1
|
Grzelakowska A, Podsiadły R, Zielonka J. Phenyl Radical-Mediated Fluorogenic Cyclization for Specific Detection of Peroxynitrite. Anal Chem 2025; 97:7299-7306. [PMID: 40146989 PMCID: PMC11983361 DOI: 10.1021/acs.analchem.4c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Peroxynitrite (ONOO-), a biological oxidizing and nitrating species responsible for post-translational modification of cellular proteins, has been implicated in numerous pathologies carrying an inflammatory component. Specific detection of ONOO- in biological systems remains a challenge, and boronates are regarded as the most promising class of probes for the detection and quantitation of ONOO-. Oxidation of boronate probes by ONOO- results in the formation of minor ONOO--specific products via a pathway involving a phenyl radical-type intermediate, in addition to the major phenolic product. Here, we report fluorogenic cyclization of the phenyl-type radical formed during oxidation of a boronate probe by ONOO-, with the production of a fluorescent product, and we propose a new approach for the specific detection of ONOO- based on this observation. We characterized the kinetics and stoichiometry of the reaction of benzophenone-2-boronic acid with ONOO- and identified 2-hydroxybenzophenone as the major product and fluorenone (FLN) and 2-nitrobenzophenone as the minor ONOO--specific products. Hydrogen peroxide neither alone nor in the presence of myeloperoxidase and nitrite produces FLN or 2-nitrobenzophenone. FLN can be selectively detected using fluorescence spectroscopy, providing a chemical principle for the development of next-generation probes for ONOO-, with noninvasive, fluorescence-based detection of ONOO--specific products. Fluorescence-based monitoring of FLN was successfully applied for the detection of ONOO- generated in situ from the decomposition of SIN-1, a thermal source of the superoxide radical anion and nitric oxide.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute
of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz 90-537, Poland
- Department
of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Radosław Podsiadły
- Institute
of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz 90-537, Poland
| | - Jacek Zielonka
- Department
of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
2
|
Waheed YA, Liu J, Almayahe S, Sun D. The role of hyperuricemia in the progression of end-stage kidney disease and its molecular prospective in inflammation and cardiovascular diseases: A general review. Ther Apher Dial 2025. [PMID: 39966090 DOI: 10.1111/1744-9987.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
With the ongoing development of the Chinese economy, the occurrence of chronic kidney disease (CKD) has experienced a remarkable upsurge recently, and due to uremia caused by CKD, the number of patients undergoing dialysis has shown a dramatic increase. China has been ranked first in the world for patients undergoing hemodialysis (HD) and peritoneal dialysis (PD) with approximately one million patients across the country. Due to the loss of kidney function caused by CKD, the kidneys tend to lose their ability to excrete uric acid (UA) out of the body; therefore, most patients undergoing dialysis are complicated with hyperuricemia (HUA). HUA is an abnormal disease of purine metabolism, and it's considered a chronic disease. More than 90% of patients suffering from HUA will not show any symptoms on physical examination. According to statistics, if high serum UA is left untreated, 55% of patients will develop severe problems due to the purine crystallization in the body, and the kidneys are the most affected organs by HUA causing renal insufficiency that can promote end-stage kidney disease (ESKD) by activating the renin-angiotensin system (RAS), which will lead to inflammation, arteriosclerosis, cardiovascular diseases (CVD), and other diseases. Lifestyle modifications and pharmacological interventions are the first primary choice for lowering UA, although dialysis will tend to reduce the high UA levels in the blood, drugs are also necessary. This review will summarize the mechanisms and metabolism of UA, the relationship between HUA and ESKD progression, HUA and inflammation, HUA and CVD, and pharmacological treatment of HUA.
Collapse
Affiliation(s)
- Yousuf Abdulkarim Waheed
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Clinical Research Center for Kidney Disease Xuzhou Medical University, Xuzhou, China
| | - Jie Liu
- Department of Nephrology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Clinical Research Center for Kidney Disease Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Liu Z, Zhang D, Zeng L, Guo W, Lu Q, Lei Z, Hao Y, Liu P, Liu T, Peng L, Chang Q, Zhang M, Lin X, Wang F, Wu S. Serum uric acid/creatinine ratio and 1-year stroke recurrence in patient with acute ischemic stroke and abnormal renal function: results from the Xi'an stroke registry study of China. Front Neurol 2025; 16:1496791. [PMID: 39968452 PMCID: PMC11832382 DOI: 10.3389/fneur.2025.1496791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background The relationship between abnormal renal function and serum uric acid levels in patients with acute ischemic stroke (AIS) remains insufficiently explored. Although uric acid is associated with cardiovascular and cerebrovascular risk, the specific link between normalized serum uric acid (SUA/SCr) and stroke recurrence in patients with impaired renal function has not been well studied. This study aims to fill this gap by investigating the association between SUA/SCr and 1-year stroke recurrence in patients with AIS and abnormal renal function. Methods This study utilized the ratio of serum uric acid (SUA) to serum creatinine (SCr) to represent SUA levels normalized for renal function. Abnormal Renal function was defined by the estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2. Multivariable Cox regression, curve fitting, and stratified analyses were employed to assess the relationship between SUA/SCr and 1-year stroke recurrence in patients with AIS and abnormal renal function, considering SUA/SCr as both a continuous variable and in quartiles (Q1-Q4). Results Of 1,932 enrolled patients (65.3% male; mean age 66.7 ± 11.3 years), each unit of increase in SUA/SCr was associated with a 17% decrease in 1-year stroke recurrence (HR = 0.83, 95% CI 0.73 to 0.96, P = 0.009). Compared to Q1, the Q2 and Q4 groups showed significantly reduced risk in 1-year stroke recurrence (Q2: HR = 0.46, 95% CI 0.27 to 0.79, P = 0.005; Q4: HR = 0.47, 95% CI 0.27 to 0.81, P = 0.007), with a significant trend across all quartiles (P = 0.01 for trend tests). Curve fitting revealed a negative but non-linear correlation. Subgroup analyses showed that in patients with eGFR < 60 ml/min/1.73 m2, Q4 had significantly lower 1-year stroke recurrence risk than Q1 (HR = 0.19, 95% CI 0.04 to 0.86, P = 0.031). Conclusion Low SUA/SCr independently predicts 1-year stroke recurrence in patients with AIS and abnormal renal function, particularly in those with eGFR < 60 mL/min/1.73 m2.
Collapse
Affiliation(s)
- Zhongzhong Liu
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
- Department of Epidemiology and Biostatistics, School of Public Health of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dandan Zhang
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Weiyan Guo
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Qingli Lu
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Zhen Lei
- College of Life Science, Northwest University, Xi'an, China
| | - Yunlong Hao
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Pei Liu
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Tong Liu
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Linna Peng
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Qiaoqiao Chang
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Mi Zhang
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Xuemei Lin
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Fang Wang
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
| | - Songdi Wu
- Department of Neurology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
4
|
Zhang D, Liu Z, Guo W, Lu Q, Lei Z, Liu P, Liu T, Peng L, Chang Q, Zhang M, Lin X, Wang F, Wu S. Association of serum uric acid to serum creatinine ratio with 1-year stroke outcomes in patients with acute ischemic stroke: A multicenter observational cohort study. Eur J Neurol 2024; 31:e16431. [PMID: 39104135 PMCID: PMC11555002 DOI: 10.1111/ene.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE Considering the reliance of serum uric acid (SUA) levels on renal clearance function, its role in stroke outcomes remains controversial. This study investigated the association of renal function-normalized SUA (SUA to serum creatinine ratio, SUA/SCr), a novel renal function index, with the 1-year outcomes in patients with acute ischemic stroke (AIS). METHODS This is a prospective, multicenter observational study. Renal function-normalized SUA levels were determined by calculating the ratio of SUA to SCr. One-year outcomes included stroke recurrence, all-cause mortality, and poor prognosis. Multivariable Cox regression analyses and restriction cubic splines for curve fitting were used to evaluate SUA/SCr's association with 1-year stroke outcomes. RESULTS Among 2294 enrolled patients, after adjustment for potential confounders, multivariable Cox regression analyses showed that each one-unit increase in SUA/SCr corresponded to a 19% decrease in 1-year stroke recurrence in patients with AIS. SUA/SCr was analyzed as a continuous variable and categorized into quartiles (Q1-Q4). Compared with the Q1 reference group, Q2, Q3, and Q4 showed significantly lower 1-year stroke recurrence risks. The trend test indicated significant differences in the 1-year stroke recurrence trend from Q1 to Q4. In these patients, SUA/SCr did not show a significant association with poor prognosis or all-cause mortality. Curve fitting revealed SUA/SCr had a negative but nonlinear association with 1-year stroke recurrence. CONCLUSIONS In patients with AIS, low SUA/SCr may be an independent risk factor for 1-year stroke recurrence. Changes in SUA/SCr had no significant impact on 1-year poor prognosis and all-cause mortality.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Zhongzhong Liu
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
- Department of Epidemiology and BiostatisticsSchool of Public Health of Xi'an Jiaotong University Health Science CenterXi'anChina
| | - Weiyan Guo
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Qingli Lu
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Zhen Lei
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Pei Liu
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Tong Liu
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Linna Peng
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Qiaoqiao Chang
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Mi Zhang
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Xuemei Lin
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Fang Wang
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
| | - Songdi Wu
- Department of Neurology, Xi'an No. 1 HospitalFirst Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological DiseasesXi'anChina
- College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
5
|
Siarkiewicz P, Luzak B, Michalski R, Artelska A, Szala M, Przygodzki T, Sikora A, Zielonka J, Grzelakowska A, Podsiadły R. Evaluation of a novel pyridinium cation-linked styryl-based boronate probe for the detection of selected inflammation-related oxidants. Free Radic Biol Med 2024; 212:255-270. [PMID: 38122872 DOI: 10.1016/j.freeradbiomed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.
