1
|
Wang ZG, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Huang H, Chen L, Manzhulo I, Wiklund L, Sharma HS. Co-administration of dl-3-n-butylphthalide and neprilysin is neuroprotective in Alzheimer disease associated with mild traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:145-185. [PMID: 37833011 DOI: 10.1016/bs.irn.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
dl-3-n-Butylphthalide is a potent synthetic Chinese celery extract that is highly efficient in inducing neuroprotection in concussive head injury (CHI), Parkinson's disease, Alzheimer's disease, stroke as well as depression, dementia, anxiety and other neurological diseases. Thus, there are reasons to believe that dl-3-n-butylphthalide could effectively prevent Alzheimer's disease brain pathology. Military personnel during combat operation or veterans are often the victims of brain injury that is a major risk factor for developing Alzheimer's disease in their later lives. In our laboratory we have shown that CHI exacerbates Alzheimer's disease brain pathology and reduces the amyloid beta peptide (AβP) inactivating enzyme neprilysin. We have used TiO2 nanowired-dl-3-n-butylphthalide in attenuating Parkinson's disease brain pathology exacerbated by CHI. Nanodelivery of dl-3-n-butylphthalide appears to be more potent as compared to the conventional delivery of the compound. Thus, it would be interesting to examine the effects of nanowired dl-3-n-butylphthalide together with nanowired delivery of neprilysin in Alzheimer's disease model on brain pathology. In this investigation we found that nanowired delivery of dl-3-n-butylphthalide together with nanowired neprilysin significantly attenuated brain pathology in Alzheimer's disease model with CHI, not reported earlier. The possible mechanism and clinical significance is discussed based on the current literature.
Collapse
Affiliation(s)
- Zhenguo G Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
2
|
Effects of dietary L-citrulline supplementation on nitric oxide synthesis, immune responses and mitochondrial energetics of broilers during heat stress. J Therm Biol 2022; 105:103227. [DOI: 10.1016/j.jtherbio.2022.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
|
3
|
Sahib S, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Castellani RJ, Nozari A, Patnaik R, Menon PK, Wiklund L, Sharma HS. Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:249-315. [PMID: 34560923 DOI: 10.1016/bs.pbr.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Single Administration of Melatonin Modulates the Nitroxidergic System at the Peripheral Level and Reduces Thermal Nociceptive Hypersensitivity in Neuropathic Rats. Int J Mol Sci 2017; 18:ijms18102143. [PMID: 29036889 PMCID: PMC5666825 DOI: 10.3390/ijms18102143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a severe condition with unsatisfactory treatments. Melatonin, an indolamine, seems to be a promising molecule suitable for this purpose due to its well-known anti-inflammatory, analgesic, and antioxidant effects, as well as its modulation of the nitroxidergic system. Nevertheless, the data on its mechanism of action and potentialities are currently insufficient in this pathology, especially at the peripheral level. Thus, this work evaluated the effect of a single administration of melatonin in an established mononeuropathy pain model that monitors the behaviour and the changes in the nitroxidergic system in dorsal root ganglia and skin, which are affected by nervous impairment. Experiments were carried out on Sprague Dawley rats subdivided into the sham operated (control) and the chronic constriction injured animals, a model of peripheral neuropathic pain on sciatic nerve. Single administrations of melatonin (5–10 mg/kg) or vehicle were injected intraperitoneally on the 14th day after surgery, when the mononeuropathy was established. The animals were behaviourally tested for thermal hyperalgesia. The dorsal root ganglia and the plantar skin of the hind-paws were removed and processed for the immunohistochemical detection of neuronal and inducible nitric oxide synthases. The behavioural results showed an increase of withdrawal latency during the plantar test as early as 30 min after melatonin administration. The immunohistochemical results indicated a modulation of the nitroxidergic system both at dorsal root ganglia and skin level, permitting speculate on a possible mechanism of action. We showed that melatonin may be a possible therapeutic strategy in neuropathic pain.
Collapse
|
8
|
Timed Release of Cerebrolysin Using Drug-Loaded Titanate Nanospheres Reduces Brain Pathology and Improves Behavioral Functions in Parkinson’s Disease. Mol Neurobiol 2017; 55:359-369. [DOI: 10.1007/s12035-017-0747-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Cold Environment Exacerbates Brain Pathology and Oxidative Stress Following Traumatic Brain Injuries: Potential Therapeutic Effects of Nanowired Antioxidant Compound H-290/51. Mol Neurobiol 2017; 55:276-285. [DOI: 10.1007/s12035-017-0740-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:65-98. [DOI: 10.1016/bs.irn.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
SEMENAS E, SHARMA HS, WIKLUND L. Adrenaline increases blood-brain-barrier permeability after haemorrhagic cardiac arrest in immature pigs. Acta Anaesthesiol Scand 2014; 58:620-9. [PMID: 24580085 DOI: 10.1111/aas.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adrenaline (ADR) and vasopressin (VAS) are used as vasopressors during cardiopulmonary resuscitation. Data regarding their effects on blood-brain barrier (BBB) integrity and neuronal damage are lacking. We hypothesised that VAS given during cardiopulmonary resuscitation (CPR) after haemorrhagic circulatory arrest will preserve BBB integrity better than ADR. METHODS Twenty-one anaesthetised sexually immature male piglets (with a weight of 24.3 ± 1.3 kg) were bled 35% via femoral artery to a mean arterial blood pressure of 25 mmHg in the period of 15 min. Afterwards, the piglets were subjected to 8 min of untreated ventricular fibrillation followed by 15 min of open-chest CPR. At 9 min of circulatory arrest, piglets received amiodarone 1.0 mg/kg and hypertonic-hyperoncotic solution 4 ml/kg infusions for 20 min. At the same time, VAS 0.4 U/kg was given intravenously to the VAS group (n = 9) while the ADR group received ADR 20 μg/kg (n = 12). Internal defibrillation was attempted from 11 min of cardiac arrest to achieve restoration of spontaneous circulation. The experiment was terminated 3 h after resuscitation. RESULTS The intracranial pressure (ICP) in the post-resuscitation phase was significantly greater in ADR group than in VAS group. VAS group piglets exhibited a significantly smaller BBB disruption compared with ADR group. Cerebral pressure reactivity index showed that cerebral blood flow autoregulation was also better preserved in VAS group. CONCLUSIONS Resuscitation with ADR as compared with VAS after haemorrhagic circulatory arrest increased the ICP and impaired cerebrovascular autoregulation more profoundly, as well as exerted an increased BBB disruption though no significant difference in neuronal injury was observed.
