1
|
Gerbino KR, Borin JM, Ardell SM, Lee JJ, Corbett KD, Meyer JR. Bacteriophage Φ21's receptor-binding protein evolves new functions through destabilizing mutations that generate non-genetic phenotypic heterogeneity. Virus Evol 2024; 10:veae049. [PMID: 39170727 PMCID: PMC11336670 DOI: 10.1093/ve/veae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
How viruses evolve to expand their host range is a major question with implications for predicting the next pandemic. Gain-of-function experiments have revealed that host-range expansions can occur through relatively few mutations in viral receptor-binding proteins, and the search for molecular mechanisms that explain such expansions is underway. Previous research on expansions of receptor use in bacteriophage λ has shown that mutations that destabilize λ's receptor-binding protein cause it to fold into new conformations that can utilize novel receptors but have weakened thermostability. These observations led us to hypothesize that other viruses may take similar paths to expand their host range. Here, we find support for our hypothesis by studying another virus, bacteriophage 21 (Φ21), which evolves to use two new host receptors within 2 weeks of laboratory evolution. By measuring the thermodynamic stability of Φ21 and its descendants, we show that as Φ21 evolves to use new receptors and expands its host range, it becomes less stable and produces viral particles that are genetically identical but vary in their thermostabilities. Next, we show that this non-genetic heterogeneity between particles is directly associated with receptor use innovation, as phage particles with more derived receptor-use capabilities are more unstable and decay faster. Lastly, by manipulating the expression of protein chaperones during Φ21 infection, we demonstrate that heterogeneity in receptor use of phage particles arises during protein folding. Altogether, our results provide support for the hypothesis that viruses can evolve new receptor-use tropisms through mutations that destabilize the receptor-binding protein and produce multiple protein conformers.
Collapse
Affiliation(s)
- Krista R Gerbino
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Joshua M Borin
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Sarah M Ardell
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin J Lee
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| |
Collapse
|
2
|
Azadpour B, Aharipour N, Paryab A, Omid H, Abdollahi S, Madaah Hosseini H, Malek Khachatourian A, Toprak MS, Seifalian AM. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. BIOMATERIALS ADVANCES 2023; 154:213657. [PMID: 37844415 DOI: 10.1016/j.bioadv.2023.213657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.
Collapse
Affiliation(s)
- Behnam Azadpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nazli Aharipour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Alberta, Canada
| | | | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
3
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
5
|
Wang C, Du F. Preparation, characterization, and sonodynamic antitumor effect of the folate receptor targeted FA-EN-β-CD containing hematoporphyrin in vitro. Drug Dev Res 2020; 81:585-592. [PMID: 32163191 DOI: 10.1002/ddr.21657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022]
Abstract
To improve water solubility, reduce phototoxicity and increase the tumor-targeting ability of hematoporphyrin (Hp) as a sonosensitizer for sonodynamic therapy under ultrasonic conditions, a novel folate receptor (FR)-targeted, folate-conjugated ethylenediamine-β-cyclodextrin (FA-EN-β-CD) containing Hp (FA-EN-β-CD-Hp) was constructed. β-Cyclodextrin containing Hp (β-CD-Hp) was also established as a nontargeted control. The inclusion efficiencies of Hp in FA-EN-β-CD-Hp and β-CD-Hp were determined to be 90.4 ± 2.7% (wt/wt) and 92.5 ± 3.4% (wt/wt), respectively. Growth inhibition rates in HepG-2 cells in vitro were assessed upon ultrasound exposure. The results indicated that the growth inhibition rates of FA-EN-β-CD-Hp, β-CD-Hp, and F-Hp (Hp: 150 μg/ml) reached 96.4 ± 3.6%, 53.4 ± 3.4%, and 48.2 ± 2.8%, respectively. These results indicated that FA-EN-β-CD-Hp is a promising drug delivery system in the field of sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Chuanjin Wang
- Department of Pharmaceutical and Fine Chemicals, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Fuqiang Du
- Department of Pharmaceutical and Fine Chemicals, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Abstract
Tumor-selectively replicating "oncolytic" adenoviruses based on serotype 5 are promising tools for the treatment of solid tumors. However, their effective delivery to the tumor by systemic administration remains challenging. Several strategies of molecular retargeting have been pursued to equip adenoviruses with molecular features that facilitate their efficient uptake by tumors and to protect healthy tissue from damage. Transductional retargeting can be conveniently achieved using bispecific molecular adapter proteins based on the ectodomain of the coxsackievirus and adenovirus receptor linked to tumor ligands of choice. In this chapter, we describe methods for their design, purification, and application.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Lozano E, Macias RIR, Monte MJ, Asensio M, Del Carmen S, Sanchez-Vicente L, Alonso-Peña M, Al-Abdulla R, Munoz-Garrido P, Satriano L, O'Rourke CJ, Banales JM, Avila MA, Martinez-Chantar ML, Andersen JB, Briz O, Marin JJG. Causes of hOCT1-Dependent Cholangiocarcinoma Resistance to Sorafenib and Sensitization by Tumor-Selective Gene Therapy. Hepatology 2019; 70:1246-1261. [PMID: 30972782 DOI: 10.1002/hep.30656] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib.
Collapse
Affiliation(s)
- Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Sofia Del Carmen
- Salamanca University Hospital, IBSAL, University of Salamanca, Salamanca, Spain
| | - Laura Sanchez-Vicente
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Marta Alonso-Peña
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Patricia Munoz-Garrido
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesus M Banales
- Department of Hepatology and Gastroenterology, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Matias A Avila
- Hepatology Programme, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Laboratory, CIC bioGUNE, Technology Park of Vizcaya, Vizcaya, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
8
|
Sato-Dahlman M, Yamamoto M. The Development of Oncolytic Adenovirus Therapy in the Past and Future - For the Case of Pancreatic Cancer. Curr Cancer Drug Targets 2019; 18:153-161. [PMID: 28228084 DOI: 10.2174/1568009617666170222123925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is an aggressive malignant disease and the efficacy of current treatments for unresectable diseases is quite limited despite recent advances. Gene therapy /virotherapy strategies may provide new options for the treatment of various cancers including pancreatic cancer. Oncolytic adenovirus shows an antitumoral effect via its intratumoral amplification and strong cytocidal effect in a variety of cancers and it has been employed for the development of potent oncolytic virotherapy agents for pancreatic cancer. Our ultimate goal is to develop an oncolytic adenovirus enabling the treatment of patients with advanced or spread diseases by systemic injection. Systemic application of oncolytic therapy mandates more efficient and selective gene delivery and needs to embody sufficient antitumor effect even with limited initial delivery to the tumor location. In this review, the current status of oncolytic adenoviruses from the viewpoints of vector design and potential strategies to overcome current obstacles for its clinical application will be described. We will also discuss the efforts to improve the antitumor activity of oncolytic adenovirus, in in vivo animal models, and the combination therapy of oncolytic adenovirus with radiation and chemotherapy.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| | - Masato Yamamoto
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| |
Collapse
|
9
|
Sato-Dahlman M, Wirth K, Yamamoto M. Role of Gene Therapy in Pancreatic Cancer-A Review. Cancers (Basel) 2018; 10:E103. [PMID: 29614005 PMCID: PMC5923358 DOI: 10.3390/cancers10040103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) has remained essentially unchanged for decades and its relative contribution to overall cancer death is projected to only increase in the coming years. Current treatment for PDAC includes aggressive chemotherapy and surgical resection in a limited number of patients, with median survival of optimal treatment rather dismal. Recent advances in gene therapies offer novel opportunities for treatment, even in those with locally advanced disease. In this review, we summarize emerging techniques to the design and administration of virotherapy, synthetic vectors, and gene-editing technology. Despite these promising advances, shortcomings continue to exist and here will also be highlighted those approaches to overcoming obstacles in current laboratory and clinical research.