Collapse
Affiliation(s)
- Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Cancer Center Translational Metabolomics Shared Resource, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
6
|
Oncel Yoruk E, Dost FS, Ontan MS, Ates Bulut E, Aydin AE, Isik AT. Hyperuricemia may be associated with muscle wellness in older adults. Int Urol Nephrol 2023; 55:2981-2988. [PMID: 37029327 DOI: 10.1007/s11255-023-03588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Sarcopenia, associated with morbidity and mortality, is a common geriatric syndrome in older adults. In this study, we investigated the relationship between uric acid, which is a powerful antioxidant and has intracellular proinflammatory activity, and sarcopenia in older adults. METHODS This is a cross-sectional retrospective study involving a total of 936 patients. The diagnosis of sarcopenia was evaluated based on the EGWSOP 2 criteria. The patients were divided into two groups according to hyperuricemia (for females > 6 mg/dl, for males > 7 mg/dl); hyperuricemia and control. RESULTS The frequency of hyperuricemia was 65.40%. Patients with hyperuricemia were older than the control group and female gender frequency was higher (p = 0.001, p < 0.001, respectively). Sarcopenia was negatively associated with hyperuricemia as a result of the adjustment analysis made according to demographic characteristics, comorbidities, laboratory results, malnutrition, and malnutrition risk. (p = 0.034). Besides, muscle mass and muscle strength were associated with hyperuricemia (p = 0.026 and p = 0.009, respectively). CONCLUSIONS Considering the positive effect of hyperuricemia on sarcopenia, avoiding aggressive uric acid-lowering therapy may be a good option in older adults with asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Eda Oncel Yoruk
- Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Fatma Sena Dost
- Department of Geriatric Medicine, Kocaeli Darica Farabi Training and Research Hospital, Kocaeli, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Mehmet Selman Ontan
- Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Esra Ates Bulut
- Department of Geriatric Medicine, Adana City Training and Research Hospital, Adana, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Ali Ekrem Aydin
- Department of Geriatric Medicine, Sivas State Hospital, Sivas, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Ahmet Turan Isik
- Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
- Geriatric Science Association, Izmir, Turkey.
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
7
|
Huang YC, Chen SL, Dong Y, Shi Y. Association between elevated serum uric acid levels and high estimated glomerular filtration rate with reduced risk of low muscle strength in older people: a retrospective cohort study. BMC Geriatr 2023; 23:652. [PMID: 37821826 PMCID: PMC10568872 DOI: 10.1186/s12877-023-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND We aimed to investigate the interaction between serum uric acid (SUA) levels with estimated glomerular filtration rate (eGFR) to low muscle strength (LMS) among older people in China. METHODS Cohort data were obtained from China Health and Retirement Longitudinal Study (CHARLS) in 2011 and 2015. A total of 2,822 community-dwelling adults aged 60 and above were enrolled for the follow-up. Serum uric acid was collected after 8 h of fasting, and handgrip strength was measured with a dynamometer. eGFR was calculated with an equation based on the Chinese population. A generalized additive model was employed for interaction analysis and progressively adjusted confounders. RESULTS During the follow-up, a total of 659 individuals were excluded due to the lack of grip strength data, leaving 2,163 participants for analysis. Despite the protective effect of high uric acid against low muscle strength, especially in older females, it is not statistically significant (OR = 0.69, 95%CI = 0.45-1.04, P = 0.075). Following the progressive adjustment of covariates, the association between higher eGFR and elevated SUA levels remained statistically significant in females, showing a reduced odds ratio with low muscle strength (OR = 0.82, 95%CI = 0.70-0.97, P = 0.021). However, this trend was not observed in male participants. CONCLUSIONS This Chinese population-based cohort study suggests that among older females, a higher serum uric acid level combined with a higher estimated glomerular filtration rate is linked to a reduced risk of low muscle strength. This implies that the relationship between high serum uric acid levels and the risk of low grip strength might differ by gender.
Collapse
Affiliation(s)
- Yu Cheng Huang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201220, China
| | - Si Liang Chen
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201220, China
| | - Ying Dong
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Shi
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201220, China.
| |
Collapse
|
8
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
9
|
Seo HY, Mun CY, Park CY, Bin Choi S, Hwang JH, Lee JH, Yoon H. The relationship between hyperuricemia and anemia and metabolic syndrome in Korean adults: The Korea National Health and Nutrition Examination Survey 2019. Prim Care Diabetes 2023; 17:91-97. [PMID: 36456398 DOI: 10.1016/j.pcd.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
AIM The present study was conducted to assess the relationship between hyperuricemia and anemia in Korean adults with or without metabolic syndrome (MetS). METHODS Data from 6073 adults (age ≥ 20 years) in the Eighth Korean National Health and Nutrition Examination Survey (2019) were analyzed. RESULTS Several key findings were identified. First, after adjusting for the related variables, the hemoglobin [Hb] level in the hyperuricemia subgroup (uric acid [UA] ≥ 7.0 mg/dL in men or ≥ 6.0 mg/dL in women) was higher than in the normouricemia subgroup (UA < 7.0 mg/dL in men or < 6.0 mg/dL in women) in subjects with non-MetS (p = 0.005), whereas it was lower than in the normouricemia subgroup in subjects with MetS (p = 0.032). Second, after adjusting for the related variables, the odds ratio (OR) of anemia (Hb < 13.0 g/dL in men or < 12 g/dL in women), using the normouricemia subgroup as a reference, was negatively significant for the hyperuricemia subgroup in subjects with non-MetS (OR, 0.478; 95 % CI, 0.300-0.761) but positively significant for the hyperuricemia subgroup in subjects with MetS (OR, 1.765; 95 % CI, 1.160-2.198). CONCLUSIONS Hyperuricemia was associated with a decrease in anemia in non-MetS but an increase in anemia in MetS.
Collapse
Affiliation(s)
- Ha Young Seo
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Chae Young Mun
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Chea Yeon Park
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Soo Bin Choi
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Ji Hye Hwang
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Jun Ho Lee
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea
| | - Hyun Yoon
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, 345-13, Sinyong-dong, Iksan-si, Jeollabuk-do 54538, South Korea.