Collapse
Affiliation(s)
- E. SEMENAS
- Department of Surgical Sciences/Anaesthesiology and Intensive Care; Faculty of Medicine; Uppsala University; Uppsala Sweden
| | - H. S. SHARMA
- Department of Surgical Sciences/Anaesthesiology and Intensive Care; Faculty of Medicine; Uppsala University; Uppsala Sweden
| | - L. WIKLUND
- Department of Surgical Sciences/Anaesthesiology and Intensive Care; Faculty of Medicine; Uppsala University; Uppsala Sweden
| |
Collapse
|
12
|
Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 2013; 11:129-40. [PMID: 23997749 PMCID: PMC3637668 DOI: 10.2174/1570159x11311020001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1 receptor antagonists, glucocorticoid, activated protein C, and baicalin mitigate preclinical heatstroke levels.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan ; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | | |
Collapse
|
13
|
Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:184-203. [PMID: 22162425 DOI: 10.1002/wnan.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments in nanomedicine resulted in targeted drug delivery of active compounds into the central nervous system (CNS) either through encapsulated material or attached to nanowires. Nanodrug delivery by any means is supposed to enhance neuroprotection due to rapid accumulation of drugs within the target area and a slow metabolism of the compound. These two factors enhance neuroprotection than the conventions drug delivery. However, this is still uncertain whether nanodrug delivery could alter the pharmacokinetics of compounds making it more effective or just longer exposure of the compound for extended period of time is primarily responsible for enhanced effects of the drugs. Our laboratory is engaged in understanding of the nanodrug delivery using TiO(2) nanowires in CNS injuries models, for example, spinal cord injury (SCI), hyperthermia and/or intoxication of nanoparticles with or without other comorbidity factors, that is, diabetes or hypertension in rat models. Our observations suggest that nanowired drug delivery is effective under normal situation of SCI and hyperthermia as evidenced by significant reduction in the blood-brain barrier (BBB) breakdown, brain edema formation, cognitive disturbances, neuronal damages, and brain pathologies. However, when the pathophysiology of these CNS injuries is aggravated by nanoparticles intoxication or comorbidity factors, adjustment in dosage of nanodrug delivery is needed. This indicates that further research in nanomedicine is needed to explore suitable strategies in achieving greater neuroprotection in CNS injury in combination with nanoparticles intoxication or other comorbidity factors for better clinical practices.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Cerebrovascular Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
14
|
Neuroprotective effects of 17β-estradiol after hypovolemic cardiac arrest in immature piglets: the role of nitric oxide and peroxidation. Shock 2011; 36:30-7. [PMID: 21330940 DOI: 10.1097/shk.0b013e3182150f43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We recently reported that cerebral and cardiac injuries are mitigated in immature female piglets after severe hemorrhage with subsequent cardiac arrest. Female sex was also associated with a smaller increase in the cerebral expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). In the current study, we tested the hypothesis that exogenously administered 17β-estradiol (E₂) can improve neurological outcome by NOS modulation. Thirty-nine sexually immature piglets were bled to a mean arterial pressure of 35 mmHg over 15 min. Fifty micrograms per kilogram of E₂ was then administered to 10 male and 10 female animals (estradiol group), whereas control animals (n = 10 males and 9 females) received equal volume of normal saline. The animals were then subjected to ventricular fibrillation (4 min) followed by up to 15 min of open-chest cardiopulmonary resuscitation. Vasopressin 0.4 U · kg⁻¹ and amiodarone 0.5 mg · kg⁻¹ were given, and 3 mL · kg⁻¹ of 7.5% saline with 6% dextran was administered over 20 min. All surviving animals were killed after 3 h, and their brains examined for histological injury and NOS expression. No significant differences were observed in survival or hemodynamics between the groups. Compared with the control group, animals in the E₂ group exhibited a significantly smaller increase in nNOS and iNOS expression, a smaller blood-brain-barrier disruption, and a mitigated neuronal injury. There was a significant correlation between nNOS and iNOS levels and neuronal injury. Interestingly, estradiol attenuated cerebral damage (including lower activation of nNOS and iNOS) both in male and female piglets. In conclusion, in our immature piglet model of hypovolemic cardiac arrest, E₂ downregulates iNOS and nNOS expression and results in decreased blood-brain-barrier permeability disruption and smaller neuronal injury.
Collapse
|
15
|
Reduction of ischemic and oxidative damage to the hypothalamus by hyperbaric oxygen in heatstroke mice. J Biomed Biotechnol 2010; 2010:609526. [PMID: 20625500 PMCID: PMC2896702 DOI: 10.1155/2010/609526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
The aims of the present paper were to ascertain whether the heat-induced ischemia and oxidative damage to the hypothalamus and lethality in mice could be ameliorated by hyperbaric oxygen therapy. When normobaric air-treated mice underwent heat treatment, the fractional survival and core temperature at 4 hours after heat stress were found to be 0 of 12 and 34 degrees C +/- 0.3 degrees C, respectively. In hyperbaric oxygen-treated mice, when exposed to the same treatment, both fractional survival and core temperature values were significantly increased to new values of 12/12 and 37.3 degrees C +/- 0.3 degrees C, respectively. Compared to normobaric air-treated heatstroke mice, hyperbaric oxygen-treated mice displayed lower hypothalamic values of cellular ischemia and damage markers, prooxidant enzymes, proinflammatory cytokines, inducible nitric oxide synthase-dependent nitric oxide, and neuronal damage score. The data indicate that hyperbaric oxygen may improve outcomes of heatstroke by normalization of hypothalamic and thermoregulatory function in mice.
Collapse
|
16
|
Alterations in Blood–Brain Barrier Function and Brain Pathology by Morphine in the Rat. Neuroprotective Effects of Antioxidant H-290/51. BRAIN EDEMA XIV 2010; 106:61-6. [DOI: 10.1007/978-3-211-98811-4_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Sharma HS, Sharma A, Hussain S, Schlager J, Sjöquist PO, Muresanu D. A New Antioxidant Compound H-290/51 Attenuates Nanoparticle Induced Neurotoxicity and Enhances Neurorepair in Hyperthermia. BRAIN EDEMA XIV 2010; 106:351-7. [DOI: 10.1007/978-3-211-98811-4_64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Chen ZC, Wu WS, Lin MT, Hsu CC. Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke. BMC Neurosci 2009; 10:111. [PMID: 19725984 PMCID: PMC2745415 DOI: 10.1186/1471-2202-10-111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 09/03/2009] [Indexed: 11/25/2022] Open
Abstract
Background Transgenic mice have been used to examine the role of heat shock protein (HSP)72 in experimental heatstroke. Transgenic mice that were heterozygous for a porcine HSP70β gene ([+] HSP72) and transgene-negative littermate controls ([-] HSP72), under pentobarbital sodium anesthesia, were subjected to heat stress to induce heatstroke. It was found that the overexpression of HSP72 in multiple organs improved survival during heatstroke by reducing hypotension and cerebral ischemia and damage in mice. Herein we attempted to further assess the effect of heat exposure on thermoregulatory function, hypothalamic integration, and survival in unrestrained, unanesthetized [+]HSP72 and compare with those of [-]HSP72. In this research with the transgenic mice, we first conducted several biochemical, physiologic and histological determinations and then investigated the beneficial effects of HSP72 overexpression on the identified hypothalamic deficits, thermoregulatory dysfunction, and mortality during heatstroke. Results We report here that when [-]HSP72 mice underwent heat stress (ambient temperature 42.4°C for 1 h), the fraction survival and core temperature at 4 h after heat stress were found to be 0 of 12 and 34.2°C ± 0.4°C, respectively. Mice that survived to day 4 after heat stress were considered as survivors. In [+]HSP72 mice, when exposed to the same heat treatment, both fraction survival and core temperature values were significantly increased to new values of 12/12 and 37.4°C ± 0.3°C, respectively. Compared to [-]HSP mice, [+]HSP72 mice displayed lower hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), pro-inflammatory cytokines (e.g., interleukin-1beta and tumor necrosis factor-alpha), and neuronal damage score evaluated 4 h after heat stress. In contrast, [+]HSP72 mice had higher hypothalamic values of antioxidant defences (e.g., glutathione peroxidase and glutathione reductase), ATP, and HSP72 expression. Conclusion This study indicates that HSP72 overexpression appears to be critical to the development of thermotolerance and protection from heat-induced hypothalamic ischemic and oxidative damage.