Collapse
Affiliation(s)
| | - Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Surgery BTR, MMC 195, 8195F, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:609-618. [DOI: 10.1016/j.msec.2017.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
|
11
|
Abstract
Gene therapy has been proposed as a means to combat cancer. However, systemic toxicity observed in preclinical trials suggested the importance of selectively targeted delivery and inducible gene expression in tumor tissues. Discovery of radiation-inducible promoter sequences provides one way to minimize inadvertent toxicity from gene therapy in normal tissues. Radiation is administered to selectively induce cytotoxic gene expression in the targeted tumor tissues. With promising results from phase II clinical trials using TNF-expressing adenovirus, it is possible to have radiation-guided gene therapy regimes once the tumor-targeted delivery has been achieved. Tumor endothelium is an attractive biological target for gene therapy, because it has the advantage of stability, accessibility, and bioavailability for therapeutic agents. Technological development of DNA microarray, proteomic profiling, and phage-displayed libraries accelerates the identification of tumor-specific endothelial biomarkers and discovery of its relevant affinity reagents for targeted delivery. The application of radiation-guided gene delivery, its amplification, as well as expression of gene therapy presents great opportunities to be employed as an alternative cancer treatment.
Collapse
Affiliation(s)
- Zhaozhong Han
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, 1161 21st Ave. South, Nashville, TN 37232, USA
| | | | | |
Collapse
|
12
|
Kim JW, Young JS, Solomaha E, Kanojia D, Lesniak MS, Balyasnikova IV. A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors. Sci Rep 2015; 5:18133. [PMID: 26656559 PMCID: PMC4677343 DOI: 10.1038/srep18133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10−9 M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies.
Collapse
Affiliation(s)
- Julius W Kim
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Solomaha
- Biophysics Core Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
13
|
Chen Y, Minh LV, Liu J, Angelov B, Drechsler M, Garamus VM, Willumeit-Römer R, Zou A. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf B Biointerfaces 2015; 140:74-82. [PMID: 26741267 DOI: 10.1016/j.colsurfb.2015.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023]
Abstract
Bioavailability of baicalin (BAI), an example of traditional Chinese medicine, has been modified by loading into liposome. Several liposome systems of different composition i.e., lipid/cholesterol (L), long-circulating stealth liposome (L-PEG) and folate receptor (FR)-targeted liposome (L-FA) have been used as the drug carrier for BAI. The obtained liposomes were around 80 nm in diameter with proper zeta potentials about -25 mV and sufficient physical stability in 3 months. The entrapment efficiency and loading efficiency of BAI in the liposomes were 41.0-46.4% and 8.8-10.0%, respectively. The morphology details of BAI lipsosome systems i.e., formation of small unilamellar vesicles, have been determined by cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). In vitro cytotoxicity of BAI liposomes against HeLa cells was evaluated by MTT assay. BAI loaded FR-targeted liposomes showed higher cytotoxicity and cellular uptake compared with non-targeted liposomes. The results suggested that L-FA-BAI could enhance anti-tumor efficiency and should be an effective FR-targeted carrier system for BAI delivery.
Collapse
Affiliation(s)
- Yiyin Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Le Van Minh
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, PR China; NTT Institute of Hi-Technology (NIH), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Borislav Angelov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, CZ-16206 Prague, Czech Republic
| | - Markus Drechsler
- Laboratory for Soft Matter Electron Microscopy, Bayreuth Institute of Macromolecular Research (BIMF), University of Bayreuth, D-95440, Bayreuth, Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coast Research, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coast Research, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Aihua Zou
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
14
|
Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Morshed RA, Miska J, Ahmed AU, Balyasnikova IV, Han Y, Zhang L, Curiel DT, Lesniak MS. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Hum Gene Ther 2015; 26:635-46. [PMID: 26058317 DOI: 10.1089/hum.2015.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.
Collapse
Affiliation(s)
- Julius W Kim
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - J Robert Kane
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jacob S Young
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Alan L Chang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Deepak Kanojia
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Ramin A Morshed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jason Miska
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Atique U Ahmed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Irina V Balyasnikova
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Yu Han
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Lingjiao Zhang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - David T Curiel
- 2 Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Maciej S Lesniak
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| |
Collapse
|
15
|
Novel subventricular zone early progenitor cell-specific adenovirus for in vivo therapy of central nervous system disorders reinforces brain stem cell heterogeneity. Brain Struct Funct 2015; 221:2049-59. [PMID: 25761931 DOI: 10.1007/s00429-015-1025-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/04/2015] [Indexed: 10/25/2022]
Abstract
Neural stem/progenitor cells (NSPCs) have the potential to self-renew and to generate all neural lineages as well as to repopulate damaged areas in the brain. Our previous targeting strategies have indicated precursor cell heterogeneity between different brain regions that warrants the development of NSPC-specific delivery vehicles. Here, we demonstrate a target-specific adenoviral vector system for the in vivo manipulation of progenitor cells in the subventricular zone of the adult mouse brain. For this purpose, we identified a series of peptide ligands via phage display. The peptide with the highest affinity, SNQLPQQ, was expressed in conjunction with a bispecific adaptor molecule. To verify the targeting potential of the specific peptide, green fluorescent protein-expressing Ad vectors were coupled with the adaptor molecule and injected into the subventricular region of adult mice by stereotaxic surgery. An efficient and selective transduction of NSPCs in the SVZ was achieved, whereas hippocampal NSPCs were negative. Our results offer an expeditious and simple tool to produce retargeted viral vectors for a specific and direct in vivo manipulation of these progenitor cells. This powerful technique provides an opportunity to develop innovative strategies and express therapeutic genes in specific types of neural progenitor cells to allow success in treatment of brain disorders.
Collapse
|
16
|
Gu L, Krendelchtchikova V, Krendelchtchikov A, Oster RA, Fujihashi K, Matthews QL. A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the "Antigen Capsid-Incorporation" strategy. Virol J 2014; 11:112. [PMID: 24935650 PMCID: PMC4065546 DOI: 10.1186/1743-422x-11-112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background Due to potential advantages, human adenoviral vectors have been evaluated pre-clinically as recombinant vaccine vectors against several cancers and infectious diseases, including human immunodeficiency virus (HIV) infection. The V3 loop of HIV-1 glycoprotein 120 (gp120) contains important neutralizing epitopes and plays key roles in HIV entry and infectivity. Methods In order to investigate the humoral immune response development against portions of the V3 loop, we sought to generate four versions of adenovirus (Ad)-based V3 vectors by incorporating four different antigen inserts into the hypervariable region 1 (HVR1) of human adenovirus type 5 (hAd5) hexon. The strategy whereby antigens are incorporated within the adenovirus capsid is known as the “Antigen Capsid-Incorporation” strategy. Results Of the four recombinant vectors, Ad-HVR1-lgs-His6-V3 and Ad-HVR1-long-V3 had the capability to present heterologous antigens on capsid surface, while maintaining low viral particle to infectious particle (VP/IP) ratios. The VP/IP ratios indicated both high viability and stability of these two vectors, as well as the possibility that V3 epitopes on these two vectors could be presented to immune system. Furthermore, both Ad-HVR1-lgs-His6-V3 and Ad-HVR1-long-V3 could, to some extent escape the neutralization by anti-adenovirus polyclonal antibody (PAb), but rather not the immunity by anti-gp120 (902) monoclonal antibody (MAb). The neutralization assay together with the whole virus enzyme-linked immunosorbent assay (ELISA) suggested that these two vectors could present V3 epitopes similar to the natural V3 presence in native HIV virions. However, subsequent mice immunizations clearly showed that only Ad-HVR1-lgs-His6-V3 elicited strong humoral immune response against V3. Isotype ELISAs identified IgG2a and IgG2b as the dominant IgG isotypes, while IgG1 comprised the minority. Conclusions Our findings demonstrated that human adenovirus (hAd) vectors which present HIV antigen via the “Antigen Capsid-Incorporation” strategy could successfully elicit antigen-specific humoral immune responses, which could potentially open an avenue for the development of Ad-based HIV V3 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiana L Matthews
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 2014; 6:1540-63. [PMID: 24699364 PMCID: PMC4014709 DOI: 10.3390/v6041540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors.