| |
Collapse
|
10
|
Sung W, Kwon HS, Park Y, Kim SH, Park S, Kang DR, Choi H. Gout and the Prevalence of Dementia: A Nationwide Population-Based Study. J Alzheimers Dis 2023; 96:343-349. [PMID: 37781802 DOI: 10.3233/jad-230468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Hyperuricemia in patients with gout is associated with a low risk of neurodegenerative diseases, including dementia. However, the prevalence of dementia in patients with gout has not yet been reported. OBJECTIVE To analyze the prevalence of dementia among patients diagnosed with gout by utilizing the Health Insurance and Review Assessment database, a nationwide registry of the South Korean population. METHODS Data from the Health Insurance and Review Assessment database of patients diagnosed with gout between 2011 and 2018 were extracted. The annual prevalence of dementia according to age and sex was analyzed. We investigated whether there was an association between comorbidities and gout medication in patients with both gout and dementia and in patients with only gout. RESULTS Between 2011 and 2018, the age-adjusted prevalence of dementia per 100,000 persons ranged from 54.0 (95% confidence interval: 47.7-60.2) to 69.9 (95% confidence interval: 65.3-74.5). Compared to previous studies, the prevalence of dementia was lower in patients with gout than in the general population. Patients with both gout and dementia were more likely to be women, have a wide range of comorbidities, and be prescribed gout-related drugs, including allopurinol, febuxostat, nonsteroidal anti-inflammatory drugs, and steroids than patients with gout without dementia. CONCLUSIONS This study demonstrated a relatively low prevalence of dementia in patients with gout. Gout, characterized by hyperuricemia, might be associated with a reduced risk of dementia.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Yeonjae Park
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sojeong Park
- Data Science Team, Hanmi Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Dae Ryong Kang
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| |
Collapse
|
11
|
New Perspectives on the Sustainable Employment of Chestnut Shells as Active Ingredient against Oral Mucositis: A First Screening. Int J Mol Sci 2022; 23:ijms232314956. [PMID: 36499282 PMCID: PMC9737246 DOI: 10.3390/ijms232314956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Oral mucositis (OM), a common side effect of oncological treatment, is an oral mucosal disorder characterized by painful ulcerations and increased risk of infection. The use of natural antioxidants to suppress the redox imbalance responsible for the OM condition has emerged as an interesting approach to prevent/treat OM. This study aims to explore the chestnut (Castana sativa) shells as potential active ingredient against OM. Therefore, chestnut shells were extracted at different temperatures (110-180 °C) by Subcritical Water Extraction (SWE), aiming to recover antioxidants. The extracts were also evaluated against microorganisms present in the oral cavity as well as on human oral cell lines (TR146 and HSC3). The highest phenolic content was obtained with the extraction temperature of 110 °C, exhibiting the best antioxidant/antiradical activities and scavenging efficiencies against HOCl (IC50 = 4.47 μg/mL) and ROO• (0.73 μmol TE/mg DW). High concentrations of phenolic acids (e.g., gallic and protocatechuic acids) and flavanoids (catechin, epicatechin and rutin) characterized the phenolic profile. The antimicrobial activity against several oral microorganisms present in the oral cavity during OM, such as Streptococcus, Staphylococcus, Enterococcus, and Escherichia, was demonstrated. Finally, the effects on HSC3 and TR146 cell lines revealed that the extract prepared at 110 °C had the lowest IC50 (1325.03 and 468.15 µg/mL, respectively). This study highlights the potential effects of chestnut shells on OM.
Collapse
|
12
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
13
|
Ko SH, Lim Y, Kim EJ, Ko YW, Hong IS, Kim S, Jung Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar Drugs 2022; 20:562. [PMID: 36135751 PMCID: PMC9503798 DOI: 10.3390/md20090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
14
|
Geng F, Chen J, Tang S, Azzam E, Zhang J, Zhang S. Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiat Res 2022; 198:306-317. [PMID: 35834824 DOI: 10.1667/rade-22-00058.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
COVID-19 is a challenge to biosecurity and public health. The speed of vaccine development lags behind that of virus evolution and mutation. To date, no agent has been demonstrated to be fully effective against COVID-19. Therefore, it remains of great urgency to rapidly develop promising therapeutic and diagnostic candidates. Intriguingly, mounting evidence hints at parallel etiologies between SARS-CoV-2 infection and radiation injury. Herein, from the perspectives of immunogenic pathway activation and metabolic alterations, we provide novel evidence of commonalities between these two pathological conditions based on the most recent findings. Since numerous agents have been developed to prevent or reverse radiation injury in the past 70 years to ensure nuclear safety, we also advocate investigating the promising function of radioprotectors and radiomitigators against COVID-19 in clinical settings.
Collapse
Affiliation(s)
- Fenghao Geng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhui Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shaokai Tang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Edouard Azzam
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
| | - Jie Zhang
- Institute of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
15
|
Nitration of Flavonoids and Tocopherols as Potential Modulators of Nitrosative Stress—A Study Based on Their Conformational Structures and Energy Content. Stress 2022. [DOI: 10.3390/stresses2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitamin E and dietary flavonoids are natural substances with antioxidant and anti-inflammatory activities, showing little or no side effects. Fruit and vegetable diets based on flavonoids and vitamin E provide a benefit to hypertensive subjects by regulating blood pressure. However, the exact mechanism of their anti-inflammatory properties has not been chemically explained. It has been proposed that their anti-oxidant and anti-inflammatory properties may be related to their ability to scavenge free radicals. We here describe the chemical considerations that flavonoids and tocopherols required to act as potential scavengers of the •NO2 radical, a key radical in the cellular oxidative process. Moreover, we provide a theoretical study of the energy content of the nitrated compounds in the different possible positions. With this analysis, it was predicted that five flavonoids from different families (quercetin (flavanol), naringenin (flavanone), luteolin (flavone), catechin (flavanol) and aurantinidin (anthocyanin)) and three tocopherols (β-, γ-, and δ-tocopherol, but not α-tocopherol) could act as potential scavengers of the harmful •NO2 radical. These results may help to explain their beneficial effect on cardiovascular health through its antioxidant role. To validate our theoretical considerations, we also examined uric acid, a well-known •NO2-scavenger. We hope this study could help to elucidate the potential scavenging activity of other dietary antioxidants.
Collapse
|
16
|
Mijailovic NR, Vesic K, Borovcanin MM. The Influence of Serum Uric Acid on the Brain and Cognitive Dysfunction. Front Psychiatry 2022; 13:828476. [PMID: 35530021 PMCID: PMC9072620 DOI: 10.3389/fpsyt.2022.828476] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Uric acid is commonly known for its bad reputation. However, it has been shown that uric acid may be actively involved in neurotoxicity and/or neuroprotection. These effects could be caused by oxidative stress or inflammatory processes localized in the central nervous system, but also by other somatic diseases or systemic conditions. Our interest was to summarize and link the current data on the possible role of uric acid in cognitive functioning. We also focused on the two putative molecular mechanisms related to the pathological effects of uric acid-oxidative stress and inflammatory processes. The hippocampus is a prominent anatomic localization included in expressing uric acid's potential impact on cognitive functioning. In neurodegenerative and mental disorders, uric acid could be involved in a variety of ways in etiopathogenesis and clinical presentation. Hyperuricemia is non-specifically observed more frequently in the general population and after various somatic illnesses. There is increasing evidence to support the hypothesis that hyperuricemia may be beneficial for cognitive functioning because of its antioxidant effects but may also be a potential risk factor for cognitive dysfunction, in part because of increased inflammatory activity. In this context, gender specificities must also be considered.
Collapse
Affiliation(s)
- Natasa R. Mijailovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Vesic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica M. Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
17
|
Protective Effect of Luminal Uric Acid Against Indomethacin-Induced Enteropathy: Role of Antioxidant Effect and Gut Microbiota. Dig Dis Sci 2022; 67:121-133. [PMID: 33569665 DOI: 10.1007/s10620-021-06848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uric acid (UA) has anti- and pro-inflammatory properties. We previously revealed that elevated serum UA levels provide protection against murine small intestinal injury probably via luminal UA secreted in the small intestine. Luminal UA may act as an antioxidant, preventing microbiota vulnerability to oxidative stress. However, whether luminal UA is increased under hyperuricemia and plays a protective role in a dose-dependent manner as well as the mechanism by which luminal UA exerts its protective effects on enteropathy remains unknown. METHODS Inosinic acid (IMP) (1000 mg/kg, i.p.) was administered to obtain high serum UA (HUA) and moderate serum UA (500 mg/kg IMP, i.p.) mice. UA concentrations and levels of oxidative stress markers in the serum and intestine were measured. Mice received indomethacin (20 mg/kg, i.p.) to evaluate the effects of UA on indomethacin-induced enteropathy. Reactive oxygen species (ROS) on the ileal mucosa were analyzed. The fecal microbiota of HUA mice was transplanted to investigate its effect on indomethacin-induced enteropathy. RESULTS IMP increased luminal UA dose-dependently, with higher levels of luminal antioxidant markers. Indomethacin-induced enteropathy was significantly ameliorated in both UA-elevated groups, with decreased indomethacin-induced luminal ROS. The microbiota of HUA mice showed a significant increase in α-diversity and a significant difference in β-diversity from the control. Fecal microbiota transplantation from HUA mice ameliorated indomethacin-induced enteropathy. CONCLUSIONS The protective role of luminal UA in intestinal injury is likely exerted via oxidative stress elimination and microbiota composition modulation, preferably for gut immunity. Therefore, enhancing anaerobic conditions using antioxidants is a potential therapeutic target.