Collapse
Affiliation(s)
- Zhih-Cherng Chen
- Section of General Medicine, Chi Mei Medical Center, Tainan, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
19
|
Sharma HS. Interaction between amino acid neurotransmitters and opioid receptors in hyperthermia-induced brain pathology. PROGRESS IN BRAIN RESEARCH 2008; 162:295-317. [PMID: 17645925 DOI: 10.1016/s0079-6123(06)62015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This review is focused on the possible interaction between amino acid neurotransmitters and opioid receptors in hyperthermia-induced brain dysfunction. A balance between excitatory and inhibitory amino acids appears to be necessary for normal brain function. Increased excitotoxicity and a decrease in inhibitory amino acid neurotransmission in hyperthermia are associated with brain pathology and cognitive impairment. This is supported by recent data from our laboratory that show a marked increase in glutamate and aspartate and a decrease in GABA and glycine in several brain areas following heat stress at the time of brain pathology. Blockade of multiple opioid receptors with naloxone restored the heat stress-induced decline in GABA and glycine and thwarted the elevation of glutamate and aspartate in the CNS. In naloxone-treated stressed animals, cognitive dysfunction and brain pathology are largely absent. Taken together, these new findings suggest that an intricate balance between excitatory and inhibitory amino acids is important for brain function in heat stress. In addition, opioid receptors play neuromodulatory roles in amino acid neurotransmission in hyperthermia.
Collapse
|
20
|
Chen YC, Liu YC, Yen DHT, Wang LM, Huang CI, Lee CH, Lin MT. l-ARGININE CAUSES AMELIORATION OF CEREBROVASCULAR DYSFUNCTION AND BRAIN INFLAMMATION DURING EXPERIMENTAL HEATSTROKE. Shock 2008; 29:212-6. [PMID: 17693925 DOI: 10.1097/shk.0b013e3180ca9ccc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cerebrovascular dysfunction ensuing from severe heatstroke includes intracranial hypertension, cerebral hypoperfusion, and brain inflammation. We attempted to assess whether L-arginine improves survival during experimental heatstroke by attenuating these reactions. Anesthetized rats, 70 min after the start of heat stress (43 degrees C), were divided into two major groups and given the following: vehicle solution (1 mL/kg body weight) or L-arginine (50-250 mg/kg body weight) intravenously. Another group of rats was exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiological and biochemical parameters were continuously monitored. When the vehicle-treated rats underwent heat stress, their survival time values were found to be 20 to 26 min. Treatment with i.v. doses of L-arginine significantly improved the survival rate during heatstroke (54-245 min). As compared with those of normothermic controls, all vehicle-treated heatstroke animals displayed higher levels of core temperature, intracranial pressure, and NO metabolite, glutamate, glycerol, lactate-pyruvate ratio, and dihydroxybenzoic acid in hypothalamus. In addition, hypothalamic levels of IL-1beta and TNF-alpha were elevated after heatstroke onset. In contrast, all vehicle-treated heatstroke animals had lower levels of MAP, cerebral perfusion pressure, cerebral blood flow, and brain partial pressure of oxygen. Administration of L-arginine immediately after the onset of heatstroke significantly reduced the intracranial hypertension and the increased levels of NO metabolite, glutamate, glycerol, lactate-pyruvate ratio, and dihydroxybenzoic acid in the hypothalamus that occurred during heatstroke. The heatstroke-induced increased levels of IL-1beta and TNF-alpha in the hypothalamus were suppressed by L-arginine treatment. In contrast, the hypothalamic levels of IL-10 were significantly elevated by L-arginine during heatstroke. The results suggest that L-arginine may cause attenuation of heatstroke by reducing cerebrovascular dysfunction and brain inflammation.
Collapse
Affiliation(s)
- Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hwang WS, Chen SH, Lin CH, Chang HK, Chen WC, Lin MT. Human umbilical cord blood-derived CD34+ cells can be used as a prophylactic agent for experimental heatstroke. J Pharmacol Sci 2008; 106:46-55. [PMID: 18187924 DOI: 10.1254/jphs.fp0071567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We attempted to assess the prophylactic effect of human umbilical cord blood-derived CD34(+) cells in experimental heatstroke. Anesthetized rats, 1 day before heat stress, were divided into 2 major groups and given CD34(-) cells (defined by 1 x 10(6) human cord blood lymphocytes and monocytes that contained <0.2% CD34(+) cells) or CD34(+) cells (defined by 1 x 10(6) human cord blood lymphocytes and monocytes that contained >95% CD34(+) cells). They were exposed to ambient temperature of 43 degrees C for 70 min to induce heatstroke. When the CD34(-) cells-treated or untreated rats underwent heat stress, their survival time values were found to be 20-24 min. Pretreatment with CD34(+) cells significantly increased survival time (123-351 min). As compared with normothermic controls, all CD34(-) cells-treated heatstroke animals displayed hypotension, hepatic and renal failure, hypercoagulable state, activated inflammation, and cerebral ischemia and injury. However, these heatstroke reactions all were significantly suppressed by CD34(+) cells pretreatment. In addition, the levels of interleukin-10 in plasma and glial cell line-derived neurotrophic factors in brain were all significantly increased after CD34(+) cell administration during heatstroke. Our data indicate that human umbilical cord-derived CD34(+) cells can be used as a prophylactic agent for experimental heatstroke.