Collapse
|
18
|
Davydova J, Yamamoto M. Oncolytic adenoviruses: design, generation, and experimental procedures. ACTA ACUST UNITED AC 2014; Chapter 12:Unit 12.14. [PMID: 23853080 DOI: 10.1002/0471142905.hg1214s78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncolytic adenoviruses are designed to take advantage of the virus' native ability to replicate in cancer cells to induce oncolysis. Subsequently, the released viral progeny spread and kill the neighboring cancer cells. These characteristics, together with the ability of adenovirus to infect a broad spectrum of cells, its well understood replication machinery, and relative ease of manufacture have led to the intensive use of adenovirus as an anticancer agent. This unit describes cloning strategies, procedures to turn the intended design into virus, and quality analyses of resultant adenoviral vectors. Most of these procedures were optimized especially for oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Julia Davydova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
19
|
Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, Friedlander P, Ruby CE, Saenger Y, Kaufman HL. Oncolytic virus therapy for cancer. Oncolytic Virother 2013; 2:31-46. [PMID: 27512656 DOI: 10.2147/ov.s38901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers.
Collapse
Affiliation(s)
- Joe Goldufsky
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Shanthi Sivendran
- Department of Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA
| | - Sara Harcharik
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Michael Pan
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Sebastian Bernardo
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Richard H Stern
- Department of Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Philip Friedlander
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Carl E Ruby
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| | - Yvonne Saenger
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Howard L Kaufman
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
20
|
Reetz J, Genz B, Meier C, Kowtharapu BS, Timm F, Vollmar B, Herchenröder O, Abshagen K, Pützer BM. Development of Adenoviral Delivery Systems to Target Hepatic Stellate Cells In Vivo. PLoS One 2013; 8:e67091. [PMID: 23825626 PMCID: PMC3688967 DOI: 10.1371/journal.pone.0067091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 05/15/2013] [Indexed: 12/19/2022] Open
Abstract
Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp.
Collapse
Affiliation(s)
- Julia Reetz
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical School, Rostock, Germany
| | - Berit Genz
- Institute for Experimental Surgery, Rostock University Medical School, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical School, Rostock, Germany
| | - Bhavani S. Kowtharapu
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical School, Rostock, Germany
| | - Franziska Timm
- Institute for Experimental Surgery, Rostock University Medical School, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical School, Rostock, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical School, Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, Rostock University Medical School, Rostock, Germany
- * E-mail:
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical School, Rostock, Germany
| |
Collapse
|
21
|
Abstract
Cystic fibrosis (CF) is a common lethal genetic disorder that affects all ethnic populations; however, it is most prevalent in Caucasians. Intensive basic research over the last 20 years has resulted in a wealth of information regarding the CF gene, its protein product and the mutational basis of disease. This increased understanding has lead to the development of gene therapy for the treatment of CF pulmonary disease. Delivery of the CF gene to the airway requires direct in vivo transfer using vectors encoding for normal CF transmembrane regulator (CFTR) protein. Several vectors are currently available for CF gene transfer and include both viral (adenoviruses, adeno-associated viruses) and non-viral (liposomal) systems. Initial clinical trials with each of these vectors have demonstrated that gene transfer to the CF airway is possible. The efficiency of transfer and duration of expression, however, have been limited. The effects of gene transfer on correction of the basic ion transport defects have also been highly variable and inconsistent, irrespective of the vector. Currently, the risk of severe immunological reactions is the primary factor limiting the clinical advancement of gene therapy. Both the adenoviral and liposomal vectors are associated with significant acute inflammatory reactions. The adenoviruses and adeno-associated viruses also elicit humoral immune responses that significantly reduce the efficiency of transgene expression and increase the risk of readministration. Several strategies are under investigation to improve the efficiency of gene transfer to the CF airway. These include overcoming local barriers in the lung, circumventing the immune response and improving vector internalization and/or uptake. Application of gene transfer in the child and possibly the fetus are also potential future clinical applications of gene therapy. However, despite considerable research with gene therapy, there is little evidence to suggest that a well tolerated and effective gene transfer method is imminent and aggressive use of conventional pharmacological therapies currently offer the greatest promise in the treatment of patients with CF.
Collapse
Affiliation(s)
- Mary Jayne Kennedy
- Division of Pediatric Clinical Pharmacology and Medical Toxicology, The Children's Mercy Hospital and Clinics,Kansas City, Missouri, USA.
| |
Collapse
|
22
|
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat Rev 2012; 38:868-76. [PMID: 22800735 DOI: 10.1016/j.ctrv.2012.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023]
Abstract
The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.
Collapse
Affiliation(s)
- Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
23
|
Wang D, Liu S, Mao Q, Zhao J, Xia H. A novel vector for a rapid generation of fiber-mutant adenovirus based on one step ligation and quick screening of positive clones. J Biotechnol 2011; 152:72-6. [DOI: 10.1016/j.jbiotec.2011.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/26/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
|
24
|
Matthews QL. Capsid-incorporation of antigens into adenovirus capsid proteins for a vaccine approach. Mol Pharm 2010; 8:3-11. [PMID: 21047139 DOI: 10.1021/mp100214b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Some viral vectors are potent inducers of cellular and humoral responses; therefore, viral vectors can be used to vaccinate against cancer or infectious diseases. This report will focus on adenovirus (Ad)-based vectors. Traditional viral-vector vaccination embodies the concept that the vector uses the host-cell machinery to express antigens that are encoded as transgenes within the viral vector. Several preclinical successes have used this approach in animal model systems. However, in some instances, these conventional Ad-based vaccines have yielded suboptimal clinical results. These suboptimal results are ascribed, in part, to preexisting Ad serotype 5 (Ad5) immunity. To address this issue, the "antigen capsid-incorporation" strategy has been developed to circumvent the drawbacks associated with conventional transgene expression of antigens by Ad vectors. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. Incorporating immunogenic peptides into the Ad capsid offers potential advantages. Importantly, vaccination by means of the antigen capsid-incorporated approach results in a strong humoral response, similar to the response generated by native Ad capsid proteins. This strategy also allows for the boosting of antigenic specific responses. This strategy may be the way forward for improved vaccine schemes, especially for those infections requiring a strong humoral antigenic response.