Collapse
|
18
|
Protective Effect of Uric Acid on ox-LDL-Induced HUVECs Injury via Keap1-Nrf2-ARE Pathway. J Immunol Res 2021; 2021:5151168. [PMID: 34761008 PMCID: PMC8575640 DOI: 10.1155/2021/5151168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Uric acid is an effective antioxidant. Oxidized low-density lipoprotein (ox-LDL) is derived from circulating LDL and promotes atherosclerosis. The Keap1-Nrf2-ARE pathway is a key body pathway involved in protection against internal and external oxidative damages. The role of uric acid on vascular endothelial function damaged by ox-LDL, and its effect on the Keap1-Nrf2-ARE pathway has not been fully explored. HUVECs were treated with different concentrations of uric acid and ox-LDL to explore the effect of uric acid in vitro. Cell phenotype was determined by cytometry and Western blot. Nuclear translocation of Nrf2 was determined by immunofluorescence. Coimmunoprecipitation was used to determine the level of Nrf2 ubiquitination. A microfluidic device was used to mimic the vascular environment in the body, and the level of mRNA levels of inflammatory factors was determined by RT-PCR. The findings of this study show that suitable uric acid can significantly reduce endothelial damage caused by ox-LDL, such as oxidative stress, inflammation, and increased adhesion. In addition, uric acid reduced Nrf2 ubiquitination and increased nuclear translocation of Nrf2 protein, thus activating the Keap1-Nrf2-ARE pathway and playing a protective role. Interestingly, the effects of UA were significantly inhibited by administration of Brusatol, an inhibitor of Nrf2. In summary, suitable concentrations of uric acid can alleviate the oxidative stress level of endothelial cells through Nrf2 nuclear translocation and further protect cells from damage.
Collapse
|
19
|
Vernerová A, Kujovská Krčmová L, Melichar B, Švec F. Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clin Chem Lab Med 2020; 59:797-812. [PMID: 33554551 DOI: 10.1515/cclm-2020-1533] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
This review summarizes and critically evaluates the published approaches and recent trends in sample pre-treatment, as well as both separation and non-separation techniques used for the determination of uric acid (UA) in saliva. UA is the final product of purine nucleotide catabolism in humans. UA concentrations in biological fluids such as serum, plasma, and urine represent an important biomarker of diseases including gout, hyperuricemia, or disorders associated with oxidative stress. Previous studies reported correlation between UA concentrations detected in saliva and in the blood. The interest in UA has been increasing during the past 20 years from a single publication in 2000 to 34 papers in 2019 according to MEDLINE search using term "uric acid in saliva". The evaluation of salivary UA levels can contribute to non-invasive diagnosis of many serious diseases. Increased salivary UA concentration is associated with cancer, HIV, gout, and hypertension. In contrast, low UA levels are associated with Alzheimer disease, progression of multiple sclerosis, and mild cognitive impairment.
Collapse
Affiliation(s)
- Andrea Vernerová
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.,The Department of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.,The Department of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Králové, Czech Republic
| | - Bohuslav Melichar
- The Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - František Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
20
|
Yu W, Cheng JD. Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front Pharmacol 2020; 11:582680. [PMID: 33304270 PMCID: PMC7701250 DOI: 10.3389/fphar.2020.582680] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Ji-Dong Cheng
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Liu Q, Liu D, Yan D, Huang W, Ji X, Hui J, Tang Z. Gender-Specific Association Between Serum Uric Acid and Incident High Intraocular Pressure in Chinese Population: A Cross-Sectional Study. Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32897376 PMCID: PMC7488210 DOI: 10.1167/iovs.61.11.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between high intraocular pressure (IOP) and uric acid. Methods In a retrospective cross-sectional study, 19,147 participants were included in 2018. Serum uric acid (SUA) was cut to four groups as Q1 to Q4, according to the quartiles. The odds ratio (OR) and 95% confidence interval (CI) of different SUA levels were estimated by a binomial logistic regression model in men and women. A restrictive cubic spline method was used to estimate the dose-response relationship between uric acid and high IOP. Subgroup analysis was performed to find the gender-specific association between uric acid and high IOP. Results In women, after adjusting for confounding factors, the Q3 and Q4 of SUA levels were significantly associated with the risk of high IOP. The OR with 95% CI for Q3 and Q4 were 1.77 (1.22, 2.57) and 1.51 (1.01, 2.26), respectively, Q1 as a reference. For men, SUA levels were not associated with the incidence of high IOP. Moreover, the spline analysis found an inverted U‐shaped relationship between uric acid and high IOP in women (P = 0.0171). Conclusions Elevated levels of SUAwere independently associated with an increased risk of high IOP in women, but not in men. In addition, uric acid had an inverse U-shaped nonlinear dose-response relationship with high IOP in women.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Dan Liu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Derui Yan
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Weicun Huang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaodong Ji
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Hui
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Ma Q, Honarpisheh M, Li C, Sellmayr M, Lindenmeyer M, Böhland C, Romagnani P, Anders HJ, Steiger S. Soluble Uric Acid Is an Intrinsic Negative Regulator of Monocyte Activation in Monosodium Urate Crystal-Induced Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:789-800. [PMID: 32561569 DOI: 10.4049/jimmunol.2000319] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Although monosodium urate (MSU) crystals are known to trigger inflammation, published data on soluble uric acid (sUA) in this context are discrepant. We hypothesized that diverse sUA preparation methods account for this discrepancy and that an animal model with clinically relevant levels of asymptomatic hyperuricemia and gouty arthritis can ultimately clarify this issue. To test this, we cultured human monocytes with different sUA preparation solutions and found that solubilizing uric acid (UA) by prewarming created erroneous results because of UA microcrystal contaminants triggering IL-1β release. Solubilizing UA with NaOH avoided this artifact, and this microcrystal-free preparation suppressed LPS- or MSU crystal-induced monocyte activation, a process depending on the intracellular uptake of sUA via the urate transporter SLC2A9/GLUT9. CD14+ monocytes isolated from hyperuricemic patients were less responsive to inflammatory stimuli compared with monocytes from healthy individuals. Treatment with plasma from hyperuricemic patients impaired the inflammatory function of CD14+ monocytes, an effect fully reversible by removing sUA from hyperuricemic plasma. Moreover, Alb-creERT2;Glut9 lox/lox mice with hyperuricemia (serum UA of 9-11 mg/dl) showed a suppressed inflammatory response to MSU crystals compared with Glut9 lox/lox controls without hyperuricemia. Taken together, we unravel a technical explanation for discrepancies in the published literature on immune effects of sUA and identify hyperuricemia as an intrinsic suppressor of innate immunity, in which sUA modulates the capacity of monocytes to respond to danger signals. Thus, sUA is not only a substrate for the formation of MSU crystals but also an intrinsic inhibitor of MSU crystal-induced tissue inflammation.
Collapse
Affiliation(s)
- Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Mohsen Honarpisheh
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Markus Sellmayr
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Maja Lindenmeyer
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Germany; and
| | - Paola Romagnani
- Department of Biomedical Experimental and Clinical Sciences "Maria Serio," University of Florence, 50139 Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany;
| |
Collapse
|
23
|
Uric acid increases IL-1β secretion and Caspase-1 activation in PBMCs of Behçet's disease patients: The in vitro immunomodulatory effect of xanthine oxidase inhibitor Allopurinol. Int Immunopharmacol 2020; 80:106119. [PMID: 31927504 DOI: 10.1016/j.intimp.2019.106119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Behçet's disease (BD) is a multisystem disease, which shares some features with other diseases belonging to the autoinflammatory disorders panel. Recent studies have postulated that IL-1β/Caspase-1 may play a cardinal role in autoinflammatory diseases. In this study, we aimed to (i) elucidate the mechanism underlying the involvement of xanthine oxidase (XO) and Uric Acid (UA) in BD (ii) study the direct effects of UA and XO inhibitor "Allopurinol" on nitric oxide (NO) and caspase-1-mediated IL-1β release in peripheral blood mononuclear cells (PBMCs) of BD patients. In this context, plasma of BD patients and healthy controls (HC) were used to measure XO activity, UA, advanced oxidized proteins products (AOPP) and NO levels. In Addition, PBMCs of BD patients and HC were treated or not with either UA or Allopurinol. Then we quantified NO and IL-1β levels, and Caspase-1 Activity in the supernatants and lysates of PBMCs, respectively. We showed that plasma levels of XO activity, UA, AOPP and NO are significantly increased in BD patients compared to those of HC. Interestingly, a significant positive correlation between XO and UA was observed in BD patients. Additionally, while UA has markedly increased NO, IL-1β, and Caspase-1 activity levels in PBMCs of BD patients, Allopurinol has exerted an immunomodulatory effect resulting in reduced NO, IL-1β and Caspase-1 levels in PBMCs of BD patients particularly during the active stages. Collectively, our results indicate a potential clinical use of XO as a tool for assessing BD activity, and suggest that the in-vitro immunomodulatory effect of Allopurinol may have a promising therapeutic value in BD management.