Collapse
Affiliation(s)
- Wei-Shou Hwang
- Department of Hematology and Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Chen SH, Huang KF, Lin MT, Chang FM. Human umbilical cord blood cells or estrogen may be beneficial in treating heatstroke. Taiwan J Obstet Gynecol 2007; 46:15-25. [PMID: 17389184 DOI: 10.1016/s1028-4559(08)60101-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This current review summarized animal models of heatstroke experimentation that promote our current knowledge of therapeutic effects on cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation with human umbilical cord blood cells (HUCBCs) or estrogen in the setting of heatstroke. Accumulating evidences have demonstrated that HUCBCs provide a promising new therapeutic method against neurodegenerative diseases, such as stroke, traumatic brain injury, and spinal cord injury as well as blood disease. More recently, we have also demonstrated that post- or pretreatment by HUCBCs may resuscitate heatstroke rats with by reducing circulatory shock, and cerebral nitric oxide overload and ischemic injury. Moreover, CD34+ cells sorted from HUCBCs may improve survival by attenuating inflammatory, coagulopathy, and multiorgan dysfunction during experimental heatstroke. Many researchers indicated pro- (e.g. tumor necrosis factor-alpha [TNF-alpha]) and anti-inflammatory (e.g. interleukin-10 [IL-10]) cytokines in the peripheral blood stream correlate with severity of circulatory shock, cerebral ischemia and hypoxia, and neuronal damage occurring in heatstroke. It has been shown that intravenous administration of CD34+ cells can secrete therapeutic molecules, such as neurotrophic factors, and attenuate systemic inflammatory reactions by decreasing serum TNF-alpha but increasing IL-10 during heatstroke. Another line of evidence has suggested that estrogen influences the severity of injury associated with cerebrovascular shock. Recently, we also successfully demonstrated estrogen resuscitated heatstroke rats by ameliorating systemic inflammation. Conclusively, HUCBCs or estrogen may be employed as a beneficial therapeutic strategy in prevention and repair of cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation during heatstroke.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | |
Collapse
|
23
|
Chen YW, Chen SH, Chou W, Lo YM, Hung CH, Lin MT. Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats. Br J Sports Med 2007; 41:597-602. [PMID: 17496074 PMCID: PMC2465410 DOI: 10.1136/bjsm.2006.033829] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the rat brain, heat-stroke-induced damage to cerebral neurons is attenuated through heat-shock-induced overexpression of heat-shock protein 72 (HSP72). OBJECTIVE To ascertain whether progressive exercise preconditioning induces HSP72 expression in the rat brain and prevents heat-stroke-induced cerebral ischaemia and injury. METHODS Male Wistar rats were randomly assigned to either a sedentary group or an exercise group. Those in the exercise group progressively ran on a treadmill 5 days/week, for 30-60 min/day at an intensity of 20-30 m/min for 3 weeks. The effects of heat stroke on mean arterial pressure, cerebral blood flow, brain ischaemia markers (glutamate, lactate/pyruvate ratio and nitric oxide), a cerebral injury marker (glycerol) and brain neuronal damage score in the preconditioned animals were compared with effects in unexercised controls. Heat stroke was induced by exposing urethane-anaesthetised animals to a temperature of 43 degrees C for 55 min, which caused the body temperature to reach 42 degrees C. RESULTS Three weeks of progressive exercise pretreatment induced HSP72 preconditioning in the brain and conferred significant protection against heat-stroke-induced hyperthermia, arterial hypotension, cerebral ischaemia and neuronal damage; it also prolonged survival. CONCLUSIONS Exercise for 3 weeks can improve heat tolerance as well as attenuate heat-stroke-induced cerebral ischaemia in rats. The maintenance of mean arterial pressure and cerebral blood flow at appropriate levels in the rat brain may be related to overexpression of HSP72.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Cheng BC, Chang CP, Lin MT, Lee CC. Inhibition of neuronal nitric oxide synthase causes attenuation of cerebrovascular dysfunction in experimental heatstroke. Neuropharmacology 2007; 52:297-305. [PMID: 16950411 DOI: 10.1016/j.neuropharm.2006.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 11/22/2022]
Abstract
The present study was performed to assess the prophylactic effect of 7-nitroindazole (7-NI), an inhibitor of neuronal nitric oxide synthase (nNOS), in an animal model of heatstroke. Anesthetized rats, immediately before the start of heat stress, were divided into two major groups and given the following: vehicle solution (1 mL per kg body weight) or 7-NI (5-20mg/mL per kg body weight) intraperitoneally. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats were exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiologic and biochemical parameters were continuously monitored. When the vehicle-pretreated rats underwent heat stress, their survival time values were found to be 21-25 min. Pretreatment with intraperitoneal doses of 7-NI significantly improved survival during heatstroke (55-164 min). As compared to those of normothermic controls, all vehicle-pretreated heatstroke animals displayed higher levels of core temperature, intracranial pressure, nitric oxide metabolite (NO(2)(-)), glutamate, glycerol, lactate/pyruvate ratio, neuronal damage score and nNOS expression in the hypothalamus, and tumor necrosis factor-alpha (TNF-alpha) in the serum. In contrast, all vehicle-pretreated heatstroke animals had lower levels of mean arterial pressure, cerebral perfusion pressure, cerebral blood flow, and brain PO(2). Administration of 7-NI before the start of heat exposure significantly reduced the hyperthermia, intracranial hypertension, nNOS-dependent NO(2)(-), glutamate, glycerol, lactate/pyruvate ratio, and neuronal damage score in the hypothalamus, as well as overproduction of TNF-alpha in the serum that occurred during heatstroke. The data show that reduction of nNOS-dependent NO(2)(-) with 7-NI causes attenuation of cerebrovascular dysfunction, hyperthermia, and TNF-alpha overproduction during heatstroke in the rat.
Collapse
Affiliation(s)
- Bor-Chih Cheng
- Division of Cardiology, Chi Mei Medical Center, Tainan 710, Taiwan
| | | | | | | |
Collapse
|
25
|
Chang CP, Huang WT, Cheng BC, Hsu CC, Lin MT. The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke. Neuropharmacology 2007; 52:1024-33. [PMID: 17204294 DOI: 10.1016/j.neuropharm.2006.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 12/15/2022]
Abstract
The present study was performed to assess the prophylactic effect of baicalin, a flavonoid compound, in an animal model of heatstroke. Anesthetized rats, immediately before the start of heat stress, were divided into two major groups and given the following: vehicle solution (1mL per kg body weight) or baicalin (10-40mg per kg body weight) intravenously. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats was exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiologic and biochemical parameters were continuously monitored. When the vehicle-pretreated rats underwent heat stress, their survival time values were found to be 20-28min. Pretreatment with intravenous doses of baicalin significantly improved survival during heatstroke (65-248min). As compared to those of normothermic controls, all vehicle-pretreated heatstroke animals displayed higher levels of core temperature, intracranial pressure, and nitric oxide metabolite (NO(2)(-)), glutamate, glycerol, lactate/pyruvate ratio, and dihydroxybenzoic acid (DHBA) in hypothalamus. In addition, both serum and hypothalamic levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) as well as plasma levels of creatinine, serum urea nitrogen, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and alkaline phosphatase were elevated after heatstroke onset. In contrast, all vehicle-pretreated heatstroke animals had lower levels of mean arterial pressure, cerebral perfusion pressure, cerebral blood flow, and brain PO(2). Administration of baicalin before the start of heat exposure significantly reduced the hyperthermia, intracranial hypertension, and the increased levels of NO(2)(-), glutamate, glycerol, lactate/pyruvate ratio, and DHBA in the hypothalamus that occurred during heatstroke. The heatstroke-induced increased levels of IL-1beta and TNF-alpha in both the serum and hypothalamus, and renal and hepatic dysfunction were suppressed by baicalin pretreatment. In contrast, both the serum and hypothalamic levels of IL-10 were significantly elevated by baicalin during heatstroke. We successfully demonstrated that baicalin can be used as a prophylactic agent for heatstroke. In particular, baicalin may protect against cerebrovascular dysfunction and brain inflammation in heatstroke.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Technology, Tainan Hsien, Taiwan 710
| | | | | | | | | |
Collapse
|
26
|
Abstract
The recent increase in the frequency and intensity of killer heat waves across the globe has aroused worldwide medical attention to exploring therapeutic strategies to attenuate heat-related morbidity and/or mortality. Death due to heat-related illnesses often exceeds >50% of heat victims. Those who survive are crippled with lifetime disabilities and exhibit profound cognitive, sensory, and motor dysfunction akin to premature neurodegeneration. Although more than 50% of the world populations are exposed to summer heat waves; our understanding of detailed underlying mechanisms and the suitable therapeutic strategies have still not been worked out. One of the basic reasons behind this is the lack of a reliable experimental model to simulate clinical hyperthermia. This chapter describes a suitable animal model to induce hyperthermia in rats (or mice) comparable to the clinical situation. The model appears to be useful for studying the effects of heat-related illnesses on changes in various organs and systems, including the central nervous system (CNS). Since hyperthermia is often associated with profound brain dysfunction, additional methods to examine some crucial parameters of brain injury, e.g., blood-brain barrier (BBB) breakdown and brain edema formation, are also described.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185 Uppsala, Sweden.