Collapse
Affiliation(s)
- Qiana L Matthews
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, the Gene Therapy Center, and Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
25
|
Matthews QL, Fatima A, Tang Y, Perry BA, Tsuruta Y, Komarova S, Timares L, Zhao C, Makarova N, Borovjagin AV, Stewart PL, Wu H, Blackwell JL, Curiel DT. HIV antigen incorporation within adenovirus hexon hypervariable 2 for a novel HIV vaccine approach. PLoS One 2010; 5:e11815. [PMID: 20676400 PMCID: PMC2910733 DOI: 10.1371/journal.pone.0011815] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 06/27/2010] [Indexed: 11/18/2022] Open
Abstract
Adenoviral (Ad) vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. However, in some cases these conventional Ad-based vaccines have had sub-optimal clinical results. These sub-optimal results are attributed in part to pre-existing Ad serotype 5 (Ad5) immunity. In order to circumvent the need for antigen expression via transgene incorporation, the “antigen capsid-incorporation” strategy has been developed and used for Ad-based vaccine development in the context of a few diseases. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. The major capsid protein hexon has been utilized for these capsid incorporation strategies due to hexon's natural role in the generation of anti-Ad immune response and its numerical representation within the Ad virion. Using this strategy, we have developed the means to incorporate heterologous peptide epitopes specifically within the major surface-exposed domains of the Ad capsid protein hexon. Our study herein focuses on generation of multivalent vaccine vectors presenting HIV antigens within the Ad capsid protein hexon, as well as expressing an HIV antigen as a transgene. These novel vectors utilize HVR2 as an incorporation site for a twenty-four amino acid region of the HIV membrane proximal ectodomain region (MPER), derived from HIV glycoprotein gp41 (gp41). Our study herein illustrates that our multivalent anti-HIV vectors elicit a cellular anti-HIV response. Furthermore, vaccinations with these vectors, which present HIV antigens at HVR2, elicit a HIV epitope-specific humoral immune response.
Collapse
Affiliation(s)
- Qiana L. Matthews
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Aiman Fatima
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yizhe Tang
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Vision Science Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brian A. Perry
- Davidson College, Davidson, North Carolina, United States of America
| | - Yuko Tsuruta
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Svetlana Komarova
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura Timares
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chunxia Zhao
- Emory University, Atlanta, Georgia, United States of America
| | | | - Anton V. Borovjagin
- Institute of Oral Health Research, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, United States of America
| | - Phoebe L. Stewart
- Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hongju Wu
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Oncolytic adenoviruses (Ads) constitute a promising new class of anticancer agent. They are based on the well-studied adenoviral vector system, which lends itself to concept-driven design to generate oncolytic variants. The first oncolytic Ad was approved as a drug in China in 2005, although clinical efficacy observed in human trials has failed to reach the high expectations that were based on studies in animal models. Current obstacles to the full realization of efficacy of this class of anticancer agent include (i) limited efficiency of infection and specific replication in tumor cells, (ii) limited vector spread within the tumor, (iii) imperfect animal models and methods of in vivo imaging, and (iv) an incomplete understanding of the interaction of these agents with the host. In this review, we discuss recent advances in the field of oncolytic Ads and potential ways to overcome current obstacles to their clinical application and efficacy.
Collapse
|
27
|
Franzen S, Lommel SA. Targeting cancer with 'smart bombs': equipping plant virus nanoparticles for a 'seek and destroy' mission. Nanomedicine (Lond) 2009; 4:575-88. [PMID: 19572822 DOI: 10.2217/nnm.09.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article discusses plant virus nanoparticles as a weapon in the war on cancer. The successes and failures of numerous nanoparticle strategies are discussed as a background to consideration of the plant virus nanoparticle approach. To have therapeutic benefit, the advantages of the targeted nanoparticle must outweigh the problems of colloidal stability, uptake by the reticuloendothelial system as well as the requirement for clearance from the body. Biodegradable nanoparticles are considered to have the most promise to address these complex phenomena. After justifying the choice of biodegradable particles, the article focuses on comparison of micelles, liposomes, polymers and modified plant viruses. The structural uniformity, cargo capacity, responsive behavior and ease of manufacturing of plant virus nanoparticles are unique properties that suggest they have a wider role to play in targeted therapy. The loading of chemotherapeutic cargo is discussed, with specific reference to the advantage of reversible transitions of the capsid of Red clover necrotic mosaic virus. These features will be contrasted and compared with other biodegradable 'smart bombs' that target cancer cells.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
28
|
Abstract
OBJECTIVES The clinical applicability of adenovirus-mediated gene therapy is limited by the lack of tumor-targeted strategies. Ubiquitous expression of the coxsackie-adenovirus receptor, the native binding site for adenovirus, broadens viral tropism and increases systemic toxicity. Adenoviruses can be genetically engineered to target tumor-specific cell surface biomarkers. Here, we present a novel recombinant adenovirus vector (Ad5-Flag-LDS) that demonstrated a marked targeting bias against Hsp47, a biomarker for head and neck squamous cell carcinoma (HNSCC). METHODS Cell surface expression of Hsp47 was determined in six human HNSCC cell lines and in negative and positive control cells. Colocalization of LDS and Hsp47 was assessed by immunocytochemistry in Ad5-Flag-LDS-transfected cells, and subsequent transgene expression was determined. The contribution of the Hsp47 biomarker in mediating targeted gene transfer was evaluated with a blocking assay. Ad5-Flag-LDS-targeting efficacy in a mixed cell population was determined by immunofluorescence. RESULTS HNSCC cells had significantly higher Hsp47 biomarker density than control cell lines. After Ad5-Flag-LDS transfection, significant colocalization was found between the LDS peptide and Hsp47 biomarker, indicating that viral entry occurred via Hsp47-LDS binding. This unique tumor-targeted entry feature significantly enhanced gene transfer relative to an untargeted adenoviral vector. Blockade of Hsp47 biomarkers abrogated transgene expression, indicating that Hsp47 has a dominant role in Ad5-Flag-LDS targeting. Ad5-Flag-LDS-targeting selectivity was maintained in a cell mixture, producing greater transgene expression in Hsp47-expressing cells. CONCLUSIONS The enhanced targeting achieved with Ad5-Flag-LDS highlights a potential strategy for clinically applicable targeted gene therapy against HNSCC or any tumor type expressing Hsp47.
Collapse
|
29
|
Wu H, Curiel DT. Fiber-modified adenoviruses for targeted gene therapy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 434:113-32. [PMID: 18470642 DOI: 10.1007/978-1-60327-248-3_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human adenovirus serotype 5 (Ad5) has been widely explored as a gene delivery vector. To achieve highly efficient and specific gene delivery, it is often necessary to re-direct Ad5 tropism. Because the capsid protein fiber plays an essential role in directing Ad5 infection, our laboratory attempted to re-target Ad5 through fiber modification. We have developed two strategies in this regard. One is a bi-specific adaptor protein strategy, in which the adaptor protein is designed to bind both the Ad5 fiber and an alternative cell-surface receptor. Another is genetic modification, in which alternative targeting motifs are genetically incorporated into the fiber knob domain so that the Ad5 vectors can infect cells through the alternative receptors. In this chapter, we will focus on the genetic fiber modification strategy and provide a detailed protocol for generation of fiber-modified Ad5 vectors. A series of techniques/procedures used in our laboratory will be described, which include the generation of fiber-modified Ad5 genome by homologous recombination in a bacterial system, rescuing the modified Ad5 viruses, virus amplification and purification, and virus titration.
Collapse
Affiliation(s)
- Hongju Wu
- Division of Human Gene Therapy, Department of Obstetrics and Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
30
|
Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm 2007; 356:29-36. [PMID: 18258394 DOI: 10.1016/j.ijpharm.2007.12.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/06/2007] [Accepted: 12/19/2007] [Indexed: 12/20/2022]
Abstract
Folate receptors (FRs) have been identified as cellular surface markers for cancer and leukemia. Liposomes containing lipophilic derivatives of folate have been shown to effectively target FR-expressing cells. Here, we report the synthesis of a novel lipophilic folate derivative, folate-polyethylene glycol-cholesterol hemisuccinate (F-PEG-CHEMS), and its evaluation as a targeting ligand for liposomal doxorubicin (L-DOX) in FR-expressing cells. Liposomes containing F-PEG-CHEMS, with a mean diameter of 120+/-20 nm, were synthesized by polycarbonate membrane extrusion and were shown to have excellent colloidal stability. The liposomes were taken up selectively by KB cells, which overexpress FR-alpha. Compared to folate-PEG-cholesterol (F-PEG-Chol), which contains a carbamate linkage, F-PEG-CHEMS better retained its FR-targeting activity during prolonged storage. In addition, F-PEG-CHEMS containing liposomes loaded with DOX (F-L-DOX) showed greater cytotoxicity (IC(50)=10.0muM) than non-targeted control L-DOX (IC(50)=57.5 microM) in KB cells. In ICR mice, both targeted and non-targeted liposomes exhibited long circulation properties, although F-L-DOX (t(1/2)=12.34 h) showed more rapid plasma clearance than L-DOX (t(1/2)=17.10h). These results suggest that F-PEG-CHEMS is effective as a novel ligand for the synthesis of FR-targeted liposomes.