Collapse
|
24
|
Uric Acid Provides Protective Role in Red Blood Cells by Antioxidant Defense: A Hypothetical Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3435174. [PMID: 31049132 PMCID: PMC6458867 DOI: 10.1155/2019/3435174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/16/2018] [Accepted: 01/12/2019] [Indexed: 01/15/2023]
Abstract
Uric acid (UA) is a major antioxidant molecule in the human blood, and it has been linked with cell longevity. However, it is unclear whether serum UA levels are associated with red blood cell (RBC) indexes. This cross-sectional study included 10,759 Chinese subjects, recruited from the Shanghai Xuhui Central Hospital from January 2014 to December 2017. The participants were categorized into gender groups and then further divided into three different subgroups according to their UA reference range as follows: low (male (UA < 0.202 mmol/l), female (UA < 0.143 mmol/l)), normal (male (0.417 mmol/l > UA ≥ 0.202 mmol/l), female (0.339 mmol/l > UA ≥ 0.143 mmol/l)), and high (male (UA ≥ 0.417 mmol/l), female (UA ≥ 0.339 mmol/l)). The associations of UA levels with RBC parameters were analyzed using 1-way ANOVA, Pearson correlations, and multivariate linear regression. The levels of mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, RBCs, and hemoglobin were lowest in the low UA group, followed by the normal UA group and high UA group (p < 0.001). Pearson analysis showed that there was a statistically significant correlation between UA levels with mean corpuscular hemoglobin, mean corpuscular hemoglobin concentrations, mean corpuscular volumes, RBC counts, and hemoglobin (p < 0.05). Multiple linear regression analysis suggested that there were statistically significant positive correlations between UA levels and RBC counts (B = 0.245, p < 0.001, 95% CI = 0.003 to 0.092), as well as UA levels and hemoglobin concentrations (B = 0.138, p < 0.001, 95% CI = 0.002 to 0.082). Furthermore, similar results were observed in both the male and female subgroups. The serum UA levels may be independently associated with RBC parameters, regardless of sex, and UA may protect RBCs owing to its antioxidant effect.
Collapse
|
25
|
Association between Pretreatment Serum Uric Acid Levels and Progression of Newly Diagnosed Primary Angle-Closure Glaucoma: A Prospective Cohort Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7919836. [PMID: 30881597 PMCID: PMC6383391 DOI: 10.1155/2019/7919836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 12/17/2022]
Abstract
Purpose Increased evidence reveals that uric acid (UA) may have an important neuroprotective effect through its antioxidant properties. The aim of the present study was to investigate the relationship between pretreatment serum UA levels and the progression of newly diagnosed primary angle-closure glaucoma (PACG). Methods This prospective observational cohort study included 64 patients with newly diagnosed PACG who were followed up for a mean period of 12.77 months (range: 3–28 months). All subjects underwent a complete ophthalmological examination during the baseline and final follow-up visits, together with the acquisition of blood samples for UA measurements. During the follow-up period, the progression of PACG was defined as a clinical diagnosis of medically uncontrolled intraocular pressure and a loss of visual field with a mean deviation of >1 dB/year. Univariable and multivariable Cox regression models were used to investigate the association between baseline serum UA levels and the progression of PACG. The cumulative probability of progression of glaucoma was analyzed using the Kaplan-Meier method. Results During follow-up, 32 subjects were defined as progressive PACG, among whom baseline UA values were significantly higher in nonprogressing subjects than in progressing subjects (0.314 ± 0.069 mmol/l versus [vs.] 0.258 ± 0.069 mmol/l, respectively; P = 0.002). Similar results were also observed in male and female subgroups (P < 0.05). In a multivariable model, a decreased baseline serum UA level was associated with an increased risk for progressing PACG: both in male (hazard ratio [HR] 6.088 [95% confidence interval (CI) 1.163–31.8638]; P = 0.032) and female subjects (HR 3.565 [95% CI 1.131–11.236]; P = 0.030). Subjects with high UA levels demonstrated higher cumulative probabilities of nonprogressing PACG than those with low UA levels (male [16.67% vs. 80.00%; P = 0.0084] and female [29.41% vs. 68.00%; P = 0.0182]). Conclusion An association between high baseline serum UA levels and a decreased risk for progressing PACG was found. This primary finding suggests that high serum UA levels may have a protective role against PACG and could slow disease progression.
Collapse
|
26
|
Gureev AP, Popov VN. Nrf2/ARE Pathway as a Therapeutic Target for the Treatment of Parkinson Diseases. Neurochem Res 2019; 44:2273-2279. [PMID: 30617864 DOI: 10.1007/s11064-018-02711-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023]
Abstract
Instead of the progress in the understanding of etiology of Parkinson's disease (PD), effective methods to prevent the progression of the disease have not been developed and only symptomatic treatment is currently possible. One of possible pathways to slow the progression of the disease is protection of dopaminergic neurons by maintaining mitochondrial quality control in neuron cells. Recent studies showed that the most promising target for pharmacological effects on mitochondria is the Nrf2/ARE signaling cascade. It participates in the maintenance of mitochondrial homeostasis, which is provided by an optimal ratio in the processes of mitochondrial biogenesis and mitophagy, as well as the optimal ratio of ROS production and ROS scavenging. Nrf2 activators are capable of modulating these processes, maintaining mitochondrial homeostasis in neurons. In addition, Nrf2 can synergistically interact with other transcription factors, for example, PGC-1a in the regulation of mitochondrial biogenesis and YY1 with the increase of antioxidant defense. All this makes Nrf2 an optimal target for drugs that could support the mitochondrial quality control, which, in combination with antioxidant protection, can significantly slow down the pathogenesis of PD. Some of these compounds have undergone laboratory studies and are at the stage of clinical trials now.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
27
|
Xu DD, Li WT, Jiang D, Wu HG, Ren MS, Chen MQ, Wu YB. 3-N-Butylphthalide mitigates high glucose-induced injury to Schwann cells: association with nitrosation and apoptosis. Neural Regen Res 2019; 14:513-518. [PMID: 30539821 PMCID: PMC6334601 DOI: 10.4103/1673-5374.245590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A high glucose state readily causes peripheral axon atrophy, demyelination, loss of nerve fiber function, and delayed regeneration. However, few studies have examined whether nitration is also critical for diabetic peripheral neuropathy. Therefore, this study investigated the effects of high glucose on proliferation, apoptosis, and 3-nitrotyrosine levels of Schwann cells treated with butylphthalide. In addition, we explored potential protective mechanisms of butylphthalide on peripheral nerves. Schwann cells were cultured in vitro with high glucose then stimulated with the peroxynitrite anion inhibitors uric acid and 3-n-butylphthalide for 48 hours. Cell Counting Kit-8 and flow cytometry were used to investigate the effects of uric acid and 3-n-butylphthalide on proliferation and apoptosis of Schwann cells exposed to a high glucose environment. Effects of uric acid and 3-n-butylphthalide on levels of 3-nitrotyrosine in Schwann cells were detected by enzyme-linked immunosorbent assay. The results indicated that Schwann cells cultured in high glucose showed decreased proliferation, but increased apoptosis and intracellular 3-nitrotyrosine levels. However, intervention with uric acid or 3-n-butylphthalide could increase proliferation of Schwann cells cultured in high glucose, and inhibited apoptosis and intracellular 3-nitrotyrosine levels. According to our data, 3-n-butylphthalide may inhibit cell nitrification and apoptosis, and promote cell proliferation, thereby reducing damage to Schwann cells caused by high glucose.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China; Department of Neurology, Anhui Second People's Hospital, Hefei, Anhui Province, China
| | - Wen-Ting Li
- Department of Infection, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Dan Jiang
- Department of Neurology, Anhui Second People's Hospital, Hefei, Anhui Province, China
| | - Huai-Guo Wu
- Department of Neurology, Anhui Second People's Hospital, Hefei, Anhui Province, China
| | - Ming-Shan Ren
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Mei-Qiao Chen
- Department of Neurology, Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Bo Wu
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
28
|
Murea M, Tucker BM. The physiology of uric acid and the impact of end-stage kidney disease and dialysis. Semin Dial 2018; 32:47-57. [DOI: 10.1111/sdi.12735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariana Murea
- Department of Internal Medicine; Section on Nephrology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Bryan M. Tucker
- Department of Internal Medicine; Section on Nephrology; Wake Forest School of Medicine; Winston-Salem NC USA
| |
Collapse
|
29
|
Li S, Shao M, Tang B, Zhang A, Cao W, Sun X. The association between serum uric acid and glaucoma severity in primary angle closure glaucoma: a retrospective case-control study. Oncotarget 2018; 8:2816-2824. [PMID: 27926530 PMCID: PMC5356844 DOI: 10.18632/oncotarget.13745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Uric acid (UA) is a major antioxidant molecule and has been hypothesized to have a protective effect on the central nervous system against oxidative damage. We prospectively investigated the serum concentration of UA in primary angle closure glaucoma (PACG), and explored the association between serum concentration of UA and the severity of PACG. Using a retrospective case-control study design, 886 PACG subjects and 994 control subjects who attended the Eye & ENT Hospital of Fudan University, were eligible for this study. Glaucoma severity was classified as mild (MD ≤ 6.00 dB), moderate (12 dB ≥ MD > 6 dB) and severe (MD > 12 dB) based on the MD (mean deviation). The levels of UA were significantly lower (p = 0.025) in PACG (0.286 ± 0.082 mmol/l) compared with control (0.295 ± 0.085 mmol/l). The mean serum UA levels were lowest in the severe group (0.281 ± 0.074 mmol/l) followed by moderate (0.282 ± 0.080 mmol/l) and mild (0.297 ± 0.090 mmol/l) with significant differences among the three groups (p = 0.032). In multivariate regression analysis, there was a significant negative correlation between UA level and vertical cup-disc ratio (B = −0.165, p = 0.035). Significantly lower serum UA concentration in PACG and its negative association with disease severity presented it as an important candidate in reaction to oxidative stress in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China