| |
Collapse
|
27
|
Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjöquist PO. Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. J Neural Transm (Vienna) 2006; 113:521-36. [PMID: 16550329 DOI: 10.1007/s00702-005-0405-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 09/26/2005] [Indexed: 11/28/2022]
Abstract
The possibility that oxidative stress participates in heat shock protein 72 kD (HSP 72) expression following a focal trauma to the spinal cord was examined using a potent antioxidant compound H-290/51 in a rat model. A focal spinal cord injury (SCI) inflicted by making a longitudinal incision on the right dorsal horn of the T10-T11 segment under equithesin anaesthesia resulted in profound upregulation of HSP 72 expression in the adjacent spinal cord segments T9 and T12. This expression of HSP was most marked in the ipsilateral cord at 5 h after SCI. Pretreatment with H-290/51 (50 mg/kg, p.o.) 30 min before SCI markedly attenuated HSP expression in the spinal cord seen at 5 h. The motor functions of traumatized rats were also improved in the drug treated group. At this time, structural changes in the spinal cord and edema formation were considerable reduced compared to the untreated traumatized rats. Taken together, these observations suggest that (i) oxidative stress participates in HSP response following trauma, and (ii) the antioxidant compound H-290/51 attenuates cellularstress, improves motor functions and induces considerable neuroprotection in the early phase of SCI. Further studies using post-injury treatment with H-290/51 is needed to explore its therapeutic potentials in clinical settings.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Chen SH, Niu KC, Lin MT. CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE¶. Clin Exp Pharmacol Physiol 2006; 33:663-72. [PMID: 16895537 DOI: 10.1111/j.1440-1681.2006.04429.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959-2005. 2. All heat-stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the diagnosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3. These physiological dysfunctions and survival during heat stroke can be improved by whole-body or brain cooling therapy adopted immediately after the onset of heat stroke. 4. However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti-inflammatory drugs, free radical scavengers or interleukin-1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5. In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of alpha-tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu-opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock protein 72 preconditioning. 6. There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | | | | |
Collapse
|
29
|
Sharma HS, Wiklund L, Badgaiyan RD, Mohanty S, Alm P. Intracerebral administration of neuronal nitric oxide synthase antiserum attenuates traumatic brain injury-induced blood-brain barrier permeability, brain edema formation, and sensory motor disturbances in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:288-94. [PMID: 16671473 DOI: 10.1007/3-211-30714-1_62] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of nitric oxide (NO) in traumatic brain injury (TBI)-induced sensory motor function and brain pathology was examined using intracerebral administration of neuronal nitric oxide synthase (nNOS) antiserum in a rat model. TBI was produced by a making a longitudinal incision into the right parietal cerebral cortex limited to the dorsal surface of the hippocampus. Focal TBI induces profound edematous swelling, extravasation of Evans blue dye, and up-regulation of nNOS in the injured cerebral cortex and the underlying subcortical areas at 5 hours. The traumatized animals exhibited pronounced sensory motor deficit, as seen using Rota-Rod and grid-walking tests. Intracerebral administration of nNOS antiserum (1 : 20) 5 minutes and 1 hour after TBI significantly attenuated brain edema formation, Evans blue leakage, and nNOS expression in the injured cortex and the underlying subcortical regions. The nNOS antiserum-treated rats showed improved sensory motor functions. However, administration of nNOS antiserum 2 hours after TBI did not influence these parameters significantly. These novel observations suggest that NO participates in blood-brain barrier disruption, edema formation, and sensory motor disturbances in the early phase of TBI, and that nNOS antiserum has some potential therapeutic value requiring additional investigation.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Sharma HS, Nyberg F, Gordh T, Alm P. Topical application of dynorphin A (1-17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following focal trauma to the rat spinal cord. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:309-15. [PMID: 16671477 DOI: 10.1007/3-211-30714-1_66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Previous investigations from our laboratory show that up-regulation of neuronal nitric oxide synthase (NOS) following spinal cord injury (SCI) is injurious to the cord. Antiserum to dynorphin A (1-17) induces marked neuroprotection in our model of SCI, indicating an interaction between dynorphin and NOS regulation. The present investigation was undertaken to find out whether topical application of dynorphin A (1-17) antiserum has some influence on neuronal NOS up-regulation in the traumatized spinal cord. SCI was produced in anesthetized animals by making a unilateral incision into the right dorsal horn of the T10-11 segments. The antiserum to dynorphin A (1-17) was applied (1 : 20, 20 microL in 10 seconds) 5 minutes after trauma over the injured spinal cord and the rats were allowed to survive 5 hours after SCI. Topical application of dynorphin A (1-17) antiserum significantly attenuated neuronal NOS up-regulation in the adjacent T9 and T12 segments. In the antiserum-treated group, spinal cord edema and cell injury were also less marked. These observations provide new evidence that the opioid active peptide dynorphin A may be involved in the mechanisms underlying NOS regulation in the spinal cord after injury, and confirms our hypothesis that up-regulation of neuronal NOS is injurious to the cord.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Anesthesiology and Intensive Care, Institute of Surgical Sciences, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
31
|
Sharma HS. Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches. J Neural Transm (Vienna) 2006; 113:497-519. [PMID: 16550328 DOI: 10.1007/s00702-005-0406-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
Role of excitatory amino acids, glutamate, aspartate, and inhibitory amino acids, gamma aminobutyric acid (GABA) and glycine in brain damage caused by heat stress was examined in a rat model. Subjection of rats to 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator resulted in a marked increase in glutamate and aspartate in some brain regions, whereas a significant decline in GABA and glycine was observed in several brain areas. Profound behavioural alterations and impairment of motor and cognitive functions were seen at this time. Breakdown of the blood-brain barrier (BBB), reduction in regional cerebral blood flow (CBF), edema formation and cell injuries are prominent in several parts of the brain. Pretreatment with multiple opioid receptor antagonist, naloxone (10 mg/kg, i.p.) significantly restored the heat stress induced decline in GABA and glycine and thwarted the elevation of glutamate and aspartate in various brain areas. The motor or cognitive deficits were also attenuated. A significant reduction in BBB permeability, cerebral blood flow abnormalities, edema formation and cell injuries was evident. These novel observations suggest that (i) glutamate, aspartate, GABA and glycine are involved in the pathophysiology of heat stress, and (ii) a balance between excitatory and inhibitory amino acids in brain is crucial in hyperthermia induced brain injuries or repair.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 2006; 115:3128-39. [PMID: 16276418 PMCID: PMC1265848 DOI: 10.1172/jci20806] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 08/30/2005] [Indexed: 11/17/2022] Open
Abstract
We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1% O2). Ca-dependent NO synthase activity was increased in endothelium-denuded aortic segments from hypoxia-exposed rats. N-nitro-L-arginine methyl ester enhanced the contractile responses of endothelium-denuded aortic rings and mesenteric arterioles from hypoxia-exposed but not normoxic rats (P < 0.05). The hypoxia-inducible mRNA transcript expressed by human cells was found to contain a novel 5'-untranslated region, consistent with activation of transcription in the genomic region contiguous with exon 2. Translational efficiency of this transcript is markedly increased compared with previously described human nNOS mRNAs. Transgenic mice possessing a lacZ reporter construct under control of these genomic sequences demonstrated expression of the construct after exposure to hypoxia (8% O2, 48 hours) in the aorta, mesenteric arterioles, renal papilla, and brain. These results reveal a novel human nNOS promoter that confers the ability to rapidly upregulate nNOS expression in response to hypoxia with a functionally significant effect on vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Michael E Ward