Collapse
Affiliation(s)
- Guangya Xiang
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | | | | | | | | |
Collapse
|
31
|
Segura-Pacheco B, Avalos B, Rangel E, Velazquez D, Cabrera G. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. GENETIC VACCINES AND THERAPY 2007; 5:10. [PMID: 17892546 PMCID: PMC2174455 DOI: 10.1186/1479-0556-5-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Background The presence of CAR in diverse tumor types is heterogeneous with implications in tumor transduction efficiency in the context of adenoviral mediated cancer gene therapy. Preliminary studies suggest that CAR transcriptional regulation is modulated through histone acetylation and not through promoter methylation. Furthermore, it has been documented that the pharmacological induction of CAR using histone deacetylase inhibitor (iHDAC) compounds is a viable strategy to enhance adenoviral mediated gene delivery to cancer cells in vitro. The incorporation of HDAC drugs into the overall scheme in adenoviral based cancer gene therapy clinical trials seems rational. However, reports using compounds with iHDAC properties utilized routinely in the clinic are pending. Valproic acid, a short chained fatty acid extensively used in the clinic for the treatment of epilepsy and bipolar disorder has been recently described as an effective HDAC inhibitor at therapeutic concentrations. Methods We studied the effect of valproic acid on histone H3 and H4 acetylation, CAR mRNA upregulation was studied using semiquantitative PCR and adenoviral transduction on HeLa cervical cancer cells, on MCF-7 breast cancer cells, on T24 transitional cell carcinoma of the bladder cells. CAR mRNA was studied using semiquantitative PCR on tumor tissue extracted from patients diagnosed with cervical cancer treated with valproic acid. Results CAR upregulation through HDAC inhibition was observed in the three cancer cell lines with enhancement of adenoviral transduction. CAR upregulation was also observed in tumor samples obtained from patients with cervical cancer treated with therapeutic doses of valproic acid. These results support the addition of the HDAC inhibitor valproic acid to adenoviral mediated cancer gene therapy clinical trials to enhance adenoviral mediated gene delivery to the tumor cells.
Collapse
Affiliation(s)
- Blanca Segura-Pacheco
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Berenice Avalos
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Edgar Rangel
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Dora Velazquez
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gustavo Cabrera
- Vectorology and Gene Therapy Laboratory, National Cancer Institute, Av. San Fernando No 22, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
32
|
Dietze A, Bonsted A, Høgset A, Berg K. Photochemical Internalization Enhances the Cytotoxic Effect of the Protein Toxin Gelonin and Transgene Expression in Sarcoma Cells ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780283pietce2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Abbosh PH, Li X, Li L, Gardner TA, Kao C, Nephew KP. A conditionally replicative, Wnt/beta-catenin pathway-based adenovirus therapy for anaplastic thyroid cancer. Cancer Gene Ther 2007; 14:399-408. [PMID: 17218945 DOI: 10.1038/sj.cgt.7701024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thyroid cancer affects between 10,000 and 15,000 people per year in the US. Typically, this disease can be controlled with surgical resection and radioiodide treatment. However, resistance to these conventional therapies is observed in some patients, who develop intractable anaplastic thyroid cancer (ATC), for which no effective therapies exist. Recently, a sizable fraction of undifferentiated or poorly differentiated thyroid cancers were shown to contain mutations in beta-catenin, an oncogenic protein involved in the etiology of cancers of many tissues. We developed a conditionally replicative adenovirus (named 'HILMI') which, by virtue of TCF response elements drives E1A and E1B expression, replicates specifically in cells with an active Wnt/beta-catenin pathway. We show that several thyroid cancer cell lines, derived from undifferentiated or anaplastic tissues and possessing an active Wnt/beta-catenin pathway, are susceptible to cell killing by HILMI. Furthermore, viral replication in ATC cells as xenograft tumors in nude mice was observed, and prolonged survival of mice with ATC tumors was observed following administration of the HILMI therapeutic vector. The results warrant further development of this therapeutic approach for ATC patients.
Collapse
Affiliation(s)
- P H Abbosh
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
34
|
Li J, Lad S, Yang G, Luo Y, Iacobelli-Martinez M, Primus FJ, Reisfeld RA, Li E. Adenovirus fiber shaft contains a trimerization element that supports peptide fusion for targeted gene delivery. J Virol 2006; 80:12324-31. [PMID: 17020947 PMCID: PMC1676309 DOI: 10.1128/jvi.01331-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development.
Collapse
Affiliation(s)
- Jiali Li
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lord R, Parsons M, Kirby I, Beavil A, Hunt J, Sutton B, Santis G. Analysis of the interaction between RGD-expressing adenovirus type 5 fiber knob domains and alphavbeta3 integrin reveals distinct binding profiles and intracellular trafficking. J Gen Virol 2006; 87:2497-2505. [PMID: 16894187 DOI: 10.1099/vir.0.81620-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Adenovirus (Ad) vectors are used widely for experimental and therapeutic gene transfer. Ad-mediated gene delivery is often inefficient and, thus, there is considerable interest in developing Ad vectors that overcome biological barriers to efficient virus uptake. For this strategy to succeed, it is imperative that the interaction between such Ad vectors and their novel receptors is well understood. In this study, three surface-exposed loops (HI, CD and IJ loops) on the Ad5 fiber knob domain were selected as sites for insertion of an alphavbeta3 integrin-binding RGD sequence. Three RGD-containing Ad5 fiber knob-domain mutants were produced as recombinant proteins and all were shown to interact with soluble alphavbeta3 integrin by using biomolecular cell-free assays. Cell adsorption and subsequent internalization and intracellular trafficking of each of these proteins were assessed by confocal microscopy. Whilst the Ad5 fiber knob domain expressing the RGD sequence in the HI and CD loops bound with similar association and dissociation profiles, the fiber knob domain expressing the RGD sequence in the IJ loop bound with slower association and faster dissociation rates. By using molecular modelling, it was shown that the Ad5 fiber knob domain in which the RGD peptide was expressed in the IJ loop was only capable of binding to one alphavbeta3 integrin molecule per trimer. In contrast, fiber knob domains in which the RGD peptide was expressed in the HI and CD loops were capable of binding to one integrin molecule per monomer. These differences in the interactions between each mutant and alphavbeta3 may explain our observation that the three RGD-bearing Ad5 fiber knob domains demonstrated similar internalization rates, but distinct patterns of endosomal transport and escape.