| | - Binghua Tang
- Department of Clinical Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China
| | - Aiping Zhang
- Department of Clinical Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China.,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shangai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health (Fudan University), Shangai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shangai, China
| |
Collapse
|
30
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Komori H, Yamada K, Tamai I. Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:973-980. [PMID: 29317200 DOI: 10.1016/j.bbamem.2018.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
Hyperuricemia has been recognized as an independent risk factor for cardiovascular disease. Urate stimulates NADPH oxidase and induces production of reactive oxygen species (ROS); consequently, intracellular urate accumulation can induce oxidative stress leading to endothelial dysfunction. Here, we studied the mechanism involved, using human umbilical vascular endothelial cells (HUVEC) as a model. Pretreatment with 15 mg/dL unlabeled uric acid (corresponding to hyperuricemia) resulted in increased uptake of [14C]uric acid at steady-state by HUVEC, whereas pretreatment with 5 mg/dL uric acid (in the normal serum concentration range) did not. However, the initial uptake rate of [14C]uric acid was not affected by uric acid at either concentration. These results suggest that efflux transport of uric acid is decreased under hyperuricemic conditions. We observed a concomitant decrease of phosphorylated endothelial nitric oxide synthase. Plasma membrane expression of breast cancer resistance protein (BCRP), a uric acid efflux transporter, was decreased under hyperuricemia, though the total cellular expression of BCRP remained constant. Uric acid did not affect expression of another uric acid efflux transporter, multidrug resistance associated protein 4 (MRP4). Moreover, phosphorylation of Akt, which regulates plasma membrane localization of BCRP, was decreased. These uric acid-induced changes of BCRP and Akt were reversed in the presence of the antioxidant N-acetylcysteine. These results suggest that in hyperuricemia, uric acid-induced ROS generation inhibits Akt phosphorylation, causing a decrease in plasma membrane localization of BCRP, and the resulting decrease of BCRP-mediated efflux leads to increased uric acid accumulation and dysregulation of endothelial function.
Collapse
Affiliation(s)
- Hisakazu Komori
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuyuki Yamada
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
32
|
O'Reilly ÉJ, Bjornevik K, Schwarzschild MA, McCullough ML, Kolonel LN, Le Marchand L, Manson JE, Ascherio A. Pre-diagnostic plasma urate and the risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:194-200. [PMID: 29277115 DOI: 10.1080/21678421.2017.1418005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To prospectively examine for the first time the association between plasma urate levels measured in healthy participants and future amyotrophic lateral sclerosis (ALS) risk. METHODS A pooled case-control study nested in five US prospective cohorts comprising 319,617 participants who provided blood, of which 275 had ALS during follow-up. Pre-diagnostic plasma urate was determined for all participants using a clinical colorimetric enzyme assay. Gender-specific multivariable-adjusted rate ratios (RR) of ALS incidence or death estimated by conditional logistic regression and pooled using inverse-variance weighting. RESULTS In age- and matching factor-adjusted analyses, a 1 mg/dL increase in urate concentration was associated with RR = 0.88 (95% CI: [0.78, 0.997] p = 0.044). After adjustment for BMI, a strong predictor of ALS and urate levels, and other potential covariates, the RR = 0.89 (95% CI: [0.78, 1.02]; p = 0.08 for 1mg/dL increase in urate). CONCLUSION Elevation of plasma urate was modestly inversely associated with the risk of ALS and warrants further study for a potential role in this disease.
Collapse
Affiliation(s)
- Éilis J O'Reilly
- a School of Public Health , College of Medicine, University College Cork , Cork , Ireland.,b Department of Nutrition , Harvard TH Chan School of Public Health , Boston , MA , USA
| | - Kjetil Bjornevik
- c Department of Global Public Health and Primary Care , University of Bergen , Bergen , Norway.,d The Norwegian Multiple Sclerosis Competence Center, Department of Neurology , Haukeland University Hospital , Bergen , Norway
| | | | | | - Laurence N Kolonel
- g Epidemiology Program , University of Hawaii Cancer Center , Honolulu , HI , USA
| | - Loic Le Marchand
- g Epidemiology Program , University of Hawaii Cancer Center , Honolulu , HI , USA
| | - Joann E Manson
- h Department of Medicine Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA.,i Department of Epidemiology , Harvard TH Chan School of Public Health , Boston , MA , USA , and
| | - Alberto Ascherio
- b Department of Nutrition , Harvard TH Chan School of Public Health , Boston , MA , USA.,i Department of Epidemiology , Harvard TH Chan School of Public Health , Boston , MA , USA , and.,j Channing Division of Network Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
33
|
Yasutake Y, Tomita K, Higashiyama M, Furuhashi H, Shirakabe K, Takajo T, Maruta K, Sato H, Narimatsu K, Yoshikawa K, Okada Y, Kurihara C, Watanabe C, Komoto S, Nagao S, Matsuo H, Miura S, Hokari R. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity. J Gastroenterol Hepatol 2017; 32:1839-1845. [PMID: 28295549 DOI: 10.1111/jgh.13785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. METHODS A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. RESULTS Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. CONCLUSIONS Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Yuichi Yasutake
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Hirotaka Furuhashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kazuhiko Shirakabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Takeshi Takajo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Koji Maruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Hirokazu Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kazuyuki Narimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Kenichi Yoshikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Shigeaki Nagao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, Tokorozawa-shi, Saitama, Japan
| |
Collapse
|
34
|
Velasquez C, Vasquez JS, Balcazar N. In Vitro Effect of Fatty Acids Identified in the Plasma of Obese Adolescents on the Function of Pancreatic β-Cells. Diabetes Metab J 2017; 41:303-315. [PMID: 28868828 PMCID: PMC5583408 DOI: 10.4093/dmj.2017.41.4.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/31/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The increase in circulating free fatty acid (FFA) levels is a major factor that induces malfunction in pancreatic β-cells. We evaluated the effect of FFAs reconstituted according to the profile of circulating fatty acids found in obese adolescents on the viability and function of the murine insulinoma cell line (mouse insulinoma [MIN6]). METHODS From fatty acids obtained commercially, plasma-FFA profiles of three different youth populations were reconstituted: obese with metabolic syndrome; obese without metabolic syndrome; and normal weight without metabolic syndrome. MIN6 cells were treated for 24 or 48 hours with the three FFA profiles, and glucose-stimulated insulin secretion, cell viability, mitochondrial function and antioxidant activity were evaluated. RESULTS The high FFA content and high polyunsaturated ω6/ω3 ratio, present in plasma of obese adolescents with metabolic syndrome had a toxic effect on MIN6 cell viability and function, increasing oxidative stress and decreasing glucose-dependent insulin secretion. CONCLUSION These results could help to guide nutritional management of obese young individuals, encouraging the increase of ω-3-rich food consumption in order to reduce the likelihood of deterioration of β-cells and the possible development of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Claudia Velasquez
- Research Group in Food and Human Nutrition, School of Dietetics and Human Nutrition, University of Antioquia, Medellin, Colombia
| | | | - Norman Balcazar
- Genetics Molecular Group, University of Antioquia, Medellin, Colombia
- Department of Physiology and Biochemistry, School of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
35
|
Abstract
Oxidative stress has been implicated as a core contributor to the initiation and progression of multiple neurological diseases. Genetic and environmental factors can produce oxidative stress through mitochondrial dysfunction leading to the degeneration of dopaminergic and other neurons underlying Parkinson disease (PD). Although clinical trials of antioxidants have thus far failed to demonstrate slowed progression of PD, oxidative stress remains a compelling target. Rather than prompting abandonment of antioxidant strategies, these failures have raised the bar for justifying drug and dosing selections and for improving study designs to test for disease modification by antioxidants. Urate, the main antioxidant found in plasma as well as the end product of purine metabolism in humans, has emerged as a promising potential neuroprotectant with advantages that distinguish it from previously tested antioxidant agents. Uniquely, higher urate levels in plasma or cerebrospinal fluid (CSF) have been linked to both a lower risk of developing PD and to a slower rate of its subsequent progression in numerous large prospective epidemiological and clinical cohorts. Laboratory evidence that urate confers neuroprotection in cellular and animal models of PD, possibly via the Nrf2 antioxidant response pathway, further strengthened its candidacy for rapid clinical translation. An early phase trial of the urate precursor inosine demonstrated its capacity to safely produce well tolerated, long-term elevation of plasma and CSF urate in early PD, supporting a phase 3 trial now underway to determine whether oral inosine dosed to elevate urate to concentrations predictive of favorable prognosis in PD slows clinical decline in people with recently diagnosed, dopamine transporter-deficient PD.