- Division of Respirology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sharma HS, Sjöquist PO, Mohanty S, Wiklund L. Post-injury treatment with a new antioxidant compound H-290/51 attenuates spinal cord trauma-induced c-fos expression, motor dysfunction, edema formation, and cell injury in the rat. BRAIN EDEMA XIII 2006; 96:322-8. [PMID: 16671479 DOI: 10.1007/3-211-30714-1_68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuroprotective efficacy of post-injury treatment with the antioxidant compound H-290/51 (10, 30, and 60 minutes after trauma) on immediate early gene expression (c-fos), blood-spinal cord barrier (BSCB) permeability, edema formation, and motor dysfunction was examined in a rat model of spinal cord injury (SCI). SCI was produced by a longitudinal incision into the right dorsal horn of the T10-11 segment under Equithesin anesthesia. Focal SCI in control rats resulted in profound up-regulation of c-fos expression, BSCB dysfunction, edema formation, and cell damage in the adjacent T9 and T12 segments at 5 hours. Pronounced motor dysfunction was present at this time as assessed using the Tarlov scale and the inclined plane test. Treatment with H-290/51 (50 mg/kg, p.o.) 10 and 30 minutes after SCI (but not after 60 minutes) markedly attenuated c-fos expression and motor dysfunction. In these groups, BSCB permeability, edema formation, and cell injuries were mildly but significantly reduced. These observations suggest that (i) antioxidants are capable of attenuating cellular and molecular events following trauma, and (ii) have the capacity to induce neuroprotection and improve motor function if administered during the early phase of SCI, a novel finding.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
34
|
|
35
|
Chang CP, Lee CC, Chen SH, Lin MT. Aminoguanidine Protects Against Intracranial Hypertension and Cerebral Ischemic Injury in Experimental Heatstroke. J Pharmacol Sci 2004; 95:56-64. [PMID: 15153651 DOI: 10.1254/jphs.95.56] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The aim of the present study was to ascertain whether aminoguanidine attenuated intracranial hypertension and cerebral ischemic injury in experimental heatstroke. Urethane-anesthetized rats were exposed to heat stress (ambient temperature of 43 degrees C) to induce heatstroke. Control rats were exposed to 24 degrees C. Mean arterial pressure, cerebral perfusion pressure, and cerebral blood flow after the onset of heatstroke were all significantly lower than in control rats. However, colonic temperature, intracranial pressure, heart rate, cerebral inducible nitric oxide synthase (iNOS)-dependent NO, and neuronal damage score were greater after the onset of heatstroke. Aminoguanidine (30 micromol/kg, i.v.; 30 min before the start of heat exposure) pretreatment significantly attenuated the heatstroke-induced hyperthermia, arterial hypotension, intracranial hypertension, cerebral ischemia and neuronal damage, and increased iNOS-dependent NO formation in the brain. The extracellular concentrations of ischemic (e.g., glutamate and lactate/pyruvate ratio) and damage (e.g., glycerol) markers in the hypothalamus were also increased after the onset of heatstroke. Aminoguanidine pretreatment significantly attenuated the increase in hypothalamic ischemia and damage markers associated with heatstroke. Delaying onset of aminoguanidine administration (i.e., 0 or 30 min after the start of heat exposure) reduced the preventive efficiency on heatstroke-induced hyperthermia, arterial hypotension, intracranial hypertension, cerebral ischemia, and increased iNOS-dependent NO formation in brain. These results suggest that aminoguanidine protects against heatstroke-induced intracranial hypertension and cerebral ischemic injury by inhibition of cerebral iNOS-dependent NO production.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Institute of Physiology, National Yang-Ming University Medical School, Taipei, Taiwan
| | | | | | | |
Collapse
|
36
|
Sharma HS, Sjöquist PO, Alm P. A new antioxidant compound H-290151 attenuates spinal cord injury induced expression of constitutive and inducible isoforms of nitric oxide synthase and edema formation in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 86:415-20. [PMID: 14753478 DOI: 10.1007/978-3-7091-0651-8_86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The role of oxidative stress in spinal cord injury (SCI) induced upregulation of constitutive or inducible isoforms of nitric oxide synthase (cNOS or iNOS) is not well known. The present investigation was undertaken to examine the influence of an antioxidant compound H-290/51 (Astra-Zeneca, Mölndal, Sweden) on SCI induced cNOS and iNOS upregulation in a rat model. SCI induced by incision into the right dorsal horn of the T10-11 segment resulted in marked NOS upregulation. Upregulation of cNOS was most prominent in the uninjured T9 and T12 segments. On the other hand, iNOS expression was most marked in the injured T10-11 segments. These NOS immunoreactivities were mainly confined to the injured cells located in the edematous regions of the cord exhibiting profound leakage of Evans blue and [131]Iodine-sodium tracers. Pre-treatment with H-290/51 markedly attenuated the trauma-induced cNOS and iNOS expression along with the microvascular permeability disturbances, edema formation and cell injury. These results suggest that (i) oxidative stress is involved in SCI induced induction of cNOS and iNOS, (ii) NO plays an important role in the cord pathology, and (iii) that the compound H-290/51 has a potential therapeutic value in SCI.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Neuroanatomy, Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
37
|
Sharma HS, Drieu K, Alm P, Westman J. Role of nitric oxide in blood-brain barrier permeability, brain edema and cell damage following hyperthermic brain injury. An experimental study using EGB-761 and Gingkolide B pretreatment in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:81-6. [PMID: 11450097 DOI: 10.1007/978-3-7091-6346-7_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The role of oxidative stress in hyperthermia induced upregulation of constitutive and inducible isoforms of nitric oxide synthase (NOS) in the central nervous system (CNS) was investigated using immunohistochemistry in a rat model. Exposure of rats to heat stress at 38 degrees C for 4 h resulted in marked upregulation of constitutive NOS (cNOS) and a mild but significant expression of inducible NOS (iNOS) in several brain regions exhibiting leakage of the blood-brain barrier (BBB), brain edema formation and cell injury. Pretreatment with the potent antioxidative compound EGB-761 or its constituent, Ginkgolide B significantly attenuated upregulation of cNOS and iNOS in the brain and also reduced the BBB permeability disturbances, brain edema and cell injury. These neuroprotective effects were most marked in the EGB-761 pretreated rats. Our observations strongly suggest that (i) EGB-761 and Ginkgolide B pretreatment offer significant neuroprotection in hyperthermic brain injury, (ii) upregulation of cNOS and iNOS are injurious to the cell and, (iii) oxidative stress plays an important role in NOS expression and cell injury.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Neuroanatomy, Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Seth P, Kumari R, Madhavan S, Singh AK, Mani H, Banaudha KK, Sharma SC, Kulshreshtha DK, Maheshwari RK. Prevention of renal ischemia-reperfusion-induced injury in rats by picroliv. Biochem Pharmacol 2000; 59:1315-22. [PMID: 10736432 DOI: 10.1016/s0006-2952(00)00268-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Picroliv is a potent antioxidant extracted from the roots and rhizome of Picrorhiza kurrooa. It has been shown to impart significant hepatoprotective activities, partly by modulation of free radical-induced lipid peroxidation. Lipid peroxidation and reactive oxygen species are associated with tissue injury in post-ischemic acute renal failure. The efficacy of picroliv was assessed in an in vivo model of renal ischemia-reperfusion injury (IRI) in rats at a dose of 12 mg/kg orally for 7 days. The animals were killed at various times after reperfusion. Increased lipid peroxidation and apoptotic cell number reflected the oxidative damage following renal IRI. Picroliv-pretreated rats exhibited lower lipid peroxidation, improved antioxidant status, and reduced apoptosis, indicating better viability of renal cells. Immunohistochemical studies revealed that picroliv pretreatment attenuated the expression of intercellular adhesion molecule-1 in the glomerular region. These results suggested that picroliv pretreatment protects rat kidneys from IRI, perhaps by modulation of free radical damage and adhesion molecules.