Collapse
Affiliation(s)
- Rosie Lord
- Division of Asthma Allergy and Lung Biology, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - Maddy Parsons
- The Randall Division of Cell and Molecular Biophysics, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - Ian Kirby
- Division of Asthma Allergy and Lung Biology, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - Andrew Beavil
- The Randall Division of Cell and Molecular Biophysics, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - James Hunt
- The Randall Division of Cell and Molecular Biophysics, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - Brian Sutton
- The Randall Division of Cell and Molecular Biophysics, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - George Santis
- Division of Asthma Allergy and Lung Biology, King's College London School of Medicine at Guy's Kings and St Thomas' Hospitals, Fifth Floor Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| |
Collapse
|
36
|
Emile Gras JC, Verkuijlen P, Frants RR, Havekes LM, van Berkel TJC, Biessen EAL, van Dijk KW. Specific and efficient targeting of adenovirus vectors to macrophages: application of a fusion protein between an adenovirus-binding fragment and avidin, linked to a biotinylated oligonucleotide. J Gene Med 2006; 8:668-78. [PMID: 16532513 DOI: 10.1002/jgm.895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The application of serotype 5 adenoviruses (Ad5) in macrophages is hampered by the absence of the endogenous coxsackie adenovirus receptor (CAR). METHODS To overcome this limitation, we first generated a linker protein consisting of the virus-binding domain of CAR and the C-terminus of avidin. Second, to target macrophages, this linker protein was equipped with the biotinylated (bio) oligonucleotide dA6G10, which was previously shown to display a high affinity for the scavenger receptor A (SR-A). RESULTS As compared to nontargeted virus, the linker protein equipped with bio-dA6G10 showed a 500-fold increased reporter gene expression in mouse macrophage RAW264.7 cells. A linker protein equipped with a bio-dA16 control oligonucleotide was inactive. Moreover, the bio-dA6G10-equipped linker showed a 390-fold increased luciferase expression in the macrophage cell line J774 and 276- and 150-fold increased reporter gene expression in primary peritoneal and bone marrow (BM)-derived macrophages, respectively. Using BM-derived macrophages from SR-A knockout mice, it was shown that the dA6G10-mediated uptake is predominantly SR-A-mediated. CONCLUSIONS Thus, we have developed a novel tool to link biotinylated ligands to a virus-binding fragment of CAR and have exploited this linker protein to extend the applicability of Ad5 to infect transformed and primary macrophages.
Collapse
Affiliation(s)
- J C Emile Gras
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Li X, Jung C, Liu YH, Bae KH, Zhang YP, Zhang HJ, Vanderputten D, Jeng MH, Gardner TA, Kao C. Anti-tumor efficacy of a transcriptional replication-competent adenovirus, Ad-OC-E1a, for osteosarcoma pulmonary metastasis. J Gene Med 2006; 8:679-89. [PMID: 16570242 DOI: 10.1002/jgm.904] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most frequent type of primary malignant bone tumor and is apt to occur in children and young adults. Pulmonary metastasis (OSPM) is the major reason for its fatal outcome. Osteocalcin (OC) is a major noncollagenous bone protein whose expression is limited almost exclusively to bone marrow and osteotropic tumors. OC is also known to express in cell lines with bone metastasis feathers. Gene therapy strategies with the OC promoter directing the replication of adenovirus in a tumor-specific manner are a potential modality for OSPM therapy. METHODS We detected OC mRNA expression by RNA in situ hybridization in OSA and OSPM samples from patients, and tested OC promoter transcriptional activity in OSA and non-OSA cell lines. Then we used a transcriptional replication-competent adenovirus, Ad-OC-E1a, to treat OSPM, and evaluated its tumor-specific replication and killing activities in vitro as well as anti-OSPM efficacy in vivo via systemic delivery. RESULTS OC mRNA was detected in all types of OSA tissues, including OSPM tissues. The transcriptional activity of the OC promoter was much higher in a OSPM cell line SAOS-2LM7 and primary OSA cell line MG63 than in non-OSA cell lines, including cell lines from breast cancer, colon cancer, and liver cancer. Ad-OC-E1a expressed E1a protein only in MG63 and SAOS-2LM7, which indicated that adenovirus E1a was under strict control by the OC promoter. Ad-OC-E1a demonstrated killing and viral replication activity close to wild-type adenovirus levels in MG63 and SAOS-2LM7, but the killing and viral replication activities were attenuated significantly in cells expressing low OC transcriptional activity. To test whether Ad-OC-E1a could be used to target human OSPM in vivo, SAOS-2LM7 pulmonary metastasis models in nude mice were induced and treated by tail-vein injection with Ad-OC-E1a. Compared to tumor nodules in the lung in groups treated with PBS or control virus, the quantity of metastasized tumor nodules decreased significantly. Adenovirus-infected cells were stained immunohistochemically only inside and around the OSPM nodules but spared normal lung tissue and other organs. CONCLUSIONS These data demonstrated that OC promoter could direct adenovirus replication by controlling the E1a gene to target human OSPM in a tumor-specific manner, providing an efficient tool to develop a feasible therapeutic modality for OSPM.
Collapse
Affiliation(s)
- Xiong Li
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cancer remains a serious threat to human health, causing over 500 000 deaths each year in US alone, exceeded only by heart diseases. Many new technologies are being developed to fight cancer, among which are gene therapies and oncolytic virotherapies. Herpes simplex virus type 1 (HSV-1) is a neurotropic DNA virus with many favorable properties both as a delivery vector for cancer therapeutic genes and as a backbone for oncolytic viruses. Herpes simplex virus type 1 is highly infectious, so HSV-1 vectors are efficient vehicles for the delivery of exogenous genetic materials to cells. The inherent cytotoxicity of this virus, if harnessed and made to be selective by genetic manipulations, makes this virus a good candidate for developing viral oncolytic approach. Furthermore, its large genome size, ability to infect cells with a high degree of efficiency, and the presence of an inherent replication controlling mechanism, the thymidine kinase gene, add to its potential capabilities. This review briefly summarizes the biology of HSV-1, examines various strategies that have been used to genetically modify the virus, and discusses preclinical as well as clinical results of the HSV-1-derived vectors in cancer treatment.
Collapse
Affiliation(s)
- Y Shen
- Mary Crowley Medical Research Center, Dallas, TX 75201, USA
| | | |
Collapse
|
39
|
Li X, Zhang J, Gao H, Vieth E, Bae KH, Zhang YP, Lee SJ, Raikwar S, Gardner TA, Hutchins GD, VanderPutten D, Kao C, Jeng MH. Transcriptional targeting modalities in breast cancer gene therapy using adenovirus vectors controlled by alpha-lactalbumin promoter. Mol Cancer Ther 2006; 4:1850-9. [PMID: 16373700 DOI: 10.1158/1535-7163.mct-05-0167] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The breast-specific antigen alpha-lactalbumin is expressed in >60% of breast cancer tissues. To evaluate the effect of gene therapy for breast cancer by controlling adenovirus replication with human alpha-lactalbumin promoter, we investigated the activity of a 762-bp human alpha-lactalbumin promoter. Alpha-lactalbumin promoter showed significantly higher activity in MDA-MB-435S and T47D breast cancer cells than in normal breast cell lines or other tumor cell lines. We then developed two novel breast cancer-restricted replicative adenoviruses, AdALAE1a and AdE1aALAE1b. In AdALAE1a, expression of adenoviral E1a gene is under the control of alpha-lactalbumin promoter, and in AdE1aALAE1b, expression of both E1a and E1b genes is under the control of a single alpha-lactalbumin promoter. Both breast cancer-restricted replicative adenoviruses showed viral replication efficiency and tumor cell-killing capability similar to wild-type adenovirus in MDA-MB-435S and T47D cells. The replication efficiency and tumor cell-killing capability of both viruses were attenuated significantly in cells that did not support alpha-lactalbumin promoter. AdE1aALAE1b showed better breast cancer-restricted replication than AdALAE1a, suggesting that a transcriptional targeting modality with alpha-lactalbumin promoter controlling both E1a and E1b gene expression is superior to alpha-lactalbumin promoter controlling only E1a gene expression. Importantly, we found that AdE1aALAE1b could be used to target hormone-independent breast tumors in vivo by inhibiting the growth of MDA-MB-435S s.c. tumors. These data showed that alpha-lactalbumin promoter could regulate the replication of adenovirus to target hormone-independent breast cancers, suggesting that alpha-lactalbumin promoter can be used to develop a novel therapeutic modality for hormone-independent breast cancer.