Collapse
Affiliation(s)
- Grace F Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
36
|
Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 2017; 7:2359. [PMID: 28539647 PMCID: PMC5443811 DOI: 10.1038/s41598-017-02640-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 01/18/2023] Open
Abstract
High uric acid levels are a risk factor for cardiovascular disorders and gout; however, the role of physiological concentrations of soluble uric acid (sUA) is poorly understood. This study aimed to clarify the effects of sUA in joint inflammation. Both cell cultures of primary porcine chondrocytes and mice with collagen-induced arthritis (CIA) were examined. We showed that sUA inhibited TNF-α- and interleukin (IL)-1β–induced inducible nitric oxide synthase, cyclooxygenase-2 and matrix metalloproteinase (MMP)-13 expression. Examination of the mRNA expression of several MMPs and aggrecanases confirmed that sUA exerts chondroprotective effects by inhibiting the activity of many chondro-destructive enzymes. These effects attenuated collagen II loss in chondrocytes and reduced proteoglycan degradation in cartilage explants. These results were reproduced in chondrocytes cultured in three-dimensional (3-D) alginate beads. Molecular studies revealed that sUA inhibited the ERK/AP-1 signalling pathway, but not the IκBα-NF-κB signalling pathway. Increases in plasma uric acid levels facilitated by the provision of oxonic acid, a uricase inhibitor, to CIA mice exerted both anti-inflammatory and arthroprotective effects in these animals, as demonstrated by their arthritis severity scores and immunohistochemical analysis results. Our study demonstrated that physiological concentrations of sUA displayed anti-inflammatory and chondroprotective effects both in vitro and in vivo.
Collapse
|
37
|
Ramos CDO, Nardeli CR, Campos KKD, Pena KB, Machado DF, Bandeira ACB, Costa GDP, Talvani A, Bezerra FS. The exposure to formaldehyde causes renal dysfunction, inflammation and redox imbalance in rats. ACTA ACUST UNITED AC 2017; 69:367-372. [PMID: 28336174 DOI: 10.1016/j.etp.2017.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
Twenty-eight Fischer male rats were divided into four groups: control group (CG), exposed to the ambient air, and groups exposed to formaldehyde (FA) at concentrations of 1% (FA1%), 5% (FA5%) and 10% (FA10%). Kidney function was assessed by dosage of uric acid, creatinine and urea. Morphometry was performed on the thickness of the lumen of Bowman's capsule and diameter of the lumen of the renal tubules. We evaluated the redox imbalance through the catalase and superoxide dismutase activity as well as oxidative damage by lipid peroxidation. Inflammatory chemokines CCL2, CCL3 and CCL5 were analyzed by enzyme immunoassays. There was an increase in the concentration of urea in FA10% compared with CG and FA1%. The levels of creatinine, renal lumen and lipid peroxidation increased in all FA-treated groups compared with CG. The concentration of uric acid in FA10% was lower compared with all other groups. There was an increase in the space of Bowman's capsule in FA5% and FA10% compared with CG and FA1%. However, the superoxide dismutase activity was higher in FA5% compared with other groups while CCL5 was higher in FA1% compared with CG. The exposure to formaldehyde in a short period of time leads to changes in the kidney function, inflammation and morphology, as well as promoted the increase of superoxide dismutase activity and oxidative damage.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Clarissa Rodrigues Nardeli
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Keila Karine Duarte Campos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Karina Braga Pena
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Dafne Fernandes Machado
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Ana Carla Balthar Bandeira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
38
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
39
|
Dobrek Ł, Skowron B, Baranowska A, Płoszaj K, Bądziul D, Thor P. The influence of oxazaphosphorine agents on kidney function in rats. Medicina (B Aires) 2017; 53:179-189. [DOI: 10.1016/j.medici.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 02/04/2023] Open
|
40
|
Abstract
Uric acid (UA), the final product of purine metabolism, has been reported to be reduced in patients with various neurological disorders and is considered to be a possible indicator for monitoring the disability and progression of multiple sclerosis. However, it remains unclear whether there is a close relationship between UA and myasthenia gravis (MG), or whether UA is primarily deficient or secondarily reduced because of its peroxynitrite scavenging activity. We investigated the correlation between serum UA levels and the clinical characteristics of MG. We assessed 338 serum UA levels obtained in 135 patients with MG, 47 patients with multiple sclerosis, and 156 healthy controls. In addition, we compared serum UA levels when MG patients were stratified according to disease activity and classifications performed by the Myasthenia Gravis Foundation of America, age of onset, duration, and thymus histology (by means of MRI or computed tomography). MG patients had significantly lower serum UA levels than the controls (P<0.001). Moreover, UA levels in patients with MG were inversely correlated with disease activity and disease progression (P=0.013). However, UA levels did not correlate significantly with disease duration, age of onset, and thymus histology. Our findings suggest that serum level of UA was reduced in patients with MG and serum UA might be considered a surrogate biomarker of MG disability and progression.
Collapse
|
41
|
Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities. Eur J Med Chem 2016; 115:381-92. [DOI: 10.1016/j.ejmech.2016.03.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
|
42
|
Llull L, Amaro S, Chamorro Á. Administration of Uric Acid in the Emergency Treatment of Acute Ischemic Stroke. Curr Neurol Neurosci Rep 2016; 16:4. [PMID: 26711273 DOI: 10.1007/s11910-015-0604-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress is one of the main mechanisms implicated in the pathophysiology of inflammatory and neurodegenerative diseases of the central nervous system (CNS). Uric acid (UA) is the end product of purine catabolism in humans, and it is the main endogenous antioxidant in blood. Low circulating UA levels have been associated with an increased prevalence and worse clinical course of several neurodegenerative and inflammatory diseases of the CNS, including Parkinson's disease and multiple sclerosis. Moreover, the exogenous administration of UA exerts robust neuroprotective properties in experimental models of CNS disease, including brain ischemia, spinal cord injury, meningitis, and experimental allergic encephalitis. In experimental brain ischemia, exogenous UA and the thrombolytic agent alteplase exert additive neuroprotective effects when administered in combination. UA is rapidly consumed following acute ischemic stroke, and higher UA levels at stroke admission are associated with a better outcome and reduced infarct growth at follow-up. A recent phase II trial demonstrated that the combined intravenous administration of UA and alteplase is safe and prevents an early decrease of circulating UA levels in acute ischemic stroke patients. Moreover, UA prevents the increase in the circulating levels of the lipid peroxidation marker malondialdehyde and of active matrix metalloproteinase (MMP) 9, a marker of blood-brain barrier disruption. The moderately sized URICOICTUS phase 2b trial showed that the addition of UA to thrombolytic therapy resulted in a 6% absolute increase in the rate of excellent outcome at 90 days compared to placebo. The trial also showed that UA administration resulted in a significant increment of excellent outcome in patients with pretreatment hyperglycemia, in females and in patients with moderate strokes. Overall, the encouraging neuroprotective effects of UA therapy in acute ischemic stroke warrants further investigation in adequately powered clinical trials.
