early, untreated disease.
Collapse
Affiliation(s)
- G W Ross
- Department of Veterans Affairs, Honolulu, Hawaii, USA.
| | | |
Collapse
|