Collapse
Affiliation(s)
- Xiong Li
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The prognosis of patients with some kinds of cancers whose patients are often found unresectable upon diagnosis is still dismal. In these fields, development of a new therapeutic modality is needed and gene therapy represents one promising strategy. So far, numerous cancer gene therapy clinical trials based on these principles have been carried out and have shown the safety of such modalities, but have fallen short of the initial expectations to cure cancers. In this review, we would like to make a problem-oriented discussion of current status of cancer gene therapy research by using mainly gastrointestinal cancers as an example. In order to overcome obstacles for full realization of cancer gene therapy, numerous researches have been conducted by many researchers. Various cancer-selective and non-selective genes, as well as lytic viruses themselves have been employed for gene therapy. In the context of gene delivery method, different kinds of viral and non-viral strategies have been utilized. In addition, surrogate assays, such as soluble markers and imaging, have been developed for safer and more informative clinical trials. Many experiments and clinical trials to date have figured out current obstacles for the realization of an effective cancer gene therapy modality. Tireless efforts to overcome such hurdles and continuous infusion of novel concepts into this field should lead to break through technologies and the cure of the patients.
Collapse
Affiliation(s)
- Masato Yamamoto
- BMR2-410, 901 19th Street South, Birmingham, AL 35294-2172, USA
| | | |
Collapse
|
41
|
Borovjagin AV, Krendelchtchikov A, Ramesh N, Yu DC, Douglas JT, Curiel DT. Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Ther 2005; 12:475-86. [PMID: 15706356 DOI: 10.1038/sj.cgt.7700806] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of adenovirus type 5 (Ad5) for cancer therapy is limited by deficiency of its primary cell attachment receptor, coxsackie and adenovirus receptor (CAR), on cancer cells. Ad5 retargeting to alternate receptors through fiber genetic modification can be used to circumvent CAR dependence of its tropism, and thereby achieve infectivity enhancement. Here we propose and test a novel "complex mosaicism" approach for fiber modification, which combines serotype chimerism with peptide ligand(s) incorporation in a single-fiber molecule. We incorporated integrin-binding peptide RGD-4C in the HI-loop, at the carboxy (C)-terminus, or both locales of the Ad3 knob, in the context of Ad5/3 chimera fiber in order to retarget simultaneously the Ad vector to integrins and Ad3 receptors. The infectivity enhancement of the fiber modifications was assessed in various cancer cell lines as cancer-targeting models. Replication-defective complex mosaic Ad-luc vectors bearing chimeric fiber (F.5/3), with or without C-terminal RGD-modification of Ad3 knob, demonstrated up to 55-fold gene transfer increase in bladder cancer cell lines. Although this augmentation was primarily due to Ad3 receptor targeting, some contribution of RGD-mediated integrin-targeting was also observed, suggesting that complex mosaic modification can function in a dual-receptor targeting via a single Ad3 fiber knob.
Collapse
Affiliation(s)
- Anton V Borovjagin
- VectorLogics Inc., 550 South 11th Street, CRC-122A, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The clinical outcome of advanced gastrointestinal (GI) cancers (especially pancreatic and oesophageal cancers) is dismal, despite the advance of conventional therapeutic strategies. Cancer gene therapy is a category of new therapeutics, among which conditionally replicative adenovirus (CRAd) is one promising strategy to overcome existing obstacles of cancer gene therapy. Various CRAds have been developed for GI cancer treatment by taking advantage of the replication biology of adenovirus. Some CRAds have already been tested in clinical trials, but have fallen short of initial expectations. Concerns for clinical applicability include therapeutic potency, replication selectivity and interval end points in clinical trials. In addition, improvement of experimental animal models is needed for a deeper understanding of CRAd biology. Despite these obstacles, CRAds continue to be an exciting area of investigation with great potential for clinical utility. Further virological and oncological research will eventually lead to full realisation of the therapeutic potential of CRAds in the field of GI cancers.
Collapse
Affiliation(s)
- Masato Yamamoto
- Division of Human Gene Therapy, Department of Medicine, and the Gene Therapy Center, University of Alabama at Birmingham, BMR2-408, 901 19th Street South, Birmingham, AL 35294-2172, USA.
| |
Collapse
|
43
|
Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, Engesaeter BØ, Angell-Petersen E, Warloe T, Frandsen N, Høgset A. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 2005; 218:133-47. [PMID: 15857375 DOI: 10.1111/j.1365-2818.2005.01471.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has recently been approved for diagnosis of bladder cancer. The photosensitizers used are in most cases based on the porphyrin structure. These photosensitizers generally accumulate in cancer tissues to a higher extent than in the surrounding tissues and their fluorescing properties may be utilized for cancer detection. The photosensitizers may be chemically synthesized or induced endogenously by an intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) or 5-ALA esters. The therapeutic effect is based on the formation of reactive oxygen species (ROS) upon activation of the photosensitizer by light. Singlet oxygen is assumed to be the most important ROS for the therapeutic outcome. The fluorescing properties of the photosensitizers can be used to evaluate their intracellular localization and treatment effects. Some photosensitizers localize intracellularly in endocytic vesicles and upon light exposure induce a release of the contents of these vesicles, including externally added macromolecules, into the cytosol. This is the basis for a novel method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins, immunotoxins, gene-encoding plasmids, adenovirus, peptide-nucleic acids and the chemotherapeutic drug bleomycin. The background and present status of PDT, FD and PCI are reviewed.
Collapse
Affiliation(s)
- K Berg
- Department of Radiation Biology, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pandori MW, Sano T. Chemically inactivated adenoviral vectors that can efficiently transduce target cells when delivered in the form of virus-microbead conjugates. Gene Ther 2005; 12:521-33. [PMID: 15703768 DOI: 10.1038/sj.gt.3302420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Safe and effective use of viral vectors for gene therapeutics requires versatile control over their delivery to target sites in human subjects. We have developed a strategy for the creation of adenoviral vectors that possess conditional infectivity. The adenoviral vectors used were inactivated chemically such that they had little or no ability to infect cells. However, when such chemically inactivated adenoviral vectors were conjugated to the surfaces of appropriate microbeads and the resulting adenovirus-microbead conjugates were provided with the ability to associate stably with cells, the infectivity of these adenoviral vectors was restored. For certain target cell lines, the infectivity of such adenovirus-microbead conjugates became even higher than that of free, unmodified adenoviral vectors. As a result of the chemical inactivation of viral infectivity, any adenoviral particles that become free from the microbeads should be noninfectious. Thus, these adenoviral vectors have an infectivity that is conditional: They can only infect cells, to which their microbead conjugates come into stable contact. These results lay the groundwork for the creation of targetable adenovirus-microbead conjugates with greater efficacy and safety as delivery agents for gene therapeutics.