Collapse
Affiliation(s)
- Laura Llull
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sergio Amaro
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Ángel Chamorro
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.
- Medical Department, School of Medicine, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, 170 Villarroel, 08036, Barcelona, Spain.
| |
Collapse
|
43
|
Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Nitric Oxide 2016; 54:38-50. [DOI: 10.1016/j.niox.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/31/2023]
|
44
|
Yang D, Su Z, Wu S, Bi Y, Li X, Li J, Lou K, Zhang H, Zhang X. Low antioxidant status of serum bilirubin, uric acid, albumin and creatinine in patients with myasthenia gravis. Int J Neurosci 2016; 126:1120-6. [PMID: 26707693 DOI: 10.3109/00207454.2015.1134526] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Oxidative stress and low antioxidant status play a major role in the pathogenesis of inflammatory and autoimmune diseases. Myasthenia gravis (MG) is an autoimmune condition targeting the neuromuscular junction, and its antioxidant status is still controversial. Our study aimed to investigate the correlation between the clinical characteristics of MG and the serum antioxidant status of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine. MATERIALS AND METHODS We measured serum antioxidant molecule levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine in 380 individuals, including 166 MG and 214 healthy controls. RESULTS We found that MG patients had significantly lower serum levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine than healthy controls, whether male or female. Moreover, it was also shown in our study that uric acid, albumin and creatinine levels in patients with MG were correlated with disease activity and classifications performed by the Myasthenia Gravis Foundation of America. CONCLUSION Our findings demonstrated that serum levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine were reduced in patients with MG. This suggested an active oxidative process in MG patients who had low antioxidant status.
Collapse
Affiliation(s)
- Dehao Yang
- a Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhongqian Su
- a Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Shengjie Wu
- b Department of Cardiology, The Heart Center , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yong Bi
- c Department of Neurology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Xiang Li
- a Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Jia Li
- a Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Kangliang Lou
- d School of the First Clinical Medical Sciences , Wenzhou Medical University , Wenzhou , China , and
| | - Hongyu Zhang
- e School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering , Wenzhou Medical University , Wenzhou , China
| | - Xu Zhang
- a Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
45
|
Vieru E, Köksal A, Mutluay B, Dirican AC, Altunkaynak Y, Baybas S. The relation of serum uric acid levels with l-Dopa treatment and progression in patients with Parkinson’s disease. Neurol Sci 2016; 37:743-7. [DOI: 10.1007/s10072-015-2471-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
|
46
|
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6904327. [PMID: 26640616 PMCID: PMC4657111 DOI: 10.1155/2016/6904327] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/21/2015] [Indexed: 01/07/2023]
Abstract
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.
Collapse
|
47
|
Molshatzki N, Weinstein G, Streifler JY, Goldbourt U, Tanne D. Serum uric acid and subsequent cognitive performance in patients with pre-existing cardiovascular disease. PLoS One 2015; 10:e0120862. [PMID: 25794156 PMCID: PMC4368665 DOI: 10.1371/journal.pone.0120862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022] Open
Abstract
High serum uric acid (UA) levels are associated with numerous vascular risk factors, and vascular disease, that predispose patients to cognitive impairment, yet UA is also a major natural antioxidant and higher levels have been linked to slower progression of several neurodegenerative disease. In-order to test the association between UA and subsequent cognitive performance among patients that carry a high vascular burden, UA levels were determined by calorimetric enzymatic tests in a sub-cohort of patients with chronic cardiovascular disease who previously participating in a secondary prevention trial. After an average of 9.8±1.7 years, we assessed cognitive performance (Neurotrax Computerized Cognitive Battery) as well as cerebrovascular reactivity (CVR) and common carotid intima-media thickness (IMT). Among 446 men (mean age 62.3±6.4 yrs) mean UA levels were 5.8±1.1 mg/dL. Adjusted linear regression models revealed that low UA levels (bottom quintile) were associated with poorer cognitive performance. Adjusted differences between the bottom quintile and grouped top UA quintiles were (B coefficient±SE) −4.23±1.28 for global cognitive scores (p = 0.001), −4.69±1.81 for memory scores (p = 0.010), −3.32±1.43 for executive scores (p = 0.020) and −3.43±1.97 for visual spatial scores (p = 0.082). Significant difference was also found for attention scores (p = 0.015). Additional adjustment for impaired CVR and high common carotid IMT slightly attenuated the relationship. Stronger UA effect on cognitive performance was found for older (age>65) patients with significant age interaction for global cognitive score (p = 0.016) and for executive (p = 0.018) and attention domains (p<0.001). In conclusion, we demonstrate that low UA levels in patients with preexisting cardiovascular disease are associated with poorer cognitive function a decade later. These findings lend support to the hypothesis that oxidative stress may be involved in the pathogenesis of age-associated cognitive impairment.
Collapse
Affiliation(s)
- Noa Molshatzki
- Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Galit Weinstein
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Uri Goldbourt
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - David Tanne
- Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
48
|
Abstract
Excessive free radical production by immune cells has been linked to cell death and tissue injury during sepsis. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death that has been identified in several pathological conditions. Caffeic acid phenethyl ester (CAPE) is an active component of honeybee products and exhibits antioxidant, anti-inflammatory, and immunomodulatory activities. The present study examined the ability of CAPE to scavenge peroxynitrite in RAW 264.7 murine macrophages stimulated with lipopolysaccharide/interferon-γ that was used as an in vitro model. Conversion of 123-dihydrorhodamine to its oxidation product 123-rhodamine was used to measure peroxynitrite production. Two mouse models of sepsis (endotoxemia and cecal ligation and puncture) were used as in vivo models. The level of serum 3-nitrotyrosine was used as an in vivo marker of peroxynitrite. The results demonstrated that CAPE significantly improved the viability of lipopolysaccharide/interferon-γ-treated RAW 264.7 cells and significantly inhibited nitric oxide production, with effects similar to those observed with an inhibitor of inducible nitric oxide synthase (1400W). In addition, CAPE exclusively inhibited the synthesis of peroxynitrite from the artificial substrate SIN-1 and directly prevented the peroxynitrite-mediated conversion of dihydrorhodamine-123 to its fluorescent oxidation product rhodamine-123. In both sepsis models, CAPE inhibited cellular peroxynitrite synthesis, as evidenced by the absence of serum 3-nitrotyrosine, an in vivo marker of peroxynitrite. Thus, CAPE attenuates the inflammatory responses that lead to cell damage and, potentially, cell death through suppression of the production of cytotoxic molecules such as nitric oxide and peroxynitrite. These observations provide evidence of the therapeutic potential of CAPE treatment for a wide range of inflammatory disorders.
Collapse
|
49
|
Berto A, Ribeiro AB, Sentandreu E, de Souza NE, Mercadante AZ, Chisté RC, Fernandes E. The seed of the Amazonian fruit Couepia bracteosa exhibits higher scavenging capacity against ROS and RNS than its shell and pulp extracts. Food Funct 2015. [DOI: 10.1039/c5fo00722d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Couepia bracteosa is an interesting source of bioactive compounds which may be investigated for protecting human health against oxidative damage.
Collapse
Affiliation(s)
- Alessandra Berto
- Postgraduate Program of Chemistry
- State University of Maringá
- Maringá
- Brazil
| | | | - Enrique Sentandreu
- Department of Food Science
- Faculty of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
- Brazil
| | | | | | - Renan Campos Chisté
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| |
Collapse
|
50
|
García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Muñoz-Yagüe T, Solís-Herruzo JA. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis Model Mech 2014; 8:183-91. [PMID: 25540128 PMCID: PMC4314783 DOI: 10.1242/dmm.018234] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits. These effects were mediated by activation of NADPH oxidase. That is, these acids reproduced mitochondrial dysfunction found in humans and animals with nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Inmaculada García-Ruiz
- Research Center, Laboratory of Gastroenterology and Hepatology, University Hospital "12 de Octubre", Complutense University, 28041-Madrid, Spain.
| | | | - Daniel Fernández-Moreira
- Department of Bromatology and Food Hygiene, Military Center of Veterinary of Defense, 28024-Madrid, Spain
| | - Teresa Muñoz-Yagüe
- Research Center, Laboratory of Gastroenterology and Hepatology, University Hospital "12 de Octubre", Complutense University, 28041-Madrid, Spain
| | - José A Solís-Herruzo
- Research Center, Laboratory of Gastroenterology and Hepatology, University Hospital "12 de Octubre", Complutense University, 28041-Madrid, Spain
| |
Collapse
|