Collapse
Affiliation(s)
- P Seth
- Center for Combat Casualty Care and Life Sustainment Research, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Orendácová J, Marsala M, Sulla I, Kafka J, Jalc P, Cizková D, Taira Y, Marsala J. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 2000; 95:543-57. [PMID: 10658635 DOI: 10.1016/s0306-4522(99)00429-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Segmental and laminar distribution of Fos-like immunoreactive, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting and double-labeled (Fos-like immunoreactive and NADPHd-exhibiting) neurons was examined in lower lumbar and sacral segments of the dog spinal cord using the model of multiple cauda equina constrictions. NADPHd histochemistry was used as marker of nitric oxide synthase-containing neurons. The appearance and the time-course of Fos-like immunoreactive, NADPHd and double-labeled neurons was studied at 2 h and 8 h postconstriction characterized as the incipient phase of cauda equina syndrome. The occurrence of Fos-like immunoreactive and NADPHd-exhibiting neurons in fully developed cauda equina syndrome was studied at five days postconstriction. An increase in Fos-like immunoreactivity in superficial laminae (I-II) and an enhanced NADPHd staining of lamina VIII neurons were found. A statistically significant increase in Fos-like immunoreactive neurons was found in laminae I-II and VIII-X 8 h postconstriction, and in contrast, a prominent decrease in Fos-like immunoreactive neurons was found in laminae I-II, accompanied by a statistically significant increase in Fos-like immunoreactive neurons in more ventrally located laminae VII-X at five days postconstriction. Quantitative analysis of laminar distribution of constriction-induced NADPHd-exhibiting neurons revealed a considerable increase in these neurons in laminae VIII-IX 8 h postconstriction and a statistically highly significant increase in NADPHd-exhibiting neurons in laminae VII-X five days postconstriction. Concurrently, the number of NADPHd-exhibiting neurons in laminae I-II was greatly reduced. While a low number of double-labeled neurons was found throughout the gray matter of lower lumbar and sacral segments at 2 h postconstriction, a statistically significant number of double-labeled neurons was found in lamina X 8 h and in laminae VII-X five days postconstriction. The course and distribution of anterograde degeneration resulting five days after multiple cauda equina constrictions are compared with segmental and laminar distribution of Fos-like immunoreactive and NADPHd-exhibiting neurons. Prominent involvement of the spinal cord neurons appearing in the lumbosacral segments at the early beginning and in fully developed cauda equina syndrome results in a Fos-like immunoreactivity and strongly enhanced NADPHd staining of some neuronal pools. Under such circumstances, an early cauda equina decompression surgery is advisable aimed at decreasing or preventing the derangement of the neural circuits in the lumbosacral segments.
Collapse
Affiliation(s)
- J Orendácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Sharma H, Drieu K, Alm P, Westman J. Upregulation of neuronal nitric oxide synthase, edema and cell injury following heat stress are reduced by pretreatment with EGB-761 in the rat. J Therm Biol 1999. [DOI: 10.1016/s0306-4565(99)00080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Hedlund S, Sharma HS, Sjöquist PO, Westman J. A new antioxidant compound H-290/51 attenuates heat shock protein (HSP 72 kD) response, edema and cell injury following acute heat exposure. An experimental study using light and electron microscopy in the rat. J Therm Biol 1999. [DOI: 10.1016/s0306-4565(99)00057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Abstract
In studies of oxidative stress in sudden infant death syndrome (SIDS) there were two major findings: (1) During normal post-natal development, there was a gradual decline in the number of Cu/Zn superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) immunoreactive neurons in the hippocampus and parahippocampus gyrus in the brain; (2) The total number of immunoreactive neurons was elevated in SIDS victims compared to age-matched controls in infants 6 months of age and under (1). SOD and neuronal aging and degeneration in the hippocampus and neocortex were features of SIDS, Alzheimer's disease and Down's syndrome. In the SIDS study of infants from 3-6 months of age, the elevation of SOD in SIDS victims was significant, whereas no significant elevation of GSHPx was detected. An imbalance between SOD and GSHPx was said to be crucial in the prevention of toxicity of free radicals (1). Zinc-deficient cells cannot up-regulate gene expression of the scavenger enzymes SOD and GSHPx in cells exposed to high levels of superoxide and hydrogen peroxide (2). GSHPx coupled to reduced nicotine adenine diphosphate (NADPH) regenerating systems via glutathione reductase is virtually able to guarantee an effective protection of biological structures against oxidative attack (22). When the capacity of the cell to regenerate GSH is exceeded - primarily due to an insufficient supply of NADPH-oxidised glutathione (GSSG) is released from the cell and protein synthesis turns off (20). We hypothesize that the increased incidence of aging and neuronal death and increased incidence of SOD and GSHPx reactive neurons in early post-natal development indicates an increased up-regulation of gene expression of scavenger enzymes during high exposure to oxidative stress after birth. GSH-dependent peroxide metabolism is linked to the pentose phosphate shunt via NADPH-dependent glutathione reductase (GR). GSHPx is a selenium containing enzyme which together with catalase (CAT) SOD and vitamin E protects cells in the free radical chain. Zinc upregulates gene expression of these antioxidants.