Collapse
Affiliation(s)
- M W Pandori
- Center for Molecular Imaging Diagnosis and Therapy and Basic Science Laboratory, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Volk AL, Rivera AA, Page GP, Salazar-Gonzalez JF, Nettelbeck DM, Matthews QL, Curiel DT. Employment of microarray analysis to characterize biologic differences associated with tropism-modified adenoviral vectors: utilization of non-native cellular entry pathways. Cancer Gene Ther 2005; 12:162-74. [PMID: 15375380 DOI: 10.1038/sj.cgt.7700776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we have applied high-density oligonucleotide microarray technology to characterize biologic changes associated with adenoviral vector-mediated target cell infection. We infected a human melanoma cell line, M21, with the tropism-modified vectors, Ad5lucRGD and Ad5/3luc1. In addition, we infected the M21 cell line with the Ad5luc1, a vector which primarily exploits the coxsackie and adenovirus receptor, as its primary native receptor. We found significant changes in gene expression of 5492 genes induced by Ad5luc1 infection, 2439 genes induced by Ad5/3luc1 infection, and 1251 genes induced by Ad5lucRGD infection, compared to uninfected cells. Among these changes in gene expression, 783 changes were common to Ad5/3luc1 and Ad5luc1 infections, 266 were common to Ad5lucRGD and Ad5luc1 infections, and 185 changes in gene expression were common to Ad5/3luc1 and Ad5lucRGD infections. Interestingly, 89 changes in gene expression were common to all the three groups, suggesting a commonly affected pathway. This analysis represents a unique application of microarray to study vector-related issues. Furthermore, these studies demonstrate the utility of microarray for characterizing the biologic sequelae of host-vector interaction.
Collapse
Affiliation(s)
- Andrea L Volk
- Division of Human Gene Therapy and The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Delivery of therapeutic genes to the lungs is an attractive strategy to correct a variety of pulmonary dysfunctions such as cystic fibrosis, alpha-1 antitrypsin deficiency, pulmonary hypertension, asthma, and lung cancer. Different delivery routes such as intratracheal instillation, aerosol and intravenous injection have been utilized with varying degrees of efficiency. Both viral and non-viral vectors, with their respective strengths and weaknesses, have achieved significant levels of transgene expression in the lungs. However, the application of gene therapy for the treatment of pulmonary disease has been handicapped by various barriers to the delivery vectors such as serum proteins during intravenous delivery, and surfactant proteins and mucus in the airway lumen during topical application of therapeutic genes. Immune and cytokine responses against the delivery vehicle are also major problems encountered in pulmonary gene therapy. Despite these shortcomings much progress has been made to enhance the efficiency, as well as lower the toxicity of gene therapy vehicles in the treatment of pulmonary disorders such as cystic fibrosis, lung cancer and asthma.
Collapse
Affiliation(s)
- Ajay Gautam
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| | - Clifford J. Waldrep
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| | - Charles L. Densmore
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030 USA
| |
Collapse
|
47
|
Prasmickaite L, Høgset A, Engesaeter B BØ, Bonsted A, Berg K. Light-directed gene delivery by photochemical internalisation. Expert Opin Biol Ther 2005; 4:1403-12. [PMID: 15335308 DOI: 10.1517/14712598.4.9.1403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article reviews a novel technology, named photochemical internalisation (PCI), for light-directed delivery of transgenes. Most gene therapy vectors are taken into the cell by endocytosis and, hence, are located in the endocytic vesicles. Although viral vectors have developed the means to escape from these vesicles, poor endosomal release is one of the major obstacles for non-viral vectors. PCI is a technology that allows liberation of the entrapped vectors carrying a gene in response to illumination. The method is based on chemical compounds (photosensitisers) that localise specifically in the membranes of endocytic vesicles and, following activation by light, induce the rupture of the vesicular membranes. The released transgenes can further be transferred to the nucleus, transcribed and translated. As gene liberation depends on light, enhancement of gene expression is achieved only at illuminated regions. PCI substantially improves gene transfer in vitro not only with non-viral gene vectors, but, surprisingly, also with adenoviruses and adeno-associated viruses. This article will review the background for the PCI technology and its role for gene delivery using both non-viral and viral vectors. Some aspects of the potential of PCI for site-specific gene delivery in therapeutic situations will also be discussed.
Collapse
Affiliation(s)
- Lina Prasmickaite
- Department of Radiation Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway.
| | | | | | | | | |
Collapse
|
48
|
Hosono T, Mizuguchi H, Katayama K, Xu ZL, Sakurai F, Ishii-Watabe A, Kawabata K, Yamaguchi T, Nakagawa S, Mayumi T, Hayakawa T. Adenovirus vector-mediated doxycycline-inducible RNA interference. Hum Gene Ther 2005; 15:813-9. [PMID: 15319038 DOI: 10.1089/1043034041648462] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool for the knockdown of gene expression. Here, we report on the development of an adenovirus (Ad) vector-mediated doxycycline (Dox)-inducible small interfering RNA (siRNA) expression system. We used this siRNA system to control the expression of p53 and c-Myc in human cancer cells. Coinfection of Ad vectors containing the siRNA expression system under the control of the Dox-inducible H1 promoter and Ad vectors expressing a tetracycline repressor inhibited the expression levels of p53 and c-Myc in a dose-dependent manner with both Dox and viral dose. Regulated silencing of p53 and c-Myc expression was obtained. Because an Ad vector-mediated inducible RNAi system can efficiently transduce a variety of cell types in vitro and in vivo, and the degree of loss of gene expression can be modulated according to the dose of Dox, this expression system should be a useful tool for both basic research on the analysis of gene function and therapeutic applications of RNAi.
Collapse
Affiliation(s)
- Tetsuji Hosono
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Prasmickaite L, Høgset A, Olsen VM, Kaalhus O, Mikalsen SO, Berg K. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther 2005; 11:514-23. [PMID: 15118758 DOI: 10.1038/sj.cgt.7700720] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor targeting is an important issue in cancer gene therapy. We have developed a gene transfection method, based on light-inducible photochemical internalization (PCI) of a transgene, to improve gene delivery and expression selectively in illuminated areas, for example, in tumors. In the present work, we demonstrate that PCI improved the nonviral vector polyethylenimine (PEI)-mediated transfection of a therapeutic gene, the 'suicide' gene encoding herpes simplex virus thymidine kinase (HSVtk). In U87MG glioblastoma cells in vitro, the photochemical treatment stimulated expression of the HSVtk transgene, and, consequently, enhanced cell killing by the subsequent treatment with the prodrug ganciclovir (GCV). When relatively low doses of DNA (1 microg/ml) and the PEI vector (N/P 4) were used, HSVtk gene transfection followed by the GCV treatment did not have an effect on cell survival unless the photochemical treatment was performed, which potentiated the cytotoxicity to 90%. These findings indicate that photochemical transfection allows: (i) selective enhancement in gene expression and gene-mediated biological effects (cell killing by the Hsvtk/GCV approach) in response to illumination; (ii) the use of low, suboptimal for the nonviral transfection methods without PCI, doses of both DNA and the vector, which may be relevant and advantageous for therapeutic gene transfer in vivo.
Collapse
Affiliation(s)
- Lina Prasmickaite
- Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
50
|
Shen Y, Nemunaitis J. Fighting Cancer with Vaccinia Virus: Teaching New Tricks to an Old Dog. Mol Ther 2005; 11:180-95. [PMID: 15668130 DOI: 10.1016/j.ymthe.2004.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022] Open
Abstract
Vaccinia virus has played a huge part in human beings' victory over smallpox. With smallpox being eradicated and large-scale vaccination stopped worldwide, vaccinia has assumed a new role in our fight against another serious threat to human health: cancer. Recent advances in molecular biology, virology, immunology, and cancer genetics have led to the design of novel cancer therapeutics based on vaccinia virus backbones. With the ability to infect efficiently a wide range of host cells, a genome that can accommodate large DNA inserts and express multiple genes, high immunogenicity, and cytoplasmic replication without the possibility of chromosomal integration, vaccinia virus has become the platform of many exploratory approaches to treat cancer. Vaccinia virus has been used as (1) a delivery vehicle for anti-cancer transgenes, (2) a vaccine carrier for tumor-associated antigens and immunoregulatory molecules in cancer immunotherapy, and (3) an oncolytic agent that selectively replicates in and lyses cancer cells.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, 1717 Main Street, 60th Floor, Dallas, TX 75201, USA
| | | |
Collapse
|