Collapse
|
44
|
Boissel JP, Schwarz PM, Förstermann U. Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide 1999; 2:337-49. [PMID: 10100489 DOI: 10.1006/niox.1998.0189] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Of the three established isoforms of NO synthase, the gene for the neuronal-type enzyme (NOS I) is by far the largest and most complicated one. The genomic locus of the human NOS I gene is located on chromosome 12 and distributed over a region greater than 200 kb. The nucleotide sequence corresponding to the major neuronal mRNA transcript is encoded by 29 exons. The full-length open reading frame codes for a protein of 1434 amino acids with a predicted molecular weight of 160.8 kDa. However, both in rodents and in humans, multiple, tissue-specific or developmentally regulated NOS I mRNA transcripts have been reported. They arise from the initiation by different transcriptional units containing alternative promoters (at least eight in the human gene), cassette exon deletions or insertions, and/or the usage of alternate polyadenylation signals. Depending on the insertions and deletions, translation results in functional or nonfunctional proteins. The use of alternative promoters can influence gene expression by various means. Indeed, NOS I is not a static, constitutively expressed enzyme, but subject to expressional regulation by various compounds and conditions. The molecular mechanisms underlying these regulations are currently being studied in several laboratories including our own.
Collapse
Affiliation(s)
- J P Boissel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
45
|
Alm P, Sharma HS, Hedlund S, Sjöquist PO, Westman J. Nitric oxide in the pathophysiology of hyperthermic brain injury. Influence of a new anti-oxidant compound H-290/51. A pharmacological study using immunohistochemistry in the rat. Amino Acids 1999; 14:95-103. [PMID: 9871448 DOI: 10.1007/bf01345249] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The possibility that nitric oxide (NO) is involved in the pathophysiology of brain injury caused by heat stress (HS) was examined using neuronal nitric oxide synthase (NOS) immunohistochemistry in a rat model. In addition, to find out a role of oxidative stress in NOS upregulation and cell injury, the effect of a new antioxidant compound H-290/51 (Astra Hässle, Mölndal, Sweden) was examined in this model. Subjection of conscious young rats to 4 h HS in a biological oxygen demand (BOD) incubator at 38 degrees C resulted in a marked upregulation of NOS in many brain regions compared to control rats kept at room temperature (21 +/- 1 degree C). This NOS immunoreactivity was found mainly in distorted neurons located in the edematous regions not normally showing NOS activity. Breakdown of the blood-brain barrier (BBB) permeability, increase in brain water content and marked neuronal, glial and myelin reaction were common findings in several brain regions exhibiting upregulation of NOS activity. Pretreatment with H-290/51 significantly attenuated the upregulation of NOS in rats subjected to HS. In these animals breakdown of the BBB permeability, edema and cell changes were considerably reduced. Our results suggest that hyperthermic brain injury is associated with a marked upregulation of NOS activity in the CNS and this upregulation of NOS and concomitant cell injury can be reduced by prior treatment with an antioxidant compound H 290/51. These observations indicate that oxidative stress seems to be an important endogenous signals for NOS upregulation and cell reaction in hyperthermic brain injury.
Collapse
Affiliation(s)
- P Alm
- Department of Pathology, University Hospital, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
46
|
Gordh T, Sharma HS, Alm P, Westman J. Spinal nerve lesion induces upregulation of neuronal nitric oxide synthase in the spinal cord. An immunohistochemical investigation in the rat. Amino Acids 1999; 14:105-12. [PMID: 9871449 DOI: 10.1007/bf01345250] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The possibility nitric oxide (NO) is involved the neurodegenrative mechanisms in the spinal cord following a chronic peripheral nerve lesion was examined using NOS immunohistochemistry. Spinal nerve lesion at L-5 and L-6 level was produced according to the Chung model, a model of neuropathic pain and rats were allowed to survive for 8 weeks. In one group of animals L-NAME was given intraperitoneally (1-2 mg/kg, i.p. daily) for 6 weeks. Sham operated rats, in which the spinal nerve was exposed but not ligated, served as controls. Ligation of spinal nerves in rats resulted in an upregulation of NOS which was most pronounced in the ipsilateral gray matter of the spinal cord compared to the contralateral side. In these rats, ultrastructural investigations showed distorted neurons, membrane disruption and myelin vesiculation. Sham operated rats did not show either NOS upregulation or structural changes in the spinal cord. Pretreatment with L-NAME significantly reduced NOS upregulation and the structural changes in the spinal cord were less pronounced. These observations strongly indicate a putative role of NOS in the pathophysiology of chronic nerve lesion. Our results may provide a new strategy to treat chronic neuropathic pain or to minimise neurodegeneration in the patients suffering from such diseases of the nervous system.
Collapse
Affiliation(s)
- T Gordh
- Department of Anaesthesiology, University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
47
|
Sharma HS, Nyberg F, Westman J, Alm P, Gordh T, Lindholm D. Brain derived neurotrophic factor and insulin like growth factor-1 attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cord. An immunohistochemical study in the rat. Amino Acids 1999; 14:121-9. [PMID: 9871451 DOI: 10.1007/bf01345252] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The possibility that brain derived neurotrophic factor (BDNF) and insulin like growth factor-1 (IGF) induced neuroprotection is influenced by mechanisms involving nitric oxide was examined in a rat model of focal spinal cord injury. BDNF or IGF-I (0.1 microgram/10 microliters in phosphate buffer saline) was applied topically 30 min before injury on the exposed spinal cord followed by repeated doses of growth factors immediately before and 30 min after injury. Thereafter application of BDNF or IGF was carried out at every 1 h interval until sacrifice. Five hours after injury, the tissue pieces from the T9 segment were processed for nNOS immunostaining, edema and cell injury. Untreated injured rats showed a profound upregulation of nNOS which was most pronounced in the nerve cells of the ipsilateral side. A marked increase in the blood-spinal cord barrier (BSCB) permeability to 125I-albumin, water content and cell injury in these perifocal segments was also found. Pretreatment with BDNF and IGF significantly reduced the upregulation of nNOS in the spinal cord. This effect of the growth factors was most pronounced in the contralateral side. Rats treated with these neurotrophic factors showed much less signs of BSCB damage, edema and cell injury. These results suggest that BDNF and IGF pretreatment is neuroprotective in spinal cord injury and that these neurotrophic factors have the capacity to down regulate nNOS expression following trauma to the spinal cord. Our data provide new experimental evidences which suggest that BDNF and IGF may exert their potential neuroprotective effects probably via regulation of NOS activity.
Collapse
Affiliation(s)
- H S Sharma
- Department of Anatomy, University Hospital, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Förstermann U, Boissel J, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 1998. [DOI: 10.1096/fasebj.12.10.773] [Citation(s) in RCA: 460] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ulrich Förstermann
- Department of PharmacologyJohannes Gutenberg University Mainz D‐55101 Germany
| | - Jean‐Paul Boissel
- Department of PharmacologyJohannes Gutenberg University Mainz D‐55101 Germany
| | - Hartmut Kleinert
- Department of PharmacologyJohannes Gutenberg University Mainz D‐55101 Germany
| |
Collapse
|
49
|
Westman J, Sharma HS. Heat shock protein response in the central nervous system following hyperthermia. PROGRESS IN BRAIN RESEARCH 1998; 115:207-39. [PMID: 9632938 DOI: 10.1016/s0079-6123(08)62038-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Westman
- Department of Anatomy, Biomedical Centre, Uppsala University, Sweden
| | | |
Collapse
|
50
|
Sharma HS, Alm P, Westman J. Nitric oxide and carbon monoxide in the brain pathology of heat stress. PROGRESS IN BRAIN RESEARCH 1998; 115:297-333. [PMID: 9632941 DOI: 10.1016/s0079-6123(08)62041-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H S Sharma
- Department of Anatomy, Uppsala University, Sweden.
| | | | | |
Collapse
|